1
|
Kumar A, Daripa P, Rasool K, Chakraborty D, Jain N, Maiti S. Deciphering the Thermodynamic Landscape of CRISPR/Cas9: Insights into Enhancing Gene Editing Precision and Efficiency. J Phys Chem B 2024; 128:8409-8422. [PMID: 39190773 DOI: 10.1021/acs.jpcb.4c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The thermodynamic landscape of the CRISPR/Cas9 system plays a crucial role in understanding and optimizing the performance of this revolutionary genome-editing technology. In this research, we utilized isothermal titration calorimetry and microscale thermophoresis techniques to thoroughly investigate the thermodynamic properties governing CRISPR/Cas9 interactions. Our findings revealed that the binding between sgRNA and Cas9 is primarily governed by entropy, which compensates for an unfavorable enthalpy change. Conversely, the interaction between the CRISPR RNP complex and the target DNA is characterized by a favorable enthalpy change, offsetting an unfavorable entropy change. Notably, both interactions displayed negative heat capacity changes, indicative of potential hydration, ionization, or structural rearrangements. However, we noted that the involvement of water molecules and counterions in the interactions is minimal, suggesting that structural rearrangements play a significant role in influencing the binding thermodynamics. These results offer a nuanced understanding of the energetic contributions and structural dynamics underlying CRISPR-mediated gene editing. Such insights are invaluable for optimizing the efficiency and specificity of CRISPR-based genome editing applications, ultimately advancing our ability to precisely manipulate genetic material in various organisms for research, therapeutic, and biotechnological purposes.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purba Daripa
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
| | - Kaiser Rasool
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure─A Physicochemical View. Chem Rev 2023; 123:73-104. [PMID: 36260784 DOI: 10.1021/acs.chemrev.2c00491] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Sanjib Mukherjee
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Simon Kriegler
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Magiliny Manisegaran
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Zamira Fetahaj
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Rosario Oliva
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| |
Collapse
|
4
|
Glutamate optimizes enzymatic activity under high hydrostatic pressure in Desulfovibrio species: effects on the ubiquitous thioredoxin system. Extremophiles 2021; 25:385-392. [PMID: 34196828 DOI: 10.1007/s00792-021-01236-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
In piezophilic microorganisms, enzymes are optimized to perform under high hydrostatic pressure. The two major reported mechanisms responsible for such adaptation in bacterial species are changes in amino acids in the protein structure, favoring their activity and stability under high-pressure conditions, and the possible accumulation of micromolecular co-solutes in the cytoplasm. Recently, the accumulation of glutamate in the cytoplasm of piezophilic Desulfovibrio species has been reported under high-pressure growth conditions. In this study, analysis of the effect of glutamate on the enzymatic activity of the thioredoxin reductase/thioredoxin enzymatic complex of either a piezosensitive or a piezophilic microorganism confirms its role as a protective co-solute. Analysis of the thioredoxin structures suggests an adaptation both to the presence of glutamate and to high hydrostatic pressure in the enzyme from the piezophilic strain. Indeed, the presence of large surface pockets could counterbalance the overall compression that occurs at high hydrostatic pressure to maintain enzymatic activity. A lower isoelectric point and a greater dipolar moment than that of thioredoxin from the piezosensitive strain would allow the protein from the piezophilic strain to compensate for the presence of the charged amino acid glutamate to interact with its partner.
Collapse
|
5
|
|
6
|
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar Drugs 2019; 17:md17120656. [PMID: 31766541 PMCID: PMC6950199 DOI: 10.3390/md17120656] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yingbao Gai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Xun Guo
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: ; Tel.: +86-592-2195323
| |
Collapse
|
7
|
Potekhin SA. High-Pressure Scanning Microcalorimetry – A New Method for Studying Conformational and Phase Transitions. BIOCHEMISTRY (MOSCOW) 2018; 83:S134-S145. [DOI: 10.1134/s0006297918140110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Senin AA, Dzhavadov LN, Potekhin SA. High-pressure differential scanning microcalorimeter. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:034901. [PMID: 27036806 DOI: 10.1063/1.4944859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.
Collapse
Affiliation(s)
- A A Senin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - L N Dzhavadov
- L. F. Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk, Moscow Region, Russia
| | - S A Potekhin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
9
|
Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages. Appl Environ Microbiol 2015; 81:8265-76. [PMID: 26386059 DOI: 10.1128/aem.01659-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/12/2015] [Indexed: 11/20/2022] Open
Abstract
Hadal ecosystems are found at a depth of 6,000 m below sea level and below, occupying less than 1% of the total area of the ocean. The microbial communities and metabolic potential in these ecosystems are largely uncharacterized. Here, we present four single amplified genomes (SAGs) obtained from 8,219 m below the sea surface within the hadal ecosystem of the Puerto Rico Trench (PRT). These SAGs are derived from members of deep-sea clades, including the Thaumarchaeota and SAR11 clade, and two are related to previously isolated piezophilic (high-pressure-adapted) microorganisms. In order to identify genes that might play a role in adaptation to deep-sea environments, comparative analyses were performed with genomes from closely related shallow-water microbes. The archaeal SAG possesses genes associated with mixotrophy, including lipoylation and the glycine cleavage pathway. The SAR11 SAG encodes glycolytic enzymes previously reported to be missing from this abundant and cosmopolitan group. The other SAGs, which are related to piezophilic isolates, possess genes that may supplement energy demands through the oxidation of hydrogen or the reduction of nitrous oxide. We found evidence for potential trench-specific gene distributions, as several SAG genes were observed only in a PRT metagenome and not in shallower deep-sea metagenomes. These results illustrate new ecotype features that might perform important roles in the adaptation of microorganisms to life in hadal environments.
Collapse
|
10
|
Malavasi N, Cordeiro Y, Rodrigues D, Chura-Chambi R, Lemke L, Morganti L. The effect of temperature on protein refolding at high pressure: Enhanced green fluorescent protein as a model. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Ramos JP, Le VH, Lewis EA. Role of Water in Netropsin Binding to an A2T2 Hairpin DNA Site: Osmotic Stress Experiments. J Phys Chem B 2013; 117:15958-65. [DOI: 10.1021/jp408077m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph P. Ramos
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Vu H. Le
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Edwin A. Lewis
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
12
|
Timson MJ, Duff MR, Dickey G, Saxton AM, Reyes-De-Corcuera JI, Howell EE. Further studies on the role of water in R67 dihydrofolate reductase. Biochemistry 2013; 52:2118-27. [PMID: 23458706 DOI: 10.1021/bi301544k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous osmotic pressure studies of two nonhomologous dihydrofolate reductase (DHFR) enzymes found tighter binding of the nicotinamide adenine dinucleotide phosphate cofactor upon addition of neutral osmolytes. This result is consistent with water release accompanying binding. In contrast, osmotic stress studies found weaker binding of the dihydrofolate (DHF) substrate for both type I and type II DHFRs in the presence of osmolytes; this observation can be explained if dihydrofolate interacts with osmolytes and shifts the equilibrium from the enzyme-bound state toward the unbound substrate. Nuclear magnetic resonance experiments support this hypothesis, finding that osmolytes interact with dihydrofolate. To consider binding without added osmolytes, a high-pressure approach was used. In this study, the type II enzyme, R67 DHFR, was subjected to high hydrostatic pressure (HHP). Both enzyme activity and fluorescence measurements find the protein tolerates pressures up to 200 MPa. Binding of the cofactor to R67 DHFR weakens with increasing pressure, and a positive association volume of 11.4 ± 0.5 cm(3)/mol was measured. Additionally, an activation volume of 3.3 ± 0.5 cm(3)/mol describing k(cat)/K(m(DHF)) was determined from progress curve analysis. Results from these HHP experiments suggest water release accompanies binding of both the cofactor and DHF to R67 DHFR. In an additional set of experiments, isothermal titration calorimetry studies in H2O and D2O find that water reorganization dominates the enthalpy associated with binding of DHF to R67 DHFR·NADP(+), while no obvious effects occur for cofactor binding. The combined results indicate that water plays an active role in ligand binding to R67 DHFR.
Collapse
Affiliation(s)
- Mary Jane Timson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996-0840, United States
| | | | | | | | | | | |
Collapse
|
13
|
Herale R, Sukumaran UK, Kadeppagari RK. Evidence for the improvement of thermostability of the maltogenic α-amylase ofAspergillus nigerby negative pressure. STARCH-STARKE 2012. [DOI: 10.1002/star.201100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Balduino KN, Spencer PJ, Malavasi NV, Chura-Chambi RM, Lemke LS, Morganti L. Refolding by high pressure of a toxin containing seven disulfide bonds: bothropstoxin-1 from Bothrops jararacussu. Mol Biotechnol 2011; 48:228-34. [PMID: 21181456 PMCID: PMC3115051 DOI: 10.1007/s12033-010-9363-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aggregation is a serious obstacle for recovery of biologically active heterologous proteins from inclusion bodies (IBs) produced by recombinant bacteria. E. coli transformed with a vector containing the cDNA for Bothropstoxin-1 (BthTx-1) expressed the recombinant product as IBs. In order to obtain the native toxin, insoluble and aggregated protein was refolded using high hydrostatic pressure (HHP). IBs were dissolved and refolded (2 kbar, 16 h), and the effects of protein concentration, as well as changes in ratio and concentration of oxido-shuffling reagents, guanidine hydrochloride (GdnHCl), and pH in the refolding buffer, were assayed. A 32% yield (7.6 mg per liter of bacterial culture) in refolding of the native BthTx-1 was obtained using optimal conditions of the refolding buffer (Tris-HCl buffer, pH 7.5, containing 3 mM of a 2:3 ratio of GSH/GSSG, and 1 M GdnHCl). Scanning electron microscopy (SEM) showed that that disaggregation of part of IBs particles occurred upon compression and that the morphology of the remaining IBs, spherical particles, was not substantially altered. Dose-dependent cytotoxic activity of high-pressure refolded BthTx-1 was shown in C2C12 muscle cells.
Collapse
Affiliation(s)
- Keli N Balduino
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares-CNEN/SP, Av. Professor Lineu Prestes 2242, São Paulo, SP 05508-000, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Water in the orchestration of the cell machinery. Some misunderstandings: a short review. J Biol Phys 2011; 38:13-26. [PMID: 23277667 DOI: 10.1007/s10867-011-9225-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022] Open
Abstract
Nowadays, biologists can explore the cell at the nanometre level. They discover an unsuspected world, amazingly overcrowded, complex and heterogeneous, in which water, also, is complex and heterogeneous. In the cell, statistical phenomena, such as diffusion, long considered as the main transport for water soluble substances, must be henceforth considered as inoperative to orchestrate cell activity. Results at this level are not yet numerous enough to give an exact representation of the cell machinery; however, they are sufficient to cease reasoning in terms of statistics (diffusion, law of mass action, pH, etc.) and encourage cytologists and biochemists to prospect thoroughly the huge panoply of the biophysical properties of macromolecule-water associations at the nanometre level. Our main purpose, here, is to discuss some of the more common misinterpretations due to the ignorance of these properties, and expose briefly the bases for a better approach of the cell machinery. Giorgio Careri, who demonstrated the correlation between proton currents at the surface of lysozyme and activity of this enzyme was one of the pioneers of this approach.
Collapse
|
16
|
Grubbs J, Rahmanian S, DeLuca A, Padmashali C, Jackson M, Duff MR, Howell EE. Thermodynamics and solvent effects on substrate and cofactor binding in Escherichia coli chromosomal dihydrofolate reductase. Biochemistry 2011; 50:3673-85. [PMID: 21462996 DOI: 10.1021/bi2002373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromosomal dihydrofolate reductase from Escherichia coli catalyzes the reduction of dihydrofolate to tetrahydrofolate using NADPH as a cofactor. The thermodynamics of ligand binding were examined using an isothermal titration calorimetry approach. Using buffers with different heats of ionization, zero to a small, fractional proton release was observed for dihydrofolate binding, while a proton was released upon NADP(+) binding. The role of water in binding was additionally monitored using a number of different osmolytes. Binding of NADP(+) is accompanied by the net release of ∼5-24 water molecules, with a dependence on the identity of the osmolyte. In contrast, binding of dihydrofolate is weakened in the presence of osmolytes, consistent with "water uptake". Different effects are observed depending on the identity of the osmolyte. The net uptake of water upon dihydrofolate binding was previously observed in the nonhomologous R67-encoded dihydrofolate reductase (dfrB or type II enzyme) [Chopra, S., et al. (2008) J. Biol. Chem. 283, 4690-4698]. As R67 dihydrofolate reductase possesses a nonhomologous sequence and forms a tetrameric structure with a single active site pore, the observation of weaker DHF binding in the presence of osmolytes in both enzymes implicates cosolvent effects on free dihydrofolate. Consistent with this analysis, stopped flow experiments find betaine mostly affects DHF binding via changes in k(on), while betaine mostly affects NADPH binding via changes in k(off). Finally, nonadditive enthalpy terms when binary and ternary cofactor binding events are compared suggest the presence of long-lived conformational transitions that are not included in a simple thermodynamic cycle.
Collapse
Affiliation(s)
- Jordan Grubbs
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Suryawanshi H, Sabharwal H, Maiti S. Thermodynamics of peptide-RNA recognition: the binding of a Tat peptide to TAR RNA. J Phys Chem B 2010; 114:11155-63. [PMID: 20687526 DOI: 10.1021/jp1000545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA-peptide interactions have been intensively studied at the structural level; however, in the absence of thermodynamic studies, the molecular forces that dictate the binding specificities and affinities remain elusive. Here we evaluate the thermodynamics (DeltaG, DeltaH, DeltaS) of HIV-1 TAR RNA hairpin and Tat peptide interaction as well as the hydration changes that accompany these interactions, through a series of calorimetric, spectroscopic, and osmotic stress studies. Tat peptide binding enhances the thermal stability of the TAR RNA hairpin; however, the thermal enhancement decreases with increasing Na(+) concentration. The equilibrium association constant (K(a)) is determined by fluorescence titrations and examined as a function of Na(+) concentration and temperature. The binding constant (K(a)) decreases with increasing Na(+) concentration. The binding free energy (DeltaG) is found to have a large nonpolyelectrolyte component with release of a single counterion upon binding. The ITC profiles showed two independent sites binding, indicating specific as well as nonspecific interactions. The enthalpy changes associated with both the binding sites are found to be more negative for the binding process at lower salt concentration of 20 mM Na(+). Our binding studies under osmotic stress conditions show that there is a release of 28 (+/-4) and 21 (+/-3) water molecules upon complex formation at 20 and 80 mM Na(+) concentration supporting the observed positive entropy contributions and accounting for discrepancies between DeltaH(cal) and DeltaH(vH). In aggregate, our results suggest that the hydrogen bonding of arginine to TAR RNA dictates the binding interaction.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
18
|
Rozners E. Determination of nucleic acid hydration using osmotic stress. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2010; Chapter 7:Unit 7.14. [PMID: 21154532 PMCID: PMC3073695 DOI: 10.1002/0471142700.nc0714s43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Water plays an important role in structure and molecular recognition of biopolymers. Understanding hydration of biopolymers is a significant problem in structural chemistry and biology. However, hydration is a dynamic process that is difficult to study. While X-ray crystallography, NMR, and molecular modeling have provided structural detail on nucleic acid hydration and valuable insights into water dynamics, the thermodynamic contribution of water molecules to conformational equilibria and recognition of nucleic acids remains poorly understood. This unit describes a thermodynamic analysis of nucleic acid hydration using osmotic stress. Osmotic stress monitors the depression of melting temperature upon decreasing water activity, and calculates the number of thermodynamically unique water molecules associated with the double helix and released from single strands upon melting. Comparison of the number of water molecules released upon melting of nucleic acids with different sequences and chemical modifications provides insights that complement and enhance information obtained by other methods.
Collapse
Affiliation(s)
- Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA, Tel. 1-607-777-2441, Fax 607-777-4478,
| |
Collapse
|
19
|
Morozkina EV, Slutskaya ES, Fedorova TV, Tugay TI, Golubeva LI, Koroleva OV. Extremophilic microorganisms: Biochemical adaptation and biotechnological application (review). APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810010011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
High pressure stabilization of collagen structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1151-8. [DOI: 10.1016/j.bbapap.2009.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/31/2009] [Accepted: 04/06/2009] [Indexed: 11/20/2022]
|
21
|
Arora A, Balasubramanian C, Kumar N, Agrawal S, Ojha RP, Maiti S. Binding of berberine to human telomeric quadruplex - spectroscopic, calorimetric and molecular modeling studies. FEBS J 2008; 275:3971-83. [DOI: 10.1111/j.1742-4658.2008.06541.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Keshwani MM, Harris TK. Kinetic mechanism of fully activated S6K1 protein kinase. J Biol Chem 2008; 283:11972-80. [PMID: 18326039 PMCID: PMC2335363 DOI: 10.1074/jbc.m800114200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/29/2008] [Indexed: 11/06/2022] Open
Abstract
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.
Collapse
Affiliation(s)
- Malik M Keshwani
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, USA
| | | |
Collapse
|
23
|
Chopra S, Dooling RM, Horner CG, Howell EE. A balancing act between net uptake of water during dihydrofolate binding and net release of water upon NADPH binding in R67 dihydrofolate reductase. J Biol Chem 2007; 283:4690-8. [PMID: 18086667 DOI: 10.1074/jbc.m709443200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
R67 dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. This enzyme is a homotetramer possessing 222 symmetry, and a single active site pore traverses the length of the protein. A promiscuous binding surface can accommodate either DHF or NADPH, thus two nonproductive complexes can form (2NADPH or 2DHF) as well as a productive complex (NADPH.DHF). The role of water in binding was monitored using a number of different osmolytes. From isothermal titration calorimetry (ITC) studies, binding of NADPH is accompanied by the net release of 38 water molecules. In contrast, from both steady state kinetics and ITC studies, binding of DHF is accompanied by the net uptake of water. Although different osmolytes have similar effects on NADPH binding, variable results are observed when DHF binding is probed. Sensitivity to water activity can also be probed by an in vivo selection using the antibacterial drug, trimethoprim, where the water content of the media is decreased by increasing concentrations of sorbitol. The ability of wild type and mutant clones of R67 DHFR to allow host Escherichia coli to grow in the presence of trimethoprim plus added sorbitol parallels the catalytic efficiency of the DHFR clones, indicating water content strongly correlates with the in vivo function of R67 DHFR.
Collapse
Affiliation(s)
- Shaileja Chopra
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | | | |
Collapse
|
24
|
Solymosi K, Smeller L, Ryberg M, Sundqvist C, Fidy J, Böddi B. Molecular rearrangement in POR macrodomains as a reason for the blue shift of chlorophyllide fluorescence observed after phototransformation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1650-8. [PMID: 17459331 DOI: 10.1016/j.bbamem.2007.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/26/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
The activation energy and activation volume of the spectral blue shift subsequent to protochlorophyllide phototransformation (called Shibata shift in intact leaves) were studied in prolamellar body (PLB) and prothylakoid-(PT)-enriched membrane fractions prepared from dark-grown wheat (Triticum aestivum, L.) leaves. The measurements were done at 20, 30 and 40 degrees C and at various pressure values. The activation energy values were 181+/-8 kJ mol(-1) and 188+/-6 kJ mol(-1) for the PLBs and the PTs, respectively. The pressure stabilized the structure of the NADPH:protochlorophyllide oxidoreductase (POR) macrodomains; it prevented or slowed down the blue shift. There were no significant differences between the activation volumes of PLBs and PTs at 30 or 40 degrees C giving values around 100-125 ml mol(-1) which correspond to changes in the tertiary structure of proteins but also resemble the volume changes occurring during the disaggregation of protein dimers or oligomers, or during dissociation of peripheral membrane proteins from membranes. The small differences in the activation parameters of PLBs and PTs indicate that molecular rearrangements inside the POR macrodomains are the primary reasons of the fluorescence blue shift; however, their lipid microenvironment must be also important in the initialization of the shift.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Eötvös University, Pázmány P. sétány 1/C, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
25
|
Rangel DP, Brewood GP, Fujimoto BS, Schurr JM. Effects of ethylene glycol on the torsion elastic constant and hydrodynamic radius of p30δ DNA. Biopolymers 2007; 85:222-32. [PMID: 17111396 DOI: 10.1002/bip.20634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Upon increasing the concentration of ethylene glycol (EG) at 37 degrees C, the twist energy parameter, E(T), which governs the supercoiling free energy, was recently found to undergo a decreasing (or reverse) sigmoidal transition with a midpoint near 20 w/v % EG. In this study, the effects of adding 20 w/v % EG on the torsion elastic constant (alpha) of linear p30delta DNA and on the hydrodynamic radius (R(H)) of a synthetic 24 bp duplex DNA were examined at both 40 and 20 degrees C. The time-resolved fluorescence intensity and fluorescence polarization anisotropy (FPA) of intercalated ethidium were measured in order to assess the effects of 20 w/v % EG on: (1) alpha; (2) R(H); (3) the lifetimes of intercalated and non-intercalated dye; (4) the amplitude of dye wobble in its binding site; and (5) the binding constant for intercalation. The effects of 20 w/v % EG on the circular dichroism (CD) spectrum of the DNA and on the emission spectrum of the free dye were also measured. At 40 degrees C, addition of 20 w/v % EG caused a substantial (1.27- to 1.35-fold) increase in alpha, a significant change in the CD spectrum, and a very small, marginally significant increase in R(H), but little or no change in the amplitude of dye wobble in its binding site or the lifetime of intercalated dye. Together with previously reported measurements of E(T), these results imply that the bending elastic constant of DNA is significantly decreased by 20 w/v % EG at 40 degrees C. At 20 degrees C, addition of 20 w/v % EG caused a marginally significant decrease in alpha and very little change in any other measured properties. Also at 20 degrees C, addition of 30 w/v % betaine caused a marginally significant increase in alpha and significant but modest change in the CD spectrum, but very little change in any other properties.
Collapse
Affiliation(s)
- David P Rangel
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | |
Collapse
|
26
|
Gonçalves RB, Mendes YS, Soares MR, Katpally U, Smith TJ, Silva JL, Oliveira AC. VP4 protein from human rhinovirus 14 is released by pressure and locked in the capsid by the antiviral compound WIN. J Mol Biol 2006; 366:295-306. [PMID: 17161425 PMCID: PMC1995025 DOI: 10.1016/j.jmb.2006.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/05/2006] [Accepted: 11/08/2006] [Indexed: 11/29/2022]
Abstract
Rhinoviruses are the major causative agents of the common cold in humans. Here, we studied the stability of human rhinovirus type 14 (HRV14) under conditions of high hydrostatic pressure, low temperature, and urea in the absence and presence of an antiviral drug. Capsid dissociation and changes in the protein conformation were monitored by fluorescence spectroscopy, light scattering, circular dichroism, gel filtration chromatography, mass spectrometry and infectivity assays. The data show that high pressure induces the dissociation of HRV14 and that this process is inhibited by WIN 52084. MALDI-TOF mass spectrometry experiments demonstrate that VP4, the most internal viral protein, is released from the capsid by pressure treatment. This release of VP4 is concomitant with loss of infectivity. Our studies also show that at least one antiviral effect of the WIN drugs involves the locking of VP4 inside the capsid by blocking the dynamics associated with cell attachment.
Collapse
Affiliation(s)
- Rafael B. Gonçalves
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
| | - Ygara S. Mendes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
| | - Marcia R. Soares
- Unidade Multidisciplinar de Genômica, IBCCF, UFRJ, RJ, Brazil, 21941-590
| | - Umesh Katpally
- Donald Danforth Plant Science Center, 63132, Saint Louis, MO, USA
| | - Thomas J. Smith
- Donald Danforth Plant Science Center, 63132, Saint Louis, MO, USA
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
- § To whom correspondence should be addressed: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Bauhinia, 400 - CCS/Sl. E1-008, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil. Tel./Fax: + 55 21 2562-6756; e-mail: ;
| | - Andréa C. Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
- § To whom correspondence should be addressed: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Bauhinia, 400 - CCS/Sl. E1-008, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil. Tel./Fax: + 55 21 2562-6756; e-mail: ;
| |
Collapse
|
27
|
Ren X, Yang Z, Kuang T. Solvent-induced changes in photochemical activity and conformation of photosystem I particles by glycerol. Biol Chem 2006; 387:23-9. [PMID: 16497161 DOI: 10.1515/bc.2006.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been shown that a large number of water molecules coordinate with the pigments and subunits of photosystem I (PSI); however, the function of these water molecules remains to be clarified. In this study, the photosynthetic properties of PSI from spinach were investigated using different spectroscopic and activity measurements under conditions of decreasing water content caused by increasing concentrations of glycerol. The results show that glycerol addition caused pronounced changes in the photochemical activity of PSI particles. At low concentrations (<60%, v/v), glycerol stimulated the rate of oxygen uptake in PSI particles, while higher concentrations of glycerol cause inhibition of PSI activity. The capacity of P700 photooxidation also increased with glycerol concentrations lower than 60%. In contrast, this capacity decreased at higher glycerol concentrations. On the other hand, glycerol addition considerably affected the distribution of the bulk and red antenna chlorophyll (Chl) forms or states, with the population of red-shifted Chl forms augmented with increasing glycerol. In addition, glycerol-treated PSI particles showed a blue shift of the tryptophan fluorescence emission maximum and an increase in their capacity to bind the hydrophobic probe 1-anilino-8-naphthalene sulfonate, indicating a more non-polar environment for tryptophan residues and increased exposure of hydrophobic surfaces.
Collapse
Affiliation(s)
- Xiaohua Ren
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
28
|
McCarthy AN, Grigera JR. Effect of pressure on the conformation of proteins. A molecular dynamics simulation of lysozyme. J Mol Graph Model 2006; 24:254-61. [PMID: 16243554 DOI: 10.1016/j.jmgm.2005.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 09/18/2005] [Accepted: 09/20/2005] [Indexed: 11/22/2022]
Abstract
The effect of pressure on the structure and mobility of lysozyme was studied by molecular dynamics computer simulation at 1 and 3 kbar (1 atm = 1.01325 bar = 101.325 kPa). The results have good agreement with the available experimental data, allowing the analysis of other features of the effect of pressure on the protein solution. The studies of mobility show that although the general mobility is restricted under pressure this is not true for some particular residues. From the analysis of secondary structure along the trajectories it is observed that the conformation under pressure is more stable, suggesting that pressure acts as a 'conformer selector' on the protein. The difference in solvent-accessed surface (SAS) with pressure shows a clear inversion of the hydrophilic/hydrophobic SAS ratio, which consequently shows that the hydrophobic interaction is considerably weaker under high hydrostatic pressure conditions.
Collapse
Affiliation(s)
- Andrés N McCarthy
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CONICET-UNLP-CIC, La Plata, Argentina
| | | |
Collapse
|
29
|
Kiser JR, Monk RW, Smalls RL, Petty JT. Hydration changes in the association of Hoechst 33258 with DNA. Biochemistry 2005; 44:16988-97. [PMID: 16363812 PMCID: PMC6158785 DOI: 10.1021/bi051769x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of water in the interaction of Hoechst 33258 with the minor groove binding site of the (AATT)2 sequence was investigated using calorimetric and equilibrium constant measurements. Using isothermal titration calorimetry measurements, the heat capacity change for the reaction is -256 +/- 10 cal/(K mol of Hoechst). Comparison with the heat capacity changes based on area models supports the expulsion of water from the interface of the Hoechst-DNA complex. To further consider the role of water, the osmotic stress method was used to determine if the Hoechst association with DNA was coupled with hydration changes. Using four osmolytes with varying molecular weights and chemical properties, the Hoechst affinity for DNA decreases with increasing osmolyte concentration. From the dependence of the equilibrium constant on the solution osmolality, 60 +/- 13 waters are acquired in the complex relative to the reactants. It is proposed that the osmotic stress technique is measuring weakly bound waters that are not measured via the heat capacity changes.
Collapse
Affiliation(s)
- John R Kiser
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | | | | | | |
Collapse
|
30
|
Rozners E, Smicius R, Uchiyama C. Expanding functionality of RNA: synthesis and properties of RNA containing imidazole modified tandem G-U wobble base pairs. Chem Commun (Camb) 2005:5778-80. [PMID: 16307143 DOI: 10.1039/b510846b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazole modification at C-5 of uridine that is part of tandem G-U wobble base pairs causes slight reduction of thermal stability (DeltaDeltaG(0)(310) < 0.4 kcal mol(-1)) and relatively small change in hydration of short RNA helices.
Collapse
Affiliation(s)
- Eriks Rozners
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
31
|
Peterson RW, Wand AJ. Self contained high pressure cell, apparatus and procedure for the preparation of encapsulated proteins dissolved in low viscosity fluids for NMR spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2005; 76:1-7. [PMID: 16508692 PMCID: PMC1343520 DOI: 10.1063/1.2038087] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The design of a sample cell for high performance nuclear magnetic resonance (NMR) at elevated pressure is described. The cell has been optimized for the study of encapsulated proteins dissolved in low viscosity fluids but is suitable for more general NMR spectroscopy of biomolecules at elevated pressure. The NMR cell is comprised of an alumina toughened zirconia tube mounted on a self-sealing non-magnetic metallic valve. The cell has several advantages including relatively low cost, excellent NMR performance, high pressure tolerance, chemical inertness and a relatively large active volume. Also described is a low volume sample preparation device which allows for the preparation of samples under high hydrostatic pressure and their subsequent transfer to the NMR cell.
Collapse
|
32
|
Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. SALINE SYSTEMS 2005; 1:5. [PMID: 16176595 PMCID: PMC1224877 DOI: 10.1186/1746-1448-1-5] [Citation(s) in RCA: 373] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/04/2005] [Indexed: 11/10/2022]
Abstract
Microorganisms that adapt to moderate and high salt environments use a variety of solutes, organic and inorganic, to counter external osmotic pressure. The organic solutes can be zwitterionic, noncharged, or anionic (along with an inorganic cation such as K(+)). The range of solutes, their diverse biosynthetic pathways, and physical properties of the solutes that effect molecular stability are reviewed.
Collapse
Affiliation(s)
- Mary F Roberts
- Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02465, USA.
| |
Collapse
|
33
|
Lefebvre BG, Gage MJ, Robinson AS. Maximizing recovery of native protein from aggregates by optimizing pressure treatment. Biotechnol Prog 2004; 20:623-9. [PMID: 15059011 DOI: 10.1021/bp034221v] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recovering native protein from aggregates is a common obstacle in the production of recombinant proteins. Recent reports have shown that hydrostatic pressure is an attractive alternative to traditional denature-and-dilute techniques, both in terms of yield and process simplicity. To determine the effect of process variables, we subjected tailspike aggregates to a variety of pressure-treatment conditions. Maximum native tailspike yields were obtained with only short pressure incubations (<5 min) at 240 MPa. However, some tailspike aggregates were resistant to pressure, despite multiple cycles of pressure. Extending the postpressure incubation time to 4 days improved the yield of native protein from aggregates from 19.4 +/- 0.9 to 47.4 +/- 19.6 microg/mL (approximately 78% yield of native trimer from nonaggregate material). The nearly exclusive conversion of monomer to trimer over the time scale of days, when combined with previous kinetic data, allows for the identification of three postpressure kinetic phases: a rapid phase consisting of structured dimer conversion to trimer (30 min), an intermediate phase consisting of monomer conversion to aggregate (100 min), and a slow phase consisting of conversion of monomer to trimer (days). Optimizing the production of structured dimer can yield the highest level of folded protein. Typical refolding additives, such as glycerol, or low-temperature incubation did not improve yields.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
34
|
Kaye JZ, Baross JA. Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. Appl Environ Microbiol 2004; 70:6220-9. [PMID: 15466569 PMCID: PMC522137 DOI: 10.1128/aem.70.10.6220-6229.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.
Collapse
Affiliation(s)
- Jonathan Z Kaye
- School of Oceanography, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
35
|
Shimizu S, Boon CL. The Kirkwood–Buff theory and the effect of cosolvents on biochemical reactions. J Chem Phys 2004; 121:9147-55. [PMID: 15527383 DOI: 10.1063/1.1806402] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cosolvents added to aqueous solutions of biomolecules profoundly affect protein stability, as well as biochemical equilibria. Some cosolvents, such as urea and guanidine hydrochloride, denature proteins, whereas others, such as osmolytes and crowders, stabilize the native structures of proteins. The way cosolvents interact with biomolecules is crucial information required to understand the cosolvent effect at a molecular level. We present a statistical mechanical framework based upon Kirkwood-Buff theory, which enables one to extract this picture from experimental data. The combination of two experimental results, namely, the cosolvent-induced equilibrium shift and the partial molar volume change upon the reaction, supplimented by the structural change, is shown to yield the number of water and cosolvent molecules bound or released during a reaction. Previously, denaturation experiments (e.g., m-value analysis) were analyzed by empirical and stoichiometric solvent-binding models, while the effects of osmolytes and crowders were analyzed by the approximate molecular crowding approach for low cosolvent concentration. Here we synthesize these previous approaches in a rigorous statistical mechanical treatment, which is applicable at any cosolvent concentration. The usefulness and accuracy of previous approaches was also evaluated.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York Heslington, York, North Yorkshire YO10 5YW, United Kingdom.
| | | |
Collapse
|
36
|
McGee MP, Wagner W, Li L. Osmotic stress regulates the anticoagulant efficiency of dermatan sulfate. Matrix Biol 2004; 23:363-70. [PMID: 15533757 DOI: 10.1016/j.matbio.2004.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/22/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Glycosaminoglycans (GAGs) in pericellular and interstitial spaces help to maintain local water homeostasis and blood coagulation balance. This study explored whether dehydrating microenvironment conditions influence dermatan sulfate's (DS) anticoagulant activity. Water transfer during antithrombin activation by dermatan sulfate was measured using osmotic stress techniques. Anticoagulant activity was determined from the change in the rate of coagulation factor Xa (fXa) inhibition. Osmotic stress accelerated reaction rates, indicating water transfer from reactants to bulk. The net volume transferred, measured using osmotic probes similar in size to the reacting proteins, was approximately 2500 mol of water per mole of fXa inhibited. The reaction efficiency, V(sat)/K 1/2 (rate at saturation/concentration resulting in half-maximal rates), determined in titrations with monosulfated dermatan sulfate and disulfated dermatan sulfate (DDS), were 4x10(4) and 2x10(5) M-1 s-1 under osmotic stress and in the presence of calcium, corresponding to 34- and 81-fold increases over efficiency measured under standard conditions. These results indicate that dermatan sulfate can contribute significantly to antithrombin activation, and that in dehydrating environments and depending of ionic conditions, its anticoagulant efficiency can exceed that of heparan sulfate (HS).
Collapse
Affiliation(s)
- Maria P McGee
- Section on Rheumatology, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
37
|
Vallejo LF, Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 2004; 3:11. [PMID: 15345063 PMCID: PMC517725 DOI: 10.1186/1475-2859-3-11] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 09/02/2004] [Indexed: 11/21/2022] Open
Abstract
Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes including size exclusion chromatography, matrix- or affinity-based techniques and hydrophobic interaction chromatography are discussed. Moreover, the effect of physical variables (temperature and pressure) as well as the presence of buffer additives on the refolding process is elucidated. In particular, the impact of protein stabilizing or destabilizing low- and high-molecular weight additives as well as micellar and liposomal systems on protein refolding is illustrated. Also, techniques mimicking the principles encountered during in vivo folding such as processes based on natural and artificial chaperones and propeptide-assisted protein refolding are presented. Moreover, the special requirements for the generation of disulfide bonded proteins and the specific problems and solutions, which arise during process integration are discussed. Finally, the different strategies are examined regarding their applicability for large-scale production processes or high-throughput screening procedures.
Collapse
Affiliation(s)
- Luis Felipe Vallejo
- Biochemical Engineering Division, GBF German Research Center for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Ursula Rinas
- Biochemical Engineering Division, GBF German Research Center for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| |
Collapse
|
38
|
Shimizu S. Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proc Natl Acad Sci U S A 2004; 101:1195-9. [PMID: 14732698 PMCID: PMC337029 DOI: 10.1073/pnas.0305836101] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How do we estimate, from thermodynamic measurements, the number of water molecules adsorbed or released from biomolecules as a result of a biochemical process such as binding and allosteric effects? Volumetric and osmotic stress analyses are established methods for estimating water numbers; however, these techniques often yield conflicting results. In contrast, Kirkwood-Buff theory offers a novel way to calculate excess hydration number from volumetric data, provides a quantitative condition to gauge the accuracy of osmotic stress analysis, and clarifies the relationship between osmotic and volumetric analyses. I have applied Kirkwood-Buff theory to calculate water numbers for two processes: (i) the allosteric transition of hemoglobin and (ii) the binding of camphor to cytochrome P450. I show that osmotic stress analysis may overestimate hydration number changes for these processes.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom.
| |
Collapse
|
39
|
Rangel DP, Sucato CA, Spink CH, Fujimoto BS, Schurr JM. Effects of small neutral osmolytes on the supercoiling free energy and intrinsic twist of p30? DNA. Biopolymers 2004; 75:291-313. [PMID: 15386272 DOI: 10.1002/bip.20111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Both theory and experiments are employed to investigate the effects of small neutral osmolytes on the average intrinsic twist (l0), the torsion and bending elastic constants, and the twist energy parameter (ET) that governs the supercoiling free energy. The experimental data for ethylene glycol and acetamide at 37 degrees C suggest, and are interpreted in terms of, a model wherein the DNA exhibits an equilibrium between two distinct conformational states that possess different numbers of bound water molecules and exhibit different intrinsic twists and torsion and bending elastic constants. Expressions are derived to relate the effective ET and l0 to the equilibrium constant, water activity (aw), and number (n) of bound water molecules released per cooperative domain undergoing the two-state transition. The variations of l0 and ET with -ln(aw) are similar for acetamide and ethylene glycol at 37 degrees C. Fitting the theory to those data yields the range n = 103-125 for ethylene glycol and n = 71-113 for acetamide, depending on the assumed value of ET for the dehydrated state. The cooperative domain size of the two-state transition is estimated to exceed about 25-30 base pairs (bp). Between 0 and 19.4 w/v % ethylene glycol, the torsion elastic constant, measured by time-resolved fluorescence polarization anisotropy (FPA), increases by 1.37-fold, whereas the measured ET decreases by 1.15-fold over that same range. The implied decrease in bending rigidity over that range is by a factor of about 0.7. The variations of l0 and ET with increasing -ln(aw) due to added ethylene glycol at 37 degrees C are far smaller than the corresponding variations observed previously at 14 and 15 degrees C. However, at 21 degrees C, upon adding either ethylene glycol or acetamide, l0 and ET initially decline steeply with increasing -ln(aw), with slopes possibly comparable to those seen at 14 and 15 degrees C, but then flatten out and follow curves similar to those at 37 degrees C. Possible origins of such mixed behavior are discussed. The effects of betaine at both 37 and 21 degrees C differ qualitatively and quantitatively in various respects from those of ethylene glycol and acetamide. Upon adding sucrose, l0 initially jumps to higher plateaus at both 37 and 21 degrees C, but its effects on ET cannot be reliably assessed, due to the limited range of -ln(aw).
Collapse
Affiliation(s)
- David P Rangel
- Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Smeller L, Solymosi K, Fidy J, Böddi B. Activation parameters of the blue shift (Shibata shift) subsequent to protochlorophyllide phototransformation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2003; 1651:130-8. [PMID: 14499597 DOI: 10.1016/s1570-9639(03)00261-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Shibata shift was analyzed in flash irradiated wheat (Triticum aestivum, L., cult. MV17) leaf homogenates in the pressure range of 0.1 to 500 MPa, at temperatures of 20, 30 and 40 degrees C. The kinetics of the blue shift (called Shibata shift in case of intact leaves) was followed by repeated recording of fluorescence emission spectra after phototransformation. At 20 degrees C, above 100 MPa, the blue shift slowed down remarkably. Two components of the blue shift could be distinguished, one was pressure-dependent and the other was almost pressure-independent. The pressure-independent component can be associated with minor conformational changes of the NADPH:protochlorophyllide oxidoreductase (POR) enzyme, followed by molecular movements of the newly formed chlorophyllide molecules. The calculated activation volume of the pressure-dependent component was 43+/-11 cm(3) mol(-1) at 20 degrees C. This value reflects major molecular reorganizations in the lipid system of the membrane and in the chlorophyllide-protein complexes, and corresponds to changes of the tertiary structure of proteins which can proceed directly or indirectly via structural changes of the membrane lipids. The process was inhibited by 300 and 400 MPa at 30 and 40 degrees C, respectively. The activation volume reduced to 35+/-1.5 cm(3) mol(-1) at 40 degrees C. The decrease of the activation volume with increasing temperature indicates that the blue shift requires loosened lipid structures. The activation energy of the blue shift (measured between 10 and 40 degrees C at atmospheric pressure) was 100+/-20 kJ/mol, indicating that the structural change involves rearrangement of strong molecular interactions.
Collapse
Affiliation(s)
- László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, H-1088 Budapest, Hungary.
| | | | | | | |
Collapse
|
42
|
Abstract
Structural and thermodynamic characterizations of a variety of intra- and intermolecular interactions stabilizing/destabilizing protein systems represent a major part of multidisciplinary efforts aimed at solving the problems of protein folding and binding. To this end, volumetric techniques have been successfully used to gain insights into protein hydration and intraglobular packing. Despite the fact that the use of volumetric measurements in protein-related studies dates back to the 1950s, such measurements still represent a relatively untapped yet potentially informative means for tackling the problems of protein folding and binding. This notion has been further emphasized by recent advances in the development of highly sensitive volumetric instrumentation that has led to intensifying volumetric investigations of protein systems. This paper reviews the volumetric properties of proteins and their low-molecular-weight analogs, in particular, discussing the recent progress in the use of volumetric data for studying conformational transitions of proteins as well as protein-ligand, protein-protein, and protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario Canada.
| |
Collapse
|
43
|
Abstract
2-Deoxystreptamine (2-DOS) aminoglycosides are a family of structurally related broad-spectrum antibiotics that are used widely in the treatment of infections caused by aerobic Gram-negative bacilli. Their antibiotic activities are ascribed to their abilities to bind a highly conserved A site in the 16 S rRNA of the 30 S ribosomal subunit and interfere with protein synthesis. The abilities of the 2-DOS aminoglycosides to recognize a specific subdomain of a large RNA molecule make these compounds archetypical models for RNA-targeting drugs. This article presents a series of calorimetric, spectroscopic, osmotic stress, and computational studies designed to evaluate the thermodynamics (DeltaG, DeltaH, DeltaS, DeltaCp) of aminoglycoside-rRNA interactions, as well as the hydration changes that accompany these interactions. In conjunction with the current structural database, the results of these studies provide important insights into the molecular forces that dictate and control the rRNA binding affinities and specificities of the aminoglycosides. Significantly, identification of these molecular driving forces [which include binding-linked drug protonation reactions, polyelectrolyte contributions from counterion release, conformational changes, hydration effects, and molecular interactions (e.g., hydrogen bonds and van der Waals interactions)], as well as the relative magnitudes of their contributions to the binding free energy, could not be achieved by consideration of structural data alone, highlighting the importance of acquiring both thermodynamic and structural information for developing a complete understanding of the drug-RNA binding process. The results presented here begin to establish a database that can be used to predict, over a range of conditions, the relative affinity of a given aminoglycoside or aminoglycoside mimetic for a targeted RNA site vs binding to potential competing secondary sites. This type of predictive capability is essential for establishment of a rational design approach to the development of new RNA-targeted drugs.
Collapse
Affiliation(s)
- Daniel S Pilch
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA.
| | | | | | | |
Collapse
|
44
|
Lefebvre BG, Robinson AS. Pressure treatment of tailspike aggregates rapidly produces on-pathway folding intermediates. Biotechnol Bioeng 2003; 82:595-604. [PMID: 12652483 DOI: 10.1002/bit.10607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein folding and aggregation are in direct competition in living systems, yet measuring the two pathways simultaneously has rarely been accomplished. In order to identify the mechanism of high-pressure dissociation of aggregates, we compared the simultaneous on- and off-pathway behavior following dilution of freshly denatured P22 tailspike protein. Tailspike assembly at 100 microg/mL was monitored at four temperatures using a combination of size-exclusion chromatography and native polyacrylamide gel electrophoresis (PAGE) and folding and aggregation rates and yields were determined. As temperature increased, the yield of native trimeric tailspike decreased from 26.1 +/- 1.3 microg/mL at 20 degrees C to 0 microg/mL at 37 degrees C. Pressure treatment dissociated 60% of the trapped aggregates created at 37 degrees C and yielded 19.8 +/- 1.1 microg/mL of native trimer following depressurization and incubation at 20 degrees C. The rate of refolding of "freshly denatured" tailspike was compared to that following pressure treatment. The trimer formation rate increased by a factor of roughly five, and the aggregate rate decreased by a factor of three, following pressure treatment. Circular dichroism and high-pressure intrinsic tryptophan fluorescence measurements support the model that a structured intermediate is formed in a rapid manner under high pressure from a pressure-sensitive aggregate population.
Collapse
Affiliation(s)
- Brian G Lefebvre
- Department of Chemical Engineering, 259 Colburn Laboratory, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
45
|
Chalikian TV, Filfil R. How large are the volume changes accompanying protein transitions and binding? Biophys Chem 2003; 104:489-99. [PMID: 12878316 DOI: 10.1016/s0301-4622(03)00037-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We present a simple model to describe volume changes accompanying protein folding and binding events. The model enables one to resolve the changes in volume accompanying conformational transitions of proteins as well as association of proteins with other molecules in terms of the intrinsic, thermal and interaction (hydration) contributions. The thermal contribution to protein volume results from thermally activated mutual vibrational motions of contacting solute and solvent molecules. Our calculations suggest that near zero volume changes accompanying protein folding and binding events reflect compensation between significant changes in the intrinsic, thermal and interaction terms. We have quantitatively estimated these terms as a function of the protein's molecular weight and degree of its unfolding. Results described in this work lay foundation for more reliable and physically justified interpretations of volumetric data on protein folding and binding events. We also discuss potential ways of extending applications of our model to analyzing other macromolecular systems and events, including drug-DNA and protein-DNA interactions and helix-to-helix and helix-to-coil transitions of nucleic acids.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, M5S 2S2, Ontario, Canada.
| | | |
Collapse
|
46
|
Fried MG, Stickle DF, Smirnakis KV, Adams C, MacDonald D, Lu P. Role of hydration in the binding of lac repressor to DNA. J Biol Chem 2002; 277:50676-82. [PMID: 12379649 DOI: 10.1074/jbc.m208540200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The osmotic stress technique was used to measure changes in macromolecular hydration that accompany binding of wild-type Escherichia coli lactose (lac) repressor to its regulatory site (operator O1) in the lac promoter and its transfer from site O1 to nonspecific DNA. Binding at O1 is accompanied by the net release of 260 +/- 32 water molecules. If all are released from macromolecular surfaces, this result is consistent with a net reduction of solvent-accessible surface area of 2370 +/- 550 A. This area is only slightly smaller than the macromolecular interface calculated for a crystalline repressor dimer-O1 complex but is significantly smaller than that for the corresponding complex with the symmetrical optimized O(sym) operator. The transfer of repressor from site O1 to nonspecific DNA is accompanied by the net uptake of 93 +/- 10 water molecules. Together these results imply that formation of a nonspecific complex is accompanied by the net release of 165 +/- 43 water molecules. The enhanced stabilities of repressor-DNA complexes with increasing osmolality may contribute to the ability of Escherichia coli cells to tolerate dehydration and/or high external salt concentrations.
Collapse
Affiliation(s)
- Michael G Fried
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Kornblatt JA, Kornblatt MJ. Water as it applies to the function of enzymes. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:49-73. [PMID: 11952237 DOI: 10.1016/s0074-7696(02)15005-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Escherichia coli and Saccharomyces cerevisiae can metabolize, grow, and divide over osmotic pressures ranging from 0.24 atm to about 100 atm [Record, T. M. et al. (1999). Trends Biochem. Sci. 23,143-148,190-194; Wood, J. M. (1999). Microbiol. Mol. Bio. Rev. 63, 230-262; Marachal, P. A., and Gervais, P. (1994). Appl. Microbiol. Biotechnol. 42, 617-622]. At the higher end of the range, they perform their functions with difficulty, but they can survive. Over the full span of pressures, the activity of water goes from 0.9998 to 0.93. Neither of the authors can survive at anything like these extremes; some of their enzymes and enzymatic complexes would "fall apart," would either cease to function or would denature. We would very much like to know just how the two microbes manage.
Collapse
Affiliation(s)
- J A Kornblatt
- Enzyme Research Group, Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
48
|
Solymosi K, Smeller L, Böddi B, Fidy J. Activation volumes of processes linked to the phototransformation of protochlorophyllide determined by fluorescence spectroscopy at high pressure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1554:1-4. [PMID: 12034465 DOI: 10.1016/s0005-2728(02)00209-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The photochemical activity of NADPH:protochlorophyllide oxidoreductase (POR) was studied in etiolated wheat (Triticum aestivum, L., cult. MV17) leaf homogenates. The kinetics of the transformation of protochlorophyllide into chlorophyllide was detected by fluorescence intensity changes at 690 nm (formation of chlorophyllide) and 655 nm (decay of protochlorophyllide) at 20 degrees C, excited at 440 nm while the pressure was varied between 0.1 and 400 MPa. Both kinetics could be fitted by two exponentials and the reaction rates were pressure-dependent. A model was suggested based on the comparison of the two kinetics. Reaction rates of the processes occurring during the prototransformation were determined in function of pressure. The evaluation yielded the activation volume as 1.7 ml mol(-1), which corresponds with the formation of one H-bond/molecule.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Eötvös University, Pázmány P. 1/c, Budapest H-1117, Hungary
| | | | | | | |
Collapse
|
49
|
Kornblatt JA, Kornblatt MJ. The effects of osmotic and hydrostatic pressures on macromolecular systems. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:30-47. [PMID: 11983385 DOI: 10.1016/s0167-4838(01)00333-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osmotic pressure and hydrostatic pressure can be used effectively to probe the behavior of biologically important macromolecules and their complexes. Using the two techniques requires a theoretical framework as well as knowledge of the more common pitfalls. Both are discussed in this review in the context of several examples.
Collapse
Affiliation(s)
- Jack A Kornblatt
- Enzyme Research Group, Department of Biology, Concordia University, Montreal, QC, Canada.
| | | |
Collapse
|
50
|
Abstract
Pressures between 10 and 100 MPa can exert powerful effects on the growth and viability of organisms. Here I describe the effects of elevated pressure in this range on mesophilic (atmospheric pressure adapted) and piezophilic (high-pressure adapted) microorganisms. Examination of pressure effects on mesophiles makes use of this unique physical parameter to aid in the characterization of fundamental cellular processes, while in the case of piezophiles it provides information on the essence of the adaptation of life to high-pressure environments, which comprise the bulk of our biosphere. Research is presented on the isolation of pressure-resistant mutants, high-pressure regulation of gene expression, the role of membrane lipids and proteins in determining growth ability at high pressure, pressure effects on DNA replication and topology as well as on cell division, and the role of extrinsic factors in modulating enzyme activity at high pressure.
Collapse
Affiliation(s)
- D H Bartlett
- Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, 8682 La Jolla Shores Drive, La Jolla, CA 92093-0202, USA.
| |
Collapse
|