1
|
The molecular genetic basis of creativity: a mini review and perspectives. PSYCHOLOGICAL RESEARCH 2023; 87:1-16. [PMID: 35217895 DOI: 10.1007/s00426-022-01649-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/16/2022] [Indexed: 01/27/2023]
Abstract
Although creativity is one of the defining features of human species, it is just the beginning of an ambitious attempt for psychologists to understand its genetic basis. With ongoing efforts, great progress has been achieved in molecular genetic studies of creativity. In this mini review, we highlighted recent molecular genetic findings for both domain-general and domain-specific creativity, and provided some perspectives for future studies. It is expected that this work will provide an update on the knowledge regarding the molecular genetic basis of creativity, and contribute to the further development of this field.
Collapse
|
2
|
Jin B, Alam M, Tierno A, Zhong H, Roy RR, Gerasimenko Y, Lu DC, Edgerton VR. Serotonergic Facilitation of Forelimb Functional Recovery in Rats with Cervical Spinal Cord Injury. Neurotherapeutics 2021; 18:1226-1243. [PMID: 33420588 PMCID: PMC8423890 DOI: 10.1007/s13311-020-00974-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2020] [Indexed: 10/22/2022] Open
Abstract
Serotonergic agents can improve the recovery of motor ability after a spinal cord injury. Herein, we compare the effects of buspirone, a 5-HT1A receptor partial agonist, to fluoxetine, a selective serotonin reuptake inhibitor, on forelimb motor function recovery after a C4 bilateral dorsal funiculi crush in adult female rats. After injury, single pellet reaching performance and forelimb muscle activity decreased in all rats. From 1 to 6 weeks after injury, rats were tested on these tasks with and without buspirone (1-2 mg/kg) or fluoxetine (1-5 mg/kg). Reaching and grasping success rates of buspirone-treated rats improved rapidly within 2 weeks after injury and plateaued over the next 4 weeks of testing. Electromyography (EMG) from selected muscles in the dominant forelimb showed that buspirone-treated animals used new reaching strategies to achieve success after the injury. However, forelimb performance dramatically decreased within 2 weeks of buspirone withdrawal. In contrast, fluoxetine treatment resulted in a more progressive rate of improvement in forelimb performance over 8 weeks after injury. Neither buspirone nor fluoxetine significantly improved quadrupedal locomotion on the horizontal ladder test. The improved accuracy of reaching and grasping, patterns of muscle activity, and increased excitability of spinal motor-evoked potentials after buspirone administration reflect extensive reorganization of connectivity within and between supraspinal and spinal sensory-motor netxcopy works. Thus, both serotonergic drugs, buspirone and fluoxetine, neuromodulated these networks to physiological states that enabled markedly improved forelimb function after cervical spinal cord injury.
Collapse
Affiliation(s)
- Benita Jin
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA, 90095-1527, USA
| | - Monzurul Alam
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA, 90095-1527, USA
| | - Alexa Tierno
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA, 90095-1527, USA
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA, 90095-1527, USA
| | - Roland R Roy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA, 90095-1527, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yury Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA, 90095-1527, USA
- Pavlov Institute of Physiology, St. Petersburg, 199034, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420006, Russia
| | - Daniel C Lu
- Department of Neurosurgery, University of California, Los Angeles, CA, 90095, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive, Los Angeles, CA, 90095-1527, USA.
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, University of California, Los Angeles, CA, 90095, USA.
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA.
- Faculty of Science, The Centre for Neuroscience and Regenerative Medicine, University of Technology Sydney, Ultimo, NSW, Australia.
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscript a la Universitat Autònoma de Barcelona, 08916, Badalona, Spain.
| |
Collapse
|
3
|
Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull 2018; 143:181-193. [PMID: 30236533 DOI: 10.1016/j.brainresbull.2018.09.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Of wide interest for health is the relation existing between depression, a very common psychological illness, accompanied by anxiety and reduced ability to concentrate, and adult neurogenesis. We will focus on two neurogenic stimuli, fluoxetine and physical exercise, both endowed with the ability to activate adult neurogenesis in the dentate gyrus of the hippocampus, known to be required for learning and memory, and both able to counteract depression. Fluoxetine belongs to the class of selective serotonin reuptake inhibitor (SSRI) antidepressants, which represent the most used pharmacological therapy; physical exercise has also been shown to effectively counteract depression symptoms in rodents as well as in humans. While there is evidence that the antidepressant effect of fluoxetine requires its pro-neurogenic action, exerted by promoting proliferation, differentiation and survival of progenitor cells of the hippocampus, on the other hand fluoxetine exerts also neurogenesis-independent antidepressant effects by influencing the plasticity of the new neurons generated. Similarly, the antidepressant action of running also correlates with an increase of hippocampal neurogenesis and plasticity, although the gene pathways involved are only partially coincident with those of fluoxetine, such as those involved in serotonin metabolism and synapse formation. We further discuss how extra-neurogenic actions are also suggested by the fact that, unlike running, fluoxetine is unable to stimulate neurogenesis during aging, but still displays antidepressant effects. Moreover, in specific conditions, fluoxetine or running activate not only progenitor but also stem cells, which normally are not stimulated; this fact reveals how stem cells have a long-term, hidden ability to self-renew and, more generally, that neurogenesis is subject to complex controls that may play a role in depression, such as the type of neurogenic stimulus or the state of the local niche. Finally, we discuss how fluoxetine or running are effective in counteracting depression originated from stress or neurodegenerative diseases.
Collapse
|
4
|
Leiser SC, Li Y, Pehrson AL, Dale E, Smagin G, Sanchez C. Serotonergic Regulation of Prefrontal Cortical Circuitries Involved in Cognitive Processing: A Review of Individual 5-HT Receptor Mechanisms and Concerted Effects of 5-HT Receptors Exemplified by the Multimodal Antidepressant Vortioxetine. ACS Chem Neurosci 2015; 6:970-86. [PMID: 25746856 DOI: 10.1021/cn500340j] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.
Collapse
Affiliation(s)
| | - Yan Li
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Alan L. Pehrson
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Elena Dale
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Gennady Smagin
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| | - Connie Sanchez
- Lundbeck Research USA, Paramus, New Jersey 07650, United States
| |
Collapse
|
5
|
Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E. Fluoxetine: a case history of its discovery and preclinical development. Expert Opin Drug Discov 2014; 9:567-78. [DOI: 10.1517/17460441.2014.907790] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Di Poi C, Darmaillacq AS, Dickel L, Boulouard M, Bellanger C. Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:84-91. [PMID: 23474317 DOI: 10.1016/j.aquatox.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 05/27/2023]
Abstract
Recent ecotoxicological studies highlight the increasing presence of pharmaceuticals discharged in the aquatic environment. Amongst them is the antidepressant fluoxetine (FLX), a selective serotonin reuptake inhibitor, primarily indicated for treatment of depression. The effect of chronic exposure to FLX on memory processing in 1-month-old cuttlefish Sepia officinalis was evaluated. Three groups of new-borns were reared in different conditions: one control group (no FLX) and two groups exposed to environmental concentrations of FLX (1 and 100ng/L) from 15 days pre-hatching to 1 month post-hatching. Acquisition and retention performances were assessed using the 'prawn-in-the-tube' procedure. Perinatal exposure to fluoxetine led to significant changes in memory processing of the animals. The lowest observed effect concentration of this antidepressant on learning and retention was 1ng/L which is under the range of environmental contamination. Cuttlefish exposed at low FLX concentration had impaired acquisition capabilities and animals exposed at high FLX concentration displayed a deficit of memory retention compared to the control group that had nonimpaired initial acquisition and retention performances. The results subsequently suggested that FLX-induced changes in cognitive capacities could potentially lead to inappropriate predatory behaviors in the natural environment. The study provides the basis for future studies on how pharmaceutical contaminants disrupt cognition in ecologically and economically relevant marine invertebrates.
Collapse
Affiliation(s)
- Carole Di Poi
- Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale, EA 4259, 14032 Caen cedex, France
| | | | | | | | | |
Collapse
|
7
|
Satvat E, Gheidi A, Voll S, Odintsova IV, Marrone DF. Location is everything: neurons born during fluoxetine treatment accumulate in regions that do not support spatial learning. Neuropharmacology 2011; 62:1627-33. [PMID: 22182782 DOI: 10.1016/j.neuropharm.2011.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/30/2022]
Abstract
It is well known that antidepressants both improve mood and increase the rate at which the dentate gyrus (DG) generates new neurons. In addition to the implications of neurogenesis for mood regulation, the production and survival of granule cells has also been implicated in learning and memory. Despite this evidence, the results of studies on the effect of antidepressants on memory have been mixed. A critical piece of data that may be missing from previous studies, however, is insight into (a) the location that newborn neurons migrate to following fluoxetine administration and (b) their ability to express normal patterns of activity-related genes. Here we demonstrate a finding that may resolve the discrepancy in the effects fluoxetine-induced neurogenesis on mood and memory: after 5 weeks delay, the net additional neurons generated in animals given the antidepressant fluoxetine during treatment are functionally normal, but preferentially accumulate (due to changes in migration and/or survival) in an area of the DG that is not recruited by spatial memory tasks.
Collapse
Affiliation(s)
- Elham Satvat
- Dept. of Psychology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | | | | | | | | |
Collapse
|
8
|
Meneses A, Perez-Garcia G, Ponce-Lopez T, Tellez R, Castillo C. Serotonin transporter and memory. Neuropharmacology 2011; 61:355-63. [PMID: 21276807 DOI: 10.1016/j.neuropharm.2011.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/15/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
The serotonin transporter (SERT) has been associated to diverse functions and diseases, though seldom to memory. Therefore, we made an attempt to summarize and discuss the available publications implicating the involvement of the SERT in memory, amnesia and anti-amnesic effects. Evidence indicates that Alzheimer's disease and drugs of abuse like d-methamphetamine (METH) and (+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") have been associated to decrements in the SERT expression and memory deficits. Several reports have indicated that memory formation and amnesia affected the SERT expression. The SERT expression seems to be a reliable neural marker related to memory mechanisms, its alterations and potential treatment. The pharmacological, neural and molecular mechanisms associated to these changes are of great importance for investigation.
Collapse
Affiliation(s)
- Alfredo Meneses
- Depto. de Farmacobiología, CINVESTAV-IPN, Tenorios 235, Granjas Coapa, Mexico City 14330, Mexico.
| | | | | | | | | |
Collapse
|
9
|
Autoradiographic study of serotonin transporter during memory formation. Behav Brain Res 2010; 212:12-26. [PMID: 20226815 DOI: 10.1016/j.bbr.2010.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/05/2010] [Indexed: 12/15/2022]
Abstract
Serotonin transporter (SERT) has been associated with drugs of abuse like d-methamphetamine (METH). METH is well known to produce effects on the monoamine systems but it is unclear how METH affects SERT and memory. Here the effects of METH and the serotonin reuptake inhibitor fluoxetine (FLX) on autoshaping and novel object recognition (NOR) were investigated. Notably, both memory tasks recruit different behavioral, neural and cognitive demand. In autoshaping task a dose-response curve for METH was determined. METH (1.0mg/kg) impaired short-term memory (STM; lasting less of 90min) in NOR and impaired both STM and long-term memory (LTM; lasting 24 and 48h) in autoshaping, indicating that METH had long-lasting effects in the latter task. A comparative autoradiography study of the relationship between the binding pattern of SERT in autoshaping new untrained vs. trained treated (METH, FLX, or both) animals was made. Considering that hemispheric dominance is important for LTM, hence right vs. left hemisphere of the brain was compared. Results showed that trained animals decreased cortical SERT binding relative to untrained ones. In untrained and trained treated animals with the amnesic dose (1.0mg/kg) of METH SERT binding in several areas including hippocampus and cortex decreased, more remarkably in the trained animals. In contrast, FLX improved memory, increased SERT binding, prevented the METH amnesic effect and re-established the SERT binding. In general, memory and amnesia seemed to make SERT more vulnerable to drugs effects.
Collapse
|
10
|
Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neurosci Lett 2009; 463:154-7. [PMID: 19638296 DOI: 10.1016/j.neulet.2009.07.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/13/2009] [Accepted: 07/23/2009] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to examine the potential association between the S (short) and L (long) alleles of the 5-HTTLPR polymorphism of the serotonin transporter (5-HTT) gene and verbal and figural creative ability. Sixty-two unrelated Caucasian university students (29 men and 33 women) participated in the experiment. The results showed a significant association between verbal and figural creativity scores and the 5-HTTLPR polymorphism. The subjects with S/S and L/S genotypes demonstrated higher verbal creativity scores in comparison with the L/L genotype carriers. The carriers of S/S genotype demonstrated also higher figural creativity scores in comparison with the carries of L/S and L/L genotypes. Thus, it is the first report on a significant association between the 5-HTTLPR polymorphism and creative achievements. As the 5-HTTLPR polymorphism is associated with genetically defined alteration in the brain serotonergic neurotransmission our result provides an evidence of the involvement of the central serotonin system in creativity regulation.
Collapse
|
11
|
Antidepressant drugs and memory: insights from animal studies. Eur Neuropsychopharmacol 2008; 18:235-48. [PMID: 17761406 DOI: 10.1016/j.euroneuro.2007.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/12/2007] [Accepted: 07/05/2007] [Indexed: 11/19/2022]
Abstract
This is a selective review of the literature concerning the effects of antidepressant drugs on animal memory, which was performed with the aid of the PubMed database. Monoamine oxidase inhibitors tend to either have no effect on memory or result in its improvement. Studies with cyclic antidepressants have reported no effect or, more often, memory impairments. Pre-training administration of selective serotonin reuptake inhibitors (SSRIs) has been shown to have either no effect on memory or undermine it (with some isolated exceptions, in which improvements have been recorded), while post-training administration of SSRIs has been demonstrated to improve memory or have no effect. A small group formed by the remaining antidepressants has been shown to improve memory, with the exception of trazodone, which impairs memory. These findings are discussed in the light of knowledge regarding the actions of antidepressants on several neurotransmission systems. The possibility that the effects of antidepressants on memory are the core of the therapeutic effects of these drugs is also considered.
Collapse
|
12
|
Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC. Differences in Cortical Serotonergic Innervation among Humans, Chimpanzees, and Macaque Monkeys: A Comparative Study. Cereb Cortex 2007; 18:584-97. [PMID: 17586605 DOI: 10.1093/cercor/bhm089] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we assess the possibility that the evolution of human intellectual capacities was supported by changes in the supply of serotonin to the frontal cortex. To this end, quantitative comparative analyses were performed among humans, chimpanzees, and macaques. Immunohistochemical methods were used to visualize serotonin transporter-immunoreactive (SERT-ir) axons within the cerebral cortex. Areas 9 and 32 were chosen for evaluation due to their roles in working memory and theory of mind, respectively. Primary motor cortex was also evaluated because it is not associated with higher cognitive functions. The findings revealed that humans do not display a quantitative increase in serotonin innervation. However, the results indicated region- and layer-specific differences among species in serotonergic innervation pattern. Compared with macaques, humans and chimpanzees together displayed a greater density of SERT-ir axons relative to neuron density in layers V/VI. This change was detected in cortical areas 9 and 32, but not in primary motor cortex. Further, morphological specializations, coils of axons, were observed in humans and chimpanzees that were absent in macaques. These features may represent a greater capacity for cortical plasticity exclusive to hominoids. Taken together, these results indicate a significant reorganization of cortical serotonergic transmission in humans and chimpanzees.
Collapse
Affiliation(s)
- Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Carlini VP, Gaydou RC, Schiöth HB, de Barioglio SR. Selective serotonin reuptake inhibitor (fluoxetine) decreases the effects of ghrelin on memory retention and food intake. ACTA ACUST UNITED AC 2007; 140:65-73. [PMID: 17189653 DOI: 10.1016/j.regpep.2006.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 10/23/2006] [Accepted: 11/10/2006] [Indexed: 11/23/2022]
Abstract
Ghrelin (Ghr) is an appetite stimulating hormone that is produced peripherally, by the stomach, and centrally as well. Previous investigations show that Ghr increases food intake and memory retention in rats, and that extra-hypothalamic structures, such as the hippocampus, participate in these effects. In the present work we analyzed the effect on food intake and memory retention induced by Ghr after serotonin (5-HT) availability modification at the serotoninergic synapses. Animals only treated with a selective serotonin reuptake inhibitor (SSRI), fluoxetine (FLU) 5 mg/kg or clomipramine (CLO) 2.5 and 5 mg/kg, showed a significant reduction in both food intake and memory retention. On the contrary, Ghr administration induces a significant increase in food intake and a dose-dependent increase in short and long term memory retention. When the animals were treated with FLU prior to Ghr injection, the food intake induced, as well as the expression of short and long term memory retention, was decreased. In conclusion, evidence presented in this paper suggests that the effects of Ghr on both feeding and memory retention in extra-hypothalamic structures such as the hippocampus, could depend on the availability of 5-HT.
Collapse
Affiliation(s)
- Valeria P Carlini
- Departamento de Farmacología, Facultad de Ciencias Químicas, Haya de la Torre y Medina Allende, Ciudad Universitaria, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| | | | | | | |
Collapse
|
14
|
Micale V, Leggio GM, Mazzola C, Drago F. Cognitive effects of SL65.0155, a serotonin 5-HT4 receptor partial agonist, in animal models of amnesia. Brain Res 2006; 1121:207-15. [PMID: 17011531 DOI: 10.1016/j.brainres.2006.08.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 08/27/2006] [Accepted: 08/29/2006] [Indexed: 11/19/2022]
Abstract
Given that several data suggest the involvement of serotonergic (5-HT) system, particularly the serotonin 5-HT(4) receptors, in memory processes; this study was undertaken to investigate the role of serotonin 5-HT(4) receptors in different experimental models of amnesia in male Swiss mice or in male Sprague-Dawley rats, tested in learning and memory tasks. Amnesia was induced in mice by intracerebroventricular (i.c.v.) injection of beta-amyloid 1-42 fragment (BAP 1-42; 400 pmol/mouse) or of galanin (GAL) 1-29 (3 microg/mouse). Another group of animals was exposed to carbon monoxide (CO). Treatments were made 14 days, 15 min or 8 days prior to the learning trial of a step-through passive avoidance paradigm, respectively. Latency to re-enter the dark box appeared to be reduced in all treatment groups. Intraperitoneal (i.p.) administration of SL65.0155 (5-(8-amino-7-chloro-2,3-dihydro-1,4-benzodioxin-5-yl)-3-[1-(2-phenylethyl)-4-piperidinyl]-1,3,4-oxadiazol-2(3H)-one-monohydrochloride), a serotonin 5-HT(4) receptor partial agonist (1 mg/kg/day), for 7 days prior to the learning trial, inhibited the amnesic effect of both peptides increasing the latency to re-enter the dark box also in mice exposed to CO. In rats with ibotenate-induced lesions of the nucleus basalis magnocellularis (NBM) or prenatally exposed to methylazoxymethanol (MAM), SL65.0155 (1 mg/kg/day, i.p.) administered for 7 days, improved the learning and memory capacity in animals tested in shuttle-box active avoidance and radial maze tests. These findings give further support to the hypothesis of SL65.0155 cognition-enhancing activity across a range of tasks.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Experimental and Clinical Pharmacology, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | | | | | | |
Collapse
|
15
|
Naghdi N, Rezaei M, Fathollahi Y. Microinjection of ritanserin into the CA1 region of hippocampus improves scopolamine-induced amnesia in adult male rats. Behav Brain Res 2006; 168:215-20. [PMID: 16364460 DOI: 10.1016/j.bbr.2005.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/05/2005] [Accepted: 11/14/2005] [Indexed: 11/23/2022]
Abstract
The effect of ritanserin (5-HT2 antagonist) on scopolamine (muscarinic cholinergic antagonist)-induced amnesia in Morris water maze (MWM) was investigated. Rats were divided into eight groups and bilaterally cannulated into CA1 region of the hippocampus. One week later, they received repeatedly vehicles (saline, DMSO, saline+DMSO), scopolamine (2 microg/0.5 microl saline/side; 30 min before training), ritanserin (2, 4 and 8 microg/0.5 microl DMSO/side; 20 min before training) and scopolamine (2 microg/0.5 microl; 30 min before ritanserin injection)+ritanserin (4 microg/0.5 microl DMSO) through cannulae each day. Animals were tested for four consecutive days (4 trial/day) in MWM during which the position of hidden platform was unchanged. In the fifth day, the platform was elevated above the water surface in another position to evaluate the function of motor, motivational and visual systems. The results showed a significant increase in escape latencies and traveled distances to find platform in scopolamine-treated group as compared to saline group. Ritanserin-treated rats (4 microg/0.5 microl/side) showed a significant decrease in the mentioned parameters as compared to DMSO-treated group. However, scopolamine and ritanserin co-administration resulted in a significant decrease in escape latencies and traveled distances as compared to the scopolamine-treated rats. Our findings show that microinjection of ritanserin into the CA1 region of the hippocampus improves the scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| | | | | |
Collapse
|
16
|
Fernández-Pérez S, Pache DM, Sewell RDE. Co-administration of fluoxetine and WAY100635 improves short-term memory function. Eur J Pharmacol 2005; 522:78-83. [PMID: 16214127 DOI: 10.1016/j.ejphar.2005.08.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 08/26/2005] [Indexed: 11/21/2022]
Abstract
The aim of this study was to determine whether the action of the antidepressant fluoxetine or the anxiolytic buspirone could be modified by specific 5-hydroxytriptamine (5-HT(1A)) receptor blockade in a short-term memory paradigm. Male Wistar rats were trained to perform the putative short-term memory task, delayed non-matching to position. WAY100635, a selective 5-HT(1A) receptor antagonist (0.15 mg/kg), was administered 15 min before either the selective serotonin reuptake inhibitor fluoxetine (3 mg/kg), or the partial 5-HT(1A) receptor agonist and dopamine D2 receptor antagonist, buspirone (0.3 mg/kg). 8-Hydroxy-di-n-propylamino tetralin (8-OH-DPAT), a full 5-HT(1A) receptor agonist (0.3 mg/kg), was also included in the study as a positive control. WAY100635 alone had no effect on any behavioural parameter measured (response accuracy, delay lever press activity and trial completion). 8-OH-DPAT impaired response accuracy in a delay-dependent manner, an effect reversed by WAY100635. Fluoxetine also impaired response accuracy delay-dependently. WAY100635 pretreatment not only reversed this deficit but improved response accuracy, in the presence of a significant deficit in trial completion. At the dose used, buspirone showed no significant differences compared to the control group. The data suggest that fluoxetine impairs short-term memory function by the indirect activation of 5-HT(1A) receptors, but that its co-administration with WAY100635 improves short-term memory function.
Collapse
Affiliation(s)
- Sabela Fernández-Pérez
- Neuropharmacology, Welsh School of Pharmacy, Cardiff University, Cathays Park, Wales, UK
| | | | | |
Collapse
|
17
|
Abstract
OBJECTIVE Fluoxetine, a selective serotonin reuptake inhibitor antidepressant agent, has been implicated in learning and memory. Here, we report four cases from the same family of fluoxetine-related memory-impairment. RESULTS Memory-impairment resulted after fluoxetine treatment and disappeared after changing to another selective serotonin reuptake inhibitor. CONCLUSIONS There may be a relationship between fluoxetine-related memory impairment and genetic factors, and this side-effect appears to be specific to fluoxetine treatment. Possible mechanisms underlying this effect may be the drug's influence on the central serotonergic system or brain-derived neurotrophic factor.
Collapse
Affiliation(s)
- Shu-Chi Huang
- Department of Psychiatry, Chung-Shan Medical University Hospital, Taiwan, R.O.C.
| | | | | |
Collapse
|
18
|
Hughes JH, Gallagher P, Stewart ME, Matthews D, Kelly TP, Young AH. The effects of acute tryptophan depletion on neuropsychological function. J Psychopharmacol 2003; 17:300-9. [PMID: 14513922 DOI: 10.1177/02698811030173012] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Serotonin (5-HT, 5-hydroxytryptamine) may have an important role in the maintenance of normal neuropsychological functioning. The method of acute tryptophan depletion (ATD) provides a pharmacological challenge by which central 5-HT levels can be temporarily decreased and effects on learning, memory and mood examined. Twenty healthy male volunteers were recruited to take part in this within-subject, double-blind, crossover study. Neuropsychological function was evaluated 4-6 h after ingestion of a control or 52 g tryptophan (TRP) depleting amino-acid drink. ATD significantly lowered levels of plasma total and free TRP (p < 0.001), but this did not affect mood or performance on tests of verbal and visuo-spatial learning and memory, attention or executive function. These results contradict previous findings; however, the degree of disruption of central 5-HT levels resulting from the use of the 52 g amino-acid protocol may be an important factor in explaining the lack of effect. By utilizing more specific probes of individual 5-HT receptor subtypes, future studies can fully explore the role of 5-HT in neuropsychological functioning and may elucidate the factors determining vulnerability to the effects of serotonergic dysfunction.
Collapse
Affiliation(s)
- John H Hughes
- University of Newcastle upon Tyne, Department of Psychiatry, The Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | | | | | | | | |
Collapse
|
19
|
Pache DM, Fernández-Pérez S, Sewell RDE. Buspirone differentially modifies short-term memory function in a combined delayed matching/non-matching to position task. Eur J Pharmacol 2003; 477:205-11. [PMID: 14522358 DOI: 10.1016/j.ejphar.2003.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated the action of 5-hydroxytryptamine (5-HT) mimetics on short-term memory function. The objective was to determine whether two closely related tasks could differentiate between partial 5-HT(1A) receptor activation, full 5-HT(1A) receptor activation and generalised enhanced serotonin (5-HT) activity. Male hooded Lister rats were trained to perform an operant-based combined delayed matching/non-matching to position task. Drugs used were: fluoxetine (3 mg/kg, i.p.), a selective 5-HT reuptake inhibitor; the full 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.3 mg/kg, s.c.); and the partial 5-HT(1A) receptor agonist, buspirone (1 mg/kg, i.p.). Buspirone differentially disrupted response accuracy depending on the style of trial. There was no such difference in the case of 8-OH-DPAT, which impaired accuracy in both delayed matching/non-matching to position task, while fluoxetine affected neither. Thus, the findings suggest that partial 5-HT(1A) receptor activation compromises cognitive function to a greater extent than full 5-HT(1A) receptor activation, although a dopaminergic component cannot be excluded since buspirone possesses some dopamine D2 receptor antagonist activity. Furthermore, it suggests that there is a differential role for 5-HT in these two closely related behavioural tasks.
Collapse
Affiliation(s)
- David M Pache
- Neuropharmacology, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cathays Park, Wales CF10 3XF, Cardiff, UK
| | | | | |
Collapse
|
20
|
Meneses A. A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory. Learn Mem 2003; 10:363-72. [PMID: 14557609 PMCID: PMC218002 DOI: 10.1101/lm.60503] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation.
Collapse
Affiliation(s)
- Alfredo Meneses
- Depto De Farmacobiología, CINVESTAV-IPN, México City 14330, México.
| |
Collapse
|
21
|
Lelong V, Lhonneur L, Dauphin F, Boulouard M. BIMU 1 and RS 67333, two 5-HT4 receptor agonists, modulate spontaneous alternation deficits induced by scopolamine in the mouse. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2003; 367:621-8. [PMID: 12736770 DOI: 10.1007/s00210-003-0743-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Accepted: 03/06/2003] [Indexed: 01/29/2023]
Abstract
The present study was conducted to determine the effects of two potent 5-HT4 receptor agonists, BIMU 1 (1 (3-ethyl-2,3-dihydro-N-[endo-8-methyl-8-azabicyclo (3.2.1)-oct-3-yl]-2-oxo-1H) benzimidazole-1-carboxamide hydrochloride; 1, 3, 10 mg/kg, i.p.) and RS 67333 (1-(4-amino-5-chloro-2-methoxyphenyl)-3-(1-n-butyl-4-piperidinyl)-1-propanone; 0.25, 0.5, 1 mg/kg, i.p.) on the learning impairment induced by the muscarinic acetylcholine receptor antagonist, scopolamine (1 mg/kg) in mice. Working memory was examined by observing spontaneous alternation behavior in the Y-maze test. Both BIMU 1 (10 mg/kg) and RS 67333 (1 mg/kg) prevented the scopolamine-induced alternation deficits, whereas no effect could be evidenced on locomotor or emotional indices. The reversal actions of BIMU 1 and RS 67333 on this cognitive dysfunction were abolished by the selective 5-HT4 receptor antagonist GR 125487 (1-[2-[(methyl sulfonyl)-amino]-ethyl]-4-piperidinyl-methyl-5-fluoro-2-methoxy-1H-indole-3-carboxylate; 10 mg/kg, i.p.). When given alone at the same doses, none of the three serotonergic agents had any measurable effect. These results demonstrate the ability of 5-HT4 receptor agonists to reverse spontaneous working memory deficits and further confirm the therapeutic potential of such ligands in the treatment of cognitive alterations that associate short-term working memory disorders and cholinergic hypofunction.
Collapse
Affiliation(s)
- Véronique Lelong
- Laboratoire de Pharmacologie, Centre d'Etudes et de Recherche sur le Médicament de Normandie, UFR des Sciences Pharmaceutiques, Université de Caen, 1 rue Vaubénard, 14032 Caen, France
| | | | | | | |
Collapse
|
22
|
Loubinoux I, Pariente J, Rascol O, Celsis P, Chollet F. Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice. A double-blind, placebo-controlled, multi-dose study in healthy subjects. Neuropsychologia 2002; 40:1815-21. [PMID: 12062893 DOI: 10.1016/s0028-3932(02)00030-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We hypothesized that selective serotonin reuptake inhibitors (SSRIs) could modulate motor activity in healthy subjects in a dose-dependent manner. The effects of a single dose of paroxetine were tested in a double-blind, placebo-controlled study. Six randomized and counterbalanced subjects performed behavioral tests in three sessions 1 week apart (E1, E2 and E3) at peak plasma concentration (5 h after drug intake). Each subject was given 20 mg or 60 mg of the drug, or a placebo. Tasks were the Nine Peg Hole test (three trials), Moede dexteritymeter (two trials), and compatible and incompatible reaction time tasks. The results show that at the first trials, performance did not differ after placebo or paroxetine intake. However, 20 and 60 mg of paroxetine improved performance significantly at the third trial of the Nine Peg Hole test and subjects receiving the drug performed 7% faster than those under placebo. An amount of 20 mg, but not 60 mg, of paroxetine improved dexterity significantly at the second trial of the Moede test and subjects performed 30% faster. Conversely, the drug did not affect reaction time for the compatible task and subjects were 11% slower under 20 mg with the incompatible task. Thus, paroxetine decreased the ability to inhibit automatism. Thus, it was concluded that a single dose of paroxetine improved motor performance through practice. But negative effects occurred on tasks including the inhibition of an automatism. Paroxetine enhanced brain motor output (motor activity in S1M1) [NeuroImage, 15 (2002) 26]. This S1M1 hyperactivation is likely to be responsible for the better performance. The brain effect and motor improvement were dose dependent. For both, 20 mg was the optimal dose.
Collapse
|
23
|
Wilson MS, Hamm RJ. Effects of fluoxetine on the 5-HT1A receptor and recovery of cognitive function after traumatic brain injury in rats. Am J Phys Med Rehabil 2002; 81:364-72. [PMID: 11964577 DOI: 10.1097/00002060-200205000-00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study examined the effects of chronic administration of fluoxetine, a selective serotonin reuptake inhibitor, on cognitive performance and 5-HT1A receptor immunoreactivity following traumatic brain injury. DESIGN Rats received a moderate severity of lateral fluid percussive injury or sham injury 24 hr after surgical preparation. Fluoxetine or vehicle was administered chronically on postinjury days 1-15. Motor performance and Morris water maze performance were assessed on postinjury days 1-5 and 11-15, respectively. RESULTS Results indicated that chronic fluoxetine treatment did not affect motor or maze performance. Injured groups showed significantly higher 5-HT1A receptor immunoreactivity on postinjury day 15 than sham-injured rats, and fluoxetine treatment did not alter 5-HT1A receptor immunoreactivity. CONCLUSIONS These results indicate that chronic postinjury fluoxetine administration did not influence the recovery of motor or Morris water maze performance following lateral fluid percussive injury. They also indicate that injury-induced changes in the 5-HT1A receptor may contribute to traumatic brain injury-induced cognitive deficits.
Collapse
Affiliation(s)
- Margaret S Wilson
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia 23284-2018, USA
| | | |
Collapse
|
24
|
Meneses A. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task. Neurosci Biobehav Rev 2002; 26:309-19. [PMID: 12034133 DOI: 10.1016/s0149-7634(02)00005-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the emerging notion that 5-HT plays a key role on memory formation.
Collapse
Affiliation(s)
- Alfredo Meneses
- Departamento de Farmacobiología, CINVESTAV-IPN, Apdo Postal 22026, Mexico City 14000, Mexico.
| |
Collapse
|
25
|
Majlessi N, Naghdi N. Impaired spatial learning in the Morris water maze induced by serotonin reuptake inhibitors in rats. Behav Pharmacol 2002; 13:237-42. [PMID: 12122314 DOI: 10.1097/00008877-200205000-00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of selective serotonin reuptake inhibitors citalopram and fluoxetine on spatial learning were assessed in rats. Adult male rats were subjected to 4 days of training in the Morris water maze with the invisible platform. Animals received different doses of citalopram (1-8 mg/kg; i.p.) or fluoxetine (1-16 mg/kg; i.p.) or their vehicles (saline or distilled water respectively) 30 minutes before training each day. The results showed that citalopram at doses of 4 and 8 mg/kg and fluoxetine at doses of 8 and 16 mg/kg significantly increased latencies to find the platform and traveled distances compared to the control group. Therefore, it appears that selective serotonin reuptake inhibitors can cause learning deficits in complex spatial tasks such as Morris water maze.
Collapse
Affiliation(s)
- N Majlessi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| | | |
Collapse
|
26
|
Hsueh CM, Chen SF, Lin RJ, Chao HJ. Cholinergic and serotonergic activities are required in triggering conditioned NK cell response. J Neuroimmunol 2002; 123:102-11. [PMID: 11880155 DOI: 10.1016/s0165-5728(01)00488-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of the study was to examine the importance of the cholinergic system in triggering the conditioned NK cell response. The fact that serotonergic system can modulate cholinergic functions suggested that it might be involved in conditioned NK cell response. To evaluate the potential pathways, cholinergic and serotonergic antagonists were applied centrally at either the conditioned association or recall stage, to interfere with the conditioned NK cell response. The results showed that both the cholinergic and serotonergic systems were necessary for eliciting the conditioned enhancement of NK cell activity. Involvements of the two systems were found to be critical for establishing the conditioned association and recall of the conditioned response. The blocks are believed to be receptor mediated. The receptors identified to be involved in the regulation of the conditioned NK cell response were: M(1), M(2) and M(3) muscarinic; nicotinic; 5 HT(1) and 5 HT(2) receptors.
Collapse
Affiliation(s)
- Chi Mei Hsueh
- Department of Zoology, National Chung-Hsing University, 40227, Taichung, Taiwan.
| | | | | | | |
Collapse
|
27
|
Pariente J, Loubinoux I, Carel C, Albucher JF, Leger A, Manelfe C, Rascol O, Chollet F. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann Neurol 2001; 50:718-29. [PMID: 11761469 DOI: 10.1002/ana.1257] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to determine the influence of a single dose of fluoxetine on the cerebral motor activation of lacunar stroke patients in the early phase of recovery, we conducted a prospective, double-blind, crossover, placebo-controlled study on 8 patients with pure motor hemiparesia. Each patient underwent two functional magnetic resonance imaging (fMRI) examinations: one under fluoxetine and one under placebo. The first was performed 2 weeks after stroke onset and the second a week later. During the two fMRI examinations, patients performed an active controlled motor task with the affected hand and a passive one conducted by the examiner with the same hand. Motor performance was evaluated by motor tests under placebo and under fluoxetine immediately before the examinations to investigate the effect of fluoxetine on motor function. Under fluoxetine, during the active motor task, hyperactivation in the ipsilesional primary motor cortex was found. Moreover, fluoxetine significantly improved motor skills of the affected side. We found that a single dose of fluoxetine was enough to modulate cerebral sensory-motor activation in patients. This redistribution of activation toward the motor cortex output activation was associated with an enhancement of motor performance.
Collapse
Affiliation(s)
- J Pariente
- Institut national de la santé et de la recherche médicale, unit U455, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Khalifa AE. Hypericum perforatum as a nootropic drug: enhancement of retrieval memory of a passive avoidance conditioning paradigm in mice. JOURNAL OF ETHNOPHARMACOLOGY 2001; 76:49-57. [PMID: 11378281 DOI: 10.1016/s0378-8741(01)00210-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Depression, among other non-cognitive symptoms, is common in patients with dementia. The effect of Hypericum perforatum (St. John's Wort) extract, with well-documented antidepressant activity, was tested on memory retrieval 24 h after training on a one-trial passive avoidance task in mice. Acute administration of Hypericum extract (4.0, 8.0, 12.0, and 25.0 mg/kg i.p.) before retrieval testing increased the step-down latency during the test session. The same doses of Hypericum extract, on the other hand, failed to reverse scopolamine-induced amnesia of a two-trial passive avoidance task. The involvement of serotonergic, adrenergic, and dopaminergic mechanisms in the facilitatory effect of Hypericum extract on retrieval memory was investigated. Pretreatment of the animals with serotonergic 5-HT1A receptor antagonist (-)-pindolol (0.3, 1.0, and 3.0 mg/kg), serotonergic 5-HT2A receptor blocker spiperone (0.01, 0.03, and 0.1 mg/kg), alpha adrenoceptor antagonist phentolamine (1, 5, and 10 mg/kg), beta receptor antagonist propranolol (5, 7.5, and 10 mg/kg), dopaminergic D1 receptor antagonist SCH 23390 (0.01, 0.05, and 0.1 mg/kg), and dopaminergic D2 receptor antagonist sulpiride (5, 7.5, and 10 mg/kg) revealed the involvement of adrenergic and serotonergic 5-HT1A receptors in the facilitatory effect of Hypericum extract on retrieval memory. It is concluded that Hypericum extract may be a better alternative for treatment of depression commonly associated with dementia than other antidepressants known to have anticholinergic side effects causing delirium, sedation and even exacerbating already existing impaired cognition. In dementias of old age, Hypericum perforatum would, therefore, serve as one medication targeting both depression and amnesia with lower potential side effects.
Collapse
Affiliation(s)
- A E Khalifa
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
29
|
Abstract
Diverse evidence indicates that, the 5-HT system might play a role in learning and memory, since it occurs in brain areas mediating such processes and 5-HT drugs modulate them. Hence in this work, in order to explore further 5-HT involvement on learning and memory 5-HT1B receptors' role is investigated. Evidence indicates that SB-224289 (a 5-HT1B receptor inverse agonist) post-training injection facilitated learning consolidation in an associative autoshaping learning task, this effect was partially reversed by GR 127935 (a 5-HT1B/1D receptor antagonist), but unaffected by MDL 100907 (a 5-HT2A receptor antagonist) or ketanserin (a 5-HT1D/2A/7 receptor antagonist) at low doses. Moreover, SB-224289 antagonized the learning deficit produced by TFMPP (a 5-HT1A/1B/1D/2A/2C receptor agonist), GR 46611 (a 5-HT1A/1B/1D receptor agonist), mCPP (a 5-HT2A/2C/3/7 receptor agonist/antagonist) or GR 127935 (at low dose). SB-224289 did not alter the 8-OH-DPAT (a 5-HT1A/7 receptor agonist) learning facilitatory effect. SB-224289 eliminated the deficit learning produced by the anticholinergic muscarinic scopolamine or the glutamatergic antagonist dizocilpine. Administration of both, GR 127935 (5mg/kg) plus ketanserin (0.01 mg/kg) did not modify learning consolidation; nevertheless, when ketanserin dose was increased (0.1-1.0mg/kg) and SB-224289 dose was maintained constant, a learning facilitation effect was observed. Notably, SB-224289 at 1.0mg/kg potentiated a subeffective dose of the 5-HT1B/1D receptor agonist/antagonist mixed GR 127935, which facilitated learning consolidation and this effect was abolished by ketanserin at a higher dose. Collectively, the data confirm and extend the earlier findings with GR 127935 and the effects of non-selective 5-HT(1B) receptor agonists. Clearly 5-HT1B agonists induced a learning deficit which can be reversed with SB-224289. Perhaps more importantly, SB-224289 enhances learning consolidation when given alone and can reverse the deficits induced by both cholinergic and glutamatergic antagonist. Hence, 5-HT1B receptor inverse agonists or antagonists could represent drugs for the treatment of learning and memory dysfunctions.
Collapse
Affiliation(s)
- A Meneses
- Depto. de Farmacobiología, CINVESTAV-IPN., AP 22026 14000, Mexico City,
| |
Collapse
|
30
|
Garpenstrand H, Annas P, Ekblom J, Oreland L, Fredrikson M. Human fear conditioning is related to dopaminergic and serotonergic biological markers. Behav Neurosci 2001. [DOI: 10.1037/0735-7044.115.2.358] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Galeotti N, Ghelardini C, Bartolini A. Role of 5-HT1A receptors in a mouse passive avoidance paradigm. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 84:418-24. [PMID: 11202614 DOI: 10.1254/jjp.84.418] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect on memory processes of modulation of 5-HT1A receptor subtype was investigated in the mouse passive avoidance test. The administration of 5-HT1A-receptor antagonists NAN-190 (1-(2-methoxyphenyl)-4-[4-2-phthalimmido)butyl]piperazine) and WAY-100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cyclohexanecarboxamide) produced a dose-dependent amnesic effect comparable to that obtained with the well-known amnesic agents scopolamine and dicyclomine. Pretreatment with the 5-HT1A-receptor agonists 8-OH-DPAT ((+/-)-8-hydroxy-dipropylaminotetralin) and 5-CT (5-carboxamidotryptamine) dose-dependently prevented the amnesia induced by 5-HT1A antagonists, scopolamine, dicyclomine and exposure to an hypoxic environment. The antiamnesic effect exerted by 5-HT1A-receptor agonists was comparable to that produced by the nootropic drug piracetam and cholinesterase inhibitor physostigmine. At effective doses, neither 5-HT1A-receptor agonists nor 5-HT1A-receptor antagonists produced any impairment of mouse motor coordination (rota-rod test), spontaneous motility (Animex apparatus) and inspection activity (hole board). These results indicate that modulation of 5-HT1A-receptors appears to play an important role in the regulation of cognitive processes.
Collapse
Affiliation(s)
- N Galeotti
- Department of Pharmacology, University of Florence, Italy
| | | | | |
Collapse
|
32
|
Abstract
An emerging concept of cortical network organization is that distinct segments of the pyramidal neuron tree are controlled by functionally diverse inhibitory microcircuits. We compared the expression of two serotonin receptor subtypes, the G-protein-coupled 5-hydroxytryptamine2A receptors and the ion-channel gating 5-HT3 receptors, in cortical neuron types, which control these microcircuits. Here we show, using light and electron microscopic immunocytochemical techniques, that 5-HT2A receptors are segregated from 5-HT3 receptors in the macaque cerebral cortex. 5-HT2A receptor immunolabel was found in pyramidal cells and also in GABAergic interneurons known to specialize in the perisomatic inhibition of pyramidal cells: large and medium-size parvalbumin- and calbindin-containing interneurons. In contrast, 5-HT3 label was only present in small GABA-, substance P receptor-, and calbindin-containing neurons and in medium-size calretinin-containing neurons: interneurons known to preferentially target the dendrites of pyramidal cells. This cellular segregation indicates a serotonin-receptor-specific segmentation of the GABAergic inhibitory actions along the pyramidal neuron tree.
Collapse
Affiliation(s)
- R L Jakab
- Section of Neurobiology, Yale University, School of Medicine, New Haven, CT 06520-8001, USA.
| | | |
Collapse
|
33
|
Abstract
The study of 5-hydroxytryptamine (5-HT) system has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT1 to 5-HT7). Growing evidence suggests that 5-HT is important in learning and memory and all its receptors might be implicated in this. Actually, 5-HT pathways, 5-HT reuptake site/transporter complex and 5-HT receptors show regional distribution in brain areas implicated in learning and memory. Likewise, the stimulation or blockade of presynaptic 5-HT1A, 5-HT1B, 5-HT(2A/2C) and 5-HT3 receptors, postsynaptic 5-HT(2B/2C) and 5-HT4 receptors and 5-HT uptake/transporter sites modulate these processes. Available evidence strongly suggests that the 5-HT system may be important in normal function, the treatment and/or pathogenesis of cognitive disorders. Further investigation will help to specify the 5-HT system nature involvement in cognitive processes, pharmacotherapies, their mechanisms and action sites and to determine under which conditions they could operate. In this regard, it is probable that selective drugs with agonists, neutral antagonist, agonists or inverse agonist properties for 5-HT1A, 5-HT(1B/1D), 5-HT(2A/2B/2C), 5-HT4 and 5-HT7 receptors could constitute a new therapeutic opportunity for learning and memory alterations.
Collapse
Affiliation(s)
- A Meneses
- Departamento de Farmacología y Toxicología, CINVESTAV-IPN, México D.F., Mexico.
| |
Collapse
|
34
|
Abstract
Thirty-seven children, aged between 2 and 7 years, with idiopathic autism underwent an open-label trial of fluoxetine treatment. All had assessment of diagnosis, developmental status, and family psychiatric history. Independent developmental testing before and after starting fluoxetine permitted quantification of language acquisition in a subgroup. Twenty-two of the 37 children had a beneficial treatment response sustained during continuing treatment for 13 to 33 months (mean 21 months). Eleven had an excellent response and were able to attend mainstream classrooms. Eleven had a good response though they remained identifiably autistic. Fifteen children had no benefit. Responders showed behavioral, language, cognitive, affective, and social improvements. Responders with adequate testing showed marked increases in language acquisition at every stage of development as compared with (1) pretreatment status, (2) responses to other treatments, (3) ability in non-language (matching) tasks, and (4) historical controls from the literature. The response to fluoxetine strongly correlated with a family history of major affective disorder. These preliminary findings implicate serotonergic mechanisms in autistic symptomatology and warrant further study with controlled trials.
Collapse
Affiliation(s)
- G R DeLong
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
35
|
|
36
|
Meneses A, Hong E. Spontaneously hypertensive rats: a potential model to identify drugs for treatment of learning disorders. Hypertension 1998; 31:968-72. [PMID: 9535422 DOI: 10.1161/01.hyp.31.4.968] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spontaneously hypertensive rats (SHR) of 3 to 12 months of age learned and retrieved less information than normotensive Wistar-Kyoto rats (WKY), although no difference was found with animals from 18 and 24 months of age. The combined influence of hypertension and aging had an additive detrimental effect on cognitive functions. Notwithstanding these deficiencies in learning and memory, SHR have seldom been used as a model in the screening of drugs with therapeutic potential for treatment of disorders of cognitive processes. Moreover, the calcium channel blocker nimodipine has beneficial effects on learning in both aged and hypertensive animals and humans. However, no attempt has been made to investigate whether nimodipine can reverse the additive deleterious effects of aging and hypertension in the same subject. We recently reported that deteriorated animals (middle-aged and/or hypertensive) chronically treated with nimodipine (via osmotic minipumps) exhibit higher learning scores. This information indicates that nimodipine can reverse the impairing effects of either aging or hypertension on learning; the presence of the two conditions, however, produces a severe impairment that can be partially reversed by this drug. Therefore, we propose that mature and middle-aged SHR represent a model for the screening of potentially useful drugs in the treatment of learning disorders, probably associated with hypertension and/or aging. Nevertheless, it must be remembered that the SHR is a genetic model and the appearance of neural disturbances could be a parallel genetic phenomenon and not necessarily or exclusively related to hypertension per se.
Collapse
Affiliation(s)
- A Meneses
- Departamento de Farmacología y Toxicología, CINVESTAV-IPN, Tepepan, México City
| | | |
Collapse
|
37
|
Meneses A, Terrón JA, Hong E. Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning. Behav Brain Res 1997; 89:217-23. [PMID: 9475628 DOI: 10.1016/s0166-4328(97)00055-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously reported that 5-HT1B/1D and 5-HT2A/2B/2C receptors play a role in learning and memory. The present investigation was devoted to analyze further in the autoshaping learning task: (1) the effects of the 5-HT1A/1B/1D receptor agonist, GR46611, the 5-HT1B/1D receptor antagonist, GR127935, and the selective 5-HT2A receptor antagonist, MDL100907. Consistent with a role of 5-HT1B/1D receptors in learning, the post-training injection of GR46611 (1-10 mg/kg) decreased the consolidation of learning whereas GR127935 (10 mg/kg) increased it; the effects of both drugs were reversed by PCA pretreatment. GR127935 abolished the decrease induced by GR46611, TFMPP and mCPP, whereas MDL100907 (0.1-3.0 mg/kg) had no effect by itself but abolished the effects of DOI, ketanserin and TFMPP and moderately inhibited the effects elicited by mCPP, 1-NP and mesulergine. Neither did GR127935 nor MDL100907 significantly modify the increase in the consolidation of learning induced by 8-OH-DPAT. Thus, the present findings suggest that stimulation of presynaptic 5-HT1B/1D receptors impairs the consolidation of learning whilst stimulation of 5-HT2A/2C receptors enhances it; the blockade of 5-HT2A receptors has no effects. In addition, 5-HT2 receptors seem to modulate this cognitive stage.
Collapse
Affiliation(s)
- A Meneses
- Departamento de Farmacología y Toxicología, CINVESTAV-IPN, México, D.F., México
| | | | | |
Collapse
|
38
|
Zhelyazkova-Savova M, Giovannini MG, Pepeu G. Increase of cortical acetylcholine release after systemic administration of chlorophenylpiperazine in the rat: an in vivo microdialysis study. Neurosci Lett 1997; 236:151-4. [PMID: 9406759 DOI: 10.1016/s0304-3940(97)00785-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The changes in acetylcholine (ACh) release from the cortex of freely moving rats after systemic administration of chlorophenylpiperazine (mCPP), a 5-HT2C agonist, were measured utilising microdialysis coupled to high performance liquid chromatography. mCPP administered intraperitoneally (i.p.) increased cortical ACh release, but failed to do so when applied locally in the cortex. The effect of i.p. administered mCPP on cortical ACh release was prevented by i.p. injection of mesulergine, a 5-HT2A/2C receptor antagonist, and isoteoline, a compound previously shown to antagonize behavioural effects of mCPP. An increase of cortical ACh release was also found after the local administration of mCPP in nucleus basalis magnocellularis (NBM). The results of the present work suggest that 5-HT2C receptors located in NBM are involved in the modulation of cortical ACh release in the rat.
Collapse
|
39
|
Nelson CJ, Jordan WP, Bohan RT. Daily fluoxetine administration impairs avoidance learning in the rat without altering sensory thresholds. Prog Neuropsychopharmacol Biol Psychiatry 1997; 21:1043-57. [PMID: 9380787 DOI: 10.1016/s0278-5846(97)00097-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Male rats given daily intraperitoneal injections of fluoxetine (10 mg/kg) were slower to escape foot shock by jumping a low barrier. 2. When switched to a shuttle task requiring two crosses to terminate shock, the FLU-treated animals failed to learn in 55 trials. 3. A second experiment found FLU-treated animals could learn a one-way avoidance response, but were significantly slower to learn than control animals. 4. FLU-treated animals were no different than controls on tests of sensory thresholds for foot shock or heat. 5. Tests of motor behaviors revealed no differences in latency to traverse a narrow beam to reach a goal box, however FLU-treated animals were less active in an open field. 6. Several hypotheses can account for these data, the most promising being that a central motivational system (fear) is less active in FLU-treated animals.
Collapse
Affiliation(s)
- C J Nelson
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, USA
| | | | | |
Collapse
|
40
|
Abstract
The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.
Collapse
Affiliation(s)
- A Meneses
- Depto. de Farmacología y Toxicología, CINVESTAV-IPN, México D.F., México
| | | |
Collapse
|
41
|
Meneses A, Terrón JA, Ibarra M, Hong E. Effects of nimodipine on learning in normotensive and spontaneously hypertensive rats. Behav Brain Res 1997; 85:121-5. [PMID: 9095346 DOI: 10.1016/s0166-4328(97)87580-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is well known that the calcium channel blocker, nimodipine, has beneficial effects on learning in either aged or hypertensive animals and humans. However, no attempts have been made to investigate if nimodipine can reverse the synergistic deleterious effects of aging and hypertension in the same subject. Therefore, this study investigated the effects of stable infusions of nimodipine in the autoshaping learning task using middle-aged normotensive (WKY) and hypertensive (SHR) rats. WKY and SHR of 12 months of age were implanted with osmotic minipumps releasing either vehicle or nimodipine (0.4 mg/kg/day). After 3 weeks of treatment, the animals received autoshaping training sessions during 4 consecutive days. The WKY animals treated with nimodipine exhibited the highest levels of learning during the last session, the rank order being WKY-nimodipine > SHR-nimodipine > WKY-vehicle > SHR-vehicle. These results confirm that nimodipine can reverse the impairing effects of either aging or hypertension on learning; the presence of both conditions, however, might produce more severe dysfunctional changes that cannot be totally reversed by nimodipine.
Collapse
Affiliation(s)
- A Meneses
- Departamento de Farmacología y Toxicología, Mexico, D.F., Mexico
| | | | | | | |
Collapse
|
42
|
Abstract
The serotonergic system appears to play a role in behaviors that involve a high cognitive demand and in memory improvement or recovery from impaired cognitive performance, as made evident after administration of serotonin 5-HT2A/5-HT2C or 5-HT4 receptor agonists or 5-HT1A or 5-HT3 receptor antagonists. These serotonin receptor subtypes are localized on 'cognitive' pathways, with the hippocampus and frontal cortex as the main target structures. A better understanding of the role played by these and other serotonin receptor subtypes in cognition is likely to result from the recent availability of new specific ligands and new molecular tools, such as gene knock-out and transgenic mice.
Collapse
Affiliation(s)
- M C Buhot
- Laboratoire de Neurosciences Comportementales et Cognitives, Centre National de la Recherche Scientifique (CNRS), URA 339, Universit-e Bordeaux I, Avenue des Facult-es, 33405, Talence Cedex, France.
| |
Collapse
|
43
|
Meneses A, Hong E. Role of 5-HT1AReceptors in Acquisition, Consolidation and Retrieval of Learning. CNS DRUG REVIEWS 1997. [DOI: 10.1111/j.1527-3458.1997.tb00317.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Abstract
In the present work, the effects of pre- or post-training (ip) injection of BIMU1 and BIMU8 (5-HT4 agonists) were figured out in the autoshaping learning task. Furthermore, the post-training effects of these agonists after treatment with SDZ 205-557 and GR 125487D (5-HT4 antagonists) or p-Chloroamphetamine (PCA) were also explored. Animals were individually trained in a lever-press response on the autoshaping task and 24 hours later were tested. The results showed that pre-training injection of BIMU1 (5 20 mg/Kg) or BIMU8 (20 mg/Kg) increased the CR; in contrast, the post-training administration of BIMU1 (10-20 mg/Kg) or BIMU8 (5 and 20 mg/Kg) decreased it. Further experiments revealed that the post-training injections of SDZ 205-557 (1.0-10.0 mg/Kg) or GR 125487D (0.39-1.56 mg/Kg) by themselves did not alter the CR. When BIMU1 or BIMU8 was administered to rats pretreated with SDZ 205-557 (10 mg/Kg) or GR 125487D (0.78 mg/Kg), the decrement induced by 5-HT4 the agonists was reversed; in contrast, the administration of PCA failed to modify the CR or the agonist-induced responses. The findings showed that the pre-training stimulation of 5-HT4 receptors enhanced the acquisition of CR, while, post-training activation of 5-HT4 receptors, impaired the consolidation of learning. The latter effect was not altered by PCA pretreatment. The data show that 5-HT4 receptors are involved in the acquisition and consolidation of learning. It seems that postsynaptic 5-HT4 receptors are involved in the latter effect.
Collapse
Affiliation(s)
- A Meneses
- Terapeutica Experimental Depto. de Farmacología y Toxicología, CINVESTAV-IPN, Tepepan, México D.F
| | | |
Collapse
|
45
|
Meneses A, Hong E. A pharmacological analysis of serotonergic receptors: effects of their activation of blockade in learning. Prog Neuropsychopharmacol Biol Psychiatry 1997; 21:273-96. [PMID: 9061774 DOI: 10.1016/s0278-5846(97)00002-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. The authors have tested several 5-HT selective agonists and antagonists (5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3 or 5-HT4), an uptake inhibitor and 5-HT depletors in the autoshaping learning task. 2. The present work deals with the receptors whose stimulation increases or decreases learning. 3. Impaired consolidation of learning was observed after the presynaptic activation of 5-HT1B, 5-HT3 or 5-HT4 or the blockade of postsynaptic 5-HT2C/2B receptors. 4. In contrast, an improvement occurred after the presynaptic activation of 5-HT1A, 5-HT2C, and the blockade of presynaptic 5-HT2A, 5-HT2C and 5-HT3 receptors. 5. The blockade of postsynaptic 5-HT1A, 5-HT1B, 5-HT3 or 5-HT4 receptors and 5-HT inhibition of synthesis and its depletion did no alter learning by themselves. 6. The present data suggest that multiple pre- and postsynaptic serotonergic receptors are involved in the consolidation of learning. 7. Stimulation of most 5-HT receptors increases learning, however, some of 5-HT subtypes seem to limit the data storage. 8. Furthermore, the role of 5-HT receptors in learning seem to require an interaction with glutamatergic, GABAergic and cholinergic neurotransmission systems.
Collapse
Affiliation(s)
- A Meneses
- Departamento de Farmacología y Toxicología, CINVESTAV-IPN Tepepan, México D.F., México
| | | |
Collapse
|
46
|
Inoue T, Hashimoto S, Tsuchiya K, Izumi T, Ohmori T, Koyama T. Effect of citalopram, a selective serotonin reuptake inhibitor, on the acquisition of conditioned freezing. Eur J Pharmacol 1996; 311:1-6. [PMID: 8884229 DOI: 10.1016/0014-2999(96)00391-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study examined the effects of the selective serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitor citalopram on the acquisition of conditioned freezing, an index of anxiety. Acute treatment with citalopram (1-10 mg/kg) dose dependently prevented the acquisition of conditioned freezing, while acute treatment with noradrenaline or dopamine reuptake inhibitors failed. The acute effect of citalopram was not antagonized by the 5-HT1A receptor antagonist NAN190, 1-(2-methoxyphenyl)-4-[4-(2-phthalimmido)butyl]piperazine or the 5-HT2A/2C receptor antagonist ICI169,369, 2-(2-dimethylaminoethylthio)-3-phenylquinoline hydrochloride. These results indicate that selective 5-HT reuptake inhibitors reduce not only the expression of conditioned freezing as reported previously, but also the acquisition of conditioned freezing. Both these effects of selective 5-HT reuptake inhibitors may be related to their clinical efficacy in the treatment of anxiety disorders.
Collapse
Affiliation(s)
- T Inoue
- Department of Psychiatry, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Meneses A, Castillo C, Ibarra M, Hong E. Effects of aging and hypertension on learning, memory, and activity in rats. Physiol Behav 1996. [DOI: 10.1016/s0031-9384(96)80002-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|