1
|
Deng RM, Zhou J. Targeting NF-κB in Hepatic Ischemia-Reperfusion Alleviation: from Signaling Networks to Therapeutic Targeting. Mol Neurobiol 2024; 61:3409-3426. [PMID: 37991700 DOI: 10.1007/s12035-023-03787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver trauma, resection, and transplantation that can lead to liver dysfunction and failure. Scholars have proposed a variety of liver protection methods aimed at reducing ischemia-reperfusion damage, but there is still a lack of effective treatment methods, which urgently needs to find new effective treatment methods for patients. Many studies have reported that signaling pathway plays a key role in HIRI pathological process and liver function recovery mechanism, among which nuclear transfer factor-κB (NF-κB) signaling pathway is one of the signal transduction closely related to disease. NF-κB pathway is closely related to HIRI pathologic process, and inhibition of this pathway can delay oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction. In addition, NF-κB can also interact with PI3K/Akt, MAPK, and Nrf2 signaling pathways to participate in HIRI regulation. Based on the role of NF-κB pathway in HIRI, it may be a potential target pathway for HIRI. This review emphasizes the role of inhibiting the NF-κB signaling pathway in oxidative stress, inflammatory response, cell death, and mitochondrial dysfunction in HIRI, as well as the effects of related drugs or inhibitors targeting NF-κB on HIRI. The objective of this review is to elucidate the role and mechanism of NF-κB pathway in HIRI, emphasize the important role of NF-κB pathway in the prevention and treatment of HIRI, and provide a theoretical basis for the target NF-κB pathway as a therapy for HIRI.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Juan Zhou
- The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
2
|
Akakpo JY, Olivos H, Shrestha B, Midey A, Jaeschke H, Ramachandran A. Spatial analysis of renal acetaminophen metabolism and its modulation by 4-methylpyrazole with DESI mass spectrometry imaging. Toxicol Sci 2024; 198:328-346. [PMID: 38291912 PMCID: PMC10964743 DOI: 10.1093/toxsci/kfae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Acute kidney injury (AKI) is a common complication in acetaminophen (APAP) overdose patients and can negatively impact prognosis. Unfortunately, N-acetylcysteine, which is the standard of care for the treatment of APAP hepatotoxicity does not prevent APAP-induced AKI. We have previously demonstrated the renal metabolism of APAP and identified fomepizole (4-methylpyrazole, 4MP) as a therapeutic option to prevent APAP-induced nephrotoxicity. However, the kidney has several functionally distinct regions, and the dose-dependent effects of APAP on renal response and regional specificity of APAP metabolism are unknown. These aspects were examined in this study using C57BL/6J mice treated with 300-1200 mg/kg APAP and mass spectrometry imaging (MSI) to provide spatial cues relevant to APAP metabolism and the effects of 4MP. We find that renal APAP metabolism and generation of the nonoxidative (APAP-GLUC and APAP-SULF) and oxidative metabolites (APAP-GSH, APAP-CYS, and APAP-NAC) were dose-dependently increased in the kidney. This was recapitulated on MSI which revealed that APAP overdose causes an accumulation of APAP and APAP GLUC in the inner medulla and APAP-CYS in the outer medulla of the kidney. APAP-GSH, APAP-NAC, and APAP-SULF were localized mainly to the outer medulla and the cortex where CYP2E1 expression was evident. Interestingly, APAP also induced a redistribution of reduced GSH, with an increase in oxidized GSH within the kidney cortex. 4MP ameliorated these region-specific variations in the formation of APAP metabolites in renal tissue sections. In conclusion, APAP metabolism has a distinct regional distribution within the kidney, the understanding of which provides insight into downstream mechanisms of APAP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jephte Yao Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | - Anthony Midey
- Waters Corporation, Milford, Massachusetts 01757, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
3
|
Akakpo JY, Jaeschke MW, Etemadi Y, Artigues A, Toerber S, Olivos H, Shrestha B, Midey A, Jaeschke H, Ramachandran A. Desorption Electrospray Ionization Mass Spectrometry Imaging Allows Spatial Localization of Changes in Acetaminophen Metabolism in the Liver after Intervention with 4-Methylpyrazole. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2094-2107. [PMID: 36223142 PMCID: PMC9901546 DOI: 10.1021/jasms.2c00202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the US, and hepatotoxicity is initiated by a reactive metabolite which induces characteristic centrilobular necrosis. The only clinically available antidote is N-acetylcysteine, which has limited efficacy, and we have identified 4-methylpyrazole (4MP, Fomepizole) as a strong alternate therapeutic option, protecting against generation and downstream effects of the cytotoxic reactive metabolite in the clinically relevant C57BL/6J mouse model and in humans. However, despite the regionally restricted necrosis after APAP, our earlier studies on APAP metabolites in biofluids or whole tissue homogenate lack the spatial information needed to understand region-specific consequences of reactive metabolite formation after APAP overdose. Thus, to gain insight into the regional variation in APAP metabolism and study the influence of 4MP, we established a desorption electrospray ionization mass spectrometry imaging (DESI-MSI) platform for generation of ion images for APAP and its metabolites under ambient air, without chemical labeling or a prior coating of tissue which reduces chemical interference and perturbation of small molecule tissue localization. The spatial intensity and distribution of both oxidative and nonoxidative APAP metabolites were determined from mouse liver sections after a range of APAP overdoses. Importantly, exclusive differential signal intensities in metabolite abundance were noted in the tissue microenvironment, and 4MP treatment substantially influenced this topographical distribution.
Collapse
Affiliation(s)
- Jephte Yao Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew Wolfgang Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yasaman Etemadi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Antonio Artigues
- Department of Biochemistry, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Akakpo JY, Jaeschke MW, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Arch Toxicol 2021; 95:3377-3391. [PMID: 34420083 PMCID: PMC8448936 DOI: 10.1007/s00204-021-03142-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
N-acetylcysteine (NAC) is the only clinically approved antidote against acetaminophen (APAP) hepatotoxicity. Despite its efficacy in patients treated early after APAP overdose, NAC has been implicated in impairing liver recovery in mice. More recently, 4-methylpyrazole (4MP, Fomepizole) emerged as a potential antidote in the mouse APAP hepatotoxicity model. The objective of this manuscript was to verify the detrimental effect of NAC and its potential mechanism and assess whether 4MP has the same liability. C57BL/6J mice were treated with 300 mg/kg APAP; 9h after APAP and every 12h after that, the animals received either 100 mg/kg NAC or 184.5 mg/kg 4MP. At 24 or 48h after APAP, parameters of liver injury, mitochondrial biogenesis and cell proliferation were evaluated. Delayed NAC treatment had no effect on APAP-induced liver injury at 24h but reduced the decline of plasma ALT activities and prevented the shrinkage of the areas of necrosis at 48h. This effect correlated with down-regulation of key activators of mitochondrial biogenesis (AMPK, PGC-1α, Nrf1/2, TFAM) and reduced expression of Tom 20 (mitochondrial mass) and PCNA (cell proliferation). In contrast, 4MP attenuated liver injury at 24h and promoted recovery at 48h, which correlated with enhanced mitochondrial biogenesis and hepatocyte proliferation. In human hepatocytes, 4MP demonstrated higher efficacy in preventing cell death compared to NAC when treated at 18h after APAP. Thus, due to the wider treatment window and lack of detrimental effects on recovery, it appears that at least in preclinical models, 4MP is superior to NAC as an antidote against APAP overdose.
Collapse
Affiliation(s)
- Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Matthew W Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Steven C Curry
- Division of Clinical Data Analytics and Decision Support, and Division of Medical Toxicology and Precision Medicine, Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Sun H, Ni HM, McCracken JM, Akakpo JY, Fulte S, McKeen T, Jaeschke H, Wang H, Ding WX. Liver-specific deletion of mechanistic target of rapamycin does not protect against acetaminophen-induced liver injury in mice. LIVER RESEARCH 2021; 5:79-87. [PMID: 34504721 PMCID: PMC8425470 DOI: 10.1016/j.livres.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acetaminophen (APAP) overdose can cause liver injury and liver failure, which is one of the most common causes of drug-induced liver injury in the United States. Pharmacological activation of autophagy by inhibiting mechanistic target of rapamycin (mTOR) protects against APAP-induced liver injury likely via autophagic removal of APAP-adducts and damaged mitochondria. In the present study, we aimed to investigate the role of genetic ablation of mTOR pathways in mouse liver in APAP-induced liver injury and liver repair/regeneration. METHODS Albumin-Cre (Alb-Cre) mice, mTORf/f and Raptorf/f mice (C57BL/6J background) were crossbred to produce liver-specific mTOR knockout (L-mTOR KO, Alb Cre+/-, mTORf/f) and liver-specific Raptor KO (L-Raptor, Alb Cre+/-, Raptor f/f) mice. Alb-Cre littermates were used as wild-type (WT) mice. These mice were treated with APAP for various time points for up to 48 h. Liver injury, cell proliferation, autophagy and mTOR activation were determined. RESULTS We found that genetic deletion of neither Raptor, an important adaptor protein in mTOR complex 1, nor mTOR, in the mouse liver significantly protected against APAP-induced liver injury despite increased hepatic autophagic flux. Genetic deletion of Raptor or mTOR in mouse livers did not affect APAP metabolism and APAP-induced c-Jun N-terminal kinase (JNK) activation, but slightly improved mouse survival likely due to increased hepatocyte proliferation. CONCLUSIONS Our results indicate that genetic ablation of mTOR in mouse livers does not protect against APAP-induced liver injury but may slightly improve liver regeneration and mouse survival after APAP overdose.
Collapse
Affiliation(s)
- Hua Sun
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer M. McCracken
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Sam Fulte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Tara McKeen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA,Corresponding author. Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA. (W.-X. Ding)
| |
Collapse
|
6
|
Nguyen NT, Du K, Akakpo JY, Umbaugh DS, Jaeschke H, Ramachandran A. Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice. Toxicol Lett 2021; 338:21-31. [PMID: 33290831 PMCID: PMC7852579 DOI: 10.1016/j.toxlet.2020.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and formation of APAP-protein adducts, mitochondrial oxidant stress and activation of the mitogen activated protein (MAP) kinase c-jun N-terminal kinase (JNK) are critical for APAP-induced cell death. However, direct evidence linking these mechanistic features are lacking and were investigated by examining the early temporal course of these changes in mice after 300 mg/kg APAP. Protein adducts were detectable in the liver (0.05-0.1 nmol/mg protein) by 15 and 30 min after APAP, which increased (>500 %) selectively in mitochondria by 60 min. Cytosolic JNK activation was only evident at 60 min, and was significantly attenuated by scavenging superoxide specifically in the cytosol by TEMPO treatment. Treatment of mouse hepatocytes with APAP revealed mitochondrial superoxide generation within 15 min, accompanied by hydrogen peroxide production without change in mitochondrial respiratory function. The oxidant stress preceded JNK activation and its mitochondrial translocation. Inhibitor studies identified the putative source of mitochondrial superoxide as complex III, which released superoxide towards the intermembrane space after APAP resulting in activation of JNK in the cytosol. Our studies provide direct evidence of mechanisms involved in mitochondrial superoxide generation after NAPQI-adduct formation and its activation of the MAP kinase cascade in the cytosol, which are critical features of APAP hepatotoxicity.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kuo Du
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
7
|
Kalange M, Nansunga M, Kasozi KI, Kasolo J, Namulema J, Atusiimirwe JK, Ayikobua ET, Ssempijja F, Munanura EI, Matama K, Semuyaba I, Zirintunda G, Okpanachi AO. Antimalarial combination therapies increase gastric ulcers through an imbalance of basic antioxidative-oxidative enzymes in male Wistar rats. BMC Res Notes 2020; 13:230. [PMID: 32326975 PMCID: PMC7178572 DOI: 10.1186/s13104-020-05073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/16/2020] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Antimalarials are globally used against plasmodium infections, however, information on the safety of new antimalarial combination therapies on the gastric mucosa is scarce. The aim of this study was to investigate the effects of Artesunate-Amodiaquine and Artemether-Lumefantrine on ulcer induction. Malondialdehyde (MDA), reduced glutathione (GSH) and major histological changes in male Wistar rats following ulcer induction using Indomethacin were investigated. Gastric ulcers were in four groups; Group I was administered Artesunate, group II received Artesunate-Amodiaquine, group III received Artemether-Lumefantrine, and group IV was a positive control (normal saline). Group V was the negative control consisting of healthy rats. RESULTS Antimalarial combination therapies were associated with a high gastric ulcer index than a single antimalarial agent, Artesunate. In addition, levels of MDA were significantly higher in the combination of therapies while levels of GSH were lower in comparison to Artesunate and the negative control. Microscopically, antimalarial combination therapies were associated with severe inflammation and tissue damage than Artesunate in the gastric mucosa showing that antimalarial combination therapies exert their toxic effects through oxidative stress mechanisms, and this leads to cellular damage. Findings in this study demonstrate a need to revisit information on the pharmacodynamics of major circulating antimalarial agents in developing countries.
Collapse
Affiliation(s)
- Muhamudu Kalange
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda.
| | - Miriam Nansunga
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Keneth Iceland Kasozi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda.
| | - Josephine Kasolo
- Department of Physiology, College of Health Sciences, Makerere University, Box 7062, Kampala, Uganda
| | - Jackline Namulema
- Department of Physiology, Faculty of Medicine, Uzima University College CUEA, Box 2502, Kisumu, Kenya
| | - Jovile Kasande Atusiimirwe
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Emmanuel Tiyo Ayikobua
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda.,Department of Physiology, Faculty of Biomedical Sciences, School of Medicine, Soroti University, Soroti, Uganda.,Department of Physiology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Fred Ssempijja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Edson Ireeta Munanura
- Department of Pharmacy, College of Health Sciences, Makerere University, Box 7062, Kampala, Uganda.,Department of Therapeutics and Toxicology, School of Pharmacy, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Kevin Matama
- Department of Therapeutics and Toxicology, School of Pharmacy, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Ibrahim Semuyaba
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Gerald Zirintunda
- Department of Animal Production, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Box 203, Soroti, Uganda
| | - Alfred Omachonu Okpanachi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| |
Collapse
|
8
|
Duan L, Ramachandran A, Akakpo JY, Woolbright BL, Zhang Y, Jaeschke H. Mice deficient in pyruvate dehydrogenase kinase 4 are protected against acetaminophen-induced hepatotoxicity. Toxicol Appl Pharmacol 2019; 387:114849. [PMID: 31809757 DOI: 10.1016/j.taap.2019.114849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Though mitochondrial oxidant stress plays a critical role in the progression of acetaminophen (APAP) overdose-induced liver damage, the influence of mitochondrial bioenergetics on this is not well characterized. This is important, since lifestyle and diet alter hepatic mitochondrial bioenergetics and an understanding of its effects on APAP-induced liver injury is clinically relevant. Pyruvate dehydrogenase (PDH) is critical to mitochondrial bioenergetics, since it controls the rate of generation of reducing equivalents driving respiration, and pyruvate dehydrogenase kinase 4 (PDK4) regulates (inhibits) PDH by phosphorylation. We examined APAP-induced liver injury in PDK4-deficient (PDK4-/-) mice, which would have constitutively active PDH and hence elevated flux through the mitochondrial electron transport chain. PDK4-/- mice showed significant protection against APAP-induced liver injury when compared to wild type (WT) mice as measured by ALT levels and histology. Deficiency of PDK4 did not alter APAP metabolism, with similar APAP-adduct levels in PDK4-/- and WT mice, and no difference in JNK activation and translocation to mitochondria. However, subsequent amplification of mitochondrial dysfunction with release of mitochondrial AIF, peroxynitrite formation and DNA fragmentation were prevented. Interestingly, APAP induced a rapid decline in UCP2 protein levels in PDK4-deficient mice. These data suggest that adaptive changes in mitochondrial bioenergetics induced by enhanced respiratory chain flux in PDK4-/- mice render them highly efficient in handling APAP-induced oxidant stress, probably through modulation of UCP2 levels. Further investigation of these specific adaptive mechanisms would provide better insight into the control exerted by mitochondrial bioenergetics on cellular responses to an APAP overdose.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics and Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
9
|
Wang H, Ni HM, Chao X, Ma X, Rodriguez YA, Chavan H, Wang S, Krishnamurthy P, Dobrowsky R, Xu DX, Jaeschke H, Ding WX. Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox Biol 2019; 22:101148. [PMID: 30818124 PMCID: PMC6395945 DOI: 10.1016/j.redox.2019.101148] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 01/05/2023] Open
Abstract
Mitochondria damage plays a critical role in acetaminophen (APAP)-induced necrosis and liver injury. Cells can adapt and protect themselves by removing damaged mitochondria via mitophagy. PINK1-Parkin pathway is one of the major pathways that regulate mitophagy but its role in APAP-induced liver injury is still elusive. We investigated the role of PINK1-Parkin pathway in hepatocyte mitophagy in APAP-induced liver injury in mice. Wild-type (WT), PINK1 knockout (KO), Parkin KO, and PINK1 and Parkin double KO (DKO) mice were treated with APAP for different time points. Liver injury was determined by measuring serum alanine aminotransferase (ALT) activity, H&E staining as well as TUNEL staining of liver tissues. Tandem fluorescent-tagged inner mitochondrial membrane protein Cox8 (Cox8-GFP-mCherry) can be used to monitor mitophagy based on different pH stability of GFP and mCherry fluorescent proteins. We overexpressed Cox8-GFP-mCherry in mouse livers via tail vein injection of an adenovirus Cox8-GFP-mCherry. Mitophagy was assessed by confocal microscopy for Cox8-GFP-mCherry puncta, electron microscopy (EM) analysis for mitophagosomes and western blot analysis for mitochondrial proteins. Parkin KO and PINK1 KO mice improved the survival after treatment with APAP although the serum levels of ALT were not significantly different among PINK1 KO, Parkin KO and WT mice. We only found mild defects of mitophagy in PINK1 KO or Parkin KO mice after APAP, and improved survival in PINK1 KO and Parkin KO mice could be due to other functions of PINK1 and Parkin independent of mitophagy. In contrast, APAP-induced mitophagy was significantly impaired in PINK1-Parkin DKO mice. PINK1-Parkin DKO mice had further elevated serum levels of ALT and increased mortality after APAP administration. In conclusion, our results demonstrated that PINK1-Parkin signaling pathway plays a critical role in APAP-induced mitophagy and liver injury.
Collapse
Affiliation(s)
- Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei City, Anhui Province, 230032, China; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Yssa Ann Rodriguez
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, 66045, USA
| | - Hemantkumar Chavan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rick Dobrowsky
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, 66045, USA
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei City, Anhui Province, 230032, China
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
10
|
Li Y, Ni HM, Jaeschke H, Ding WX. Chlorpromazine protects against acetaminophen-induced liver injury in mice by modulating autophagy and c-Jun N-terminal kinase activation. LIVER RESEARCH 2019; 3:65-74. [PMID: 31815033 PMCID: PMC6897503 DOI: 10.1016/j.livres.2019.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM Overdose of acetaminophen (APAP) leads to liver injury, which is one of the most common causes of liver failure in the United States. We previously demonstrated that pharmacological activation of autophagy protects against APAP-induced liver injury in mice via removal of damaged mitochondria and APAP-adducts (APAP-ADs). Using an image-based high-throughput screening for autophagy modulators, we recently identified that chlorpromazine (CPZ), a dopamine inhibitor used for anti-schizophrenia, is a potent autophagy inducer in vitro. Therefore, the aim of the present study is to determine whether CPZ may protect against APAP-induced liver injury via inducing autophagy. METHODS Wild type C57BL/6J mice were injected with APAP to induce liver injury. CPZ was administrated either at the same time with APAP (co-treatment) or 2 h later after APAP administration (post-treatment). Hemotoxyline and eosin (H&E) staining of liver histology, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) staining of necrotic cell death as well as serum levels of alanine aminotransferase (ALT) were used to monitor liver injury. RESULTS We found that CPZ markedly protected against APAP-induced liver injury as demonstrated by decreased serum levels of ALT, liver necrotic areas as well as TUNEL-positive cells in mice that were either co-treated or post-treated with CPZ. Mechanistically, we observed that CPZ increased the number of autolysosomes and decreased APAP-induced c-Jun N-terminal kinase activation without affecting the metabolic activation of APAP. Pharmacological inhibition of autophagy by chloroquine partially weakened the protective effects of CPZ against APAP-induced liver injury. CONCLUSIONS Our results indicate that CPZ ameliorates APAP-induced liver injury partially via activating hepatic autophagy and inhibiting JNK activation.
Collapse
|
11
|
Akakpo JY, Ramachandran A, Kandel SE, Ni HM, Kumer SC, Rumack BH, Jaeschke H. 4-Methylpyrazole protects against acetaminophen hepatotoxicity in mice and in primary human hepatocytes. Hum Exp Toxicol 2018; 37:1310-1322. [PMID: 29739258 DOI: 10.1177/0960327118774902] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Liver injury due to acetaminophen (APAP) overdose is the major cause of acute liver failure in the United States. While treatment with N-acetylcysteine is the current standard of care for APAP overdose, anecdotal evidence suggests that administration of 4-methylpyrazole (4MP) may be beneficial in the clinic. The objective of the current study was to examine the protective effect of 4MP and its mechanism of action. Male C57BL/6J mice were co-treated with 300 mg/kg of APAP and 50 mg/kg of 4MP. The severe liver injury induced by APAP at 6 h as indicated by elevated plasma alanine aminotransferase activities, centrilobular necrosis, and nuclear DNA fragmentation was almost completely eliminated by 4MP. In addition, 4MP largely prevented APAP-induced activation of c-Jun N-terminal kinase (JNK), mitochondrial translocation of phospho-JNK and Bax, and the release of mitochondrial intermembrane proteins. Importantly, 4MP inhibited the generation of APAP protein adducts and formation of APAP-glutathione (GSH) conjugates and attenuated the depletion of the hepatic GSH content. These findings are relevant to humans because 4MP also prevented APAP-induced cell death in primary human hepatocytes. In conclusion, early treatment with 4MP can completely prevent liver injury after APAP overdose by inhibiting cytochrome P450 and preventing generation of the reactive metabolite.
Collapse
Affiliation(s)
- J Y Akakpo
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - A Ramachandran
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - S E Kandel
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - H M Ni
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - S C Kumer
- 2 Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - B H Rumack
- 3 Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - H Jaeschke
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
McGreal SR, Bhushan B, Walesky C, McGill MR, Lebofsky M, Kandel SE, Winefield RD, Jaeschke H, Zachara NE, Zhang Z, Tan EP, Slawson C, Apte U. Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis. Toxicol Sci 2018; 162:599-610. [PMID: 29325178 PMCID: PMC6012490 DOI: 10.1093/toxsci/kfy002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.
Collapse
Affiliation(s)
- Steven R McGreal
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bharat Bhushan
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Chad Walesky
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Mitchell R McGill
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Margitta Lebofsky
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Sylvie E Kandel
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Robert D Winefield
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Natasha E Zachara
- Department of Biological Chemistry, The John Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ee Phie Tan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Udayan Apte
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
13
|
Martins RM, Teodoro JS, Furtado E, Rolo AP, Palmeira CM, Tralhão JG. Recent insights into mitochondrial targeting strategies in liver transplantation. Int J Med Sci 2018; 15:248-256. [PMID: 29483816 PMCID: PMC5820854 DOI: 10.7150/ijms.22891] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury in liver transplantation can disrupt the normal activity of mitochondria in the hepatic parenchyma. This potential dysfunction of mitochondria after I/R injury could be responsible for the initial poor graft function or primary nonfunction observed after liver transplantation. Thus, determining the mechanisms that lead to human hepatic mitochondrial dysfunction might contribute to improving the outcome of liver transplantation. Furthermore, early identification of novel prognostic factors involved in I/R injury could serve as a key endpoint to predict the outcome of liver grafts and also to promote the early adoption of novel strategies that protect against I/R injury. Here, we briefly review recent advances in the study of mitochondrial dysfunction and I/R injury, particularly in relation to liver transplantation. Next, we highlight various pharmacological therapeutic strategies that could be applied, and discuss their relationship to relevant mitochondrion-related processes and targets. Lastly, we note that although considerable progress has been made in our understanding of I/R injury and mitochondrial dysfunction, further investigation is required to elucidate the cellular and molecular mechanisms underlying these processes, thereby identifying biomarkers that can help in evaluating donor organs.
Collapse
Affiliation(s)
- Rui Miguel Martins
- Department of Surgery, Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - João Soeiro Teodoro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Emanuel Furtado
- Unidade de Transplantação Hepática de Crianças e Adultos, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Anabela Pinto Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos Marques Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal; and Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Guilherme Tralhão
- Department of Surgery A, Hospitais da Universidade de Coimbra, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Clínica Universitária de Cirurgia III, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; and Center for Investigation on Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
14
|
Maes M, Crespo Yanguas S, Willebrords J, Weemhoff JL, da Silva TC, Decrock E, Lebofsky M, Pereira IVA, Leybaert L, Farhood A, Jaeschke H, Cogliati B, Vinken M. Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice. Toxicol Lett 2017; 278:30-37. [PMID: 28687253 PMCID: PMC5800489 DOI: 10.1016/j.toxlet.2017.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023]
Abstract
Historically, connexin hemichannels have been considered as structural precursors of gap junctions. However, accumulating evidence points to independent roles for connexin hemichannels in cellular signaling by connecting the intracellular compartment with the extracellular environment. Unlike gap junctions, connexin hemichannels seem to be mainly activated in pathological processes. The present study was set up to test the potential involvement of hemichannels composed of connexin32 and connexin43 in acute hepatotoxicity induced by acetaminophen. Prior to this, in vitro testing was performed to confirm the specificity and efficacy of TAT-Gap24 and TAT-Gap19 in blocking connexin32 and connexin43 hemichannels, respectively. Subsequently, mice were overdosed with acetaminophen followed by treatment with TAT-Gap24 or TAT-Gap19 or a combination of both after 1.5h. Sampling was performed 3, 6, 24 and 48h following acetaminophen administration. Evaluation of the effects of connexin hemichannel inhibition was based on a series of clinically relevant read-outs, measurement of inflammatory cytokines and oxidative stress. Subsequent treatment of acetaminophen-overdosed mice with TAT-Gap19 only marginally affected liver injury. In contrast, a significant reduction in serum alanine aminotransferase activity was found upon administration of TAT-Gap24 to intoxicated animals. Furthermore, co-treatment of acetaminophen-overdosed mice with both peptides revealed an additive effect as even lower serum alanine aminotransferase activity was observed. Blocking of connexin32 or connexin43 hemichannels individually was found to decrease serum quantities of pro-inflammatory cytokines, while no effects were observed on the occurrence of hepatic oxidative stress. This study shows for the first time a role for connexin hemichannels in acetaminophen-induced acute liver failure.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - James L Weemhoff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States.
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Elke Decrock
- Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium.
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States.
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Ghent University, Ghent, Belgium.
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, United States.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States.
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
15
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Weemhoff JL, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Penuela S, Jaeschke H, Cogliati B, Vinken M. Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Arch Toxicol 2017; 91:2245-2261. [PMID: 27826632 PMCID: PMC5654513 DOI: 10.1007/s00204-016-1885-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Abstract
Pannexins constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The presence of pannexin1 in the liver has been documented previously, where it underlies inflammatory responses, such as those occurring upon ischemia-reperfusion injury. In the present study, we investigated whether pannexin1 plays a role in acute drug-induced liver toxicity. Hepatic expression of pannexin1 was characterized in a mouse model of acetaminophen-induced hepatotoxicity. Subsequently, mice were overdosed with acetaminophen followed by treatment with the pannexin1 channel inhibitor 10Panx1. Sampling was performed 1, 3, 6, 24 and 48 h after acetaminophen administration. Evaluation of the effects of pannexin1 channel inhibition was based on a number of clinically relevant readouts, including protein adduct formation, measurement of aminotransferase activity and histopathological examination of liver tissue as well as on a series of markers of inflammation, oxidative stress and regeneration. Although no significant differences were found in histopathological analysis, pannexin1 channel inhibition reduced serum levels of alanine and aspartate aminotransferase. This was paralleled by a reduced amount of neutrophils recruited to the liver. Furthermore, alterations in the oxidized status were noticed with upregulation of glutathione levels upon suppression of pannexin1 channel opening. Concomitant promotion of regenerative activity was detected as judged on increased proliferating cell nuclear antigen protein quantities in 10Panx1-treated mice. Pannexin1 channels are important actors in liver injury triggered by acetaminophen. Inhibition of pannexin1 channel opening could represent a novel approach for the treatment of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chloé Abels
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - James L Weemhoff
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Taynã Tiburcio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX, USA
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
16
|
Duan L, Davis JS, Woolbright BL, Du K, Cahkraborty M, Weemhoff J, Jaeschke H, Bourdi M. Differential susceptibility to acetaminophen-induced liver injury in sub-strains of C57BL/6 mice: 6N versus 6J. Food Chem Toxicol 2016; 98:107-118. [PMID: 27773698 DOI: 10.1016/j.fct.2016.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
Abstract
Mouse models of acetaminophen (APAP) hepatotoxicity are considered relevant for the human pathophysiology. The C57BL/6 strain is most popular because it is the background strain of gene knock-out mice. However, conflicting results in the literature may have been caused by sub-strain mismatches, e.g. C57BL/6J and C57BL/6N. This study was initiated to determine the mechanism behind the sub-strain susceptibility to APAP toxicity. C57BL/6N and C57BL/6J mice were dosed with 200 mg/kg APAP and sacrificed at different time points. C57BL/6N mice developed significantly more liver injury as measured by plasma ALT activities and histology. Although there was no difference in glutathione depletion or cytochrome P450 activity between groups, C57BL/6N had a higher glutathione disulfide-to-glutathione ratio and more APAP protein adducts. C57BL/6N showed more mitochondrial translocation of phospho-JNK and BAX, and more release of mitochondrial intermembrane proteins apoptosis-inducing factor (AIF), second mitochondria-derived activator of caspases (SMAC), which caused more DNA fragmentation. The increased mitochondrial dysfunction was confirmed in vitro as C57BL/6N hepatocytes had a more precipitous drop in JC-1 fluorescence after APAP exposure. CONCLUSION C57BL/6N mice are more susceptible to APAP-induced hepatotoxicity, likely due to increased formation of APAP-protein adducts and a subsequent enhancement of mitochondrial dysfunction associated with aggravated nuclear DNA fragmentation.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, 66160, USA.
| | - John S Davis
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20850, USA.
| | | | - Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, 66160, USA.
| | - Mala Cahkraborty
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20850, USA.
| | - James Weemhoff
- Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, 66160, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, Kansas City, KS, 66160, USA.
| | - Mohammed Bourdi
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20850, USA.
| |
Collapse
|
17
|
Du K, Ramachandran A, Weemhoff JL, Chavan H, Xie Y, Krishnamurthy P, Jaeschke H. Editor's Highlight: Metformin Protects Against Acetaminophen Hepatotoxicity by Attenuation of Mitochondrial Oxidant Stress and Dysfunction. Toxicol Sci 2016; 154:214-226. [PMID: 27562556 DOI: 10.1093/toxsci/kfw158] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Overdose of acetaminophen (APAP) causes severe liver injury and even acute liver failure in both mice and human. A recent study by Kim et al. (2015, Metformin ameliorates acetaminophen hepatotoxicity via Gadd45β-dependent regulation of JNK signaling in mice. J. Hepatol. 63, 75-82) showed that metformin, a first-line drug to treat type 2 diabetes mellitus, protected against APAP hepatotoxicity in mice. However, its exact protective mechanism has not been well clarified. To investigate this, C57BL/6J mice were treated with 400 mg/kg APAP and 350 mg/kg metformin was given 0.5 h pre- or 2 h post-APAP. Our data showed that pretreatment with metformin protected against APAP hepatotoxicity, as indicated by the over 80% reduction in plasma alanine aminotransferase (ALT) activities and significant decrease in centrilobular necrosis. Metabolic activation of APAP, as indicated by glutathione depletion and APAP-protein adducts formation, was also slightly inhibited. However, 2 h post-treatment with metformin still reduced liver injury by 50%, without inhibition of adduct formation. Interestingly, neither pre- nor post-treatment of metformin inhibited c-jun N-terminal kinase (JNK) activation or its mitochondrial translocation. In contrast, APAP-induced mitochondrial oxidant stress and dysfunction were greatly attenuated in these mice. In addition, mice with 2 h post-treatment with metformin also showed significant inhibition of complex I activity, which may contribute to the decreased mitochondrial oxidant stress. Furthermore, the protection was reproduced in JNK activation-absent HepaRG cells treated with 20 mM APAP followed by 0.5 or 1 mM metformin 6 h later, confirming JNK-independent protection mechanisms. Thus, metformin protects against APAP hepatotoxicity by attenuating the mitochondrial oxidant stress and subsequent mitochondrial dysfunction, and may be a potential therapeutic option for APAP overdose patients.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - James L Weemhoff
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hemantkumar Chavan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Partha Krishnamurthy
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
18
|
Du K, Farhood A, Jaeschke H. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch Toxicol 2016; 91:761-773. [PMID: 27002509 DOI: 10.1007/s00204-016-1692-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity is characterized by an extensive mitochondrial oxidant stress. However, its importance as a drug target has not been clarified. To investigate this, fasted C57BL/6J mice were treated with 300 mg/kg APAP and the mitochondria-targeted antioxidant Mito-Tempo (MT) was given 1.5 h later. APAP caused severe liver injury in mice, as indicated by the increase in plasma ALT activities and centrilobular necrosis. MT dose-dependently reduced the injury. Importantly, MT did not affect APAP-protein adducts formation, glutathione depletion or c-jun N-terminal kinase activation and its mitochondrial translocation. In contrast, hepatic glutathione disulfide and peroxynitrite formation were dose-dependently reduced by MT, indicating its effective mitochondrial oxidant stress scavenging capacity. Consequently, mitochondrial translocation of Bax and release of mitochondrial intermembrane proteins such as apoptosis-inducing factor were prevented, and nuclear DNA fragmentation was eliminated. To demonstrate the importance of mitochondria-specific antioxidant property of MT, we compared its efficacy with Tempo, which has the same pharmacological mode of action as MT but lacks the mitochondria targeting moiety. In contrast to the dramatic protection by MT, the same molar dose of Tempo did not significantly reduce APAP hepatotoxicity. In contrast, even a 3 h post-treatment with MT reduced 70 % of the injury, and the combination of MT with N-acetylcysteine (NAC) provided superior protection than NAC alone. We conclude that MT protects against APAP overdose in mice by attenuating the mitochondrial oxidant stress and preventing peroxynitrite formation and the subsequent mitochondrial dysfunction. MT is a promising therapeutic agent for APAP overdose patients.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
19
|
Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, Maria Monteiro de Araújo C, Tiburcio T, Veloso Alves Pereira I, Willebrords J, Crespo Yanguas S, Farhood A, Beschin A, Van Ginderachter JA, Zaidan Dagli ML, Jaeschke H, Cogliati B, Vinken M. Involvement of connexin43 in acetaminophen-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1111-21. [PMID: 26912412 DOI: 10.1016/j.bbadis.2016.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND AIMS Being goalkeepers of liver homeostasis, gap junctions are also involved in hepatotoxicity. However, their role in this process is ambiguous, as gap junctions can act as both targets and effectors of liver toxicity. This particularly holds true for drug-induced liver insults. In the present study, the involvement of connexin26, connexin32 and connexin43, the building blocks of liver gap junctions, was investigated in acetaminophen-induced hepatotoxicity. METHODS C57BL/6 mice were overdosed with 300mg/kg body weight acetaminophen followed by analysis of the expression and localization of connexins as well as monitoring of hepatic gap junction functionality. Furthermore, acetaminophen-induced liver injury was compared between mice genetically deficient in connexin43 and wild type littermates. Evaluation of the toxicological response was based on a set of clinically relevant parameters, including protein adduct formation, measurement of alanine aminotransferase activity, cytokines and glutathione. RESULTS It was found that gap junction communication deteriorates upon acetaminophen intoxication in wild type mice, which is associated with a switch in mRNA and protein production from connexin32 and connexin26 to connexin43. The upregulation of connexin43 expression is due, at least in part, to de novo production by hepatocytes. Connexin43-deficient animals tended to show increased liver cell death, inflammation and oxidative stress in comparison with wild type counterparts. CONCLUSION These results suggest that hepatic connexin43-based signaling may protect against acetaminophen-induced liver toxicity.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chloé Abels
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | | | - Taynã Tiburcio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, United States
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, United States
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
20
|
Maes M, McGill MR, da Silva TC, Lebofsky M, de Araújo CMM, Tiburcio T, Pereira IVA, Willebrords J, Yanguas SC, Farhood A, Dagli MLZ, Jaeschke H, Cogliati B, Vinken M. Connexin32: a mediator of acetaminophen-induced liver injury? Toxicol Mech Methods 2016; 26:88-96. [PMID: 26739117 PMCID: PMC4965445 DOI: 10.3109/15376516.2015.1103000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/29/2015] [Indexed: 01/14/2023]
Abstract
Connexin32 is the building block of hepatocellular gap junctions, which control direct intercellular communication and thereby act as goalkeepers of liver homeostasis. This study was set up to investigate whether connexin32 is involved in hepatotoxicity induced by the analgesic and antipyretic drug acetaminophen. To this end, whole body connexin32 knock-out mice were overdosed with acetaminophen followed by sampling at different time points within a 24-h time frame. Evaluation was done based upon a series of clinically and mechanistically relevant read-outs, including protein adduct formation, histopathological examination, measurement of alanine aminotransferase activity, cytokine production, levels of reduced and oxidized glutathione and hepatic protein amounts of proliferating cell nuclear antigen. In essence, it was found that genetic ablation of connexin32 has no influence on several key events in acetaminophen-induced hepatotoxicity, including cell death, inflammation or oxidative stress, yet it does affect production of protein adducts as well as proliferating cell nuclear antigen steady-state protein levels. This outcome is not in line with previous studies, which are contradicting on their own, as both amplification and alleviation of this toxicological process by connexin32 have been described. This could question the suitability of the currently available models and tools to investigate the role of connexin32 in acetaminophen-triggered hepatotoxicity.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mitchell R. McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | | | - Taynã Tiburcio
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, Texas, United States of America
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Du K, McGill MR, Xie Y, Jaeschke H. Benzyl alcohol protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes but causes mitochondrial dysfunction and cell death at higher doses. Food Chem Toxicol 2015; 86:253-61. [PMID: 26522885 DOI: 10.1016/j.fct.2015.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400 mg/kg APAP and/or 270 mg/kg BA. APAP alone caused extensive liver injury at 6 h and 24 h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Mcgill MR, Jaeschke H. A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicol Mech Methods 2015; 25:589-95. [PMID: 26461121 DOI: 10.3109/15376516.2015.1094844] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ratio of glutathione disulfide (GSSG) to reduced glutathione (GSH) in biological samples is a frequently used parameter of oxidative stress. As a result, many methods are developed to measure GSSG. The most popular and convenient of these relies on enzymatic cycling following the chemical masking of GSH in the sample using 2-vinylpyridine (2VP). However, 2VP is a slow reactant and its use may result in artificially high GSSG values due to oxidation of the sample over time. Fast-reacting reagents such as N-ethylmaleimide (NEM) may provide more accurate results. We performed a direct comparison of methods using 2VP and NEM. With 2VP, the percentage of total glutathione (GSH+GSSG) in the oxidized form was significantly higher in all tested tissues (kidney, lung and liver) compared to the same procedure performed using NEM. We conclude that NEM, when coupled with a simple solid-phase extraction procedure, is more accurate for the determination of GSSG. We also tested the effects of various handling and storage conditions on GSSG. A detailed description and a discussion of other methods are also included.
Collapse
Affiliation(s)
- Mitchell R Mcgill
- a Department of Pharmacology , Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City , KS , USA
| | - Hartmut Jaeschke
- a Department of Pharmacology , Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
23
|
Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes. Toxicol Appl Pharmacol 2015; 289:213-22. [PMID: 26431796 DOI: 10.1016/j.taap.2015.09.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022]
Abstract
3'-Hydroxyacetanilide orN-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated the absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this,we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adduct formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves the formation of mitochondrial protein adducts and mitochondrial dysfunction.
Collapse
|
24
|
McGill MR, Du K, Xie Y, Bajt ML, Ding WX, Jaeschke H. The role of the c-Jun N-terminal kinases 1/2 and receptor-interacting protein kinase 3 in furosemide-induced liver injury. Xenobiotica 2015; 45:442-9. [PMID: 25423287 PMCID: PMC4442771 DOI: 10.3109/00498254.2014.986250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The mechanisms of furosemide (FS) hepatotoxicity were explored in mice. Specifically, C57Bl/6 J mice were treated with 500 mg FS/kg bodyweight, and c-Jun N-terminal kinase (JNK) activation and receptor-interacting protein kinase 3 (RIP3) expression were measured by western blotting. Co-treatment with FS and the JNK inhibitor SP600125 was also performed, and FS-induced liver injury was compared in wild-type and RIP3 knockout (KO) mice. 2. JNK phosphorylation and RIP3 expression were increased in livers from the FS-treated mice as early as 6 h after treatment and persisted until at least 24 h. JNK phosphorylation was also observed in primary mouse hepatocytes and human HepaRG cells treated with FS. 3. Phosphorylated JNK translocated into mitochondria in livers, but no evidence of mitochondrial damage was observed. 4. SP600125-treated mice, SP600125 co-treated primary mouse hepatocytes and RIP3 KO mice were not protected against FS hepatotoxicity. These data show that, although JNK activation and RIP3 expression are induced by FS, neither contributes to the liver injury.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center , Kansas City, KS , USA
| | | | | | | | | | | |
Collapse
|
25
|
Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem Toxicol 2015; 81:62-70. [PMID: 25865938 DOI: 10.1016/j.fct.2015.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Overdose of acetaminophen (APAP) is a common cause of acute liver injury and liver failure. The mechanism involves formation of a reactive metabolite, protein binding, oxidative stress and activation of c-Jun N-terminal kinase (JNK), mitochondrial dysfunction, and nuclear DNA fragmentation caused by endonucleases released from damaged mitochondria. Previous work has shown that the natural product resveratrol (RSV) can protect against APAP hepatotoxicity in mice through prevention of lipid peroxidation and anti-inflammatory effects. However, these earlier studies did not take into consideration several fundamental aspects of the pathophysiology. To address this, we treated C57Bl/6 mice with 300 mg/kg APAP followed by 50 mg/kg RSV 1.5 h later. Our results confirmed that RSV reduced liver injury after APAP overdose in mice. Importantly, RSV did not inhibit reactive metabolite formation and protein bindings, nor did it reduce activation of JNK. However, RSV decreased protein nitration after APAP treatment, possibly through direct scavenging of peroxynitrite. Interestingly, RSV also inhibited release of apoptosis-inducing factor and endonuclease G from mitochondria independent of Bax pore formation and prevented the downstream nuclear DNA fragmentation. Our data show that RSV protects against APAP hepatotoxicity both through antioxidant effects and by preventing mitochondrial release of endonucleases and nuclear DNA damage.
Collapse
|
26
|
Xie Y, Ramachandran A, Breckenridge DG, Liles JT, Lebofsky M, Farhood A, Jaeschke H. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2015; 286:1-9. [PMID: 25818599 DOI: 10.1016/j.taap.2015.03.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - John T Liles
- Department of Biology, Gilead Sciences, Inc., Foster City, CA, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX 78756, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
27
|
Williams JA, Ni HM, Haynes A, Manley S, Li Y, Jaeschke H, Ding WX. Chronic Deletion and Acute Knockdown of Parkin Have Differential Responses to Acetaminophen-induced Mitophagy and Liver Injury in Mice. J Biol Chem 2015; 290:10934-46. [PMID: 25752611 DOI: 10.1074/jbc.m114.602284] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Indexed: 02/06/2023] Open
Abstract
We previously demonstrated that pharmacological induction of autophagy protected against acetaminophen (APAP)-induced liver injury in mice by clearing damaged mitochondria. However, the mechanism for removal of mitochondria by autophagy is unknown. Parkin, an E3 ubiquitin ligase, has been shown to be required for mitophagy induction in cultured mammalian cells following mitochondrial depolarization, but its role in vivo is not clear. The purpose of this study was to investigate the role of Parkin-mediated mitophagy in protection against APAP-induced liver injury. We found that Parkin translocated to mitochondria in mouse livers after APAP treatment followed by mitochondrial protein ubiquitination and mitophagy induction. To our surprise, we found that mitophagy still occurred in Parkin knock-out (KO) mice after APAP treatment based on electron microscopy analysis and Western blot analysis for some mitochondrial proteins, and Parkin KO mice were protected against APAP-induced liver injury compared with wild type mice. Mechanistically, we found that Parkin KO mice had decreased activated c-Jun N-terminal kinase (JNK), increased induction of myeloid leukemia cell differentiation protein (Mcl-1) expression, and increased hepatocyte proliferation after APAP treatment in their livers compared with WT mice. In contrast to chronic deletion of Parkin, acute knockdown of Parkin in mouse livers using adenovirus shRNA reduced mitophagy and Mcl-1 expression but increased JNK activation after APAP administration, which exacerbated APAP-induced liver injury. Therefore, chronic deletion (KO) and acute knockdown of Parkin have differential responses to APAP-induced mitophagy and liver injury in mice.
Collapse
Affiliation(s)
- Jessica A Williams
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hong-Min Ni
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Anna Haynes
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Sharon Manley
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Yuan Li
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Wen-Xing Ding
- From the Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
28
|
Du K, Williams CD, McGill MR, Jaeschke H. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase. Toxicol Appl Pharmacol 2014; 281:58-66. [PMID: 25218290 DOI: 10.1016/j.taap.2014.09.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 12/23/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300mg/kg) caused severe liver injury in male mice but 69-77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4h, and 2.5 and 3.3 fold higher in the total liver at 4h and 6h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4h post-APAP, it was 3.1 fold lower at 6h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. CONCLUSION The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
29
|
Xia J, Zhou XL, Zhao Y, Zhu YQ, Jiang S, Ni SZ. Roles of lipoxin A4 in preventing paracetamol-induced acute hepatic injury in a rabbit model. Inflammation 2014; 36:1431-9. [PMID: 23851615 DOI: 10.1007/s10753-013-9683-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The objective of this research is to investigate the potential role of lipoxin A4 in preventing paracetamol (PCM)-induced hepatic injury. One hundred male New Zealand white rabbits were randomly divided into control group, PCM group, N-acetylcysteine (NAC) group, lipoxin A4 (LXA4) group, and LXA4 + NAC group. The rabbits were assigned to receive 300 mg/kg weight PCM in 0.9 % saline or equivalent volume of saline via gastric lavage. LXA4 (1.5 μg/kg) and equivalent volume of 2 % ethanol were separately given to the rabbits in LXA4-treated and PCM groups 24 h after PCM administration. Meanwhile, the rabbits in the NAC-treated groups received a loading dose of 140 mg/kg of N-acetylcysteine. The blood samples and liver tissue were collected for biochemical and histological evaluation 36 h after paracetamol administration. The administration of LXA4 24 h after paracetamol poisoning resulted in significant improvement in hepatic injury as represented by decrease of hepatocellular enzyme release and attenuation of hepatocyte apoptosis and necrosis. In LXA4-treated groups, the expression of TNF-α was significantly lower than those in PCM and NAC groups (p < 0.05). In contrast, the level of IL-10 was significantly higher than PCM and NAC groups (p < 0.05). Moreover, the expressions of NF-κB p65 in PCM and NAC groups were significantly increased compared with those of LXA4-treated groups and control group (respectively, p < 0.05 and p < 0.01). LXA4-treated groups also showed significantly higher survival rates. Lipoxin A4 significantly mitigates paracetamol-induced hepatic injury, in which anti-inflammation effect may play an important role, leading to hepatic apoptosis and necrosis.
Collapse
Affiliation(s)
- Jian Xia
- Emergency Center, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei, 430071, China
| | | | | | | | | | | |
Collapse
|
30
|
Xie Y, McGill MR, Dorko K, Kumer SC, Schmitt TM, Forster J, Jaeschke H. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol Appl Pharmacol 2014; 279:266-274. [PMID: 24905542 DOI: 10.1016/j.taap.2014.05.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5mM, 10mM or 20mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24h, which correlated with the clinical onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24h and 48h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6h after APAP and a partial protection when given at 15 h. CONCLUSION These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sean C Kumer
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Timothy M Schmitt
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jameson Forster
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
31
|
Du K, Williams CD, McGill MR, Xie Y, Farhood A, Vinken M, Jaeschke H. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation. Toxicol Appl Pharmacol 2013; 273:484-91. [PMID: 24070586 PMCID: PMC3858533 DOI: 10.1016/j.taap.2013.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4-6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - C. David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mitchell R. McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuchao Xie
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anwar Farhood
- Department of Pathology, St. David’s North Austin Medical Center, Austin, TX 78756, USA
| | - Mathieu Vinken
- Department of Toxicology, Center for Pharmaceutical Sciences, Vrije Universiteit Brussels, 1090 Brussels, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
32
|
Williams CD, McGill MR, Lebofsky M, Bajt ML, Jaeschke H. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning. Toxicol Appl Pharmacol 2013; 274:417-24. [PMID: 24345528 DOI: 10.1016/j.taap.2013.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022]
Abstract
Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18h or 1h prior to an APAP overdose. Administration of allopurinol 18h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6h after APAP; however, 1h pretreatment offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2h) however late JNK activation (6h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18h or 1h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
33
|
Williams CD, McGill MR, Farhood A, Jaeschke H. Fas receptor-deficient lpr mice are protected against acetaminophen hepatotoxicity due to higher glutathione synthesis and enhanced detoxification of oxidant stress. Food Chem Toxicol 2013; 58:228-35. [PMID: 23628456 DOI: 10.1016/j.fct.2013.04.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 02/05/2023]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is a classical model of hepatocellular necrosis; however, the involvement of the Fas receptor in the pathophysiology remains controversial. Fas receptor-deficient (lpr) and C57BL/6 mice were treated with APAP to compare the mechanisms of hepatotoxicity. Lpr mice were partially protected against APAP hepatotoxicity as indicated by reduced plasma ALT and GDH levels and liver necrosis. Hepatic Cyp2e1 protein, adduct formation and hepatic glutathione (GSH) depletion were similar, demonstrating equivalent reactive metabolite generation. There was no difference in cytokine formation or hepatic neutrophil recruitment. Interestingly, hepatic GSH recovered faster in lpr mice than in wild type animals resulting in enhanced detoxification of reactive oxygen species. Driving the increased GSH levels, mRNA induction and protein expression of glutamate-cysteine ligase (gclc) were higher in lpr mice. Inducible nitric oxide synthase (iNOS) mRNA and protein levels at 6h were significantly lower in lpr mice, which correlated with reduced nitrotyrosine staining. Heat shock protein 70 (Hsp70) mRNA levels were substantially higher in lpr mice after APAP. CONCLUSION Our data suggest that the faster recovery of hepatic GSH levels during oxidant stress and peroxynitrite formation, reduced iNOS expression and enhanced induction of Hsp70 attenuated the susceptibility to APAP-induced cell death in lpr mice.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
34
|
Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicol Appl Pharmacol 2013; 269:240-9. [PMID: 23571099 DOI: 10.1016/j.taap.2013.03.026] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 12/13/2022]
Abstract
At therapeutic doses, acetaminophen (APAP) is a safe and effective analgesic. However, overdose of APAP is the principal cause of acute liver failure in the West. Binding of the reactive metabolite of APAP (NAPQI) to proteins is thought to be the initiating event in the mechanism of hepatotoxicity. Early work suggested that APAP-protein binding could not occur without glutathione (GSH) depletion, and likely only at toxic doses. Moreover, it was found that protein-derived APAP-cysteine could only be detected in serum after the onset of liver injury. On this basis, it was recently proposed that serum APAP-cysteine could be used as diagnostic marker of APAP overdose. However, comprehensive dose-response and time course studies have not yet been done. Furthermore, the effects of co-morbidities on this parameter have not been investigated. We treated groups of mice with APAP at multiple doses and measured liver GSH and both liver and plasma APAP-protein adducts at various timepoints. Our results show that protein binding can occur without much loss of GSH. Importantly, the data confirm earlier work that showed that protein-derived APAP-cysteine can appear in plasma without liver injury. Experiments performed in vitro suggest that this may involve multiple mechanisms, including secretion of adducted proteins and diffusion of NAPQI directly into plasma. Induction of liver necrosis through ischemia-reperfusion significantly increased the plasma concentration of protein-derived APAP-cysteine after a subtoxic dose of APAP. While our data generally support the measurement of serum APAP-protein adducts in the clinic, caution is suggested in the interpretation of this parameter.
Collapse
|
35
|
Woolbright BL, Ramachandran A, McGill MR, Yan HM, Bajt ML, Sharpe MR, Lemasters JJ, Jaeschke H. Lysosomal instability and cathepsin B release during acetaminophen hepatotoxicity. Basic Clin Pharmacol Toxicol 2012; 111:417-25. [PMID: 22900545 PMCID: PMC3501614 DOI: 10.1111/j.1742-7843.2012.00931.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022]
Abstract
Acetaminophen (APAP) overdose is currently the most frequent cause of drug-induced liver failure in the United States. Recently, it was shown that lysosomal iron translocates to mitochondria where it contributes to the collapse of the mitochondrial membrane potential. Therefore, the purpose of this study was to investigate whether cathepsin B, a lysosomal protease, is involved in APAP-induced hepatotoxicity. Cathepsin B activity was measured in subcellular liver fractions of C57Bl/6 mice 3 hr after 300 mg/kg APAP treatment. There was a significant increase in cytoplasmic cathepsin activity, concurrent with a decrease in microsomal activity, indicative of lysosomal cathepsin B release. To investigate the effect of cathepsin B on hepatotoxicity, the cathepsin inhibitor AC-LVK-CHO was given 1 hr prior to 300 mg/kg APAP treatment along with vehicle control. There was no difference between groups in serum alanine aminotransferase (ALT) values, or by histological evaluation of necrosis, although cathepsin B activity was inhibited by 70-80% compared with controls. These findings were confirmed with a different inhibitor (z-FA-fmk) in vivo and in vitro. Hepatocytes were exposed to 5 mM acetaminophen. Lysotracker staining confirmed lysosomal instability and cathepsin B release, but there was no reduction in cell death after treatment with cathepsin B inhibitors. Finally, cathepsin B release was measured in clinical samples from patients with APAP-induced liver injury. Low levels of cathepsin B were released into plasma from overdose patients. APAP overdose causes lysosomal instability and release of cathepsin B into the cytosol but does not contribute to liver injury under these conditions.
Collapse
Affiliation(s)
- Benjamin L. Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R. McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hui-min Yan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew R. Sharpe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - John J. Lemasters
- Department of Pharmaceutical & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
36
|
Thom H, Bortolini M, Galli-Kienle M. Anti-Ischaemic Activity of S-Adenosyl-L-Methionine (SAMe) during Hypoxia/Reoxygenation in the Isolated Perfused Rat Liver. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
McGill MR, Williams CD, Xie Y, Ramachandran A, Jaeschke H. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol 2012; 264:387-94. [PMID: 22980195 DOI: 10.1016/j.taap.2012.08.015] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/04/2012] [Accepted: 08/16/2012] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | |
Collapse
|
38
|
Pratschke S, Bilzer M, Grützner U, Angele M, Tufman A, Jauch KW, Schauer RJ. Tacrolimus Preconditioning of Rat Liver Allografts Impacts Glutathione Homeostasis and Early Reperfusion Injury. J Surg Res 2012; 176:309-16. [DOI: 10.1016/j.jss.2011.07.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/21/2011] [Accepted: 07/29/2011] [Indexed: 12/26/2022]
|
39
|
Mouse strain-dependent caspase activation during acetaminophen hepatotoxicity does not result in apoptosis or modulation of inflammation. Toxicol Appl Pharmacol 2011; 257:449-58. [PMID: 22023962 DOI: 10.1016/j.taap.2011.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
Abstract
UNLABELLED The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice. The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only <0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, >20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. CONCLUSION Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change.
Collapse
|
40
|
Hu H, Batteux F, Chéreau C, Kavian N, Marut W, Gobeaux C, Borderie D, Dinh-Xuan AT, Weill B, Nicco C. Clopidogrel protects from cell apoptosis and oxidative damage in a mouse model of renal ischaemia-reperfusion injury. J Pathol 2011; 225:265-75. [DOI: 10.1002/path.2916] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 12/31/2022]
|
41
|
Bajt ML, Ramachandran A, Yan HM, Lebofsky M, Farhood A, Lemasters JJ, Jaeschke H. Apoptosis-inducing factor modulates mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol Sci 2011; 122:598-605. [PMID: 21572097 DOI: 10.1093/toxsci/kfr116] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acetaminophen (APAP) overdose causes liver injury in humans and mice. DNA fragmentation is a hallmark of APAP-induced cell death, and nuclear translocation of apoptosis-inducing factor (AIF) correlates with DNA fragmentation after APAP overdose. To test the hypothesis that AIF may be a critical mediator of APAP-induced cell death, fasted male AIF-deficient Harlequin (Hq) mice and respective wild-type (WT) animals were treated with 200 mg/kg APAP. At 6 h after APAP, WT animals developed severe liver injury as indicated by the increase in plasma alanine aminotransferase (ALT) activities (8600 ± 1870 U/l) and 61 ± 8% necrosis. This injury was accompanied by massive DNA strand breaks in centrilobular hepatocytes (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling [TUNEL] assay) and release of DNA fragments into the cytosol (anti-histone ELISA). In addition, there was formation of reactive oxygen (increase in liver glutathione disulfide (GSSG) levels and mitochondrial protein carbonyls) and peroxynitrite (nitrotyrosine [NT] staining) together with mitochondrial translocation of activated c-jun-N-terminal kinase (P-JNK) and release of AIF from the mitochondria. In contrast, Hq mice had significantly less liver injury (ALT: 330 ± 130 U/l; necrosis: 4 ± 2%), minimal nuclear DNA damage, and drastically reduced oxidant stress (based on all parameters) at 6 h. WT and Hq mice had the same baseline levels of cyp2E1 and of glutathione. The initial depletion of glutathione (20 min after APAP) was the same in both groups suggesting that there was no relevant difference in metabolic activation of APAP. Thus, AIF has a critical function in APAP hepatotoxicity by facilitating generation of reactive oxygen in mitochondria and, after nuclear translocation, AIF can be involved in DNA fragmentation.
Collapse
Affiliation(s)
- Mary Lynn Bajt
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Williams CD, Antoine DJ, Shaw PJ, Benson C, Farhood A, Williams DP, Kanneganti TD, Park BK, Jaeschke H. Role of the Nalp3 inflammasome in acetaminophen-induced sterile inflammation and liver injury. Toxicol Appl Pharmacol 2011; 252:289-97. [PMID: 21396389 DOI: 10.1016/j.taap.2011.03.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/18/2011] [Accepted: 03/01/2011] [Indexed: 12/20/2022]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US and UK. Recent studies implied that APAP-induced injury is partially mediated by interleukin-1β (IL-1β), which can activate and recruit neutrophils, exacerbating injury. Mature IL-1β is formed by caspase-1, dependent on inflammasome activation. The objective of this invetstigation was to evaluate the role of the Nalp3 inflammasome on release of damage associated molecular patterns (DAMPs), hepatic neutrophil accumulation and liver injury (ALT, necrosis) after APAP overdose. Mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) were treated with 300mg/kg APAP for 24h; these mice had similar neutrophil recruitment and liver injury as APAP-treated C57Bl/6 wildtype animals. In addition, plasma levels of DAMPs (DNA fragments, keratin-18, hypo- and hyper-acetylated forms of high mobility group box-1 protein) were similarly elevated with no significant difference between wildtype and gene knockout mice. In addition, aspirin treatment, which has been postulated to attenuate cytokine formation and the activation of the Nalp3 inflammasome after APAP, had no effect on release of DAMPs, hepatic neutrophil accumulation or liver injury. Together, these data confirm the release of DAMPs and a sterile inflammatory response after APAP overdose. However, as previously reported minor endogenous formation of IL-1β and the activation of the Nalp3 inflammasome have little impact on APAP hepatotoxicity. It appears that the Nalp3 inflammasome is not a promising therapeutic target to treat APAP overdose.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
McGill MR, Yan HM, Ramachandran A, Murray GJ, Rollins DE, Jaeschke H. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 2011; 53:974-82. [PMID: 21319200 PMCID: PMC3073317 DOI: 10.1002/hep.24132] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 12/06/2010] [Indexed: 12/11/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is the leading cause of acute liver failure in Western countries. In the last four decades much progress has been made in our understanding of APAP-induced liver injury through rodent studies. However, some differences exist in the time course of injury between rodents and humans. To study the mechanism of APAP hepatotoxicity in humans, a human-relevant in vitro system is needed. Here we present evidence that the cell line HepaRG is a useful human model for the study of APAP-induced liver injury. Exposure of HepaRG cells to APAP at several concentrations resulted in glutathione depletion, APAP-protein adduct formation, mitochondrial oxidant stress and peroxynitrite formation, mitochondrial dysfunction (assessed by JC-1 fluorescence), and lactate dehydrogenase (LDH) release. Importantly, the time course of LDH release resembled the increase in plasma aminotransferase activity seen in humans following APAP overdose. Based on propidium iodide uptake and cell morphology, the majority of the injury occurred within clusters of hepatocyte-like cells. The progression of injury in these cells involved mitochondrial reactive oxygen and reactive nitrogen formation. APAP did not increase caspase activity above untreated control values and a pancaspase inhibitor did not protect against APAP-induced cell injury. CONCLUSION These data suggest that key mechanistic features of APAP-induced cell death are the same in human HepaRG cells, rodent in vivo models, and primary cultured mouse hepatocytes. Thus, HepaRG cells are a useful model to study mechanisms of APAP hepatotoxicity in humans.
Collapse
Affiliation(s)
- Mitchell R. McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hui-Min Yan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gordon J. Murray
- Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Douglas E. Rollins
- Center for Human Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
44
|
Xu M, Wang W, Frontera JR, Neely MC, Lu J, Aires D, Hsu FF, Turk J, Swerdlow RH, Carlson SE, Zhu H. Ncb5or deficiency increases fatty acid catabolism and oxidative stress. J Biol Chem 2011; 286:11141-54. [PMID: 21300801 DOI: 10.1074/jbc.m110.196543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endoplasmic reticulum-associated NADH cytochrome b(5) oxidoreductase (Ncb5or) is widely distributed in animal tissues. Ncb5or(-/-) mice develop diabetes at age 7 weeks and have increased susceptibility to the diabetogenic oxidant streptozotocin. Ncb5or deficiency also results in lipoatrophy and increased hepatocyte sensitivity to cytotoxic effects of saturated fatty acids. Here we investigate the mechanisms of these phenomena in prediabetic Ncb5or(-/-) mice and find that, despite increased rates of fatty acid uptake and synthesis and higher stearoyl-CoA desaturase (SCD) expression, Ncb5or(-/-) liver accumulates less triacylglycerol (TAG) than wild type (WT). Increased fatty acid catabolism and oxidative stress are evident in Ncb5or(-/-) hepatocytes and reflect increased mitochondrial content, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) expression, fatty acid oxidation rates, oxidative stress response gene expression, and oxidized glutathione content. Ncb5or(-/-) hepatocytes readily incorporate exogenous fatty acids into TAG but accumulate more free fatty acids (FFA) and have greater palmitate-induced oxidative stress responses and cell death than WT, all of which are alleviated by co-incubation with oleate via TAG channeling. A high fat diet rich in palmitate and oleate stimulates both lipogenesis and fatty acid catabolism in Ncb5or(-/-) liver, resulting in TAG levels similar to WT but increased intracellular FFA accumulation. Hepatic SCD-specific activity is lower in Ncb5or(-/-) than in WT mice, although Ncb5or(-/-) liver has a greater increase in Scd1 mRNA and protein levels. Together, these findings suggest that increased FFA accumulation and catabolism and oxidative stress are major consequences of Ncb5or deficiency in liver.
Collapse
Affiliation(s)
- Ming Xu
- Department of Physical Therapy and Rehabilitation Science, University of of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ramachandran A, Lebofsky M, Baines CP, Lemasters JJ, Jaeschke H. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic Res 2011; 45:156-64. [PMID: 20942566 PMCID: PMC3899524 DOI: 10.3109/10715762.2010.520319] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) hepatotoxicity is the main cause of acute liver failure in humans. Although mitochondrial oxidant stress and induction of the mitochondrial permeability transition (MPT) have been implicated in APAP-induced hepatotoxicity, the link between these events is unclear. To investigate this, this study evaluated APAP hepatotoxicity in mice deficient of cyclophilin D, a protein component of the MPT. Treatment of wild type mice with APAP resulted in focal centrilobular necrosis, nuclear DNA fragmentation and formation of reactive oxygen (elevated glutathione disulphide levels) and peroxynitrite (nitrotyrosine immunostaining) in the liver. CypD-deficient (Ppif(-/-)) mice were completely protected against APAP-induced liver injury and DNA fragmentation. Oxidant stress and peroxynitrite formation were blunted but not eliminated in CypD-deficient mice. Thus, mitochondrial oxidative stress and induction of the MPT are critical events in APAP hepatotoxicity in vivo and at least part of the APAP-induced oxidant stress and peroxynitrite formation occurs downstream of the MPT.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
46
|
Ramachandran A, Lebofsky M, Weinman SA, Jaeschke H. The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 2011; 251:226-33. [PMID: 21241727 DOI: 10.1016/j.taap.2011.01.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 02/09/2023]
Abstract
UNLABELLED Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/-) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870±180U/L) and centrilobular necrosis at 6h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/- mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. CONCLUSIONS the impaired defense against mitochondrial superoxide formation in SOD2+/- mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
47
|
Yan HM, Ramachandran A, Bajt ML, Lemasters JJ, Jaeschke H. The oxygen tension modulates acetaminophen-induced mitochondrial oxidant stress and cell injury in cultured hepatocytes. Toxicol Sci 2010; 117:515-23. [PMID: 20616211 DOI: 10.1093/toxsci/kfq208] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction play an important role in acetaminophen (APAP)-induced hepatocyte cell death. However, exact mechanisms involved in the process are controversial, in part, because of the disparity in findings between in vitro and in vivo studies. A major difference in this context is the oxygen tension, with cells in culture being exposed to 21% oxygen, whereas those in the liver experience a gradient from 3 to 9% oxygen. To determine if oxygen tensions could modulate hepatocyte responses to APAP, primary mouse hepatocytes were treated with 5mM APAP for up to 15 h under various oxygen tensions and mitochondrial dysfunction (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt assay, 5,5',6,6'-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide [JC-1] fluorescence ratio) and cell death (lactate dehydrogenase release) was evaluated. Mitochondrial reactive oxygen and reactive nitrogen species were measured using Mitosox Red or dihydrorhodamine fluorescence and nitrotyrosine staining, respectively. Exposure of hepatocytes to 5mM APAP at 21% O(2) resulted in mitochondrial oxidant stress formation, deterioration of mitochondrial function, and loss of membrane potential as early as 6 h and massive cell death at 15 h. Culture of cells at 10% O(2) resulted in no increase in mitochondrial oxidant stress and better preserved mitochondrial function at 6 h and significant protection against cell death at 15 h. Furthermore, dihydrorhodamine fluorescence was significantly attenuated at 10% oxygen. Cells cultured at 5% oxygen were also protected but showed evidence of hypoxia (accumulation of lactate and nuclear translocation of hypoxia-inducing factor-1α). These results suggest that oxygen tension can modulate hepatocyte responses to APAP, with low physiological levels (10%) decreasing mitochondrial oxidant stress and delaying hepatocyte cell death.
Collapse
Affiliation(s)
- Hui-Min Yan
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
48
|
Saito C, Lemasters JJ, Jaeschke H. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 2010; 246:8-17. [PMID: 20423716 DOI: 10.1016/j.taap.2010.04.015] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/30/2010] [Accepted: 04/06/2010] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) overdose, which causes liver injury in animals and humans, activates c-jun N-terminal kinase (JNK). Although it was shown that the JNK inhibitor SP600125 effectively reduced APAP hepatotoxicity, the mechanisms of protection remain unclear. C57Bl/6 mice were treated with 10mg/kg SP600125 or vehicle (8% dimethylsulfoxide) 1h before 600mg/kg APAP administration. APAP time-dependently induced JNK activation (detected by JNK phosphorylation). SP600125, but not the vehicle, reduced JNK activation, attenuated mitochondrial Bax translocation and prevented the mitochondrial release of apoptosis-inducing factor at 4-12h. Nuclear DNA fragmentation, nitrotyrosine staining, tissue GSSG levels and liver injury (plasma ALT release and necrosis) were partially attenuated by the vehicle (-65%) and completely eliminated by SP600125 (-98%) at 6 and 12h. Furthermore, SP600125 attenuated the increase of inducible nitric oxide synthase (iNOS) mRNA and protein. However, APAP did not enhance plasma nitrite+nitrate levels (NO formation); SP600125 had no effect on this parameter. The iNOS inhibitor L-NIL did not reduce NO formation or injury after APAP but prevented NO formation caused by endotoxin. Since SP600125 completely eliminated the increase in hepatic GSSG levels, an indicator of mitochondrial oxidant stress, it is concluded that the inhibition of peroxynitrite was mainly caused by reduced superoxide formation. Our data suggest that the JNK inhibitor SP600125 protects against APAP-induced liver injury in part by attenuation of mitochondrial Bax translocation but mainly by preventing mitochondrial oxidant stress and peroxynitrite formation and thereby preventing the mitochondrial permeability transition pore opening, a key event in APAP-induced cell necrosis.
Collapse
Affiliation(s)
- Chieko Saito
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
49
|
Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 2010; 51:246-54. [PMID: 19821517 PMCID: PMC2977522 DOI: 10.1002/hep.23267] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose is a major cause of acute liver failure. The glutathione (GSH) precursor N-acetylcysteine (NAC) is used to treat patients with APAP overdose for up to 48 hours. Although it is well established that early treatment with NAC can improve the scavenging of the reactive metabolite N-acetyl-p-benzoquinone imine, protective mechanisms at later times remain unclear. To address this issue, fasted C3Heb/FeJ mice were treated with 300 mg/kg APAP and then received intravenously 0.65 mmol/kg GSH or NAC at 1.5 hours after APAP. The animals were sacrificed at 6 hours. APAP alone caused severe liver injury with peroxynitrite formation and DNA fragmentation, all of which was attenuated by both treatments. However, GSH (-82%) was more effective than NAC (-46%) in preventing liver injury. Using nuclear magnetic resonance spectroscopy to measure tissue adenosine triphosphate (ATP) levels and the substrate flux through the mitochondrial Krebs cycle, it was observed that the reduced liver injury correlated with accelerated recovery of mitochondrial GSH content, maintenance of ATP levels, and an increased substrate supply for the mitochondrial Krebs cycle compared with APAP alone. NAC treatment was less effective in recovering ATP and mitochondrial GSH levels and showed reduced substrate flux through the Krebs cycle compared with GSH. However, increasing the dose of NAC improved the protective effect similar to GSH, suggesting that the amino acids not used for GSH synthesis were used as mitochondrial energy substrates. CONCLUSION Delayed treatment with GSH and NAC protect against APAP overdose by dual mechanisms-that is, by enhancing hepatic and mitochondrial GSH levels (scavenging of reactive oxygen and peroxynitrite)-and by supporting the mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Chieko Saito
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Claudia Zwingmann
- Centre de recherche, Centre hospitalier de l’Universite de Montreal, Hopital Saint-Luc, Montreal, Quebec, Canada
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
50
|
Saito C, Yan HM, Artigues A, Villar MT, Farhood A, Jaeschke H. Mechanism of protection by metallothionein against acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 2009; 242:182-90. [PMID: 19835899 DOI: 10.1016/j.taap.2009.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 02/05/2023]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the US. Metallothionein (MT) expression attenuates APAP-induced liver injury. However, the mechanism of this protection remains incompletely understood. To address this issue, C57BL/6 mice were treated with 100 micromol/kg ZnCl2 for 3 days to induce MT. Twenty-four hours after the last dose of zinc, the animals received 300 mg/kg APAP. Liver injury (plasma ALT activities, area of necrosis), DNA fragmentation, peroxynitrite formation (nitrotyrosine staining), MT expression, hepatic glutathione (GSH), and glutathione disulfide (GSSG) levels were determined after 6 h. APAP alone caused severe liver injury with oxidant stress (increased GSSG levels), peroxynitrite formation, and DNA fragmentation, all of which were attenuated by zinc-induced MT expression. In contrast, MT knockout mice were not protected by zinc. Hydrogen peroxide-induced cell injury in primary hepatocytes was dependent only on the intracellular GSH levels but not on MT expression. Thus, the protective effect of MT in vivo was not due to the direct scavenging of reactive oxygen species. Zinc treatment had no effect on the early GSH depletion kinetics after APAP administration, which is an indicator of the metabolic activation of APAP to its reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI). However, MT was able to effectively trap NAPQI by covalent binding. We conclude that MT scavenges some of the excess NAPQI after GSH depletion and prevents covalent binding to cellular proteins, which is the trigger for the propagation of the cell injury mechanisms through mitochondrial dysfunction and nuclear DNA damage.
Collapse
Affiliation(s)
- Chieko Saito
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA.
| | | | | | | | | | | |
Collapse
|