1
|
Wang HL, Zhang S, Qi J, Wang H, Cachope R, Mejias-Aponte CA, Gomez JA, Mateo-Semidey GE, Beaudoin GMJ, Paladini CA, Cheer JF, Morales M. Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons. Cell Rep 2019; 26:1128-1142.e7. [PMID: 30699344 PMCID: PMC6489450 DOI: 10.1016/j.celrep.2019.01.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/12/2018] [Accepted: 01/03/2019] [Indexed: 11/26/2022] Open
Abstract
Dorsal raphe (DR) serotonin neurons provide a major input to the ventral tegmental area (VTA). Here, we show that DR serotonin transporter (SERT) neurons establish both asymmetric and symmetric synapses on VTA dopamine neurons, but most of these synapses are asymmetric. Moreover, the DR-SERT terminals making asymmetric synapses on VTA dopamine neurons coexpress vesicular glutamate transporter 3 (VGluT3; transporter for accumulation of glutamate for its synaptic release), suggesting the excitatory nature of these synapses. VTA photoactivation of DR-SERT fibers promotes conditioned place preference, elicits excitatory currents on mesoaccumbens dopamine neurons, increases their firing, and evokes dopamine release in nucleus accumbens. These effects are blocked by VTA inactivation of glutamate and serotonin receptors, supporting the idea of glutamate release in VTA from dual DR SERT-VGluT3 inputs. Our findings suggest a path-specific input from DR serotonergic neurons to VTA that promotes reward by the release of glutamate and activation of mesoaccumbens dopamine neurons.
Collapse
Affiliation(s)
- Hui-Ling Wang
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Shiliang Zhang
- National Institute on Drug Abuse, Electron Microscopy Core, NIH, Baltimore, MD, USA
| | - Jia Qi
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Huikun Wang
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA
| | - Roger Cachope
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jorge A Gomez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Gerard M J Beaudoin
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Carlos A Paladini
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marisela Morales
- National Institute on Drug Abuse, Neuronal Networks Section, NIH, Baltimore, MD, USA.
| |
Collapse
|
2
|
Abstract
The dorsal raphe nucleus (DRN) in the midbrain is a key center for serotonin (5-hydroxytryptamine; 5-HT)-expressing neurons. Serotonergic neurons in the DRN have been theorized to encode punishment by opposing the reward signaling of dopamine neurons. Here, we show that DRN neurons encode reward, but not punishment, through 5-HT and glutamate. Optogenetic stimulation of DRN Pet-1 neurons reinforces mice to explore the stimulation-coupled spatial region, shifts sucrose preference, drives optical self-stimulation, and directs sensory discrimination learning. DRN Pet-1 neurons increase their firing activity during reward tasks, and this activation can be used to rapidly change neuronal activity patterns in the cortex. Although DRN Pet-1 neurons are often associated with 5-HT, they also release glutamate, and both neurotransmitters contribute to reward signaling. These experiments demonstrate the ability of DRN neurons to organize reward behaviors and might provide insights into the underlying mechanisms of learning facilitation and anhedonia treatment.
Collapse
|
3
|
Neurocircuitry of drug reward. Neuropharmacology 2013; 76 Pt B:329-41. [PMID: 23664810 DOI: 10.1016/j.neuropharm.2013.04.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
Abstract
In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
4
|
Kranz GS, Kasper S, Lanzenberger R. Reward and the serotonergic system. Neuroscience 2010; 166:1023-35. [PMID: 20109531 DOI: 10.1016/j.neuroscience.2010.01.036] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Anhedonia, as a failure to experience rewarding stimuli, is a key characteristic of many psychiatric disorders including depression and schizophrenia. Investigations on the neurobiological correlates of reward and hedonia/anhedonia have been a growing subject of research demonstrating several neuromodulators to mediate different aspects of reward processing. Whereas the majority of research on reward mainly focused on the dopamine and opioid systems, a serotonergic mechanism has been neglected. However, recent promising results strengthen the pivotal role of serotonin in reward processing. Evidence includes electrophysical and pharmacological as well as genetic and imaging studies. Primate research using single-unit recording of neurons within the dorsal raphe nucleus argues for a serotonergic mediation of reward value, whereas studies using intracranial self-stimulation point to an important contribution of serotonin in modulating motivational aspects of rewarding brain stimulation. Pharmacological studies using agonists and antagonists of serotonergic receptor subtypes and approaches investigating an increase or decrease of the extracellular level of serotonin offer strong evidence for a serotonergic mediation, ranging from aversion to pleasure. This review provides an argument for serotonin as a fundamental mediator of emotional, motivational and cognitive aspects of reward representation, which makes it possibly as important as dopamine for reward processing.
Collapse
Affiliation(s)
- G S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
5
|
Role of Serotonin in Brain Reward and Regulation of Alcohol Drinking Behavior. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1569-7339(10)70092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
6
|
Montgomery AM, Grottick AJ. Neurotransmitter system interactions revealed by drug-induced changes in motivated behavior. Pharmacol Biochem Behav 1999; 62:643-57. [PMID: 10208370 DOI: 10.1016/s0091-3057(98)00200-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present article reviews studies conducted either in collaboration with Jac Herberg, or in parallel with those studies that used consummatory behavior and responding for intracranial self-stimulation (ICSS) to investigate interactions between neurotransmitter systems. The studies reviewed include investigations of the role of dopamine in 8-OH-DPAT-induced feeding; the role of 5-HT3 receptors in the stimulant and depressant effects of nicotine on responding for ICSS; the interaction of D2 and 5-HT2 antagonists in sucrose consumption, and the differential contributions of alpha2-adrenoceptor and 5-HT2 antagonism to the rapid recovery of ICSS responding from depression produced by atypical neuroleptics. Further studies of the role of alpha2-adrenoceptor antagonism in the pattern of response decrements produced by neuroleptics on schedule-controlled responding for food confirm that the behavioral effects of monoamine interactions vary, depending on the specific receptor subtypes targeted and the behavioral paradigm employed. Consequently, the clinical relevance of findings will crucially depend on the choice of appropriate behavioral measures.
Collapse
Affiliation(s)
- A M Montgomery
- School of Social Sciences, University of Greenwich, Eltham, London, UK
| | | |
Collapse
|
7
|
Hatcher JP, Boyland P, Hagan JJ. The 5 -HT3 receptor antagonists, granisetron and ondansetron, do not affect cocaine-induced shifts in intra-cranial self-stimulation thresholds. J Psychopharmacol 1995; 9:342-7. [PMID: 22298400 DOI: 10.1177/026988119500900409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of the 5-HT( 3) receptor antagonists, granisetron and ondansetron, were investigated on behaviour maintained by intracranial self-stimulation (ICSS). Rats, implanted with bipolar electrodes in the lateral hypothalamus, were trained to lever press on a continuous reinforcement schedule for positively reinforcing trains of electrical stimulation. The frequency at which responding reached 50% of maximum (M50) and the maximum rate of responding (asymptote) were used to measure drug effects. Granisetron (0.01-0.1 mg/kg i.p ) and ondansetron (0.03-0.3 mg/kg i.p ) had no effect on either parameter. In contrast, cocaine (20 mg/kg i.p ) potentiated rewarded responding, reducing M50 values, but neither granisetron (0.01-3.0 mg/kg i.p ) nor ondansetron (0.03-0.3 mg/kg i.p ) blocked this effect. Neither did granisetron (0.1-10.0 mg/kg i.p ) alter the effect of lower doses of cocaine (10 mg/kg i.p.). These data suggest that 5 -HT( 3) receptors do not play a significant role in mediating responding maintained by ICSS in the rat through hypothalamic electrodes. Neither do they modulate cocaine-induced potentiation of the behaviour.
Collapse
Affiliation(s)
- J P Hatcher
- Psychiatry Research Department, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK
| | | | | |
Collapse
|
8
|
Montgomery AM, Rose IC, Herberg LJ. 5-HT1A agonists and dopamine: the effects of 8-OH-DPAT and buspirone on brain-stimulation reward. J Neural Transm (Vienna) 1991; 83:139-48. [PMID: 1826841 DOI: 10.1007/bf01244460] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two specific 5-HT1A agonists, 8-OH-DPAT (0-300 micrograms/kg), and buspirone (0-3.0 mg/kg), were tested on variable-interval, threshold-current self-stimulation of rat lateral hypothalamus. Buspirone produced a prolonged monotonic depression of responding, whereas the effects of 8-OH-DPAT were biphasic: 3.0 micrograms/kg produced a sustained enhancement of responding while higher doses (100-300 micrograms/kg) produced a relatively short-lasting depression. This biphasic pattern parallels previously reported effects of 8-OH-DPAT on food intake and on various other behaviours. Threshold-current self-stimulation is highly sensitive to alterations in dopaminergic transmission but relatively insensitive to changes in 5-HT. Thus the facilitatory effect of low-dose 8-OH-DPAT seems most plausibly interpreted in terms of enhanced dopaminergic transmission. This could be brought about by 5HT1A autoreceptor-mediated inhibiton of 5-HT release and consequent disinhibition of dopaminergic transmission. Depression of self-stimulation by higher doses of 8-OH-DPAT may reflect the activity of 8-OH-DPAT at postsynaptic 5-HT receptors, with consequent inhibition of DA transmission. Suppression of responding after buspirone at all doses tested may reflect the action of this compound as a partial agonist at postsynaptic 5-HT receptors, and/or its effects on other systems.
Collapse
Affiliation(s)
- A M Montgomery
- Institute of Neurology, National Hospital, London, United Kingdom
| | | | | |
Collapse
|
9
|
Affiliation(s)
- J F Deakin
- Department of Psychiatry, Rawnsley Building, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK
| | | |
Collapse
|
10
|
Gomita Y, Moriyama M, Ichimaru Y, Araki Y. Neural systems activated by the aversive stimulation of dorsal central gray. JAPANESE JOURNAL OF PHARMACOLOGY 1988; 48:137-41. [PMID: 3199601 DOI: 10.1254/jjp.48.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neural effects of aversive stimulation of dorsal central gray (DCG) were studied by [14C] 2-deoxyglucose (2-DG) autoradiography in rats. After training the animals to escape DCG stimulation by pressing a lever, they were injected i.p. with [14C] 2-DG and then allowed to resume the escape lever pressing for DCG stimulation. Reliable effects of the brain stimulation on the autoradiogram were found in the dorsal fasciculus of Schütz, periventricular gray and superior colliculus. Moderate effects were found in the reticular formation near the periventricular gray and in the claustrum. These data indicate that the neural signal activated by DCG stimulation is transmitted through an ascending nerve pathway over the superior colliculus via the dorsal Schütz bundle and reaches the periventricular system in the diencephalon.
Collapse
Affiliation(s)
- Y Gomita
- Department of Hospital Pharmacy, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|
11
|
Abstract
The possible involvement of serotonergic neurons in self-stimulation of the habenular complex was examined in 16 rats. Animals were implanted with bipolar electrodes into the habenula (Hb), lateral hypothalamus (LH), or median raphe (MR), and trained to touch a dry spout to receive electrical stimulation of the brain. Metergoline (5 mg/kg, IP), a serotonergic receptor blocking agent, produced a complete suppression of self-stimulation with Hb and MR electrodes, but significantly less suppression with LH electrodes, suggesting that the rewarding effect of habenular stimulation is mediated by serotonergic neurons. In contrast to the differential effects of metergoline, chlorpromazine (2 mg/kg, IP), a catecholamine receptor blocking agent, suppressed both Hb and LH self-stimulation in a similar manner.
Collapse
|
12
|
Liebman JM. Discriminating between reward and performance: a critical review of intracranial self-stimulation methodology. Neurosci Biobehav Rev 1983; 7:45-72. [PMID: 6132357 DOI: 10.1016/0149-7634(83)90007-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite numerous pharmacological investigations of intracranial self-stimulation (ICSS), the substrates of this behavior have yet to be completely understood. In view of the likelihood that inadequate methodology has hindered the quest for these substrates, the present review was undertaken. Criteria for ICSS methodology should include not only the ability to discriminate reward from gross performance deficit, but also adequate capacity (ability to generate experimental data at a reasonable rate). For numerous reasons, bar-pressing on a continuous reinforcement schedule fails the first criterion despite its ease and rapidity. The use of partial reinforcement schedules may alleviate some of these shortcomings. Analysis of drug-induced response decrement patterns can discriminate gross motoric incapacity from other variables, although the question of subtle response maintenance deficits remains to be answered. Measurements of response rates using alternative operants do not differentiate reward and performance adequately. More promising, "rate-free" measures using locomotion as an operant include the two-platform method of Valenstein and the "locus of rise" method. Comparison of drug effects on ICSS with those on alternate tasks are fraught with pitfalls including the problems of assuring equivalent rates and patterns of responding. The use of differential electrode placements is ideally suited for neurochemically well-characterized drugs, particularly if "double dissociations" can be established during studies of multiple placements. Presentation of different current intensities or frequencies permits the compilation of rate-intensity functions, and drug-induced shifts in these functions have considerable analytical power. Self-regulation of current intensity constitutes a powerful tool that has yet to realize its full potential in the pharmacological study of ICSS. Extensive studies involving self-regulation of stimulation duration ("shuttlebox" studies) suggest that this method may be highly versatile despite several practical difficulties. It is concluded that at least six of these methods appear to do a reasonable job of excluding gross performance deficit. However, the possible influences of other factors, such as subtle response maintenance deficit, incentive or arousal, remain to be resolved in view of the multifactorial nature of ICSS. Multiple tests for ICSS drug or lesion studies are advocated whenever feasible, as no single test appears capable of resolving all theoretical complexities.
Collapse
|