1
|
Eto M, Katsuki S, Tanaka Y, Takeya K. Kinase activity-tagged western blotting assay. Biotechniques 2020; 68:211-213. [PMID: 31939317 DOI: 10.2144/btn-2019-0136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Determining cellular activities of protein kinases is a fundamental step for characterizing pathophysiological cell signaling pathways. Here, we optimized a nonradioactive method that detects protein kinases in tissues or cells after separation by SDS-PAGE and transfer onto polyvinylidene fluoride membranes. The method, kinase activity-tagged western blotting (KAT-WB), consists of five steps: electrophoresis of cell extracts that contain protein kinases, electroblotting proteins onto polyvinylidene fluoride membrane, denaturation-renaturation, phosphorylation, with or without an added substrate protein and immunodetection using anti-phospho-specific antibodies. KAT-WB detected autophosphorylation of one Tyr-kinase and site-specific phosphorylation of added substrate by multiple kinases. KAT-WB assay enables us to interrogate multiple kinase signaling pathways without using radioactive ATP.
Collapse
Affiliation(s)
- Masumi Eto
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Shuichi Katsuki
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Yoshinori Tanaka
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Kosuke Takeya
- Biochemistry Unit, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
2
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
3
|
Quantitative Analysis of Yeast Checkpoint Protein Kinase Activity by Combined Mass Spectrometry Enzyme Assays. Methods Enzymol 2017. [PMID: 28137560 DOI: 10.1016/bs.mie.2016.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Virtually all eukaryotic cell functions and signaling pathways are regulated by protein phosphorylation. The Rad53 kinase plays crucial roles in the DNA damage response in Saccharomyces cerevisiae and is widely used as a surrogate marker for DNA damage checkpoint activation by diverse genotoxic agents. Most currently available assays for Rad53 activation are based on either electrophoretic mobility shifts or semiquantitative in situ autophosphorylation activity on protein blots. Here, we describe direct quantitative measures to assess Rad53 activity using immunoprecipitation kinase assays and quantitative mass spectrometric analysis of Rad53 activation loop autophosphorylation states. Both assays employ a highly specific Rad53 antibody, and thus enable the analysis of the untagged endogenous protein under physiological conditions. The principles of these assays are readily transferable to other protein kinases for which immunoprecipitation-grade antibodies are available, and thus potentially applicable to a wide range of eukaryotic signaling pathways beyond yeast.
Collapse
|
4
|
Elizarov SM, Alekseeva MG, Novikov FN, Chilov GG, Maslov DA, Shtil AA, Danilenko VN. Identification of phosphorylation sites in aminoglycoside phosphotransferase VIII from Streptomyces rimosus. BIOCHEMISTRY (MOSCOW) 2012; 77:1258-65. [DOI: 10.1134/s0006297912110041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Elizarov SM, Sergienko OV, Sizova IA, Danilenko VN. Dependence of aminoglycoside 3′-phosphotransferase VIII activity on serine/threonine protein kinases in Streptomyces rimosus. Mol Biol 2005. [DOI: 10.1007/s11008-005-0033-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Miroy G, Monteiro MJ. Expression and purification of a convenient Ca2+-calmodulin-dependent protein kinase II GST-fusion substrate. Protein Expr Purif 2002; 26:343-8. [PMID: 12460757 DOI: 10.1016/s1046-5928(02)00557-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abundant and convenient protein substrates are extremely useful tools for studying protein kinases. However, few such substrates exist for alpha-Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and those that are available are generally small and expensive peptides that are cumbersome to use. The GST-fusion expression system was used to express a 10 amino acid substrate of CaMKII PLRRTLSVAA in bacteria. Using glutathione-agarose affinity chromatography, we obtained milligram quantities of the highly purified recombinant GST-fusion protein. The GST-fusion protein was tested for its efficacy and specificity as a substrate for CaMKII in phosphorylation assays using recombinant enzyme and radiolabeled [gamma-32P]ATP. The reaction products of these phosphorylation assays were resolved by electrophoresis in SDS-polyacrylamide gels and quantified by phosphoimage analysis. It was found that compared to a phosphorylation-null substrate, GST-PLRRTLAVAA, in which the phosphorylated target serine residue was mutated to an alanine, the GST-PLRRTLSVAA substrate was phosphorylated by CaMKII with an apparent K(m) of 18 microM, indicating that the latter is a highly effective substrate for this enzyme.
Collapse
Affiliation(s)
- Greta Miroy
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Room N352, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
7
|
Zhou X, Richon VM, Wang AH, Yang XJ, Rifkind RA, Marks PA. Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras. Proc Natl Acad Sci U S A 2000; 97:14329-33. [PMID: 11114188 PMCID: PMC18918 DOI: 10.1073/pnas.250494697] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase 4 (HDAC4) is a member of a family of enzymes that catalyze the removal of acetyl groups from core histones, resulting in a compact chromatin structure that is generally associated with repressed gene transcription. Protein phosphorylation has been implicated in the regulation of the corepressor activity of the deacetylase. Here we report that serine/threonine kinases are found in association with HDAC4 and phosphorylate HDAC4 in vitro, and HDAC4 is phosphorylated in cells. The extracellular signal-regulated kinases 1 and 2 (ERK1/2), also known as p44(MAPK) and p42(MAPK), respectively, are two of the kinases associated with HDAC4. ERK1/2 are components of the Ras-mitogen-activated protein kinase (MAPK) signal transduction pathway. Activation of the Ras-MAPK pathway by expression of oncogenic Ras or constitutively active MAPK/ERK kinase 1 results in an increased percentage of cells (from approximately 10% to approximately 70%) that express HDAC4 in the nucleus in C2C12 myoblast cells. In cells transfected with oncogenic Ras, nuclear HDAC4 is associated with kinase activity. Our results provide evidence that protein kinase activity is present in a protein complex with HDAC4 and directly links the Ras-MAPK signal transduction pathway to a mechanism for chromatin remodeling (i.e., histone deacetylation).
Collapse
Affiliation(s)
- X Zhou
- Cell Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center and Graduate School of Medical Sciences, Cornell University Medical School, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
8
|
Baqui MM, Milder R, Mortara RA, Pudles J. In vivo and in vitro phosphorylation and subcellular localization of trypanosomatid cytoskeletal giant proteins. CELL MOTILITY AND THE CYTOSKELETON 2000; 47:25-37. [PMID: 11002308 DOI: 10.1002/1097-0169(200009)47:1<25::aid-cm3>3.0.co;2-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Promastigote forms of Phytomonas serpens, Leptomonas samueli, and Leishmania tarentolae express cytoskeletal giant proteins with apparent molecular masses of 3,500 kDa (Ps 3500), 2,500 kDa (Ls 2500), and 1,200 kDa (Lt 1200), respectively. Polyclonal antibodies to Lt 1200 and to Ps 3500 specifically recognize similar polypeptides of the same genera of parasite. In addition to reacting with giant polypeptides of the Leptomonas species, anti-Ls 2500 also cross reacts with Ps 3500, and with a 500-kDa polypeptide of Leishmania. Confocal immunofluorescence and immunogold electron microscopy showed major differences in topological distribution of these three proteins, though they partially share a common localization at the anterior end of the cell body skeleton. Furthermore, Ps 3500, Ls 2500, and Lt 1200 are in vivo phosphorylated at serine and threonine residues, whereas, in vitro phosphorylation of cytoskeletal fractions reveal that only Ps 3500 and Ls 2500 are phosphorylated. Heat treatment (100 degrees C) of high salt cytoskeletal extracts demonstrates that Ps 3500 and Ls 2500 remain stable in solution, whereas Lt 1200 is denatured. Kinase assays with immunocomplexes of heat-treated giant proteins show that only Ps 3500 and Ls 2500 are phosphorylated. These results demonstrate the existence of a novel class of megadalton phosphoproteins in promastigote forms of trypanosomatids that appear to be genera specific with distinct cytoskeletal functions. In addition, there is also evidence that Ps 3500 and Ls 2500, in contrast to Lt 1200, seem to be autophosphorylating serine and threonine protein kinases, suggesting that they might play regulatory roles in the cytoskeletal organization.
Collapse
Affiliation(s)
- M M Baqui
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
9
|
Klein JD, Lamitina ST, O'Neill WC. JNK is a volume-sensitive kinase that phosphorylates the Na-K-2Cl cotransporter in vitro. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C425-31. [PMID: 10484329 DOI: 10.1152/ajpcell.1999.277.3.c425] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell shrinkage phosphorylates and activates the Na-K-2Cl cotransporter (NKCC1), indicating the presence of a volume-sensitive protein kinase. To identify this kinase, extracts of normal and shrunken aortic endothelial cells were screened for phosphorylation of NKCC1 fusion proteins in an in-the-gel kinase assay. Hypertonic shrinkage activated a 46-kDa kinase that phosphorylated an NH2-terminal fusion protein, with weaker phosphorylation of a COOH-terminal fusion protein. This cytosolic kinase was activated by both hypertonic and isosmotic shrinkage, indicating regulation by cell volume rather than osmolarity. Subsequent studies identified this kinase as c-Jun NH2-terminal kinase (JNK). Immunoblotting revealed increased JNK activity in shrunken cells; there was volume-sensitive phosphorylation of NH2-terminal c-Jun fusion protein; immunoprecipitation of JNK from shrunken cells but not normal cells phosphorylated NKCC1 in gel kinase assays; and treatment of cells with tumor necrosis factor, a known activator of JNK, mimicked the effect of hypertonicity. We conclude that JNK is a volume-sensitive kinase in endothelial cells that phosphorylates NKCC1 in vitro. This is the first demonstration of a volume-sensitive protein kinase capable of phosphorylating a volume-regulatory transporter.
Collapse
Affiliation(s)
- J D Klein
- Renal Division, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
10
|
Fu Z, Green CL, Bennett GS. Relationship between casein kinase I isoforms and a neurofilament-associated kinase. J Neurochem 1999; 73:830-8. [PMID: 10428082 DOI: 10.1046/j.1471-4159.1999.0730830.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purified neurofilaments (NFs) contain an associated kinase (NFAK) activity that phosphorylates selectively a subset of sites in the tail of NF-M and has properties consistent with casein kinase I (CKI). Because CKI consists of a family of as many as seven genes (alpha, beta, gamma1-3, delta, and epsilon), we investigated the extent to which different CKI isoforms contribute to NFAK activity. Using an NF-M-derived substrate, we determined that NFAK activity copurified with casein kinase activity through two purification steps. In an in-gel kinase assay, NFAK activity occurred at 36-40 kDa, corresponding to the size of CKIalpha isoforms. Chicken neurons express transcripts encoding four alternatively spliced variants of CKIalpha (CKIalpha, CKIalphaS, CKIalphaL, and CKIalphaLS) differing in the presence or absence of two inserts, L and S. Using antibodies against different isoforms or with broad CKI specificity, we determined that all four CKIalpha variants, as well as other CKI family members, are present in chicken brain. However, only CKIalpha and CKIalphaS could be detected in purified NFAK. Also, immunoprecipitation studies showed that CKIalpha and CKIalphaS together account for NFAK activity. These findings raise the possibility that only a subset of CKI isoforms may be able to associate with and/or phosphorylate NFs.
Collapse
Affiliation(s)
- Z Fu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville 32610-0235, USA
| | | | | |
Collapse
|
11
|
Bischoff KM, Kennelly PJ. "In-gel" assay for identifying alternative nucleotide substrates for protein kinases. Anal Biochem 1999; 271:199-202. [PMID: 10419640 DOI: 10.1006/abio.1999.4150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- K M Bischoff
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | |
Collapse
|
12
|
Gowdy PM, Anderson HJ, Roberge M. Entry into mitosis without Cdc2 kinase activation. J Cell Sci 1998; 111 ( Pt 22):3401-10. [PMID: 9788881 DOI: 10.1242/jcs.111.22.3401] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse FT210 cells at 39 degreesC cannot enter mitosis but arrest in G2 phase, because they lack Cdc2 kinase activity as a result of a temperature-sensitive lesion in the cdc2 gene. Incubation of arrested cells with the protein phosphatase 1 and 2A inhibitor okadaic acid induces morphologically normal chromosome condensation. We now show that okadaic acid also induces two other landmark events of early mitosis, nuclear lamina depolymerization and centrosome separation, in the absence of Cdc2 kinase activity. Okadaic acid-induced entry into mitosis is accompanied by partial activation of Cdc25C and may be prevented by tyrosine phosphatase inhibitors and by the protein kinase inhibitor staurosporine, suggesting that Cdc25C and kinases distinct from Cdc2 are required for these mitotic events. Using in-gel assays, we show that a 45-kDa protein kinase normally activated at mitosis is also activated by okadaic acid independently of Cdc2 kinase. The 45-kDa kinase can utilize GTP, is stimulated by spermine and is inhibited by heparin. These properties are characteristic of the kinase CK2, but immunoprecipitation studies indicate that it is not CK2. The data underline the importance of a tyrosine phosphatase, possibly Cdc25C, and of kinases other than Cdc2 in the structural changes the cell undergoes at mitosis, and indicate that entry into mitosis involves the activation of multiple kinases working in concert with Cdc2 kinase.
Collapse
Affiliation(s)
- P M Gowdy
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
13
|
Bischoff KM, Shi L, Kennelly PJ. The detection of enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 1998; 260:1-17. [PMID: 9648646 DOI: 10.1006/abio.1998.2680] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
More than a hundred different enzymes impinging on aspects of cell function ranging from carbohydrate and lipid metabolism to signal transduction and gene expression to biomolecule degradation have been detected by the assay of their enzymatic activities following SDS-PAGE. The strategies by which this has been accomplished are as varied as the enzymes themselves and offer testimony to the creativeness and ingenuity of life scientists. Assay of enzyme activity following SDS-PAGE is well adapted to identifying the source of catalytic activity in a heterogeneous protein mixture or a heterooligomeric protein (20), or determining if multiple catalytic activities reside in a single polypeptide (60). The alliance of versatile enzyme assay techniques with the molecular resolution of SDS-PAGE offers a powerful means for meeting the increasing demand for the high-throughput screening arising from protein engineering, combinatorial chemistry, and functional genomics.
Collapse
Affiliation(s)
- K M Bischoff
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
14
|
Kau JH, Ting LP. Phosphorylation of the core protein of hepatitis B virus by a 46-kilodalton serine kinase. J Virol 1998; 72:3796-803. [PMID: 9557662 PMCID: PMC109602 DOI: 10.1128/jvi.72.5.3796-3803.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Core protein is the major component of the core particle (nucleocapsid) of human hepatitis B virus. Core particles and core proteins are involved in a number of important functions in the replication cycle of the virus, including RNA packaging, DNA synthesis, and recognition of viral envelope proteins. Core protein is a phosphoprotein with most, if not all, of the phosphorylation on C-terminal serine residues. In this study, we identified a serine kinase activity from the ribosome-associated protein fraction of cytoplasm that could specifically bind and phosphorylate the C-terminal portion of recombinant core protein. This kinase is referred to as core-associated kinase (CAK). CAK could be inhibited by the kinase inhibitors heparin and manganese ions but not by spermidine, DRB, H89, or H7, indicating that CAK is distinct from protein kinase A and protein kinase C. CAK could be partially purified by heparin-Sepharose CL-6B and phosphocellulose P11 columns. By using a far-Western assay, three specific proteins, of 46, 35, and 13 kDa, were shown to interact with the C-terminal part of the core protein. These three proteins were present only in the eluted fractions that contains the CAK activity. An in-gel kinase assay showed that a 46-kDa kinase in the same fraction could bind and phosphorylate the C-terminal part of the recombinant core protein. These results indicate that this 46-kDa kinase is most probably CAK. A similar 46-kDa kinase, which exhibits the same profile of sensitivity to kinase inhibitors as that of CAK, is present in both purified intracellular core particles and extracellular 42-nm virions, suggesting that CAK is a candidate for the core particle-associated kinase.
Collapse
Affiliation(s)
- J H Kau
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
15
|
Muimo R, Banner SJ, Marshall LJ, Mehta A. Nucleoside diphosphate kinase and Cl(-)-sensitive protein phosphorylation in apical membranes from ovine airway epithelium. Am J Respir Cell Mol Biol 1998; 18:270-8. [PMID: 9476915 DOI: 10.1165/ajrcmb.18.2.2850] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that nucleotide species (adenosine triphosphate [ATP] or guanosine triphosphate [GTP]), [Cl-], and anion species determine the steady-state phosphorylation of apical membrane proteins within human airway epithelium in vitro. We found that a Cl(-)-regulated 37-kD protein (p37) principally phosphorylated with GTP but not ATP as substrate. Here we show that apical membranes from sheep tracheal epithelium also contain a Cl(-)-regulated 37-kD phosphoprotein (p37s) and characterize one of the kinases involved in the regulation of p37s. Analysis of phosphorylation of apical membrane proteins with gamma[32P]GTP in the presence of MgCl2 showed that two proteins circa 19 and 21 kD (p19s and p21s) were transiently phosphorylated before p37s. Renaturation of apical membrane proteins within polyacrylamide gels showed that p19s and p21s autophosphorylated with either gamma[32P]GTP or gamma[32P]ATP as substrates, suggesting that the two proteins were kinases. Immunoblotting and immunoprecipitation with a specific polyclonal antibody showed that p21s was a membrane-bound isoform of nucleoside diphosphate kinase (NDPK, EC 2.7.4.6), a protein kinase which catalyzes transfer of terminal phosphate from ATP to diphosphate nucleotides and is, among other functions, essential for cell secretion. Incubation of apical membrane proteins in the presence of gamma[32P]ATP and guanosine diphosphate (GDP) (but not GDPbetaS) resulted in enhancement of phosphorylation of p37s. Dephosphorylation of NDPK was stimulated by the addition of Mg2+, Mn2+, and Co2+ (but not Zn2+ or Ca2+). Our data show that ovine trachea is a good model for further characterization of the chloride-dependent cascade in airway epithelium.
Collapse
Affiliation(s)
- R Muimo
- Department of Child Health, Centre for Research into Human Development, Ninewells Hospital Medical School, Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Blankenship A, Matsumura F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes an Ah receptor-dependent and ARNT-independent increase in membrane levels and activity of p60(Src). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1997; 3:211-220. [PMID: 21781780 DOI: 10.1016/s1382-6689(97)00016-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/1996] [Revised: 04/16/1997] [Accepted: 04/21/1997] [Indexed: 05/31/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to affect various cellular activities including growth factor signal transduction, hormone responses, and cell differentiation. The purpose of this study was to examine more closely the very early effects of TCDD on protein tyrosine kinase activity, specifically p60(Src). We found that TCDD causes rapid changes in the plasma-microsomal membrane levels and activity of p60(Src) in Hepa 1c1c7, Hepa c4 cells, and SR3Y1 cells, a p60(v-Src) overexpressing cell line. Such cellular changes occur within 30 minutes after 10 nM TCDD treatment, as measured by Western blot analysis. TCDD's ability to increase p60(Src) levels was found to be: (1) dose-dependent, with an estimated EC(50) between 10(-10) and 10(-11) M TCDD; (2) Ah receptor (AhR)-dependent, since TCDD's effect was blocked by co-administration with 1 μM α-naphthoflavone, an AhR antagonist; and interestingly (3) ARNT-independent, since TCDD's effect was observed in Hepa c4 cells, an ARNT(-) mutant cell line. Since ARNT is a heterodimerization partner of the AhR required for binding of the ligand-activated AhR to dioxin-responsive elements on DNA in the nucleus to transactivate genes controlled by the AhR, an alternative mechanism for TCDD's action is discussed which does not require ARNT. Along with increased membrane levels of p60(Src), we observed a corresponding increase in the activity of a 60 kDa protein tyrosine kinase using two different kinase detection assays. This effect of TCDD was also found to be AhR-dependent, ARNT-independent, and independent of de novo protein synthesis since cycloheximide was unable to completely abolish TCDD's effect. The present findings provide a potentially important mechanism by which TCDD can alter cell growth and differentiation.
Collapse
Affiliation(s)
- A Blankenship
- Department of Environmental Toxicology and the Center for Environmental Health Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
17
|
Walker GR, Shuster CB, Burgess DR. Microtubule-entrained kinase activities associated with the cortical cytoskeleton during cytokinesis. J Cell Sci 1997; 110 ( Pt 12):1373-86. [PMID: 9217323 DOI: 10.1242/jcs.110.12.1373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research over the past few years has demonstrated the central role of protein phosphorylation in regulating mitosis and the cell cycle. However, little is known about how the mechanisms regulating the entry into mitosis contribute to the positional and temporal regulation of the actomyosin-based contractile ring formed during cytokinesis. Recent studies implicate p34cdc2 as a negative regulator of myosin II activity, suggesting a link between the mitotic cycle and cytokinesis. In an effort to study the relationship between protein phosphorylation and cytokinesis, we examined the in vivo and in vitro phosphorylation of actin-associated cortical cytoskeletal (CSK) proteins in an isolated model of the sea urchin egg cortex. Examination of cortices derived from eggs or zygotes labeled with 32P-orthophosphate reveals a number of cortex-associated phosphorylated proteins, including polypeptides of 20, 43 and 66 kDa. These three major phosphoproteins are also detected when isolated cortices are incubated with [32P]ATP in vitro, suggesting that the kinases that phosphorylate these substrates are also specifically associated with the cortex. The kinase activities in vivo and in vitro are stimulated by fertilization and display cell cycle-dependent activities. Gel autophosphorylation assays, kinase assays and immunoblot analysis reveal the presence of p34cdc2 as well as members of the mitogen-activated protein kinase family, whose activities in the CSK peak at cell division. Nocodazole, which inhibits microtubule formation and thus blocks cytokinesis, significantly delays the time of peak cortical protein phosphorylation as well as the peak in whole-cell histone H1 kinase activity. These results suggest that a key element regulating cortical contraction during cytokinesis is the timing of protein kinase activities associated with the cortical cytoskeleton that is in turn regulated by the mitotic apparatus.
Collapse
Affiliation(s)
- G R Walker
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
18
|
Karibe H, Komatsu S, Hirano H. Partial purification and characterization of a calcium-dependent protein kinase in rice leaves. PHYTOCHEMISTRY 1996; 41:1459-64. [PMID: 8722086 DOI: 10.1016/0031-9422(95)00827-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A protein from rice leaves, which was partially purified by sequential chromatography on DE52, MONO-Q and Superose 12, presented calcium-dependent protein kinase (CDPK) activity. This protein kinase phosphorylated the substrate, histone III-S, in a Ca(2+)-dependent manner and the half-maximum concentration of Ca2+ to protein kinase activity (EC50) was 1 microM. This phosphorylation was independent of phosphatidylserine and a phorbol ester. The apparent M(r) of the protein kinase, as determined by phosphorylation in SDS-polyacrylamide gel containing histone III-S, was 45 k. This kinase was found to react differently from other protein kinases, such as protein kinase C from rat brain or CDPK from soybean leaves, owing to the absence of a phospholipid or phorbol ester dependency. CDPK phosphorylated three endogenous proteins as detected by in vitro phosphorylation on two-dimensional PAGE.
Collapse
Affiliation(s)
- H Karibe
- Department of Molecular Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | | | |
Collapse
|
19
|
Vainikka S, Joukov V, Klint P, Alitalo K. Association of a 85-kDa serine kinase with activated fibroblast growth factor receptor-4. J Biol Chem 1996; 271:1270-3. [PMID: 8576110 DOI: 10.1074/jbc.271.3.1270] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fibroblast growth factors (FGFs) transduce a variety of biological signals via four distinct tyrosine kinase receptors. We have characterized the phosphorylation of FGF receptor 4 (FGFR-4) and its association with a putative substrate, p85, using transfected L6 myoblast and NIH3T3 fibroblast cell lines. FGFR-4 was phosphorylated in vivo and in vitro mainly on serine and threonine residues in several peptides and to a lower degree on tyrosine residues. When analyzed further by in-gel kinase assay, immunoprecipitates of ligand-activated FGFR-4 contained a serine autophosphorylated polypeptide doublet of 85 kDa. Analysis of the major autophosphorylation site Y754F mutant of FGFR-4 showed that binding of p85 and its serine phosphorylation were independent of receptor autophosphorylation at this site. Okadaic acid treatment increased the basal autophosphorylation activity of p85 but decreased FGFR-4 tyrosine phosphorylation. In contrast, orthovanadate treatment increased the tyrosine phosphorylation of FGFR-4. These data show that a serine kinase is associated with activated FGFR-4 and suggest a role for serine phosphorylation in FGFR-4 function.
Collapse
Affiliation(s)
- S Vainikka
- Molecular/Cancer Biology Laboratory, Haartman Institute, University of Helsinki, Finland
| | | | | | | |
Collapse
|
20
|
Revert F, Penadés JR, Plana M, Bernal D, Johansson C, Itarte E, Cervera J, Wieslander J, Quinones S, Saus J. Phosphorylation of the Goodpasture antigen by type A protein kinases. J Biol Chem 1995; 270:13254-61. [PMID: 7768924 DOI: 10.1074/jbc.270.22.13254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Collagen IV is the major component of basement membranes. The human alpha 3 chain of collagen IV contains an antigenic domain called the Goodpasture antigen that is the target for the circulating immunopathogenic antibodies present in patients with Goodpasture syndrome. Characteristically, the gene region encoding the Goodpasture antigen generates multiple alternative products that retain the antigen amino-terminal region with a five-residue motif (KRGDS). The serine therein appears to be the major in vitro cAMP-dependent protein kinase phosphorylation site in the isolated antigen and can be phosphorylated in vitro by two protein kinases of approximately 50 and 41 kDa associated with human kidney plasma membrane, suggesting that it can also be phosphorylated in vivo. Consistent with this, the Goodpasture antigen is isolated from human kidney in phosphorylated and non-phosphorylated forms and only the non-phosphorylated form is susceptible to phosphorylation in vitro. Since this motif is exclusive to the human alpha 3(IV) chain and includes the RGD cell adhesion motif, its phosphorylation might play a role in pathogenesis and influence cell attachment to basement membrane.
Collapse
Affiliation(s)
- F Revert
- Fundación Valenciana de Investigaciones Biomédicas, Instituto de Investigaciones Citológicas, València, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
López LA, Sheetz MP. A microtubule-associated protein (MAP2) kinase restores microtubule motility in embryonic brain. J Biol Chem 1995; 270:12511-7. [PMID: 7759496 DOI: 10.1074/jbc.270.21.12511] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Motility driven by the microtubule motors, kinesin and cytoplasmic dynein, is inhibited by MAP2 (López, L. A., and Sheetz, M. P. (1993) Cell Motil. Cytoskeleton 24, 1-16). The MAP2 inhibition is reversed by a kinase that is co-purified with chicken embryonic MAP2, completely releasing MAP2 from the microtubules. We have identified this activity with a kinase, embryonic MAP2 kinase (M(r) = 100,000), which phosphorylates MAP2 at serine amino acid residues. This kinase is c-AMP independent and inhibited by potassium fluoride and glycerol 2-phosphate. Only the phosphorylation produced by embryonic MAP2 kinase can change the affinity of MAP2 by microtubules. Bovine MAP2 kinase, Cdc2 kinase, mitogenic activated protein kinase, and the NIMA kinase are able to phosphorylate MAP2 but do not change the affinity for microtubules. In vivo, embryonic MAP2 kinase could play a major role in the regulation of motility and positioning of membranous organelles within the cells even at substoichiometric levels.
Collapse
Affiliation(s)
- L A López
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
22
|
Lu Z, Murray KS, Van Cleave V, LaVallie ER, Stahl ML, McCoy JM. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. BIO/TECHNOLOGY (NATURE PUBLISHING COMPANY) 1995; 13:366-72. [PMID: 9634778 DOI: 10.1038/nbt0495-366] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a system for probing protein/protein interactions which makes use of the bacterial flagellum to display random peptide libraries on the surface of E. coli. In developing the system the entire coding sequence of E. coli thioredoxin (trxA) was inserted into a dispensable region of the gene for flagellin (fliC), the major structural component of the E. coli flagellum. The resulting fusion protein (FLITRX) was efficiently exported and assembled into partially functional flagella on the bacterial cell surface. A diverse library of random dodecapeptides were displayed in FLITRX on the exterior of E. coli as conformationally constrained insertions into the thioredoxin active-site loop, a location known to be a highly permissive site for the insertion of exogenous peptide sequences into native thioredoxin. To demonstrate that members of this library could be bound and selected via specific protein/protein interactions to a target protein, a method was devised to enable efficient isolation of those bacteria displaying peptides with affinity to immobilized antibodies. We have unambiguously mapped three different antibody epitopes using this method. Peptides selected as FLITRX active-site fusions retain their binding specificity when made as native thioredoxin active-site loop fusions. This will facilitate future structural characterizations and broaden the general utility of the system for exploring other classes of protein-protein interactions.
Collapse
Affiliation(s)
- Z Lu
- Genetics Institute, Inc, Cambridge, MA 02140, USA
| | | | | | | | | | | |
Collapse
|
23
|
Heierhorst J, Probst W, Vilim F, Buku A, Weiss K. Autophosphorylation of molluscan twitchin and interaction of its kinase domain with calcium/calmodulin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31933-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|