1
|
McGinnity CJ, Riaño Barros DA, Hinz R, Myers JF, Yaakub SN, Thyssen C, Heckemann RA, de Tisi J, Duncan JS, Sander JW, Lingford-Hughes A, Koepp MJ, Hammers A. Αlpha 5 subunit-containing GABA A receptors in temporal lobe epilepsy with normal MRI. Brain Commun 2021; 3:fcaa190. [PMID: 33501420 PMCID: PMC7811756 DOI: 10.1093/braincomms/fcaa190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
GABAA receptors containing the α5 subunit mediate tonic inhibition and are widely expressed in the limbic system. In animals, activation of α5-containing receptors impairs hippocampus-dependent memory. Temporal lobe epilepsy is associated with memory impairments related to neuron loss and other changes. The less selective PET ligand [11C]flumazenil has revealed reductions in GABAA receptors. The hypothesis that α5 subunit receptor alterations are present in temporal lobe epilepsy and could contribute to impaired memory is untested. We compared α5 subunit availability between individuals with temporal lobe epilepsy and normal structural MRI ('MRI-negative') and healthy controls, and interrogated the relationship between α5 subunit availability and episodic memory performance, in a cross-sectional study. Twenty-three healthy male controls (median ± interquartile age 49 ± 13 years) and 11 individuals with MRI-negative temporal lobe epilepsy (seven males; 40 ± 8) had a 90-min PET scan after bolus injection of [11C]Ro15-4513, with arterial blood sampling and metabolite correction. All those with epilepsy and six controls completed the Adult Memory and Information Processing Battery on the scanning day. 'Bandpass' exponential spectral analyses were used to calculate volumes of distribution separately for the fast component [V F; dominated by signal from α1 (α2, α3)-containing receptors] and the slow component (V S; dominated by signal from α5-containing receptors). We made voxel-by-voxel comparisons between: the epilepsy and control groups; each individual case versus the controls. We obtained parametric maps of V F and V S measures from a single bolus injection of [11C]Ro15-4513. The epilepsy group had higher V S in anterior medial and lateral aspects of the temporal lobes, the anterior cingulate gyri, the presumed area tempestas (piriform cortex) and the insulae, in addition to increases of ∼24% and ∼26% in the ipsilateral and contralateral hippocampal areas (P < 0.004). This was associated with reduced V F:V S ratios within the same areas (P < 0.009). Comparisons of V S for each individual with epilepsy versus controls did not consistently lateralize the epileptogenic lobe. Memory scores were significantly lower in the epilepsy group than in controls (mean ± standard deviation -0.4 ± 1.0 versus 0.7 ± 0.3; P = 0.02). In individuals with epilepsy, hippocampal V S did not correlate with memory performance on the Adult Memory and Information Processing Battery. They had reduced V F in the hippocampal area, which was significant ipsilaterally (P = 0.03), as expected from [11C]flumazenil studies. We found increased tonic inhibitory neurotransmission in our cohort of MRI-negative temporal lobe epilepsy who also had co-morbid memory impairments. Our findings are consistent with a subunit shift from α1/2/3 to α5 in MRI-negative temporal lobe epilepsy.
Collapse
Affiliation(s)
- Colm J McGinnity
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Daniela A Riaño Barros
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, UK
| | - James F Myers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Siti N Yaakub
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Charlotte Thyssen
- Medical Image and Signal Processing (MEDISIP), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Rolf A Heckemann
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - John S Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede 2103SW, The Netherlands
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Matthias J Koepp
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, and Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Alexander Hammers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London W12 0NN, UK
- MRC Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK
- Neurodis Foundation, CERMEP, Imagerie du Vivant, 69003 Lyon, France
| |
Collapse
|
2
|
Sonar VP, Fois B, Distinto S, Maccioni E, Meleddu R, Cottiglia F, Acquas E, Kasture S, Floris C, Colombo D, Sissi C, Sanna E, Talani G. Ferulic Acid Esters and Withanolides: In Search of Withania somnifera GABA A Receptor Modulators. JOURNAL OF NATURAL PRODUCTS 2019; 82:1250-1257. [PMID: 30998355 DOI: 10.1021/acs.jnatprod.8b01023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nine compounds, including two undescribed withanolides, withasomniferolides A and B (1 and 2), three known withanolides (3-5), a ferulic acid dimeric ester (6), and an inseparable mixture of three long alkyl chain ferulic acid esters (7-9), were isolated from a GABAA receptor positive activator methanol extract of the roots of Withania somnifera. The structures of the isolated compounds were elucidated based on NMR, MS, and ECD data analysis. In order to bioassay the single ferulic acid derivatives, compounds 6-9 were also synthesized. The most active compound, docosanyl ferulate (9), was able to enhance the GABAA receptor inhibitory postsynaptic currents with an IC50 value of 7.9 μM. These results, by showing an ability to modulate the GABAA receptor function, cast fresh light on the biological activities of the secondary metabolites of W. somnifera roots.
Collapse
Affiliation(s)
- Vijay P Sonar
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
- R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , 425404 India
| | - Benedetta Fois
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
- Centre of Excellence on Neurobiology of Addiction , University of Cagliari , 09042 Cagliari , Italy
| | - Sanjay Kasture
- Department of Pharmacology , Sanjivani College of Pharmaceutical Education & Research , Kopargaon , 423603 India
| | - Costantino Floris
- Department of Chemical and Geological Sciences , University of Cagliari , 09042 Monserrato , Italy
| | - Daniele Colombo
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , 35131 Padova , Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
- Centre of Excellence on Neurobiology of Addiction , University of Cagliari , 09042 Cagliari , Italy
| | - Giuseppe Talani
- National Research Council (CNR) , Institute of Neuroscience , 09042 Monserrato , Italy
| |
Collapse
|
3
|
Golovko AI, Ivanov MB, Golovko ES, Dolgo-Saburov VB, Zatsepin EP. The Neurochemical Mechanisms of the Pharmacological Activities of Inverse Agonists of the Benzodiazepine Binding Site. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Myers JF, Comley RA, Gunn RN. Quantification of [ 11C]Ro15-4513 GABA Aα5 specific binding and regional selectivity in humans. J Cereb Blood Flow Metab 2017; 37:2137-2148. [PMID: 27466376 PMCID: PMC5464707 DOI: 10.1177/0271678x16661339] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
[11C]Ro15-4513 has been introduced as a positron emission tomography radioligand to image the GABAAα5 receptor subtype thought to be important in learning, memory and addiction. However, the in vivo selectivity of the ligand remains unknown and a full assessment of different analysis approaches has yet to be performed. Using human heterologous competition data, with [11C]Ro15-4513 and the highly selective GABAAα5 selective negative allosteric modulator Basmisanil (RG1662), we quantify the GABAAα5 selectivity of [11C]Ro15-4513, assess the validity of reference tissues and evaluate the performance of four different kinetic analysis methods. The results show that [11C]Ro15-4513 has high but not complete selectivity for GABAAα5, with α5 representing around 60-70% of the specific binding in α5 rich regions. Competition data indicate that the cerebellum and pons are essentially devoid of α5 signal and might be used as reference regions under certain conditions. Off-target non-selective binding to other GABAA subtypes means that the choice of analysis method and the interpretation of outcome measures must be considered carefully. We discuss the merits of two tissue compartmental model analyses to derive both VT and VS, band-pass spectral analysis for estimation of [Formula: see text] and the simplified reference tissue model for estimation of [Formula: see text].
Collapse
Affiliation(s)
- Jim Fm Myers
- 1 Division of Brain Sciences, Imperial College London, London, UK
| | - Robert A Comley
- 2 Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Roger N Gunn
- 1 Division of Brain Sciences, Imperial College London, London, UK.,3 Imanova Ltd, London, UK.,4 Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
McGinnity CJ, Riaño Barros DA, Rosso L, Veronese M, Rizzo G, Bertoldo A, Hinz R, Turkheimer FE, Koepp MJ, Hammers A. Test-retest reproducibility of quantitative binding measures of [ 11C]Ro15-4513, a PET ligand for GABA A receptors containing alpha5 subunits. Neuroimage 2017; 152:270-282. [PMID: 28292717 PMCID: PMC5440177 DOI: 10.1016/j.neuroimage.2016.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/20/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Alteration of γ-aminobutyric acid "A" (GABAA) receptor-mediated neurotransmission has been associated with various neurological and psychiatric disorders. [11C]Ro15-4513 is a PET ligand with high affinity for α5-subunit-containing GABAA receptors, which are highly expressed in limbic regions of the human brain (Sur et al., 1998). We quantified the test-retest reproducibility of measures of [11C]Ro15-4513 binding derived from six different quantification methods (12 variants). METHODS Five healthy males (median age 40 years, range 38-49 years) had a 90-min PET scan on two occasions (median interval 12 days, range 11-30 days), after injection of a median dose of 441 MegaBequerels of [11C]Ro15-4513. Metabolite-corrected arterial plasma input functions (parent plasma input functions, ppIFs) were generated for all scans. We quantified regional binding using six methods (12 variants), some of which were region-based (applied to the average time-activity curve within a region) and others were voxel-based: 1) Models requiring arterial ppIFs - regional reversible compartmental models with one and two tissue compartments (2kbv and 4kbv); 2) Regional and voxelwise Logan's graphical analyses (Logan et al., 1990), which required arterial ppIFs; 3) Model-free regional and voxelwise (exponential) spectral analyses (SA; (Cunningham and Jones, 1993)), which also required arterial ppIFs; 4) methods not requiring arterial ppIFs - voxelwise standardised uptake values (Kenney et al., 1941), and regional and voxelwise simplified reference tissue models (SRTM/SRTM2) using brainstem or alternatively cerebellum as pseudo-reference regions (Lammertsma and Hume, 1996; Gunn et al., 1997). To compare the variants, we sampled the mean values of the outcome parameters within six bilateral, non-reference grey matter regions-of-interest. Reliability was quantified in terms of median absolute percentage test-retest differences (MA-TDs; preferentially low) and between-subject coefficient of variation (BS-CV, preferentially high), both compounded by the intraclass correlation coefficient (ICC). These measures were compared between variants, with particular interest in the hippocampus. RESULTS Two of the six methods (5/12 variants) yielded reproducible data (i.e. MA-TD <10%): regional SRTMs and voxelwise SRTM2s, both using either the brainstem or the cerebellum; and voxelwise SA. However, the SRTMs using the brainstem yielded a lower median BS-CV (7% for regional, 7% voxelwise) than the other variants (8-11%), resulting in lower ICCs. The median ICCs across six regions were 0.89 (interquartile range 0.75-0.90) for voxelwise SA, 0.71 (0.64-0.84) for regional SRTM-cerebellum and 0.83 (0.70-0.86) for voxelwise SRTM-cerebellum. The ICCs for the hippocampus were 0.89 for voxelwise SA, 0.95 for regional SRTM-cerebellum and 0.93 for voxelwise SRTM-cerebellum. CONCLUSION Quantification of [11C]Ro15-4513 binding shows very good to excellent reproducibility with SRTM and with voxelwise SA which, however, requires an arterial ppIF. Quantification in the α5 subunit-rich hippocampus is particularly reliable. The very low expression of the α5 in the cerebellum (Fritschy and Mohler, 1995; Veronese et al., 2016) and the substantial α1 subunit density in this region may hamper the application of reference tissue methods.
Collapse
Affiliation(s)
- Colm J McGinnity
- Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK; Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK; Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK.
| | - Daniela A Riaño Barros
- Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK; Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK
| | - Lula Rosso
- Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK; Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gaia Rizzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Federico E Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, UK; Epilepsy Society, Chalfont St Peter, UK
| | - Alexander Hammers
- Centre for Neuroscience, Department of Medicine, Imperial College London, London, UK; Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, UK; Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK; The Neurodis Foundation, CERMEP - Imagerie du Vivant, Lyon, France
| |
Collapse
|
6
|
Beltrán González AN, Pomata PE, Goutman JD, Gasulla J, Chebib M, Calvo DJ. Benzodiazepine modulation of homomeric GABAAρ1 receptors: differential effects of diazepam and 4'-chlorodiazepam. Eur J Pharmacol 2014; 743:24-30. [PMID: 25246015 DOI: 10.1016/j.ejphar.2014.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/26/2022]
Abstract
GABA(A) receptors (GABA(A)Rs) are ligand-gated ion channels that mediate inhibitory neurotransmission in the central nervous system (CNS). They are members of the Cys-loop receptor family and display marked structural and functional heterogeneity. Many GABA(A)Rs receptor subtypes are allosterically modulated by benzodiazepines (BDZs), which are drugs extensively used as anxiolytics, sedative-hypnotics and anticonvulsants. One high-affinity site and at least three additional low-affinity sites for BDZ recognition have been identified in several heteromeric and homomeric variants of the GABA(A)Rs (e.g.: α1β2γ2, α1β2/3, β3, etc.). However, the modulation of homomeric GABA(A)ρRs by BDZs was not previously revealed, and these receptors, for a long a time, were assumed to be fully insensitive to the actions of these drugs. In the present study, human homomeric GABA(A)ρ1 receptors were expressed in Xenopus oocytes and GABA-evoked responses electrophysiologically recorded in the presence or absence of BDZs. GABA(A)ρ1 receptor-mediated responses were modulated by diazepam and 4'-chlorodiazepam in the micromolar range, in a concentration-dependent, voltage-independent and reversible manner. Diazepam produced potentiating effects on GABA-evoked Cl(-) currents and 4'-Cl diazepam induced biphasic effects depending on the GABA concentration, whereas Ro15-4513 and alprazolam were negative modulators. BDZ actions were insensitive to flumazenil. Other BDZs showed negligible activity at equivalent experimental conditions. Our results suggest that GABA(A)ρ1 receptor function can be selectively and differentially modulated by BDZs.
Collapse
Affiliation(s)
- Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Pablo E Pomata
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Juan D Goutman
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Javier Gasulla
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Mary Chebib
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina
| | - Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires CP 1428, Argentina.
| |
Collapse
|
7
|
Sergeeva OA. GABAergic transmission in hepatic encephalopathy. Arch Biochem Biophys 2013; 536:122-30. [PMID: 23624382 DOI: 10.1016/j.abb.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/05/2023]
Abstract
Hepatic encephalopathy (HE)(1) is a neuropsychiatric disorder caused by chronic or acute liver failure. Nearly thirty years ago a hypothesis was formulated explaining the neuropathology of HE by increased GABAergic tone. Recent progress in the GABAA-receptor (GABAAR) molecular pharmacology and biochemistry as well as the physiology of GABAergic transmission provided better understanding of GABA's role in health and disease. A detailed analysis of neuronal populations and their GABAergic afferents affected in HE is still missing. The slow progress in understanding the pathology of GABAergic transmission in HE is due to the high complexity of brain circuitries controlled by multiple types of GABAergic interneurons and the large variety of GABAAR, which are differently affected by pathological conditions and not yet fully identified. The mechanisms of action of the GABAAR agonist taurine, allosteric positive modulators (inhibitory neurosteroids, anaesthetics, benzodiazepines and histamine) and inhibitors of the GABAAR (excitatory neurosteroids, Ro15-4513) are discussed with respect to HE pathophysiology. Perspectives for GABAergic drugs in the symptomatic treatment of HE are suggested.
Collapse
Affiliation(s)
- Olga A Sergeeva
- Department of Neurophysiology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Iyer SV, Benavides RA, Chandra D, Cook JM, Rallapalli S, June HL, Homanics GE. α4-Containing GABA(A) Receptors are Required for Antagonism of Ethanol-Induced Motor Incoordination and Hypnosis by the Imidazobenzodiazepine Ro15-4513. Front Pharmacol 2011; 2:18. [PMID: 21779248 PMCID: PMC3132666 DOI: 10.3389/fphar.2011.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/21/2011] [Indexed: 01/26/2023] Open
Abstract
Alcohol (ethanol) is widely consumed for its desirable effects but unfortunately has strong addiction potential. Some imidazobenzodiazepines such as Ro15-4513 are able to antagonize many ethanol-induced behaviors. Controversial biochemical and pharmacological evidence suggest that the effects of these ethanol antagonists and ethanol are mediated specifically via overlapping binding sites on α4/δ-containing GABAA-Rs. To investigate the requirement of α4-containing GABAA-Rs in the mechanism of action of Ro15-4513 on behavior, wildtype (WT) and α4 knockout (KO) mice were compared for antagonism of ethanol-induced motor incoordination and hypnosis. Motor effects of ethanol were tested in two different fixed speed rotarod assays. In the first experiment, mice were injected with 2.0 g/kg ethanol followed 5 min later by 10 mg/kg Ro15-4513 (or vehicle) and tested on a rotarod at 8 rpm. In the second experiment, mice received a single injection of 1.5 g/kg ethanol ± 3 mg/kg Ro15-4513 and were tested on a rotarod at 12 rpm. In both experiments, the robust Ro15-4513 antagonism of ethanol-induced motor ataxia that was observed in WT mice was absent in KO mice. A loss of righting reflex (LORR) assay was used to test Ro15-4513 (20 mg/kg) antagonism of ethanol (3.5 g/kg)-induced hypnosis. An effect of sex was observed on the LORR assay, so males and females were analyzed separately. In male mice, Ro15-4513 markedly reduced ethanol-induced LORR in WT controls, but α4 KO mice were insensitive to this effect of Ro15-4513. In contrast, female KO mice did not differ from WT controls in the antagonistic effects of Ro15-4513 on ethanol-induced LORR. We conclude that Ro15-4513 requires α4-containing receptors for antagonism of ethanol-induced LORR (in males) and motor ataxia.
Collapse
Affiliation(s)
- Sangeetha V Iyer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Linden AM, Schmitt U, Leppä E, Wulff P, Wisden W, Lüddens H, Korpi ER. Ro 15-4513 Antagonizes Alcohol-Induced Sedation in Mice Through αβγ2-type GABA(A) Receptors. Front Neurosci 2011; 5:3. [PMID: 21270945 PMCID: PMC3026482 DOI: 10.3389/fnins.2011.00003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/04/2011] [Indexed: 11/16/2022] Open
Abstract
Ethyl alcohol (ethanol) has many molecular targets in the nervous system, its potency at these sites being low compared to those of sedative drugs. This has made it difficult to discover ethanol's binding site(s). There are two putative binding sites at γ-aminobutyric acid (GABA) type A receptor subtypes for the proposed ethanol antagonist Ro 15-4513, the established γ2 subunit-dependent benzodiazepine site and the recently reported δ subunit-dependent Ro 15-4513/ethanol binding site. Here, we aimed at clarifying the in vivo role of Ro 15-4513 at these two sites. We found that the antagonism of ethanol actions by Ro 15-4513 in wildtype mice was dependent on the test: an open field test showed that light sedation induced by 1.5–1.8 g/kg ethanol was sensitive to Ro 15-4513, whereas several tests for ethanol-induced anxiolytic effects showed that the ethanol-induced effects were insensitive to Ro 15-4513. Antagonism of ethanol-induced sedation by Ro 15-4513 was unaffected in GABAA receptor δ subunit knockout mice. By contrast, when testing the GABAA receptor γ2 subunit F77I knock-in mouse line (γ2I77 mice) with its strongly reduced affinity of the benzodiazepine sites for Ro 15-4513, we found that the ethanol-induced sedation was no longer antagonized by Ro 15-4513. Indeed, γ2I77 mice had only a small proportion of high-affinity binding of [3H]Ro 15-4513 left as compared to wildtype mice, especially in the caudate–putamen and septal areas, but these residual sites are apparently not involved in ethanol antagonism. In conclusion, we found that Ro 15-4513 abolished the sedative effect of ethanol by an action on γ2 subunit-dependent benzodiazepine sites.
Collapse
Affiliation(s)
- Anni-Maija Linden
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
10
|
Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62:97-135. [PMID: 20123953 DOI: 10.1124/pr.109.002063] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gamma-aminobutyric acid (GABA) type A receptor system, the main fast-acting inhibitory neurotransmitter system in the brain, is the pharmacological target for many drugs used clinically to treat, for example, anxiety disorders and epilepsy, and to induce and maintain sedation, sleep, and anesthesia. These drugs facilitate the function of pentameric GABA(A) receptors that exhibit widespread expression in all brain regions and large structural and pharmacological heterogeneity as a result of composition from a repertoire of 19 subunit variants. One of the main problems in clinical use of GABA(A) receptor agonists is the development of tolerance. Most drugs, in long-term use and during withdrawal, have been associated with important modulations of the receptor subunit expression in brain-region-specific manner, participating in the mechanisms of tolerance and dependence. In most cases, the molecular mechanisms of regulation of subunit expression are poorly known, partly as a result of neurobiological adaptation to altered neuronal function. More knowledge has been obtained on the mechanisms of GABA(A) receptor trafficking and cell surface expression and the processes that may contribute to tolerance, although their possible pharmacological regulation is not known. Drug development for neuropsychiatric disorders, including epilepsy, alcoholism, schizophrenia, and anxiety, has been ongoing for several years. One key step to extend drug development related to GABA(A) receptors is likely to require deeper understanding of the adaptational mechanisms of neurons, receptors themselves with interacting proteins, and finally receptor subunits during drug action and in neuropsychiatric disease processes.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.
| | | |
Collapse
|
11
|
Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature 2008; 451:330-4. [PMID: 18202657 DOI: 10.1038/nature06493] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 11/19/2007] [Indexed: 11/08/2022]
Abstract
Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.
Collapse
|
12
|
Ahboucha S, Butterworth RF. The neurosteroid system: an emerging therapeutic target for hepatic encephalopathy. Metab Brain Dis 2007; 22:291-308. [PMID: 17823858 DOI: 10.1007/s11011-007-9065-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Both acute and chronic liver failure induce cerebral complications known as hepatic encephalopathy (HE) and thought to selectively involve brain astrocytes. Alterations of astrocytic-neuronal cross talk occurs affecting brain function. In acute liver failure, astrocyte undergo swelling, which results in increased intracranial pressure and may lead to brain herniation. In chronic liver failure, Alzheimer-type II astrocytosis is a characteristic change. Neurosteroids (NS) synthesized in the brain mainly by astrocytes independent of peripheral steroidal sources (adrenals and gonads) are suggested to play a role in HE. NS bind and modulate different types of membrane receptors. Effects on the gamma amino butyric acid (GABA)-A receptor complex are the most extensively studied. For example, the NS tetrahydroprogesterone (allopregnanolone), and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA-A receptors. As a consequence of modulation of these receptors, NS are well-known to modulate inhibitory neurotransmission in the central nervous system. Some NS bind to intracellular receptors, and in this way may also regulate gene expression. In HE, it has been well documented that neurotransmission and gene expression alterations occur during the progression of the disease. This review summarizes findings of relevance for the involvement of NS in human and experimental HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, CHUM-Campus Saint-Luc, 1058 St-Denis, Montreal, Quebec, Canada.
| | | |
Collapse
|
13
|
McNaughton N, Kocsis B, Hajós M. Elicited hippocampal theta rhythm: a screen for anxiolytic and procognitive drugs through changes in hippocampal function? Behav Pharmacol 2007; 18:329-46. [PMID: 17762505 DOI: 10.1097/fbp.0b013e3282ee82e3] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hippocampal damage produces cognitive deficits similar to dementia and changes in emotional and motivated reactions similar to anxiolytic drugs. The gross electrical activity of the hippocampus contains a marked 'theta rhythm'. This is a relatively high voltage sinusoidal waveform, resulting from synchronous phasic firing of cells, variation in which correlates with behavioural state. Like the hippocampus, theta has been linked to both cognitive and emotional functions. Critically, it has recently been shown that restoration of theta-like rhythmicity can restore lost cognitive function. We review the effects of systemic administration of drugs on hippocampal theta elicited by stimulation of the reticular formation. We conclude that reductions in the frequency of reticular-elicited theta provide what is currently the best in-vivo means of detecting antianxiety drugs. We also suggest that increases in the power of reticular-elicited theta could detect drugs useful in the treatment of disorders, such as dementia, that involve memory loss. We argue that these functionally distinct effects should be seen as indirect and that each results from a change in a single form of cognitive-emotional processing that particularly involves the hippocampus.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
14
|
Ahboucha S, Butterworth RF. The neurosteroid system: implication in the pathophysiology of hepatic encephalopathy. Neurochem Int 2007; 52:575-87. [PMID: 17610999 DOI: 10.1016/j.neuint.2007.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/23/2007] [Accepted: 05/03/2007] [Indexed: 01/09/2023]
Abstract
Hepatic encephalopathy (HE) is a serious cerebral complication of both acute and chronic liver failure. In acute liver failure, astrocytes undergo swelling which results in increased intracranial pressure and may lead to brain herniation and death. In chronic liver failure, Alzheimer-type II astrocytosis is the characteristic neuropathologic finding. Patients with liver failure manifest severe alterations of their quality of life including sleep disorders as well as memory, learning, and locomotor abnormalities. Neurosteroids (NS) are synthesized in the brain mainly by astrocytes independent of peripheral steroidal sources (adrenals and gonads) and are suggested to play a role in the pathogenesis of HE. NS bind and modulate different types of neural receptors; effects on the gamma amino butyric acid (GABA)-A receptor complex are the most extensively studied. For example, the NS tetrahydroprogesterone (allopregnanolone), and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of the GABA-A receptor. As a consequence of modulation of these receptors, NS stimulate inhibitory neurotransmission in the CNS, and neuroinhibitory changes including "increased GABA-ergic tone" have been suggested as pathophysiological mechanisms in HE. Moreover, some NS bind to intracellular receptors through which they also regulate gene expression, and there is substantial evidence confirming that expression of genes coding for key astrocytic and neuronal proteins are altered in HE. This review summarizes findings consistent with the involvement of NS in human and experimental HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, Hôpital Saint-Luc (CHUM), 1058 St-Denis, Montreal, Quebec, Canada H2X 3J4
| | | |
Collapse
|
15
|
Korpi ER, Debus F, Linden AM, Malécot C, Leppä E, Vekovischeva O, Rabe H, Böhme I, Aller MI, Wisden W, Lüddens H. Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. Alcohol 2007; 41:163-76. [PMID: 17591542 DOI: 10.1016/j.alcohol.2007.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/17/2007] [Accepted: 03/19/2007] [Indexed: 12/28/2022]
Abstract
In rodent models, gamma-aminobutyric acid A (GABAA) receptors with the alpha6 and delta subunits, expressed in the cerebellar and cochlear nucleus granule cells, have been linked to ethanol sensitivity and voluntary ethanol drinking. Here, we review the findings. When considering both in vivo contributions and data on cloned receptors, the evidence for direct participation of the alpha6-containing receptors to increased ethanol sensitivity is poor. The alpha6 subunit-knockout mouse lines do not have any changed sensitivity to ethanol, although these mice do display increased benzodiazepine sensitivity. However, in general the compensations occurring in knockout mice (regardless of which particular gene is knocked out) tend to fog interpretations of drug actions at the systems level. For example, the alpha6 knockout mice have increased TASK-1 channel expression in their cerebellar granule cells, which could influence sensitivity to ethanol in the opposite direction to that obtained with the alpha6 knockouts. Indeed, TASK-1 knockout mice are more impaired than wild types in motor skills when given ethanol; this might explain why GABAA receptor alpha6 knockout mice have unchanged ethanol sensitivities. As an alternative to studying knockout mice, we examined the claimed delta subunit-dependent/gamma2 subunit-independent ethanol/[3H]Ro 15-4513 binding sites on GABAA receptors. We looked at [3H]Ro 15-4513 binding in HEK 293 cell membrane homogenates containing rat recombinant alpha6/4beta3delta receptors and in mouse brain sections. Specific high-affinity [3H]Ro 15-4513 binding could not be detected under any conditions to the recombinant receptors or to the cerebellar sections of gamma2(F77I) knockin mice, nor was this binding to brain sections of wild-type C57BL/6 inhibited by 1-100 mM ethanol. Since ethanol may act on many receptor and channel protein targets in neuronal membranes, we consider the alpha6 (and alpha4) subunit-containing GABAA receptors unlikely to be directly responsible for any major part of ethanol's actions. Therefore, we finish the review by discussing more generally alcohol and GABAA receptors and by suggesting potential future directions for this research.
Collapse
Affiliation(s)
- Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Olsen RW, Hanchar HJ, Meera P, Wallner M. GABAA receptor subtypes: the "one glass of wine" receptors. Alcohol 2007; 41:201-9. [PMID: 17591543 PMCID: PMC2852584 DOI: 10.1016/j.alcohol.2007.04.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/13/2007] [Accepted: 04/16/2007] [Indexed: 11/28/2022]
Abstract
This review discusses evidence for and apparent controversy about, gamma-aminobutyric acid type A (GABAA) receptor (GABAAR) subtypes that mediate alcohol effects experienced during social drinking. GABAARs that contain the beta3 and delta subunits were shown to be enhanced by alcohol concentrations that mirror the concentration dependence of alcohol responses in humans. A mutation (alpha6R100Q) previously found in alcohol nontolerant rats in the cerebellar GABAAR alpha6 subunit is sufficient for increased alcohol-induced ataxia in rats homozygous for this mutation (alpha6-100QQ) and further increases alcohol sensitivity of tonic GABA currents (mediated by alpha6betadelta receptors) in cerebellar granule cells of alpha6-100QQ rats and in recombinant alpha6R100Qbeta3delta receptors. This provided the first direct evidence that these types of receptors mediate behavioral effects of ethanol. Furthermore, the behavioral alcohol antagonist Ro15-4513 specifically reverses ethanol enhancement on alpha4/6beta3delta receptors. Unexpectedly, native and recombinant alpha4/6beta3delta receptors bind the behavioral alcohol antagonist Ro15-4513 with high affinity and this binding is competitive with EtOH, suggesting a specific and mutually exclusive (competitive) ethanol/Ro15-4513 site, which explains the puzzling activity of Ro15-4513 as a behavioral alcohol antagonist. Our conclusion from these findings is that alcohol/Ro15-4513-sensitive GABAAR subtypes are important alcohol targets and that alcohol at relevant concentrations is more specific than previously thought. In this review, we discuss technical difficulties in expressing recombinant delta subunit-containing receptors in oocytes and mammalian cells that may have contributed to negative results and confusion. Not only because we have reproduced detailed positive results numerous times, and we and many others have built extensively on basic findings, but also because we explain and combine many previously puzzling results into a coherent and highly plausible paradigm on how alcohol exerts an important part of its action in the brain, we are confident about our findings and conclusions. However, many important open questions remain to be answered.
Collapse
Affiliation(s)
- Richard W. Olsen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- To whom correspondence should be addressed at: Department of Molecular and Medical Pharmacology, Geffen School of Medicine at the University of California Los Angeles, Room 23-120 CHS, Charles Young Drive South, Los Angeles, CA 90095-1735, ;
| | - Harry J. Hanchar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
| | - Pratap Meera
- Department of Neurobiology; University of California, Los Angeles, CA 90095
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095
- To whom correspondence should be addressed at: Department of Molecular and Medical Pharmacology, Geffen School of Medicine at the University of California Los Angeles, Room 23-120 CHS, Charles Young Drive South, Los Angeles, CA 90095-1735, ;
| |
Collapse
|
17
|
Wallner M, Hanchar HJ, Olsen RW. Low dose acute alcohol effects on GABA A receptor subtypes. Pharmacol Ther 2006; 112:513-28. [PMID: 16814864 PMCID: PMC2847605 DOI: 10.1016/j.pharmthera.2006.05.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 12/23/2022]
Abstract
GABA(A) receptors (GABA(A)Rs) are the main inhibitory neurotransmitter receptors and have long been implicated in mediating at least part of the acute actions of ethanol. For example, ethanol and GABAergic drugs including barbiturates and benzodiazepines share many pharmacological properties. Besides the prototypical synaptic GABA(A)R subtypes, nonsynaptic GABA(A)Rs have recently emerged as important regulators of neuronal excitability. While high doses (> or =100 mM) of ethanol have been reported to enhance activity of most GABA(A)R subtypes, most abundant synaptic GABA(A)Rs are essentially insensitive to ethanol concentrations that occur during social ethanol consumption (< 30 mM). However, extrasynaptic delta and beta3 subunit-containing GABA(A)Rs, associated in the brain with alpha4 or alpha6 subunits, are sensitive to low millimolar ethanol concentrations, as produced by drinking half a glass of wine. Additionally, we found that a mutation in the cerebellar alpha6 subunit (alpha6R100Q), initially reported in rats selectively bred for increased alcohol sensitivity, is sufficient to produce increased alcohol-induced motor impairment and further increases of alcohol sensitivity in recombinant alpha6beta3delta receptors. Furthermore, the behavioral alcohol antagonist Ro15-4513 blocks the low dose alcohol enhancement on alpha4/6/beta3delta receptors, without reducing GABA-induced currents. In binding assays alpha4beta3delta GABA(A)Rs bind [(3)H]Ro15-4513 with high affinity, and this binding is inhibited, in an apparently competitive fashion, by low ethanol concentrations, as well as analogs of Ro15-4513 that are active to antagonize ethanol or Ro15-4513's block of ethanol. We conclude that most low to moderate dose alcohol effects are mediated by alcohol actions on alcohol/Ro15-4513 binding sites on GABA(A)R subtypes.
Collapse
Affiliation(s)
| | | | - Richard W. Olsen
- Corresponding author. Tel.: +1 310 825 5093; fax: +1 310 267 2003. (R.W. Olsen)
| |
Collapse
|
18
|
Affiliation(s)
- Steven M Paul
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| |
Collapse
|
19
|
Wallner M, Hanchar HJ, Olsen RW. Low-dose alcohol actions on alpha4beta3delta GABAA receptors are reversed by the behavioral alcohol antagonist Ro15-4513. Proc Natl Acad Sci U S A 2006; 103:8540-5. [PMID: 16698930 PMCID: PMC1482527 DOI: 10.1073/pnas.0600194103] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is now more than two decades since it was first reported that the imidazobenzodiazepine Ro15-4513 reverses behavioral alcohol effects, the molecular target(s) of Ro15-4513 and the mechanism of alcohol antagonism remain elusive. Here, we show that Ro15-4513 blocks the alcohol enhancement on recombinant "extrasynaptic" alpha4/6beta3delta GABA(A) receptors at doses that do not reduce the GABA-induced Cl(-) current. At low ethanol concentrations (< or =30 mM), the Ro15-4513 antagonism is complete. However, at higher ethanol concentrations (> or =100 mM), there is a Ro15-4513-insensitive ethanol enhancement that is abolished in receptors containing a point mutation in the second transmembrane region of the beta3 subunit (beta3N265M). Therefore, alpha4/6beta3delta GABA receptors have two distinct alcohol modulation sites: (i) a low-dose ethanol site present in alpha4/6beta3delta receptors that is antagonized by the behavioral alcohol antagonist Ro15-4513 and (ii) a site activated at high (anesthetic) alcohol doses, defined by mutations in membrane-spanning regions. Receptors composed of alpha4beta3N265Mdelta subunits that lack the high-dose alcohol site show a saturable ethanol dose-response curve with a half-maximal enhancement at 16 mM, close to the legal blood alcohol driving limit in most U.S. states (17.4 mM). Like in behavioral experiments, the alcohol antagonist effect of Ro15-4513 on recombinant alpha4beta3delta receptors is blocked by flumazenil and beta-carboline-ethyl ester (beta-CCE). Our findings suggest that ethanol/Ro15-4513-sensitive GABA(A) receptors are important mediators of behavioral alcohol effects.
Collapse
Affiliation(s)
- M. Wallner
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1735
- To whom correspondence may be addressed. E-mail:
or
| | - H. J. Hanchar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1735
| | - R. W. Olsen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1735
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
20
|
Hanchar HJ, Chutsrinopkun P, Meera P, Supavilai P, Sieghart W, Wallner M, Olsen RW. Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to alpha4/6beta3delta GABAA receptors. Proc Natl Acad Sci U S A 2006; 103:8546-51. [PMID: 16581914 PMCID: PMC1482528 DOI: 10.1073/pnas.0509903103] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although GABA(A) receptors have long been implicated in mediating ethanol (EtOH) actions, receptors containing the "nonsynaptic" delta subunit only recently have been shown to be uniquely sensitive to EtOH. Here, we show that delta subunit-containing receptors bind the imidazo-benzodiazepines (BZs) flumazenil and Ro15-4513 with high affinity (K(d) < 10 nM), contrary to the widely held belief that these receptors are insensitive to BZs. In immunopurified native cerebellar and recombinant delta subunit-containing receptors, binding of the alcohol antagonist [(3)H]Ro15-4513 is inhibited by low concentrations of EtOH (K(i) approximately 8 mM). Also, Ro15-4513 binding is inhibited by BZ-site ligands that have been shown to reverse the behavioral alcohol antagonism of Ro15-4513 (i.e., flumazenil, beta-carbolinecarboxylate ethyl ester (beta-CCE), and N-methyl-beta-carboline-3-carboxamide (FG7142), but not including any classical BZ agonists like diazepam). Experiments that were designed to distinguish between a competitive and allosteric mechanism suggest that EtOH and Ro15-4513 occupy a mutually exclusive binding site. The fact that only Ro15-4513, but not flumazenil, can inhibit the EtOH effect, and that Ro15-4513 differs from flumazenil by only a single group in the molecule (an azido group at the C7 position of the BZ ring) suggest that this azido group in Ro15-4513 might be the area that overlaps with the alcohol-binding site. Our findings, combined with previous observations that Ro15-4513 is a behavioral alcohol antagonist, suggest that many of the behavioral effects of EtOH at relevant physiological concentrations are mediated by EtOH/Ro15-4513-sensitive GABA(A) receptors.
Collapse
Affiliation(s)
| | - Panida Chutsrinopkun
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10 400, Thailand; and
| | - Pratap Meera
- Neurobiology, University of California, Los Angeles, CA 90095
| | - Porntip Supavilai
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10 400, Thailand; and
| | - Werner Sieghart
- Center for Brain Research, Division of Biochemistry and Molecular Biology and Section of Biochemical Psychiatry, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Wallner
- Departments of *Molecular and Medical Pharmacology and
- To whom correspondence may be addressed at:
Department of Molecular and Medical Pharmacology, University of California, Room 23-120 CHS, Charles Young Drive South, Los Angeles, CA 90095-1735. E-mail:
or
| | - Richard W. Olsen
- Departments of *Molecular and Medical Pharmacology and
- To whom correspondence may be addressed at:
Department of Molecular and Medical Pharmacology, University of California, Room 23-120 CHS, Charles Young Drive South, Los Angeles, CA 90095-1735. E-mail:
or
| |
Collapse
|
21
|
Ahboucha S, Butterworth RF. Role of endogenous benzodiazepine ligands and their GABA-A--associated receptors in hepatic encephalopathy. Metab Brain Dis 2005; 20:425-37. [PMID: 16382352 DOI: 10.1007/s11011-005-7928-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Benzodiazepine receptor ligands are suggested to play a role in the pathogenesis of hepatic encephalopathy (HE). Accumulation of these ligands in brain was suggested to explain in part the notion of"increased GABAergic tone," the rational for which arose initially from reports of a beneficial effect of the selective benzodiazepine antagonist flumazenil in HE patients. It was suggested on the basis of the effect of flumazenil in human HE that liver failure may result in alterations of the density and/or affinity of the benzodiazepine-associated GABA-A receptor site. Subsequent controlled-clinical trials showed that fumazenil had a transient beneficial effect in only a subpopulation of HE patients. In contrast to the antagonists, partial inverse agonists of the benzodiazepine receptor have unequivocal beneficial effects on behavioral and electro-physiological performance in all experimental models of HE studied so far. Benzodiazepine-associated GABA-A receptors have consistently been demonstrated to be unaltered in both human and experimental HE. Contrary to initial reports, the so-called "endogenous benzodiazepines" do not appear to be significantly related to the pathogenesis of HE. On the other hand, nonbenzodiazepine GABA-A receptor complex modulators, such as neuro-steroids, recently identified in brain in human and experimental HE, may provide a new mechanistic basis for this disorder and lead to novel treatments for human HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Neuroscience Research Unit, CHUM-Hôpital Saint-Luc, Montreal, Quebec, Canada
| | | |
Collapse
|
22
|
Stephens DN, Pistovcakova J, Worthing L, Atack JR, Dawson GR. Role of GABAA alpha5-containing receptors in ethanol reward: the effects of targeted gene deletion, and a selective inverse agonist. Eur J Pharmacol 2005; 526:240-50. [PMID: 16253225 DOI: 10.1016/j.ejphar.2005.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 06/27/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
GABA(A) receptors containing alpha5 subunits have been suggested to mediate the rewarding effects of ethanol. We tested this hypothesis in mice with deletion of alpha5 subunits. alpha5 knockout mice did not differ from wildtypes in operant responding for 10% ethanol/10% sucrose, but responded less for 10% sucrose. The benzodiazepine (BZ) site inverse agonist, Ro 15-4513, has higher affinity for GABA(A) receptors containing 5 subunits and dose-dependently (0-27 mg/kg, i.p.) reduced lever pressing for ethanol/sucrose in wildtype mice, but had less effect in knockout mice; lever pressing for sucrose was unaffected. These data suggest that alpha5 subunits are not essential for ethanol reward, but the reduction of operant responding for ethanol by Ro 15-4513 is mediated by alpha5-containing GABA(A) receptors. In measures of ethanol consumption, alpha5 knockout mice did not differ from wildtypes at low ethanol concentrations (2-8%), but consumed less ethanol at higher concentrations; these differences were not attributable to increased behavioural disruption of the knockout by ethanol, since no differences were seen in sensitivity to ethanol's sedative or ataxic effects. Ro 15-4513's ability to reduce ethanol consumption was unaffected, suggesting that this effect is not mediated by the alpha5 subtype. Secondly, we tested the ability of a novel alpha5-efficacy-selective benzodiazepine receptor ligand, alpha5IA-II, that possesses greater inverse agonist activity at alpha5- than at alpha1-, á2- or alpha3-containing GABA(A) receptors, to influence operant responding. alpha5IA-II (0.03-3 mg/kg) dose-dependently decreased lever pressing for 10% ethanol, the minimally effective dose of 1 mg/kg, corresponding to over 90% receptor occupancy, but did not affect lever pressing for 4% sucrose. Although inverse agonists acting at alpha5-containing receptors reduce ethanol self-administration, alpha5 subunits may not be essential to signaling ethanol reward.
Collapse
Affiliation(s)
- David N Stephens
- Department of Psychology, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | | | | | | | | |
Collapse
|
23
|
Criswell HE, Breese GR. A conceptualization of integrated actions of ethanol contributing to its GABAmimetic profile: a commentary. Neuropsychopharmacology 2005; 30:1407-25. [PMID: 15856077 DOI: 10.1038/sj.npp.1300750] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early behavioral investigations supported the contention that systemic ethanol displays a GABAmimetic profile. Microinjection of GABA agonists into brain and in vivo electrophysiological studies implicated a regionally specific action of ethanol on GABA function. While selectivity of ethanol to enhance the effect of GABA was initially attributed an effect on type-I-benzodiazepine (BZD)-GABA(A) receptors, a lack of ethanol's effect on GABA responsiveness from isolated neurons with this receptor subtype discounted this contention. Nonetheless, subsequent work identified GABA(A) receptor subtypes, with limited distribution in brain, sensitive to enhancement of GABA at relevant ethanol concentrations. In view of these data, it is hypothesized that the GABAmimetic profile for ethanol is due to activation of mechanisms associated with GABA function, distinct from a direct action on the majority of postsynaptic GABA(A) receptors. The primary action proposed to account for ethanol's regional specificity on GABA transmission is its ability to release GABA from some, but not all, presynaptic GABAergic terminals. As systemic administration of ethanol increases neuroactive steroids, which can enhance GABA responsiveness, this elevated level of neurosteroids is proposed to magnify the effect of GABA released by ethanol. Additional factors contributing to the degree to which ethanol interacts with GABA function include an involvement of GABA(B) and other receptors that influence ethanol-induced GABA release, an effect of phosphorylation on GABA responsiveness, and a regional reduction of glutamatergic tone. Thus, an integration of these consequences induced by ethanol is proposed to provide a logical basis for its in vivo GABAmimetic profile.
Collapse
Affiliation(s)
- Hugh E Criswell
- Center For Alcohol Studies, UNC Neuroscience Center, Department of Psychiatry, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7178, USA.
| | | |
Collapse
|
24
|
Korpi ER, Sinkkonen ST. GABA(A) receptor subtypes as targets for neuropsychiatric drug development. Pharmacol Ther 2005; 109:12-32. [PMID: 15996746 DOI: 10.1016/j.pharmthera.2005.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 12/30/2022]
Abstract
The main inhibitory neurotransmitter system in the brain, the gamma-aminobutyric acid (GABA) system, is the target for many clinically used drugs to treat, for example, anxiety disorders and epilepsy and to induce sedation and anesthesia. These drugs facilitate the function of pentameric A-type GABA (GABA(A)) receptors that are extremely widespread in the brain and composed from the repertoire of 19 subunit variants. Modern genetic studies have found associations of various subunit gene polymorphisms with neuropsychiatric disorders, including alcoholism, schizophrenia, anxiety, and bipolar affective disorder, but these studies are still at their early phase because they still have failed to lead to validated drug development targets. Recent neurobiological studies on new animal models and receptor subunit mutations have revealed novel aspects of the GABA(A) receptors, which might allow selective targeting of the drug action in receptor subtype-selective fashion, either on the synaptic or extrasynaptic receptor populations. More precisely, the greatest advances have occurred in the clarification of the molecular and behavioral mechanisms of action of the GABA(A) receptor agonists already in the clinical use, such as benzodiazepines and anesthetics, rather than in the introduction of novel compounds to clinical practice. It is likely that these new developments will help to overcome the present problems of the chronic treatment with nonselective GABA(A) agonists, that is, the development of tolerance and dependence, and to focus the drug action on the neurobiologically and neuropathologically relevant substrates.
Collapse
Affiliation(s)
- Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, P.O. Box 63 (Haartmaninkatu 8), FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
25
|
Wong G, Ovaska T, Korpi ER. Brain regional pharmacology of GABA(A) receptors in alcohol-preferring AA and alcohol-avoiding ANA rats. Addict Biol 2003; 1:263-72. [PMID: 12893465 DOI: 10.1080/1355621961000124876] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Compounds interacting with the GABA(A) receptor system modulate voluntary alcohol consumption in alcohol-preferring AA (Alko, Alcohol) rats. Therefore, we compared the central GABA(A) receptor pharmacology of the AA rats to that of their counterpart, alcohol-avoiding ANA (Alko, Non-Alcohol) rats with receptor autoradiography. Total flumazenil-sensitive [(3)H]Ro 15-4513 binding to the benzodiazepine site of GABA(A) receptor was slightly lower in the hippocampus, striate cortex and lateral hypothalamus of the AA than ANA rats. The proportions of zolpidem- and diazepam-sensitive components were similar in both rat lines. Basal picrotoxin-sensitive [(35)S]TBPS binding to the convulsant site of GABA(A) receptor was similar in most regions between the rat lines, but the up-modulation of the binding by 10 microM diazepam in the hippocampal, amygdaloid and entorhinal cortical areas was greater in the AA than ANA rats. These results do not reveal any general genetic defect in the GABA(A) receptors of AA or ANA rats, but the regional profile of the ligand binding differences between the lines, especially in the coupling of the benzodiazepine and chloride channel sites, suggests receptor subtype-specific changes in brain regions implicated in behavioural reward and anxiolysis.
Collapse
Affiliation(s)
- G Wong
- Department of Alcohol Research, National Public Health Institute, Helsinki, Finland
| | | | | |
Collapse
|
26
|
Zhang ZJ, Postma T, Obeng K, Russell S, Weiss SRB, Post RM. The benzodiazepine partial inverse agonist Ro15-4513 alters anticonvulsant and lethal effects of carbamazepine in amygdala-kindled rats. Neurosci Lett 2002; 329:253-6. [PMID: 12183024 DOI: 10.1016/s0304-3940(02)00664-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ro15-4513 (ethyl-8-azido-5,6-dihydro-5methyl-6-oxo-4H-imidazo-[1,5-a]-1,4-benzodiazepine-3-carboxylate), a benzodiazepine partial inverse agonist of the GABA(A) receptor, is known to protect against alcohol toxicities. The present study was designed to determine the role of Ro15-4513 in preventing anticonvulsant, toxic, and lethal effects of carbamazepine (CBZ) in amygdala-kindled rats. Acute treatment with CBZ (25 mg/kg, i.p.) produced anticonvulsant effects in fully kindled rats characterized by a significant decrease in afterdischarge and seizure duration and stage. Repeated administration of this high dose of CBZ induced sedation and high (56%) lethality. The anticonvulsant and sedative effects of CBZ were strikingly suppressed by pretreatment with Ro15-4513 (2.5 and 5 mg/kg, i.p.), and there was no mortality in animals co-administrated with Ro15-4513 during the entire experimental period. These results indicate that Ro15-4513 protects against CBZ-induced sedation and lethality, while suppressing the anticonvulsant effects of CBZ, suggesting a role for the GABA(A) receptor in CBZ efficacy and side effects. The potential clinical implications for CBZ-induced toxicity and overdose remain to be explored.
Collapse
Affiliation(s)
- Zhang-Jin Zhang
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Crestani F, Assandri R, Täuber M, Martin JR, Rudolph U. Contribution of the alpha1-GABA(A) receptor subtype to the pharmacological actions of benzodiazepine site inverse agonists. Neuropharmacology 2002; 43:679-84. [PMID: 12367613 DOI: 10.1016/s0028-3908(02)00159-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A histidine-to-arginine point-mutation at position 101 in the alpha1-subunit of gamma-aminobutyric acid (GABA)(A) receptors has been shown to switch the in vitro efficacy of Ro 15-4513 from inverse agonism to agonism. In order to assess the consequences of this pharmacological switch in vivo, the motor and proconvulsant effects of Ro 15-4513 were analyzed in knock-in mice containing point-mutated alpha1(H101R)-GABA(A) receptors. Furthermore the influence of the alpha1(H101R) substitution on the efficacy of the beta-carboline inverse agonist DMCM was examined both in vitro and in vivo. Ro 15-4513 (10 mg/kg) increased baseline locomotion and potentiated the convulsant effect of pentylenetetrazole in wild type mice. In alpha1(H101R) mice, Ro 15-4513 decreased locomotion and, at a higher dose (30 mg/kg) it displayed an anticonvulsant action. In vitro, DMCM acted as an inverse agonist at recombinant alpha1beta2gamma2 receptors whereas it potentiated GABA-evoked chloride currents at alpha1(H101R)beta2gamma2 receptors. DMCM was inactive as a convulsant in alpha1(H101R) mice. In keeping with the major contribution of these receptors to the sedative and anticonvulsant properties of benzodiazepine site agonists, the present findings identify the alpha1-GABA(A) receptors as the molecular targets for the allosteric modulation by benzodiazepine site ligands in either direction with regard to the behavioral outputs, sedation/motor stimulation and anticonvulsion/proconvulsion.
Collapse
Affiliation(s)
- F Crestani
- Institute of Pharmacology & Toxicology, University of Zürich, Winterthurerstrasse 190, Switzerland.
| | | | | | | | | |
Collapse
|
28
|
Davids E, Hevers W, Dämgen K, Zhang K, Tarazi FI, Lüddens H. Organotypic rat cerebellar slice culture as a model to analyze the molecular pharmacology of GABAA receptors. Eur Neuropsychopharmacol 2002; 12:201-8. [PMID: 12007671 DOI: 10.1016/s0924-977x(02)00024-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The preservation of the neuronal circuitry in rat cerebellar slice cultures provides an advantage in monitoring the development and characterizing the pharmacology of GABA(A) receptor subtypes. Sprague-Dawley rats, 8-11 days of age, were decapitated, their cerebella were cut into 400-microm slices and transferred into culture dishes. Cell viability and organotypic cerebellar organization of the culture remained well preserved up to 3 weeks. Autoradiographic procedures were introduced in these advanced culture technique and employed [(3)H]Ro 15-4513 in the absence and presence of 10 microM diazepam to visualize all benzodiazepine (BZD) and diazepam-insensitive (DIS) binding sites, respectively. Since expression of the alpha6 subunit variant of the GABA(A)/BZD receptor is restricted to the cerebellar granule cells and the BZD receptor agonist diazepam has very low affinity for this subunit, changes in DIS [(3)H]Ro 15-4513 binding sites during cultivation time can be attributed to changes in alpha6 subunit expression. A time-dependent development of total and DIS [(3)H]Ro 15-4513 binding sites were observed in the culture with a trend towards an increase in GABA(A) receptor alpha6 subunit levels during the first week. These findings suggest that explant preparations can be used to examine morphological changes in rat cerebellar slices. In addition, these preparations can be utilized to study the pharmacological effects of GABA(A)/BZD selective drugs on postnatal development of GABA(A) receptors in rat cerebellum.
Collapse
Affiliation(s)
- Eugen Davids
- Clinical Research Group, Department of Psychiatry, University of Mainz, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Neurotransmitter receptor systems have been the focus of intensive pharmacological research for more than 20 years for basic and applied scientific reasons, but only recently has there been a better understanding of their key features. One of these systems includes the type A receptor for the gamma-aminobutyric acid (GABA), which forms an integral anion channel from a pentameric subunit assembly and mediates most of the fast inhibitory neurotransmission in the adult vertebrate central nervous system. Up to now, depending on the definition, 16-19 mammalian subunits have been cloned and localized on different genes. Their assembly into proteins in a poorly defined stoichiometry forms the basis of functional and pharmacological GABA(A) receptor diversity, i.e. the receptor subtypes. The latter has been well documented in autoradiographic studies using ligands that label some of the receptors' various binding sites, corroborated by recombinant expression studies using the same tools. Significantly less heterogeneity has been found at the physiological level in native receptors, where the subunit combinations have been difficult to dissect. This review focuses on the characteristics, use and usefulness of various ligands and their binding sites to probe GABA(A) receptor properties and to gain insight into the biological function from fish to man and into evolutionary conserved GABA(A) receptor heterogeneity. We also summarize the properties of the novel mouse models created for the study of various brain functions and review the state-of-the-art imaging of brain GABA(A) receptors in various human neuropsychiatric conditions. The data indicate that the present ligands are only partly satisfactory tools and further ligands with subtype-selective properties are needed for imaging purposes and for confirming the behavioral and functional results of the studies presently carried out in gene-targeted mice with other species, including man.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4B, Finland.
| | | | | |
Collapse
|
30
|
Vergnes M, Boehrer A, He X, Greney H, Dontenwill M, Cook J, Marescaux C. Differential sensitivity to inverse agonists of GABA(A)/benzodiazepine receptors in rats with genetic absence-epilepsy. Epilepsy Res 2001; 47:43-53. [PMID: 11673020 DOI: 10.1016/s0920-1211(01)00292-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A strain of Wistar rats, genetic absence epilepsy rats from Strasbourg (GAERS), was selected and inbred over 40 generations for occurrence of spontaneous spike-wave discharges characteristic of absence seizures, simultaneously with a strain of non-epileptic rats (NER). GAERS demonstrate an excessive sensitivity to antagonists of the GABA(A) receptor. The sensitivity to convulsions induced by various inverse agonists of the GABA(A)/benzodiazepine receptor was compared in GAERS and NERs. The beta-carbolines FG 7142 and DMCM, and the imidazobenzodiazepines RO 19-4603 and the alpha 5-selective RY 024 were several times more convulsant in GAERS than in NERs. The largest differences were found with the non-selective RO 19-4603- and FG 7142. The proconvulsant imidazobenzodiazepine RO 15-4513, binding also to diazepam-insensitive receptors, had low efficacy. The high affinity binding of GABA(A)/BZD receptors with (3H) RO 15-1788 in the brain of naive rats and after administration of FG 7142 did not differ in GAERS and NERs. The data indicate that the hypersensitivity of GAERS to various inverse agonists of the GABA(A)/benzodiazepine receptor involves cortical GABA(A) receptors and is not related to differential activity of a subunit-selective receptor.
Collapse
Affiliation(s)
- M Vergnes
- INSERM U 398, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Weizman R, Paz L, Peter Y, Pick CG. Mice performance on the staircase test following acute ethanol administration. Pharmacol Biochem Behav 2001; 68:491-5. [PMID: 11325403 DOI: 10.1016/s0091-3057(01)00450-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study examined the effect of acute ethanol administration as compared to diazepam on the number of rearing events and the number of steps ascended in the mouse staircase test, an animal model sensitive to benzodiazepines. Acute ethanol administration, similar to acute diazepam administration, reduces rearing (at doses that do not reduce climbing) in the staircase test. This effect of acute ethanol administration is insensitive to the benzodiazepine antagonist flumazenil and is not consistently counteracted by the partial inverse agonist Ro15-4513. It seems that the mouse staircase test is an efficient paradigm for studying agents active at the gamma-aminobutyric acid (GABA(A)) receptor complex, including ethanol.
Collapse
Affiliation(s)
- R Weizman
- Tel Aviv Community Mental Health Center, 9 Hatzvi Street, Ramat Hatayassim, 67197, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
32
|
Loh EW, Ball D. Role of the GABA(A)beta2, GABA(A)alpha6, GABA(A)alpha1 and GABA(A)gamma2 receptor subunit genes cluster in drug responses and the development of alcohol dependence. Neurochem Int 2000; 37:413-23. [PMID: 10871693 DOI: 10.1016/s0197-0186(00)00054-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system and it acts at the GABA(A) and GABA(B) receptors. A possible role for the GABA(A) receptors in alcohol action has been derived from in vitro cell models, animal studies and human research. GABA(A) subunit mRNA expression in cell models has suggested that the long form of the gamma2 subunit is essential for ethanol enhanced potentiation of GABA(A) receptors, by phosphorylation of a serine contained within the extra eight amino acids. Several animal studies have demonstrated that alterations in drug and alcohol responses may be caused by amino-acid differences at the GABA(A)alpha6 and GABA(A)gamma2 subunits. An Arg(100)/Glu(100) change at the GABA(A)alpha6 subunit conferring altered binding efficacy of the benzodiazepine inverse agonist Ro 15-4513, was found between the AT (alcohol tolerance) and ANT (alcohol non-tolerance) rats. Several loci related to alcohol withdrawal on mouse chromosome 11 which corresponds to the region containing four GABA(A) subunit (beta2, alpha6, alpha1 and gamma2) genes on human chromosome 5q33-34, were also identified. Gene knockout studies of the role of GABA(A)alpha6 and GABA(A)gamma2 subunit genes in mice have demonstrated an essential role in the modulation of other GABA(A) subunit expression and the efficacy of benzodiazepine binding. Absence of the GABA(A)gamma2 subunit gene has more severe effects with many of the mice dying shortly after birth. Disappointingly few studies have examined the effects of response to alcohol in these gene knockout mice. Human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have a role in the development of alcohol dependence, although their contributions may vary between ethnic group and phenotype. In summary, in vitro cell, animal and human genetic association studies have suggested that the GABA(A)beta2, alpha6, alpha1 and gamma2 subunit genes have an important role in alcohol related phenotypes (300 words).
Collapse
Affiliation(s)
- E W Loh
- Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, De Crespigny Park, Denmark Hill, London, UK
| | | |
Collapse
|
33
|
Löw K, Crestani F, Keist R, Benke D, Brünig I, Benson JA, Fritschy JM, Rülicke T, Bluethmann H, Möhler H, Rudolph U. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 2000; 290:131-4. [PMID: 11021797 DOI: 10.1126/science.290.5489.131] [Citation(s) in RCA: 673] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Benzodiazepine tranquilizers are used in the treatment of anxiety disorders. To identify the molecular and neuronal target mediating the anxiolytic action of benzodiazepines, we generated and analyzed two mouse lines in which the alpha2 or alpha3 GABAA (gamma-aminobutyric acid type A) receptors, respectively, were rendered insensitive to diazepam by a knock-in point mutation. The anxiolytic action of diazepam was absent in mice with the alpha2(H101R) point mutation but present in mice with the alpha3(H126R) point mutation. These findings indicate that the anxiolytic effect of benzodiazepine drugs is mediated by alpha2 GABAA receptors, which are largely expressed in the limbic system, but not by alpha3 GABAA receptors, which predominate in the reticular activating system.
Collapse
Affiliation(s)
- K Löw
- Institute of Pharmacology and Toxicology, University of Zürich, and Swiss Federal Institute of Technology Zürich (ETH), Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Little HJ, Clark A, Watson WP. Investigations into pharmacological antagonism of general anaesthesia. Br J Pharmacol 2000; 129:1755-63. [PMID: 10780983 PMCID: PMC1572016 DOI: 10.1038/sj.bjp.0703262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effects of convulsant drugs, and of thyrotropin releasing hormone (TRH), were examined on the general anaesthetic actions of ketamine, ethanol, pentobarbitone and propofol in mice. The aim was to investigate the possibility of selective antagonism, which, if seen, would provide information about the mechanism of the anaesthesia. The general anaesthetic effects of ketamine were unaffected by bicuculline; antagonism was seen with 4-aminopyridine and significant potentiation with 300 mg kg(-1) NMDLA (N-methyl-DL-aspartate). The calcium agonist, Bay K 8644, potentiated the anaesthesia produced by ketamine and antagonism of such anaesthesia was seen with TRH. A small, but significant, antagonism of the general anaesthesia produced by ethanol was seen with bicuculline, and a small, significant, potentiation with 4-aminopyridine. There was an antagonist effect of TRH, but no effect of NMDLA. Potentiation of the anaesthetic effects of pentobarbitone was seen with NMDLA and with 4-aminopyridine and the lower dose of bicuculline (2.7 mg kg(-1)) also caused potentiation. There was no significant change in the ED(50) value for pentobarbitone anaesthesia with TRH. Bicuculline did not alter the anaesthetic actions of propofol, while potentiation was seen with NMDLA and 4-aminopyridine. TRH had no significant effect on propofol anaesthetic, but Bay K 8644 at 1 mg kg(-1) significantly potentiated the anaesthesia. These results suggest that potentiation of GABA(A) transmission or inhibition of NMDA receptor-mediated transmission do not appear to play a major role in the production of general anaesthesia by the agents used.
Collapse
Affiliation(s)
- H J Little
- Drug Dependence Unit, Psychology Department, Durham University, South Road, Durham DH1 3LE
| | | | | |
Collapse
|
35
|
Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 1999; 401:796-800. [PMID: 10548105 DOI: 10.1038/44579] [Citation(s) in RCA: 874] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GABA(A) (gamma-aminobutyric acid(A)) receptors are molecular substrates for the regulation of vigilance, anxiety, muscle tension, epileptogenic activity and memory functions, which is evident from the spectrum of actions elicited by clinically effective drugs acting at their modulatory benzodiazepine-binding site. Here we show, by introducing a histidine-to-arginine point mutation at position 101 of the murine alpha1-subunit gene, that alpha1-type GABA(A) receptors, which are mainly expressed in cortical areas and thalamus, are rendered insensitive to allosteric modulation by benzodiazepine-site ligands, whilst regulation by the physiological neurotransmitter gamma-aminobutyric acid is preserved. alpha1(H101R) mice failed to show the sedative, amnesic and partly the anticonvulsant action of diazepam. In contrast, the anxiolytic-like, myorelaxant, motor-impairing and ethanol-potentiating effects were fully retained, and are attributed to the nonmutated GABA(A) receptors found in the limbic system (alpha2, alpha5), in monoaminergic neurons (alpha3) and in motoneurons (alpha2, alpha5). Thus, benzodiazepine-induced behavioural responses are mediated by specific GABA(A) receptor subtypes in distinct neuronal circuits, which is of interest for drug design.
Collapse
Affiliation(s)
- U Rudolph
- Institute of Pharmacology, University of Zürich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Korpi ER, Koikkalainen P, Vekovischeva OY, Mäkelä R, Kleinz R, Uusi-Oukari M, Wisden W. Cerebellar granule-cell-specific GABAA receptors attenuate benzodiazepine-induced ataxia: evidence from alpha 6-subunit-deficient mice. Eur J Neurosci 1999; 11:233-40. [PMID: 9987027 DOI: 10.1046/j.1460-9568.1999.00421.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Benzodiazepine- and alcohol-induced ataxias in rodents have been proposed to be affected by the gamma-aminobutyric acid type A (GABAA) receptor alpha 6 subunit, which contributes to receptors specifically expressed in cerebellar granule cells. We have studied an alpha 6 -/- mouse line for motor performance and drug sensitivity. These mice, as a result of a specific genetic lesion, carry a precise impairment at their Golgi-granule cell synapses. On motor performance tests (rotarod, horizontal wire, pole descending, staircase and swimming tests) there were no robust baseline differences in motor function or motor learning between alpha 6 -/- and alpha 6 +/+ mice. On the rotarod test, however, the mutant mice were significantly more impaired by diazepam (5-20 mg/kg, i.p.), when compared with alpha 6 +/+ control and background C57BL/6J and 129/SvJ mouse lines. Ethanol (2.0-2.5 g/kg, i.p.) produced similar impairment in the alpha 6 -/- and alpha +/+ mice. Diazepam-induced ataxia in alpha 6 -/- mice could be reversed by the benzodiazepine site antagonist flumazenil, indicating the involvement of the remaining alpha 1 beta 2/3 gamma 2 GABAA receptors of the granule cells. The level of activity in this synapse is crucial in regulating the execution of motor tasks. We conclude that GABAA receptor alpha 6 subunit-dependent actions in the cerebellar cortex can be compensated by other receptor subtypes; but if not for the alpha 6 subunit, patients on benzodiazepine medication would suffer considerably from ataxic side-effects.
Collapse
Affiliation(s)
- E R Korpi
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
37
|
Hevers W, Lüddens H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol Neurobiol 1998; 18:35-86. [PMID: 9824848 DOI: 10.1007/bf02741459] [Citation(s) in RCA: 354] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amino acid gamma-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotransmitter that mediates most of its effects through fast GABA-gated Cl(-)-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes alpha, beta, gamma, delta, sigma and epsilon, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of alpha, beta, and gamma subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular alpha and gamma subunit variants. Little is known about the functional properties of the beta, delta, and epsilon subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.
Collapse
Affiliation(s)
- W Hevers
- Department of Psychiatry, University of Mainz, Germany
| | | |
Collapse
|
38
|
Korpi ER, Mattila MJ, Wisden W, Lüddens H. GABA(A)-receptor subtypes: clinical efficacy and selectivity of benzodiazepine site ligands. Ann Med 1997; 29:275-82. [PMID: 9375983 DOI: 10.3109/07853899708999348] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The main inhibitory neurotransmitter receptor of the brain, the gamma-aminobutyric acid type A receptor (GABA[A]), mediates the actions of several classes of clinically important drugs, such as benzodiazepines, barbiturates and general anaesthetics. This review summarizes the current knowledge on how classical benzodiazepines and novel nonbenzodiazepine compounds act on the benzodiazepine site of GABA(A) receptors and on their clinical pharmacology related to anxiolytic, sedative, hypnotic and cognitive effects or side-effects. Partial agonism, receptor subtype selectivity and novel binding sites are discussed as possible strategies to develop new drugs with fewer adverse effects than are seen in the clinical use of benzodiazepines.
Collapse
Affiliation(s)
- E R Korpi
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Finland.
| | | | | | | |
Collapse
|
39
|
Abstract
This study investigated the ability of the benzodiazepine inverse agonist, Ro 15-4513, to alter the expression of physical dependence on pentobarbital. Male Sprague-Dawley rats were made physically dependent on pentobarbital by continuous. IP, infusion of escalating doses of pentobarbital for 12 days. In Experiment 1, pentobarbital dependent rats received either vehicle or Ro 15-4513, in doses of 5, 10, or 15 mg/kg, IP, periodically during the pentobarbital abstinence period. As expected, Ro 15-4513 produced a significant, dose-dependent, exacerbation of withdrawal signs in the pentobarbital dependent rats. In Experiment 2, either vehicle or Ro 15-4513, at a dose of 15 mg/ kg, was administered, IP, once daily during the 12 days of continuous pentobarbital infusion. During the subsequent pentobarbital abstinence period it was noted that the withdrawal signs were significantly reduced in the rats receiving the daily administration of Ro 15-4513. It is hypothesized that the benzodiazepine inverse agonist, Ro 15-4513, may inhibit the development of physical dependence on pentobarbital through an opposing action on the GABA-A receptor.
Collapse
Affiliation(s)
- G J Yutrzenka
- Department of Physiology and Pharmacology, School of Medicine, University of South Dakota, Vermillion 57069, USA
| | | | | |
Collapse
|
40
|
Little HJ. How has molecular pharmacology contributed to our understanding of the mechanism(s) of general anesthesia? Pharmacol Ther 1996; 69:37-58. [PMID: 8857302 DOI: 10.1016/0163-7258(95)02030-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review discusses the mechanism(s) of general anesthesia from a pharmacological viewpoint; in particular, the ability of drugs to produce many different effects is emphasised. The problems of experimental measurement of general anesthesia are discussed, and the possibilities for antagonism and potentiation of anesthesia considered. Physicochemical studies on anesthesia are described, as are the advancement of ideas beyond consideration of lipids and proteins as separate sites of action. The importance of studies on different areas of the brain is highlighted, and the review finishes with a survey of the effects of general anesthetics on synaptic transmission which emphasises the problems of extrapolation from in vitro to in vivo.
Collapse
Affiliation(s)
- H J Little
- Department of Psychology, Durham University, UK
| |
Collapse
|
41
|
Phillips TJ, Shen EH. Neurochemical bases of locomotion and ethanol stimulant effects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:243-82. [PMID: 8894850 DOI: 10.1016/s0074-7742(08)60669-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The locomotor stimulant effect produced by alcohol (ethanol) is one of a large number of measurable ethanol effects. Ethanol-induced euphoria in humans and locomotor stimulation in rodents, a potential animal model of human euphoria, have long been recognized and the latter has been extensively characterized. Since the euphoria produced by ethanol may influence the development of uncontrolled or excessive alcohol use, a solid understanding of the neurochemical substrates underlying such effects is important. Such an understanding for spontaneous locomotion and for ethanol's stimulant effects is beginning to emerge. Herein we review what is known about three neurochemical substrates of locomotion and of ethanol's locomotor stimulant effects. Several lines of research have implicated dopaminergic, GABAergic, and glutamatergic neurotransmitter systems in determining these behaviors. A large collection of work is cited, which strongly implicates the above-mentioned neurotransmitter substances in the control of spontaneous locomotion. A smaller, but persuasive, body of evidence suggests that central nervous system processes utilizing these transmitters are involved in determining the effects of ethanol on locomotion. Particular emphasis has been placed on the mesolimbic ventral tegmental area to nucleus accumbens dopaminergic pathway, and on the ventral pallidum/substantia innominata, where GABA and glutamate have been found to play a role in altering the activity of this dopaminergic pathway. Research on ethanol and drug locomotor sensitization, increased responsiveness to the substance with repeated administration, is also reviewed as a process that may be important in the development of drug addiction.
Collapse
Affiliation(s)
- T J Phillips
- Department of Veterans Affairs Medical Center, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
42
|
Volkow ND, Wang GJ, Begleiter H, Hitzemann R, Pappas N, Burr G, Pascani K, Wong C, Fowler JS, Wolf AP. Regional brain metabolic response to lorazepam in subjects at risk for alcoholism. Alcohol Clin Exp Res 1995; 19:510-6. [PMID: 7625590 DOI: 10.1111/j.1530-0277.1995.tb01539.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanisms underlying the blunted response to alcohol administration observed in subjects at risk for alcoholism are poorly understood and may involve GABA-benzodiazepine receptors. The purpose of this study was to investigate if subjects at risk for alcoholism had abnormalities in brain GABA-benzodiazepine receptor function. This study measured the effects of 30 micrograms/kg (i.v.) of lorazepam, on regional brain glucose metabolism using positron emission tomography and 2-deoxy-2[18F]fluoro-D-glucose in subjects with a positive family history for alcoholism (FP) (n = 12) and compared their response with that of subjects with a negative family history for alcoholism (FN) (n = 21). At baseline, FP subjects showed lower cerebellar metabolism than FN. Lorazepam decreased whole-brain glucose metabolism, and FP subjects showed a similar response to FN in cortical and subcortical regions, but FP showed a blunted response in cerebellum. Lorazepam-induced changes in cerebellar metabolism correlated with its motor effects. The decreased cerebellar baseline metabolism in FP as well as the blunted cerebellar response to lorazepam challenge may reflect disrupted activity of benzodiazepine-GABA receptors in cerebellum. These changes could account for the decreased sensitivity to the motor effects of alcohol and benzodiazepines in FP subjects.
Collapse
Affiliation(s)
- N D Volkow
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim DJB, Brioni JD. Modulation of the discriminative stimulus properties of (?)-nicotine by diazepam and ethanol. Drug Dev Res 1995. [DOI: 10.1002/ddr.430340108] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Cole BJ, Hillmann M. Effects of benzodiazepine receptor ligands on the performance of an operant delayed matching to position task in rats: opposite effects of FG 7142 and lorazepam. Psychopharmacology (Berl) 1994; 115:350-7. [PMID: 7871075 DOI: 10.1007/bf02245076] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of a series of benzodiazepine (BZ) receptor ligands, ranging from a full agonist through to partial inverse agonists, were examined on short term working memory in the rat. The behavioural paradigm used was a discrete trial, operant delayed matching to position task, as originally described by Dunnett (1985), with delays of 0, 5, 15 and 30 s. The benzodiazepine receptor (BZR) full agonist lorazepam (0.25, 0.375 and 0.5 mg/kg) dose and delay dependently impaired matching accuracy. Lorazepam also increased the latency to respond and decreased the number of nose pokes made into the food tray during the delays. In contrast, the BZR partial agonist ZK 95,962 (1, 3, 10 mg/kg) did not affect matching accuracy, but did increase the speed of responding. The BZR antagonist ZK 93,426 (1.25, 5, 25 mg/kg) had no effects in this paradigm. The BZR weak partial inverse agonists Ro 15-4513 (0.1, 1 and 10 mg/kg) and ZK 90,886 (1, 3 and 10 mg/kg) did not affect accuracy of performance. However, both of these drugs increased the latency to respond and decreased nose poke responses. These motoric effects were particularly strong following 10 mg/kg Ro 15-4513. This shows that the effects of drugs on the accuracy of responding and on the speed of responding can be dissociated. The BZR partial inverse agonist FG 7142 had effects on matching accuracy that were dependent upon dose. The lowest dose of FG 7142 (1 mg/kg) significantly improved accuracy, whereas the highest dose (10 mg/kg) impaired accuracy.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B J Cole
- Department of Neuropsychopharmacology, Research Laboratories of Schering AG, Berlin, Germany
| | | |
Collapse
|
45
|
Aguayo LG, Pancetti FC, Klein RL, Harris RA. Differential effects of GABAergic ligands in mouse and rat hippocampal neurons. Brain Res 1994; 647:97-105. [PMID: 8069709 DOI: 10.1016/0006-8993(94)91403-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous electrophysiological studies suggested that GABAA receptors in rat hippocampal neurons might be less sensitive to ethanol than mouse neurons. Therefore, we examined the effects of ethanol (0.5-850 mM) in cultured mouse (C57BL/6) and rat (Sprague-Dawley) neurons. In 35% of the mouse neurons, the Cl- current was potentiated by ethanol starting at 0.5 mM. In all of the rat neurons examined, on the other hand, the current was potentiated by concentrations starting at 200 mM. We also studied the effects of GABA and other GABAergic ligands. GABAA receptors in rat and mouse neurons displayed EC50s for GABA of 9 +/- 0.3 and 17 +/- 0.8 microM, respectively and ethanol did not significantly change these values. The EC50 for diazepam was 92 +/- 3 and 120 +/- 8 nM in rat and mouse, respectively. Pentobarbital enhanced the current with EC50s of 84 +/- 3 and 106 +/- 6 microM in rat and mouse, respectively. The sensitivity for Cl-218,872, which binds preferentially to the Type I benzodiazepine receptor, was similar in all the neurons. RO 15-4513, an inverse partial agonist to the benzodiazepine receptor, was not effective in reversing the potentiation of the Cl- current in rat neurons and only slightly reduced the potentiation in mouse neurons. The receptors in rat neurons were more sensitive to external Zn2+; the current was inhibited by 50% with a concentration of 93 +/- 3 and 244 +/- 9 microM in rat and mouse, respectively. Analysis of mRNA encoding for the gamma 2L receptor subunit showed similar levels in rat and mouse neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L G Aguayo
- Laboratory of Neuropharmacology, Catholic University at Valparaiso, Chile
| | | | | | | |
Collapse
|
46
|
Ito Y, Abiko E, Mitani K, Fukuda H. Characterization of diazepam-insensitive [3H]Ro 15-4513 binding in rodent brain and cultured cerebellar neuronal cells. Neurochem Res 1994; 19:289-95. [PMID: 8177368 DOI: 10.1007/bf00971577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Experiments were performed to characterize diazepam-insensitive [3H]Ro 15-4513 binding sites in discrete regions of rodent brain and cultured rat cerebellar granule cells. Scatchard analysis of [3H]Ro 15-4513 binding in the presence of 10 microM diazepam revealed that diazepam-insensitive binding sites in the rat brain were most abundant in the cerebellum, followed by the hippocampus, cerebral cortex and olfactory bulb. Diazepam-insensitive sites represented approximately 80% of the total [3H]Ro 15-4513 binding sites in the membranes of cultured rat cerebellar granule cells. The Bmax values for total [3H]Ro 15-4513 and [35S]TBPS are almost identical, and 5-6 times larger than that for [3H]diazepam in this preparation. Although some annelated [1,5-a]benzodiazepine analogues such as Ro 15-4513, ro 16-6028, flumazenil and Ro 15-3505, and an imidazothieno-diazepine, Ro 19-4603, showed high affinity for cortical and cerebellar diazepam-insensitive sites, all the annelated benzodiazepine compounds tested showed higher affinity for cerebellar diazepam-insensitive sites than cortical ones. In contrast, a pyrazoloquinoline compound, CGS 8216, and beta-carboline analogues such as beta-carboline-3-carboxylate ethyl ester (beta-CCE) and beta-carboline-3-carboxylate methyl ester (beta-CCM) exhibited higher affinity for cortical than cerebellar sites. These results suggest that diazepam-insensitive sites are heterogeneous in brain areas with respect to ligand specificity.
Collapse
Affiliation(s)
- Y Ito
- Department of Pharmacology, College of Pharmacy, Nihon University, Chiba, Japan
| | | | | | | |
Collapse
|
47
|
Farde L, Pauli S, Litton JE, Halldin C, Neiman J, Sedvall G. PET-determination of benzodiazepine receptor binding in studies on alcoholism. EXS 1994; 71:143-153. [PMID: 8032146 DOI: 10.1007/978-3-0348-7330-7_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Positron Emission Tomography (PET) and the radioligand [11C]flumazenil were used to examine benzodiazepine (BZ) receptor binding in the human brain. In a first study of healthy males acute ingestion of alcohol did not alter total radioactivity uptake or specific [11C]flumazenil binding in the neocortex or cerebellum. In a second study [11C]flumazenil binding was determined in 5 healthy male controls and 5 chronic alcohol dependent men using a saturation procedure with two PET experiments. Mean values for BZ-receptor density and affinity were similar in the two groups but the Bmax variance for the alcohol dependents was significantly larger (p < 0.05) for all regions. The present studies do not support the view that alcohol affects central BZ receptor binding in man.
Collapse
Affiliation(s)
- L Farde
- Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Prunell M, Escorihuela RM, Fernández-Teruel A, Núñez JF, Tobeña A. Differential interactions between ethanol and Ro 15-4513 on two anxiety tests in rats. Pharmacol Biochem Behav 1994; 47:147-51. [PMID: 8115416 DOI: 10.1016/0091-3057(94)90124-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of low (2 g/kg) and high (4 g/kg) doses of ethanol and their interaction with the imidazobenzodiazepine Ro 15-4513 (a partial inverse agonist of the benzodiazepine receptor) were studied in two different models of anxiety in rats: the "elevated plus-maze" test and the early acquisition of two-way (shuttlebox) avoidance. In the elevated plus-maze, ethanol (2 g/kg) increased the percentage of entries into the open arms (%EOA) and both ethanol doses increased the percentage of time spent into the open arms (%TOA), thus indicating an anxiolytic action which was reversed by Ro 15-4513 (5 mg/kg). By contrast, Ro 15-4513 did not counteract the anxiolytic effect of the low dose of ethanol in the acquisition of shuttlebox avoidance. Thus, the treatment with 2 g/kg of ethanol (plus either vehicle or Ro 15-4513) significantly increased the total number of avoidances. Conversely, animals treated with 4 g/kg of ethanol showed impaired shuttlebox avoidance acquisition, and this effect was completely reversed by Ro 15-4513. Ro 15-4513 was without effect on its own in any of the anxiety-related parameters (i.e., %EOA, %TOA, and avoidance acquisition). The results indicate a different pattern of ethanol effects and Ethanol x Ro 15-4513 interactions depending upon the task used.
Collapse
Affiliation(s)
- M Prunell
- Laboratorio de Fisiología Animal, Facultad de Biología, Universidad de la Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
49
|
Criswell HE, Breese GR. Similar effects of ethanol and flumazenil on acquisition of a shuttle-box avoidance response during withdrawal from chronic ethanol treatment. Br J Pharmacol 1993; 110:753-60. [PMID: 8242248 PMCID: PMC2175934 DOI: 10.1111/j.1476-5381.1993.tb13876.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Acquisition of a two-way shuttle-box avoidance response is facilitated by ethanol. This facilitated acquisition of an avoidance response to ethanol was attenuated during withdrawal from chronic-ethanol diet intake (i.e. tolerance developed by ethanol). The deficit in the avoidance task after chronic ethanol treatment could be overcome by increasing the dose of ethanol. 2. Flumazenil, a benzodiazepine antagonist, also facilitated acquisition of the avoidance response in control rats. This response to flumazenil was significantly reduced during withdrawal from chronic-ethanol treatment. This reduced avoidance responding during withdrawal also could be overcome by increasing the dose of flumazenil. 3. The benzodiazepine-inverse agonist, RO 15-4513, produced a deficit in avoidance responding that was antagonized by both ethanol and flumazenil in a dose-related manner. 4. To determine whether flumazenil has the properties of a benzodiazepine agonist, it was established that, unlike the benzodiazepine chlordiazepoxide, flumazenil did not enhance the ethanol-induced deficit in the aerial righting reflex. Additionally, flumazenil blocked the action of chlordiazepoxide in this procedure, consistent with the benzodiazepine antagonist action of flumazenil. 5. Data collected are consistent with the hypothesis that an endogenous substance with the properties of a benzodiazepine-inverse agonist antagonizes the anticonflict actions of acutely administered ethanol during withdrawal from chronic-ethanol exposure.
Collapse
Affiliation(s)
- H E Criswell
- Brain and Development Research Center, University of North Carolina School of Medicine, Chapel Hill 27599-7250
| | | |
Collapse
|
50
|
Korpi ER, Seeburg PH. Natural mutation of GABAA receptor alpha 6 subunit alters benzodiazepine affinity but not allosteric GABA effects. Eur J Pharmacol 1993; 247:23-7. [PMID: 8258357 DOI: 10.1016/0922-4106(93)90133-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The binding of the imidazobenzodiazepine, [3H]Ro 15-4513, to cerebellar granule cell-specific GABAA/benzodiazepine receptors is typically insensitive to benzodiazepine receptor agonists such as diazepam. A mutation in the alpha 6 subunit, causing replacement of the arginine at the 100 position by glutamine (Q100), has recently been found in an alcohol- and benzodiazepine-sensitive rat line. The mutant alpha 6(Q100)beta 2 gamma 2 recombinant receptors are sensitive to diazepam. The binding of [3H]Ro 15-4513 to cerebellar diazepam-insensitive receptors is enhanced by GABA, whereas binding to diazepam-sensitive receptors is inhibited. Recombinant receptors consisting of beta 2 and gamma 2 subunits together with the wildtype alpha 6 or mutant alpha 6(Q100) subunit showed positive modulation of [3H]Ro 15-4513 binding by GABA, whereas alpha 1 beta 2 gamma 2 receptors showed negative modulation. The picrotoxin-sensitive binding of a convulsant, t-butylbicyclophosphoro[35S]thionate ([35S]TBPS), was inhibited in the alpha 6 beta 2 gamma 2 and alpha 6(Q100) beta 2 gamma 2 receptors by GABA at concentrations less than one-tenth of those required in the alpha 1 beta 2 gamma 2 receptors. GABA effects on [35S]TBPS binding were only slightly affected by diazepam in the alpha 6(Q100) beta 2 gamma 2 receptors, while profound effects were seen in the alpha 1 beta 2 gamma 2 receptors in the presence of diazepam. The results with the mutant receptor suggest that the alpha 1 and alpha 6 subunits are responsible for differential allosteric actions by GABA on other binding sites, independently of the structures defining the benzodiazepine binding pharmacology.
Collapse
Affiliation(s)
- E R Korpi
- Biomedical Research Center, Alko Ltd., Helsinki, Finland
| | | |
Collapse
|