1
|
Halai P, Kiss O, Wang R, Chien AL, Kang S, O'Connor C, Bell M, Griffiths CEM, Watson REB, Langton AK. Retinoids in the treatment of photoageing: A histological study of topical retinoid efficacy in black skin. J Eur Acad Dermatol Venereol 2024; 38:1618-1627. [PMID: 38682699 DOI: 10.1111/jdv.20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Photoageing describes complex cutaneous changes that occur due to chronic exposure to solar ultraviolet radiation (UVR). The 'gold standard' for the treatment of photoaged white skin is all-trans retinoic acid (ATRA); however, cosmetic retinol (ROL) has also proven efficacious. Recent work has identified that black skin is susceptible to photoageing, characterized by disintegration of fibrillin-rich microfibrils (FRMs) at the dermal-epidermal junction (DEJ). However, the impact of topical retinoids for repair of black skin has not been well investigated. OBJECTIVES To determine the potential of retinoids to repair photoaged black skin. METHODS An exploratory intervention study was performed using an in vivo, short-term patch test protocol. Healthy but photoaged black volunteers (>45 years) were recruited to the study, and participant extensor forearms were occluded with either 0.025% ATRA (n = 6; 4-day application due to irritancy) or ROL (12-day treatment protocol for a cosmetic) at concentrations of 0.3% (n = 6) or 1% (n = 6). Punch biopsies from occluded but untreated control sites and retinoid-treated sites were processed for histological analyses of epidermal characteristics, melanin distribution and dermal remodelling. RESULTS Treatment with ATRA and ROL induced significant acanthosis (all p < 0.001) accompanied by a significant increase in keratinocyte proliferation (Ki67; all p < 0.01), dispersal of epidermal melanin and restoration of the FRMs at the DEJ (all p < 0.01), compared to untreated control. CONCLUSIONS This study confirms that topical ATRA has utility for the repair of photoaged black skin and that ROL induces comparable effects on epidermal and dermal remodelling, albeit over a longer timeframe. The effects of topical retinoids on black photoaged skin are similar to those reported for white photoaged skin and suggest conserved biology in relation to repair of UVR-induced damage. Further investigation of topical retinoid efficacy in daily use is warranted for black skin.
Collapse
Affiliation(s)
- P Halai
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - O Kiss
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C O'Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - M Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - A K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
2
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Ifediba M, Baetz N, Lambert L, Benzon H, Page V, Anderson N, Roth S, Miess J, Nicolosi I, Beck S, Sopko N, Garrett C. Characterization of heterogeneous skin constructs for full thickness skin regeneration in murine wound models. Tissue Cell 2024; 88:102403. [PMID: 38728948 DOI: 10.1016/j.tice.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
An autologous heterogeneous skin construct (AHSC) has been developed and used clinically as an alternative to traditional skin grafting techniques for treatment of cutaneous defects. AHSC is manufactured from a small piece of healthy skin in a manner that preserves endogenous regenerative cellular populations. To date however, specific cellular and non-cellular contributions of AHSC to the epidermal and dermal layers of closed wounds have not been well characterized given limited clinical opportunity for graft biopsy following wound closure. To address this limitation, a three-part mouse full-thickness excisional wound model was developed for histologic and macroscopic graft tracing. First, fluorescent mouse-derived AHSC (mHSC) was allografted onto non-fluorescent recipient mice to enable macroscopic and histologic time course evaluation of wound closure. Next, mHSC-derived from haired pigmented mice was allografted onto gender- and major histocompatibility complex (MHC)-mismatched athymic nude mouse recipients. Resulting grafts were distinguished from recipient murine skin via immunohistochemistry. Finally, human-derived AHSC (hHSC) was xenografted onto athymic nude mice to evaluate engraftment and hHSC contribution to wound closure. Experiments demonstrated that mHSC and hHSC facilitated wound closure through production of viable, proliferative cellular material and promoted full-thickness skin regeneration, including hair follicles and glands in dermal compartments. This combined macroscopic and histologic approach to tracing AHSC-treated wounds from engraftment to closure enabled robust profiling of regenerated architecture and further understanding of processes underlying AHSC mechanism of action. These models may be applied to a variety of wound care investigations, including those requiring longitudinal assessments of healing and targeted identification of donor and recipient tissue contributions.
Collapse
Affiliation(s)
- Marytheresa Ifediba
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicholas Baetz
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Lyssa Lambert
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Haley Benzon
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Vonda Page
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Nicole Anderson
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Stephanie Roth
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - James Miess
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Ian Nicolosi
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| | - Sarah Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nikolai Sopko
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA.
| | - Caroline Garrett
- Department of Research and Development, PolarityTE MD, Inc. Salt Lake City, UT 84104, USA
| |
Collapse
|
4
|
Oh DY, Kim SJ, Jang YJ, Park EJ, Kim KJ, Kim KH. Immunohistochemical evaluation of keratins and involucrin in differentiating between palmoplantar pustulosis and pompholyx. Int J Dermatol 2024; 63:780-786. [PMID: 38214207 DOI: 10.1111/ijd.17018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Palmoplantar pustulosis (PPP) and pompholyx are chronic diseases characterized by pustules and vesicles on the palms and soles. These disorders often have similar clinicopathological features, which lead to diagnostic difficulties. We aimed to investigate the expression patterns of keratins and involucrin in PPP and pompholyx using immunohistochemical staining. METHODS Skin biopsies from patients with PPP (n = 40) and pompholyx (n = 22) were immunohistochemically analyzed for Keratin 5, 9, 14, and involucrin expression. RESULTS K5 expression was higher in PPP than in pompholyx, with diffusely positive expression in the basal, spinous, and granular layers. K14 expression did not differ between groups. K9 expression was observed near the pompholyx vesicle (P = 0.014) and stratum spinosum (P < 0.001) but was almost absent around PPP pustules. Involucrin expression was diffused around the PPP pustules and partially around the pompholyx vesicles, but without statistical significance (P = 0.123). Involucrin expression was elevated in the basal layer of the PPP compared with that in the pompholyx (P = 0.023). CONCLUSION PPP and pompholyx exhibited distinctive differentiation in the expression of K5, K9, and involucrin.
Collapse
Affiliation(s)
- Dong Y Oh
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Seong J Kim
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Ye J Jang
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Eun J Park
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Kwang J Kim
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Kwang H Kim
- Department of Dermatology, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
5
|
Rice G, Farrelly O, Huang S, Kuri P, Curtis E, Ohman L, Li N, Lengner C, Lee V, Rompolas P. Sox9 marks limbal stem cells and is required for asymmetric cell fate switch in the corneal epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588195. [PMID: 38645161 PMCID: PMC11030424 DOI: 10.1101/2024.04.08.588195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Adult tissues with high cellular turnover require a balance between stem cell renewal and differentiation, yet the mechanisms underlying this equilibrium are unclear. The cornea exhibits a polarized lateral flow of progenitors from the peripheral stem cell niche to the center; attributed to differences in cellular fate. To identify genes that are critical for regulating the asymmetric fates of limbal stem cells and their transient amplified progeny in the central cornea, we utilized an in vivo cell cycle reporter to isolate proliferating basal cells across the anterior ocular surface epithelium and performed single-cell transcriptional analysis. This strategy greatly increased the resolution and revealed distinct basal cell identities with unique expression profiles of structural genes and transcription factors. We focused on Sox9; a transcription factor implicated in stem cell regulation across various organs. Sox9 was found to be differentially expressed between limbal stem cells and their progeny in the central corneal. Lineage tracing analysis confirmed that Sox9 marks long-lived limbal stem cells and conditional deletion led to abnormal differentiation and squamous metaplasia in the central cornea. These data suggest a requirement for Sox9 for the switch to asymmetric fate and commitment toward differentiation, as transient cells exit the limbal niche. By inhibiting terminal differentiation of corneal progenitors and forcing them into perpetual symmetric divisions, we replicated the Sox9 loss-of-function phenotype. Our findings reveal an essential role for Sox9 for the spatial regulation of asymmetric fate in the corneal epithelium that is required to sustain tissue homeostasis.
Collapse
|
6
|
Abraham D, Lescoat A, Stratton R. Emerging diagnostic and therapeutic challenges for skin fibrosis in systemic sclerosis. Mol Aspects Med 2024; 96:101252. [PMID: 38325132 DOI: 10.1016/j.mam.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Systemic sclerosis (also called scleroderma, SSc) is a chronic autoimmune disorder characterized by excessive collagen deposition leading to skin fibrosis and various internal organ manifestations. The emergent diagnostics and therapeutic strategies for scleroderma focus on early detection and targeted interventions to improve patient outcomes and quality of life. Diagnostics for SSc have evolved significantly in recent years, driven by advancements in serological markers and imaging techniques. Autoantibody profiling, especially antinuclear antibodies (ANA) and specific scleroderma-associated autoantibodies, aids in identifying subsets of scleroderma and predicting disease progression. Furthermore, novel imaging modalities, such as high-frequency ultrasonography and optical coherence tomography, enable early detection of skin fibrosis and internal organ involvement, enhancing the diagnostic precision and allowing for tailored management. Therapeutic strategies for SSc are multifaceted, targeting immune dysregulation, vascular abnormalities, and fibrotic processes. Emerging biologic agents have shown promise in clinical trials, including monoclonal antibodies directed against key cytokines involved in fibrosis, such as transforming growth factor-β (TGF-β) and interleukin-6 (IL-6). Additionally, small-molecule inhibitors that disrupt fibrotic pathways, like tyrosine kinase inhibitors, have exhibited potential in limiting collagen deposition and preventing disease progression. Stem cell therapy, cell ablation and gene editing techniques hold great potential in regenerating damaged tissue and halting fibrotic processes. Early intervention remains crucial in managing SSc, as irreversible tissue damage often occurs in advanced stages. Novel diagnostic methods, such as biomarkers and gene expression profiling, are being explored to identify individuals at high risk for developing progressive severe disease and intervene proactively. Furthermore, patient-tailored therapeutic approaches, employing a combination of immunosuppressive agents and targeted anti-fibrotic therapies, are being investigated to improve treatment efficacy while minimizing adverse effects. The emergent diagnostics and therapeutic strategies in scleroderma are transforming the management of this challenging disease. Nevertheless, ongoing research and clinical trials are needed to optimize the efficacy and safety of these novel approaches in the complex and diverse spectrum of SSc manifestations.
Collapse
Affiliation(s)
- David Abraham
- UCL Centre for Rheumatology, Royal Free Hospital, UCL Division of Medicine, Department of Inflammation, London, UK
| | - Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - Richard Stratton
- UCL Centre for Rheumatology, Royal Free Hospital, UCL Division of Medicine, Department of Inflammation, London, UK.
| |
Collapse
|
7
|
Lee WH, Kim W. Self-assembled hyaluronic acid nanoparticles for the topical treatment of inflammatory skin diseases: Beyond drug carriers. J Control Release 2024; 366:114-127. [PMID: 38145664 DOI: 10.1016/j.jconrel.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
Inflammatory skin diseases represent a significant health concern, affecting approximately 20-25% of the global population. These conditions not only reduce an individual's quality of life but also impose a huge burden on both humanity and society. However, addressing these challenges is hindered by their chronic nature, insufficient therapeutic effectiveness, and the propensity for recurrence and adverse side effects. Hyaluronic acid (HA) has emerged as a potential solution to these barriers, owing to its excellent attributes such as biocompatibility, non-toxicity, and targeted drug delivery. However, its practical application has been limited because endogenous hyaluronidase (HYAL) rapidly degrades HA in inflamed skin thus reducing its ability to penetrate deep into the skin. Interestingly, recent research has expanded the role of self-assembled HA-nanoparticles (HA-NPs) beyond drug carriers; they are resistant to HYAL, thereby enabling deep skin penetration, and possess inherent anti-inflammatory properties. Moreover, these abilities can be fine-tuned depending on the conditions during particle synthesis. Additionally, their role as a drug delivery system holds potential for use as a multi-target drug or hybrid drug. In conclusion, this review aims to specifically introduce and highlight the emerging potential of HA-NPs as a topical treatment for inflammatory skin conditions.
Collapse
Affiliation(s)
- Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
8
|
Holthaus KB, Eckhart L. Development-Associated Genes of the Epidermal Differentiation Complex (EDC). J Dev Biol 2024; 12:4. [PMID: 38248869 PMCID: PMC10801484 DOI: 10.3390/jdb12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The epidermal differentiation complex (EDC) is a cluster of genes that encode protein components of the outermost layers of the epidermis in mammals, reptiles and birds. The development of the stratified epidermis from a single-layered ectoderm involves an embryo-specific superficial cell layer, the periderm. An additional layer, the subperiderm, develops in crocodilians and over scutate scales of birds. Here, we review the expression of EDC genes during embryonic development. Several EDC genes are expressed predominantly or exclusively in embryo-specific cell layers, whereas others are confined to the epidermal layers that are maintained in postnatal skin. The S100 fused-type proteins scaffoldin and trichohyalin are expressed in the avian and mammalian periderm, respectively. Scaffoldin forms the so-called periderm granules, which are histological markers of the periderm in birds. Epidermal differentiation cysteine-rich protein (EDCRP) and epidermal differentiation protein containing DPCC motifs (EDDM) are expressed in the avian subperiderm where they are supposed to undergo cross-linking via disulfide bonds. Furthermore, a histidine-rich epidermal differentiation protein and feather-type corneous beta-proteins, also known as beta-keratins, are expressed in the subperiderm. The accumulating evidence for roles of EDC genes in the development of the epidermis has implications on the evolutionary diversification of the skin in amniotes.
Collapse
Affiliation(s)
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Footner E, Firipis K, Liu E, Baker C, Foley P, Kapsa RMI, Pirogova E, O'Connell C, Quigley A. Layer-by-Layer Analysis of In Vitro Skin Models. ACS Biomater Sci Eng 2023; 9:5933-5952. [PMID: 37791888 DOI: 10.1021/acsbiomaterials.3c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.
Collapse
Affiliation(s)
- Elizabeth Footner
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Kate Firipis
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Emily Liu
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Chris Baker
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Peter Foley
- Department of Dermatology, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Skin Health Institute, Carlton, VIC 3053, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Cathal O'Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
10
|
Karras F, Bonsack M, Seifert S, Friedrich L, Kunz M. MEK inhibition induces expression of differentiation marker Keratin 10 in human keratinocytes. Pathol Res Pract 2023; 250:154788. [PMID: 37729782 DOI: 10.1016/j.prp.2023.154788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
BRAF mutant metastatic melanoma was regularly treated in the past with a BRAF inhibitor (BRAFi) alone or in combination with inhibitors of the mitogen-activated protein kinase kinase (MEKi), which is still a common treatment. This combination therapy strongly reduced the occurrence of keratoacanthomas and squamous cell carcinoma, which was frequently seen when BRAFi was used as monotherapy. Here we addressed the question whether MEK inhibition counteracts squamous cell carcinoma development in part by promoting keratinocyte differentiation. Exposure of human immortalized keratinocytes to different concentrations of MEKi revealed a significant increase in the expression of differentiation-associated keratins K10 and K1 as determined by qRT-PCR and immunofluorescence staining. Taken together, the present study suggests that in a combined treatment of melanoma with BRAFi/MEKi, MEKi reduces the incidence of squamous cell carcinomas by promoting keratinocyte differentiation under combined BRAFi/MEKi treatment in melanoma. This might open further treatment perspectives for skin cancer treatment.
Collapse
Affiliation(s)
- F Karras
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany; Institute of Pathology, University Hospital Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - M Bonsack
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - S Seifert
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - L Friedrich
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - M Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Zhang W, Hu S, Ke H, Bao Z, Liu H, Hu Z. Study of pathological processes of meibomian gland dysfunction by in vitro culture airlifting conditions. J Histotechnol 2023; 46:101-113. [PMID: 37216482 DOI: 10.1080/01478885.2023.2199370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/31/2023] [Indexed: 05/24/2023]
Abstract
Meibomian gland dysfunction (MGD) is a group of disorders linked by functional abnormalities of the meibomian glands. Current studies on MGD pathogenesis focus on meibomian gland cells, providing information on a single cell's response to experimental manipulation, and do not maintain the architecture of an intact meibomian gland acinus and the acinar epithelial cells' secretion state in vivo. In this study, rat meibomian gland explants were cultured by a Transwell chamber-assisted method under an air-liquid interface (airlift) in vitro for 96 h. Analyses for tissue viability, histology, biomarker expression, and lipid accumulation were performed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and TUNEL assays, hematoxylin and eosin (H&E) staining, immunofluorescence, Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), transmission electron microscopy (TEM), and western blotting (WB). MTT, TUNEL, and H&E staining indicated better tissue viability and morphology than the submerged conditions used in previous studies. Levels of MGD biomarkers, including keratin 1 (KRT1) and 14 (KRT14) and peroxisome proliferator-activated receptor-gamma (PPAR-γ), along with oxidative stress markers, including reactive oxygen species, malondialdehyde, and 4-hydroxy-2-nonenal, gradually increased over culture time. The MGD pathophysiological changes and biomarker expression of meibomian gland explants cultured under airlift conditions were similar to those reported by previous studies, indicating that abnormal acinar cell differentiation and glandular epithelial cell hyperkeratosis may contribute to obstructive MGD occurrence.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Shuxian Hu
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Hongqin Ke
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Zhengyilin Bao
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Hai Liu
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Zhulin Hu
- Department of Ophthalmology, Kunming Medical University, Kunming, China
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Ober-Reynolds B, Wang C, Ko JM, Rios EJ, Aasi SZ, Davis MM, Oro AE, Greenleaf WJ. Integrated single-cell chromatin and transcriptomic analyses of human scalp identify gene-regulatory programs and critical cell types for hair and skin diseases. Nat Genet 2023; 55:1288-1300. [PMID: 37500727 PMCID: PMC11190942 DOI: 10.1038/s41588-023-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Genome-wide association studies have identified many loci associated with hair and skin disease, but identification of causal variants requires deciphering of gene-regulatory networks in relevant cell types. We generated matched single-cell chromatin profiles and transcriptomes from scalp tissue from healthy controls and patients with alopecia areata, identifying diverse cell types of the hair follicle niche. By interrogating these datasets at multiple levels of cellular resolution, we infer 50-100% more enhancer-gene links than previous approaches and show that aggregate enhancer accessibility for highly regulated genes predicts expression. We use these gene-regulatory maps to prioritize cell types, genes and causal variants implicated in the pathobiology of androgenetic alopecia (AGA), eczema and other complex traits. AGA genome-wide association studies signals are enriched in dermal papilla regulatory regions, supporting the role of these cells as drivers of AGA pathogenesis. Finally, we train machine learning models to nominate single-nucleotide polymorphisms that affect gene expression through disruption of transcription factor binding, predicting candidate functional single-nucleotide polymorphism for AGA and eczema.
Collapse
Affiliation(s)
| | - Chen Wang
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Justin M Ko
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eon J Rios
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mark M Davis
- Institute of Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony E Oro
- Department of Dermatology, School of Medicine, Stanford University, Stanford, CA, USA
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
13
|
Vilela de Sousa I, Ferreira MJS, Bebiano LB, Simões S, Matos AF, Pereira RF, Granja PL. Skin models of cutaneous toxicity, transdermal transport and wound repair. BURNS & TRAUMA 2023; 11:tkad014. [PMID: 37520659 PMCID: PMC10382248 DOI: 10.1093/burnst/tkad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/09/2023] [Accepted: 03/02/2023] [Indexed: 08/01/2023]
Abstract
Skin is widely used as a drug delivery route due to its easy access and the possibility of using relatively painless methods for the administration of bioactive molecules. However, the barrier properties of the skin, along with its multilayer structure, impose severe restrictions on drug transport and bioavailability. Thus, bioengineered models aimed at emulating the skin have been developed not only for optimizing the transdermal transport of different drugs and testing the safety and toxicity of substances but also for understanding the biological processes behind skin wounds. Even though in vivo research is often preferred to study biological processes involving the skin, in vitro and ex vivo strategies have been gaining increasing relevance in recent years. Indeed, there is a noticeably increasing adoption of in vitro and ex vivo methods by internationally accepted guidelines. Furthermore, microfluidic organ-on-a-chip devices are nowadays emerging as valuable tools for functional and behavioural skin emulation. Challenges in miniaturization, automation and reliability still need to be addressed in order to create skin models that can predict skin behaviour in a robust, high-throughput manner, while being compliant with regulatory issues, standards and guidelines. In this review, skin models for transdermal transport, wound repair and cutaneous toxicity will be discussed with a focus on high-throughput strategies. Novel microfluidic strategies driven by advancements in microfabrication technologies will also be revised as a way to improve the efficiency of existing models, both in terms of complexity and throughput.
Collapse
Affiliation(s)
| | | | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
- ISEP - Instituto Superior de Engenharia do Porto, Universidade do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Sandra Simões
- iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Filipa Matos
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | | |
Collapse
|
14
|
Zhu JG, Xie P, Zheng MD, Meng Y, Wei ML, Liu Y, Liu TW, Gong DQ. Dynamic changes in protein concentrations of keratins in crop milk and related gene expression in pigeon crops during different incubation and chick rearing stages. Br Poult Sci 2023; 64:100-109. [PMID: 36069156 DOI: 10.1080/00071668.2022.2119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The objective of this study was to examine the keratin composition of crop milk, the variation of epithelial thickness and keratin (K) gene expression in samples from young pigeon during incubation and chick rearing.2. Crop milk was collected from 1-, 3- and 5-day-old squab crops for keratin content analysis. Results showed that K4 accounted for the highest proportion of all detected keratins.3. In total, 42 pairs of adult pigeons were allocated to seven groups according to different stages to collect crop samples. Gene expression studies showed that the K3 gene expression was maximised at rearing Day 15 (15) and R1 in males and females, respectively. K6a gene level was the greatest at R15 in females, whereas it peaked at incubation Day 4 (I4) in males. The K12, K13, K23 and K80 gene levels were inhibited at the peak period of crop milk formation in comparison with I4. In females, K cochleal expression peaked at I10, whereas it was the greatest at R25 in males. K4 and K14 gene expression was the highest at I10 in females, while K4 and K14 were minimised at I17 and R7 in males, respectively. Gene expressions of K5, K8, K19 and K20 in males and K19 in females were maximised at R1. The K5, K20 and K75 gene levels in females peaked at R7. K75 and K8 expressions in males and females reached a maximum value at R25 and I17, respectively.4. The epithelial thickness of male and female crops reached their greatest levels at R1 and had the highest correlation with K19.5. These results emphasised the importance of keratinisation in crop milk formation, and different keratins probably play various roles during this period. The K19 was probably a marker for pigeon crop epithelium development. The sex of the parent pigeon affected keratin gene expression profiles.
Collapse
Affiliation(s)
- J G Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - M D Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Y Meng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - M L Wei
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
| | - Y Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - T W Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Huaiyin, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Huaiyin, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
15
|
Lee WH, Rho JG, Yang Y, Lee S, Kweon S, Kim HM, Yoon J, Choi H, Lee E, Kim SH, You S, Song Y, Oh YS, Kim H, Han HS, Han JH, Jung M, Park YH, Choi YS, Han S, Lee J, Choi S, Kim JW, Park JH, Lee EK, Song WK, Kim E, Kim W. Hyaluronic Acid Nanoparticles as a Topical Agent for Treating Psoriasis. ACS NANO 2022; 16:20057-20074. [PMID: 36373736 DOI: 10.1021/acsnano.2c07843] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although conventional topical approaches for treating psoriasis have been offered as an alternative, there are still unmet medical needs such as low skin-penetrating efficacy and off-target adverse effects. A hyaluronic acid nanoparticle (HA-NP) formed by self-assembly of HA-hydrophobic moiety conjugates has been broadly studied as a nanocarrier for long-term and target-specific delivery of drugs, owing to their excellent physicochemical and biological characteristics. Here, we identify HA-NPs as topical therapeutics for treating psoriasis using in vivo skin penetration studies and psoriasis animal models. Transcutaneously administered HA-NPs were found to be accumulated and associated with pro-inflammatory macrophages in the inflamed dermis of a psoriasis mouse model. Importantly, HA-NP exerted potent therapeutic efficacy against psoriasis-like skin dermatitis in a size-dependent manner by suppressing innate immune responses and restoring skin barrier function without overt toxicity signs. The therapeutic efficacy of HA-NPs on psoriasis-like skin dermatitis was due to the outermost hydrophilic HA shell layer of HA-NPs, independent of the molecular weight of HA and hydrophobic moiety, and comparable with that of other conventional psoriasis therapeutics widely used in the clinical settings. Overall, HA-NPs have the potential as a topical nanomedicine for treating psoriasis effectively and safely.
Collapse
Affiliation(s)
- Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
- Pharmaceutical Institute, FromBIO, Suwon16681, Republic of Korea
| | - Yeyoung Yang
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Seulbi Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sohui Kweon
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Hyung-Mo Kim
- KIURI Research Center, Ajou University, Suwon16499, Republic of Korea
| | - Juhwan Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Hongseo Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Eunyoung Lee
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Su Ha Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sohee You
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Yujin Song
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Young Soo Oh
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Hwan Kim
- GIST Central Research Facilities, Bio Imaging Laboratory, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Hwa Seung Han
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung25451, Republic of Korea
| | - Ji Hye Han
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Myeongwoo Jung
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Young Hwan Park
- KIURI Research Center, Ajou University, Suwon16499, Republic of Korea
| | - Yang Seon Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Sukyoung Han
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Junho Lee
- Pharmaceutical Institute, FromBIO, Suwon16681, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, Chung-Ang University, Seoul06974, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul06591, Republic of Korea
| | - Woo Keun Song
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Eunha Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon16499, Republic of Korea
| |
Collapse
|
16
|
Yamaguchi H, Shen J, Little DR, Li M, Sozen S, Suzuki K, Mishina Y, Komatsu Y. Enhanced BMP signaling through ALK2 attenuates keratinocyte differentiation. Biochem Biophys Res Commun 2022; 629:101-105. [PMID: 36116371 DOI: 10.1016/j.bbrc.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
Accumulated studies have suggested that bone morphogenetic proteins (BMPs) are critical for skin development. However, it remains elusive how BMP signaling via ALK2 (aka ACVR1), one of the important BMP type I receptors, regulates keratinocyte differentiation. To address this question, we utilized a genetic system that enhances BMP signaling via ALK2 in an epidermis-specific manner in mice (hereafter ca-Alk2:K14-Cre). Ca-Alk2:K14-Cre mice displayed a sticky and hairless skin phenotype with a thinner epidermis incapable of differentiating. Although cellular proliferation and survival were comparable between wild-type and ca-Alk2:K14-Cre mice, skin differentiation was severely hampered in ca-Alk2:K14-Cre mice. To uncover the mechanism of altered keratinocyte differentiation, we performed a transcriptome analysis. As a result, we found that the expression levels of cell cycle inhibitor p21 were increased in ca-Alk2:K14-Cre mice. Our findings suggest that aberrant BMP signaling via ALK2 positively regulates p21 expression that attenuates keratinocyte differentiation, and further highlights the critical role of BMP signaling in skin development.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China.
| | - Danielle R Little
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Margaret Li
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Kinesiology, Rice University Wiess School of Natural Science, Houston, TX, 77005, USA
| | - Serra Sozen
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Department of Medicine, The Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Kentaro Suzuki
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; Graduate Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Cohen E, Johnson C, Redmond CJ, Nair RR, Coulombe PA. Revisiting the significance of keratin expression in complex epithelia. J Cell Sci 2022; 135:jcs260594. [PMID: 36285538 PMCID: PMC10658788 DOI: 10.1242/jcs.260594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 03/17/2023] Open
Abstract
A large group of keratin genes (n=54 in the human genome) code for intermediate filament (IF)-forming proteins and show differential regulation in epithelial cells and tissues. Keratin expression can be highly informative about the type of epithelial tissue, differentiation status of constituent cells and biological context (e.g. normal versus diseased settings). The foundational principles underlying the use of keratin expression to gain insight about epithelial cells and tissues primarily originated in pioneering studies conducted in the 1980s. The recent emergence of single cell transcriptomics provides an opportunity to revisit these principles and gain new insight into epithelial biology. Re-analysis of single-cell RNAseq data collected from human and mouse skin has confirmed long-held views regarding the quantitative importance and pairwise regulation of specific keratin genes in keratinocytes of surface epithelia. Furthermore, such analyses confirm and extend the notion that changes in keratin gene expression occur gradually as progenitor keratinocytes commit to and undergo differentiation, and challenge the prevailing assumption that specific keratin combinations reflect a mitotic versus a post-mitotic differentiating state. Our findings provide a blueprint for similar analyses in other tissues, and warrant a more nuanced approach in the use of keratin genes as biomarkers in epithelia.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine J. Redmond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Raji R. Nair
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierre A. Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Jung KL, Choi UY, Park A, Foo SS, Kim S, Lee SA, Jung JU. Single-cell analysis of Kaposi's sarcoma-associated herpesvirus infection in three-dimensional air-liquid interface culture model. PLoS Pathog 2022; 18:e1010775. [PMID: 35976902 PMCID: PMC9385030 DOI: 10.1371/journal.ppat.1010775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The oral cavity is the major site for transmission of Kaposi's sarcoma-associated herpesvirus (KSHV), but how KSHV establishes infection and replication in the oral epithelia remains unclear. Here, we report a KSHV spontaneous lytic replication model using fully differentiated, three-dimensional (3D) oral epithelial organoids at an air-liquid interface (ALI). This model revealed that KSHV infected the oral epithelia when the basal epithelial cells were exposed by damage. Unlike two-dimensional (2D) cell culture, 3D oral epithelial organoid ALI culture allowed high levels of spontaneous KSHV lytic replication, where lytically replicating cells were enriched at the superficial layer of epithelial organoid. Single cell RNA sequencing (scRNAseq) showed that KSHV infection induced drastic changes of host gene expression in infected as well as uninfected cells at the different epithelial layers, resulting in altered keratinocyte differentiation and cell death. Moreover, we identified a unique population of infected cells containing lytic gene expression at the KSHV K2-K5 gene locus and distinct host gene expression compared to latent or lytic infected cells. This study demonstrates an in vitro 3D epithelial organoid ALI culture model that recapitulates KSHV infection in the oral cavity, where KSHV undergoes the epithelial differentiation-dependent spontaneous lytic replication with a unique cell population carrying distinct viral gene expression.
Collapse
Affiliation(s)
- Kyle L. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Un Yung Choi
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Angela Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suan-Sin Foo
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Stephanie Kim
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shin-Ae Lee
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Cancer Biology and Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
19
|
Moran MC, Pope EM, Brewer MG, Beck LA. Supply Chain Disruptions During COVID Pandemic Uncover Differences in Keratinocyte Culture Media. JID INNOVATIONS 2022; 2:100151. [PMID: 36033647 PMCID: PMC9394092 DOI: 10.1016/j.xjidi.2022.100151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Various culture media are used to propagate keratinocytes (KCs) in vitro. The COVID-19 pandemic resulted in supply chain shortages necessitating substitutions to standard laboratory protocols, which resulted in many laboratories having to use culture media different from those they typically use. We screened available media on the KC line N/TERT2G and found that biological responses varied considerably across three culture media: KC serum-free media, KC growth medium 2, and defined media. We observed qualitative and quantitative differences in proliferation; KCs cultured in defined media had significantly lower proliferative capacity. KC differentiation was assessed by western blot for CLDN1, occludin, cytokeratin-10, and loricrin. Elevated expression of differentiation markers was observed in cells cultured in either KC growth medium 2 or defined media compared with those in cells cultured in KC serum-free media. KC barrier function was measured by transepithelial electrical resistance. KCs cultured in KC growth medium 2 and defined media developed significantly higher transepithelial electrical resistance than those cultured in KC serum-free media, and when treated with IL-4 and IL-13 or IL-17A, we observed variable responses. H&E staining on day 5 -post-differentiation showed greater epithelial thickness in KCs cultured in defined media and KC growth medium 2 than in those cultured in KC serum-free media. These findings show that the choice of culture media impacts the biological response of KCs in a manner that persists through differentiation in the same media.
Collapse
|
20
|
Lendahl U. 100 plus years of stem cell research-20 years of ISSCR. Stem Cell Reports 2022; 17:1248-1267. [PMID: 35705014 PMCID: PMC9213821 DOI: 10.1016/j.stemcr.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
The International Society for Stem Cell Research (ISSCR) celebrates its 20th anniversary in 2022. This review looks back at some of the key developments in stem cell research as well as the evolution of the ISSCR as part of that field. Important discoveries from stem cell research are described, and how the improved understanding of basic stem cell biology translates into new clinical therapies and insights into disease mechanisms is discussed. Finally, the birth and growth of ISSCR into a leading stem cell society and a respected voice for ethics, advocacy, education and policy in stem cell research are described.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
21
|
Impaired LEF1 Activation Accelerates iPSC-Derived Keratinocytes Differentiation in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2022; 23:ijms23105499. [PMID: 35628310 PMCID: PMC9141373 DOI: 10.3390/ijms23105499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a detrimental premature aging disease caused by a point mutation in the human LMNA gene. This mutation results in the abnormal accumulation of a truncated pre-lamin A protein called progerin. Among the drastically accelerated signs of aging in HGPS patients, severe skin phenotypes such as alopecia and sclerotic skins always develop with the disease progression. Here, we studied the HGPS molecular mechanisms focusing on early skin development by differentiating patient-derived induced pluripotent stem cells (iPSCs) to a keratinocyte lineage. Interestingly, HGPS iPSCs showed an accelerated commitment to the keratinocyte lineage than the normal control. To study potential signaling pathways that accelerated skin development in HGPS, we investigated the WNT pathway components during HGPS iPSCs-keratinocytes induction. Surprisingly, despite the unaffected β-catenin activity, the expression of a critical WNT transcription factor LEF1 was diminished from an early stage in HGPS iPSCs-keratinocytes differentiation. A chromatin immunoprecipitation (ChIP) experiment further revealed strong bindings of LEF1 to the early-stage epithelial developmental markers K8 and K18 and that the LEF1 silencing by siRNA down-regulates the K8/K18 transcription. During the iPSCs-keratinocytes differentiation, correction of HGPS mutation by Adenine base editing (ABE), while in a partial level, rescued the phenotypes for accelerated keratinocyte lineage-commitment. ABE also reduced the cell death in HGPS iPSCs-derived keratinocytes. These findings brought new insight into the molecular basis and therapeutic application for the skin abnormalities in HGPS.
Collapse
|
22
|
Savina A, Jaffredo T, Saldmann F, Faulkes CG, Moguelet P, Leroy C, Marmol DD, Codogno P, Foucher L, Zalc A, Viltard M, Friedlander G, Aractingi S, Fontaine RH. Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin. Aging (Albany NY) 2022; 14:3728-3756. [PMID: 35507806 PMCID: PMC9134947 DOI: 10.18632/aging.204054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Naked mole-rats (NMR) are subterranean rodents characterized by an unusual longevity coupled with an unexplained resistance to aging. In the present study, we performed extensive in situ analysis and single-cell RNA-sequencing comparing young and older animals. At variance with other species, NMR exhibited a striking stability of skin compartments and cell types, which remained stable over time without aging-associated changes. Remarkably, the number of stem cells was constant throughout aging. We found three classical cellular states defining a unique keratinocyte differentiation trajectory that were not altered after pseudo-temporal reconstruction. Epidermal gene expression did not change with aging either. Langerhans cell clusters were conserved, and only a higher basal stem cell expression of Igfbp3 was found in aged animals. In accordance, NMR skin healing closure was similar in young and older animals. Altogether, these results indicate that NMR skin is characterized by peculiar genetic and cellular features, different from those previously demonstrated for mice and humans. The remarkable stability of the aging NMR skin transcriptome likely reflects unaltered homeostasis and resilience.
Collapse
Affiliation(s)
| | - Thierry Jaffredo
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | | | - Chris G. Faulkes
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Philippe Moguelet
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christine Leroy
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | | | - Patrice Codogno
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | - Lucy Foucher
- Ecole Nationale Vétérinaire d'Alfort, Centre de Recherche Biomédicale, Maisons-Alfort, France
| | - Antoine Zalc
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Mélanie Viltard
- Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Gérard Friedlander
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | - Selim Aractingi
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Service de Dermatologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, France
| | | |
Collapse
|
23
|
Beck LA, Cork MJ, Amagai M, De Benedetto A, Kabashima K, Hamilton JD, Rossi AB. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID INNOVATIONS 2022; 2:100131. [PMID: 36059592 PMCID: PMC9428921 DOI: 10.1016/j.xjidi.2022.100131] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Skin barrier dysfunction, a defining feature of atopic dermatitis (AD), arises from multiple interacting systems. In AD, skin inflammation is caused by host-environment interactions involving keratinocytes as well as tissue-resident immune cells such as type 2 innate lymphoid cells, basophils, mast cells, and T helper type 2 cells, which produce type 2 cytokines, including IL-4, IL-5, IL-13, and IL-31. Type 2 inflammation broadly impacts the expression of genes relevant for barrier function, such as intracellular structural proteins, extracellular lipids, and junctional proteins, and enhances Staphylococcus aureus skin colonization. Systemic anti‒type 2 inflammation therapies may improve dysfunctional skin barrier in AD.
Collapse
Key Words
- AD, atopic dermatitis
- AMP, antimicrobial peptide
- CLDN, claudin
- FFA, free fatty acid
- ILC2, type 2 innate lymphoid cell
- Jaki, Jak inhibitor
- K, keratin
- KC, keratinocyte
- MMP, matrix metalloproteinase
- NMF, natural moisturizing factor
- PAR, protease-activated receptor
- PDE-4, phosphodiesterase-4
- SC, stratum corneum
- SG, stratum granulosum
- TCI, topical calcineurin inhibitor
- TCS, topical corticosteroid
- TEWL, transepidermal water loss
- TJ, tight junction
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor alpha
- TYK, tyrosine kinase
- Th, T helper
- ZO, zona occludens
- hBD, human β-defensin
Collapse
Affiliation(s)
- Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA,Correspondence: Lisa A. Beck, Department of Dermatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 697, Rochester, New York 14642, USA.
| | - Michael J. Cork
- Sheffield Dermatology Research, Department of Infection, Immunity and Cardiovascular Disease (IICD), The University of Sheffield, The Medical School, Sheffield, United Kingdom
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
24
|
Brewer MG, Monticelli SR, Moran MC, Miller BL, Beck LA, Ward BM. Conditions That Simulate the Environment of Atopic Dermatitis Enhance Susceptibility of Human Keratinocytes to Vaccinia Virus. Cells 2022; 11:1337. [PMID: 35456017 PMCID: PMC9025056 DOI: 10.3390/cells11081337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Individuals with underlying chronic skin conditions, notably atopic dermatitis (AD), are disproportionately affected by infections from members of the herpesviridae, papovaviridae, and poxviridae families. Many patients with AD experience recurrent, widespread cutaneous viral infections that can lead to viremia, serious organ complications, and even death. Little is known about how the type 2 inflammatory environment observed in the skin of AD patients impacts the susceptibility of epidermal cells (keratinocytes) to viral pathogens. Herein, we studied the susceptibility of keratinocytes to the prototypical poxvirus, vaccinia virus (VV)-the causative agent of eczema vaccinatum-under conditions that simulate the epidermal environment observed in AD. Treatment of keratinocytes with type 2 cytokines (IL-4 and -13) to simulate the inflammatory environment or a tight junction disrupting peptide to mirror the barrier disruption observed in AD patients, resulted in a differentiation-dependent increase in susceptibility to VV. Furthermore, pan JAK inhibition was able to diminish the VV susceptibility occurring in keratinocytes exposed to type 2 cytokines. We propose that in AD, the increased viral susceptibility of keratinocytes leads to enhanced virus production in the skin, which contributes to the rampant dissemination and pathology seen within patients.
Collapse
Affiliation(s)
- Matthew G. Brewer
- Department of Dermatology, University of Rochester, Rochester, NY 14642, USA; (B.L.M.); (L.A.B.)
| | - Stephanie R. Monticelli
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (S.R.M.); (M.C.M.)
| | - Mary C. Moran
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (S.R.M.); (M.C.M.)
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester, Rochester, NY 14642, USA; (B.L.M.); (L.A.B.)
| | - Lisa A. Beck
- Department of Dermatology, University of Rochester, Rochester, NY 14642, USA; (B.L.M.); (L.A.B.)
| | - Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (S.R.M.); (M.C.M.)
| |
Collapse
|
25
|
Shotokuseki Extract Promotes Keratinocyte Differentiation Even at a Low Calcium Concentration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The switch between keratinocyte proliferation and differentiation is regulated by extracellular calcium levels, requiring high concentrations (>1 mol/L) of extracellular calcium to induce differentiation. The Shotokuseki extract (SE) contains various ions such as calcium, but its effect on keratinocytes is unknown. This study focused on calcium-induced differentiation of keratinocytes and investigated the effects of simultaneous application of calcium and other ions on keratinocyte differentiation. The expression of differentiation markers increased when SE was added to a keratinocyte culture but not when only calcium was added at the same concentration present in SE. The calcium concentration in SE was found to be too low (0.01 mol/L) to induce differentiation of keratinocytes. In addition, the application of SE increased intracellular calcium concentration compared with calcium solution alone. Therefore, the induction of keratinocyte differentiation by SE is not calcium-dependent, or SE may alter the calcium sensitivity of keratinocytes. In our study, we found that simultaneous application of multiple ions and/or the application of trace ions may alter calcium sensitivity and the epidermal cell response. The function of ion transporters associated with these ions and the response of cells to ions depends largely on the balance among various ions and the function of trace ions.
Collapse
|
26
|
Ye H, Li X, Lin J, Yang P, Su M. CD98hc has a pivotal role in maintaining the immuno-barrier integrity of basal layer cells in esophageal epithelium. Cancer Cell Int 2022; 22:98. [PMID: 35193580 PMCID: PMC8864845 DOI: 10.1186/s12935-021-02399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The current study aims to find the linker between esophageal epithelial carcinogenesis and chronic inflammation and the origin of hyperproliferative cells in precancerous lesions of esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS Twenty one normal esophageal tissues from cadavers and 180 paired tissues from 60 surgical resected ESCC specimens were utilized for immunohistochemistry staining against CK14, CK6, CD98hc and Ki67. NE6 cell line was treated with H2O2 to mimic chronic inflammation microenvironment and TPA for malignant orientated transformation. Cell proliferation and CD98hc mRNA were assessed by CCK8 assay and RT-qPCR. RESULTS CD98hc expression was correlated with chronic inflammation severity, precancerous lesion stage, and epithelial cell proliferative activity. CD98hc expression and proliferation rate of NE6 were up regulated by low dose H2O2 treatment and long term TPA treatment. The proliferating cells in hyperplastic and dysplastic tissues could be divided into two patterns by the expression of CK14, CD98hc, CK6 and Ki67: CK14+CD98hc+CK6-Ki67- in basal cells with CK14-CD98hc-CK6+Ki67+ in proliferating cells and CK14+CD98hc+CK6+Ki67+ in both basal cells and proliferating cells. CONCLUSIONS Our study revealed that CD98hc was a marker of cells originated from basal cell in esophagus, ectopic expression of CD98hc in hyperplastic/dysplastic cells by chronic inflammation stimulation crippled the linkage between basal cell and basement membrane, sabotaged the integrity of the barrier in between lamina propria and epithelium, subsequentially initiate carcinogenesis.
Collapse
Affiliation(s)
- Hao Ye
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiang Li
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Jing Lin
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Peng Yang
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Min Su
- Institute of Clinical Pathology, Guangodng Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, No. 22 Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| |
Collapse
|
27
|
Hoober JK, Eggink LL. The Discovery and Function of Filaggrin. Int J Mol Sci 2022; 23:ijms23031455. [PMID: 35163390 PMCID: PMC8835998 DOI: 10.3390/ijms23031455] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Keratohyalin granules were discovered in the mid-19th century in cells that terminally differentiate to form the outer, cornified layer of the epidermis. The first indications of the composition of these structures emerged in the 1960s from a histochemical stain for histidine, followed by radioautographic evidence of a high incidence of histidine incorporation into newly synthesized proteins in cells containing the granules. Research during the next three decades revealed the structure and function of a major protein in these granules, which was initially called the ‘histidine-rich protein’. Steinert and Dale named the protein ‘filaggrin’ in 1981 because of its ability to aggregate keratin intermediate filaments. The human gene for the precursor, ‘profilaggrin,’ was reported in 1991 to encode 10, 11 or 12 nearly identical repeats. Remarkably, the mouse and rat genes encode up to 20 repeats. The lifetime of filaggrin is the time required for keratinocytes in the granular layer to move into the inner cornified layer. During this transition, filaggrin facilitates the collapse of corneocytes into ‘building blocks’ that become an impermeable surface barrier. The subsequent degradation of filaggrin is as remarkable as its synthesis, and the end-products aid in maintaining moisture in the cornified layer. It was apparent that ichthyosis vulgaris and atopic dermatitis were associated with the absence of this protein. McLean’s team in 2006 identified the cause of these diseases by discovering loss-of-function mutations in the profilaggrin gene, which led to dysfunction of the surface barrier. This story illustrates the complexity in maintaining a healthy, functional epidermis.
Collapse
|
28
|
Ho M, Thompson B, Fisk JN, Nebert DW, Bruford EA, Vasiliou V, Bunick CG. Update of the keratin gene family: evolution, tissue-specific expression patterns, and relevance to clinical disorders. Hum Genomics 2022; 16:1. [PMID: 34991727 PMCID: PMC8733776 DOI: 10.1186/s40246-021-00374-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Intermediate filament (IntFil) genes arose during early metazoan evolution, to provide mechanical support for plasma membranes contacting/interacting with other cells and the extracellular matrix. Keratin genes comprise the largest subset of IntFil genes. Whereas the first keratin gene appeared in sponge, and three genes in arthropods, more rapid increases in keratin genes occurred in lungfish and amphibian genomes, concomitant with land animal-sea animal divergence (~ 440 to 410 million years ago). Human, mouse and zebrafish genomes contain 18, 17 and 24 non-keratin IntFil genes, respectively. Human has 27 of 28 type I "acidic" keratin genes clustered at chromosome (Chr) 17q21.2, and all 26 type II "basic" keratin genes clustered at Chr 12q13.13. Mouse has 27 of 28 type I keratin genes clustered on Chr 11, and all 26 type II clustered on Chr 15. Zebrafish has 18 type I keratin genes scattered on five chromosomes, and 3 type II keratin genes on two chromosomes. Types I and II keratin clusters-reflecting evolutionary blooms of keratin genes along one chromosomal segment-are found in all land animal genomes examined, but not fishes; such rapid gene expansions likely reflect sudden requirements for many novel paralogous proteins having divergent functions to enhance species survival following sea-to-land transition. Using data from the Genotype-Tissue Expression (GTEx) project, tissue-specific keratin expression throughout the human body was reconstructed. Clustering of gene expression patterns revealed similarities in tissue-specific expression patterns for previously described "keratin pairs" (i.e., KRT1/KRT10, KRT8/KRT18, KRT5/KRT14, KRT6/KRT16 and KRT6/KRT17 proteins). The ClinVar database currently lists 26 human disease-causing variants within the various domains of keratin proteins.
Collapse
Affiliation(s)
- Minh Ho
- Department of Dermatology, Yale University, 333 Cedar St., LCI 501, PO Box 208059, New Haven, CT, 06520-8059, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Jeffrey Nicholas Fisk
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA
| | - Daniel W Nebert
- Departments of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, Cincinnati, OH, 45229, USA
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee (HGNC), EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Christopher G Bunick
- Department of Dermatology, Yale University, 333 Cedar St., LCI 501, PO Box 208059, New Haven, CT, 06520-8059, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
29
|
Liu LP, Zheng DX, Xu ZF, Zhou HC, Wang YC, Zhou H, Ge JY, Sako D, Li M, Akimoto K, Li YM, Zheng YW. Transcriptomic and Functional Evidence Show Similarities between Human Amniotic Epithelial Stem Cells and Keratinocytes. Cells 2021; 11:70. [PMID: 35011631 PMCID: PMC8750621 DOI: 10.3390/cells11010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023] Open
Abstract
Amniotic epithelial stem cells (AESCs) are considered as potential alternatives to keratinocytes (KCs) in tissue-engineered skin substitutes used for treating skin damage. However, their clinical application is limited since similarities and distinctions between AESCs and KCs remain unclear. Herein, a transcriptomics analysis and functional evaluation were used to understand the commonalities and differences between AESCs and KCs. RNA-sequencing revealed that AESCs are involved in multiple epidermis-associated biological processes shared by KCs and show more similarity to early stage immature KCs than to adult KCs. However, AESCs were observed to be heterogeneous, and some possessed hybrid mesenchymal and epithelial features distinct from KCs. A functional evaluation revealed that AESCs can phagocytose melanosomes transported by melanocytes in both 2D and 3D co-culture systems similar to KCs, which may help reconstitute pigmented skin. The overexpression of TP63 and activation of NOTCH signaling could promote AESC stemness and improve their differentiation features, respectively, bridging the gap between AESCs and KCs. These changes induced the convergence of AESC cell fate with KCs. In future, modified reprogramming strategies, such as the use of small molecules, may facilitate the further modulation human AESCs for use in skin regeneration.
Collapse
Affiliation(s)
- Li-Ping Liu
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
| | - Dong-Xu Zheng
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Zheng-Fang Xu
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hu-Cheng Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yun-Cong Wang
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hang Zhou
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Jian-Yun Ge
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Daisuke Sako
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Mi Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan;
| | - Yu-Mei Li
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; (L.-P.L.); (H.-C.Z.); (Y.-C.W.); (H.Z.); (M.L.)
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (D.-X.Z.); (J.-Y.G.); (D.S.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan
| |
Collapse
|
30
|
Paduano F, Colao E, Grillone T, Vismara MFM, Amato R, Nisticò S, Mignogna C, Dastoli S, Fabiani F, Zucco R, Trapasso F, Perrotti N, Iuliano R. A Familial Form of Epidermolysis Bullosa Simplex Associated with a Pathogenic Variant in KRT5. Genes (Basel) 2021; 12:genes12101503. [PMID: 34680898 PMCID: PMC8535670 DOI: 10.3390/genes12101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex is a disease that belongs to a group of genodermatoses characterised by the formation of superficial bullous lesions caused by minor mechanical trauma to the skin. The skin fragility observed in the EBS is mainly caused by pathogenic variants in the KRT5 and KRT14 genes that compromise the mechanical stability of epithelial cells. By performing DNA sequencing in a female patient with EBS, we found the pathogenic variant c.967G>A (p.Val323Met) in the KRT5 gene. This variant co-segregated with EBS in the family pedigree and was transmitted in an autosomal dominant inheritance manner. This is the first report showing a familial form of EBS due to this pathogenic variant.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (C.M.); (S.D.); (R.Z.)
- Tecnologica Research Institute and Marrelli Health, Biomedical Section, Stem Cells and Medical Genetics Units, 88900 Crotone, Italy
- Correspondence: (F.P.); (R.I.)
| | - Emma Colao
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
| | - Teresa Grillone
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
| | - Marco Flavio Michele Vismara
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
| | - Rosario Amato
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (C.M.); (S.D.); (R.Z.)
| | - Steven Nisticò
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (C.M.); (S.D.); (R.Z.)
| | - Chiara Mignogna
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (C.M.); (S.D.); (R.Z.)
| | - Stefano Dastoli
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (C.M.); (S.D.); (R.Z.)
| | - Fernanda Fabiani
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
| | - Rossella Zucco
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (C.M.); (S.D.); (R.Z.)
| | - Francesco Trapasso
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
- Department of Experimental and Clinical Medicine, Campus S. Venuta, University Magna Graecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (C.M.); (S.D.); (R.Z.)
| | - Rodolfo Iuliano
- Medical Genetics Unit, Mater Domini University Hospital, 88100 Catanzaro, Italy; (E.C.); (T.G.); (M.F.M.V.); (R.A.); (F.F.); (F.T.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.N.); (C.M.); (S.D.); (R.Z.)
- Correspondence: (F.P.); (R.I.)
| |
Collapse
|
31
|
Kaelin CB, McGowan KA, Barsh GS. Developmental genetics of color pattern establishment in cats. Nat Commun 2021; 12:5127. [PMID: 34493721 PMCID: PMC8423757 DOI: 10.1038/s41467-021-25348-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Intricate color patterns are a defining aspect of morphological diversity in the Felidae. We applied morphological and single-cell gene expression analysis to fetal skin of domestic cats to identify when, where, and how, during fetal development, felid color patterns are established. Early in development, we identify stripe-like alterations in epidermal thickness preceded by a gene expression pre-pattern. The secreted Wnt inhibitor encoded by Dickkopf 4 plays a central role in this process, and is mutated in cats with the Ticked pattern type. Our results bring molecular understanding to how the leopard got its spots, suggest that similar mechanisms underlie periodic color pattern and periodic hair follicle spacing, and identify targets for diverse pattern variation in other mammals.
Collapse
Affiliation(s)
- Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly A McGowan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
32
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
33
|
Lin Y, Zhang W, Li B, Wang G. Keratin 17 in psoriasis: Current understanding and future perspectives. Semin Cell Dev Biol 2021; 128:112-119. [PMID: 34229948 DOI: 10.1016/j.semcdb.2021.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
Keratin 17 (K17) is a multifaceted cytoskeletal protein that is not commonly expressed in the epidermis under normal physiological conditions. However, in psoriasis, K17 is overexpressed in the suprabasal layer of the epidermis and plays an important role in the pathogenesis of the disease. In this review, we have summarized our findings and those reported in other studies concerning the pathogenic functions of K17, as well as the mechanisms underlying the increase in K17 expression in psoriasis. K17 exerts both pro-proliferative and pro-inflammatory effects on keratinocytes. Moreover, K17 peptides trigger autoreactive T cells and promote psoriasis-related cytokine production. In turn, these cytokines modulate the expression, stability, and protein-protein interactions of K17 through transcriptional and translational regulation and post-translational modification of K17 in keratinocytes. Thus, a K17/T-cell/cytokine autoimmune loop is implicated in the pathogenesis of psoriasis, which is supported by the fact that therapies targeting K17 have achieved good outcomes in psoriasis-like mouse models. Future perspectives of K17 in psoriasis have also been discussed to provide potential directions for further studies.
Collapse
Affiliation(s)
- Yiting Lin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
34
|
Lysosome-targeted photodynamic treatment induces primary keratinocyte differentiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 218:112183. [PMID: 33831753 DOI: 10.1016/j.jphotobiol.2021.112183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022]
Abstract
Photodynamic therapy is an attractive technique for various skin tumors and non-cancerous skin lesions. However, while the aim of photodynamic therapy is to target and damage only the malignant cells, it unavoidably affects some of the healthy cells surrounding the tumor as well. However, data on the effects of PDT to normal cells are scarce, and the characterization of the pathways activated after the photodamage of normal cells may help to improve clinical photodynamic therapy. In our study, primary human epidermal keratinocytes were used to evaluate photodynamic treatment effects of photosensitizers with different subcellular localization. We compared the response of keratinocytes to lysosomal photodamage induced by phthalocyanines, aluminum phthalocyanine disulfonate (AlPcS2a) or aluminum phthalocyanine tetrasulfonate (AlPcS4), and cellular membrane photodamage by m-tetra(3-hydroxyphenyl)-chlorin (mTHPC). Our data showed that mTHPC-PDT promoted autophagic flux, whereas lysosomal photodamage induced by aluminum phthalocyanines evoked differentiation and apoptosis. Photodamage by AlPcS2a, which is targeted to lysosomal membranes, induced keratinocyte differentiation and apoptosis more efficiently than AlPcS4, which is targeted to lysosomal lumen. Computational analysis of the interplay between these molecular pathways revealed that keratin 10 is the coordinating molecular hub of primary keratinocyte differentiation, apoptosis and autophagy.
Collapse
|
35
|
Kang W, Son B, Park S, Choi D, Park T. UV-Irradiation- and Inflammation-Induced Skin Barrier Dysfunction Is Associated with the Expression of Olfactory Receptor Genes in Human Keratinocytes. Int J Mol Sci 2021; 22:2799. [PMID: 33802009 PMCID: PMC7999531 DOI: 10.3390/ijms22062799] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Olfactory receptors (ORs) have diverse physiological roles in various cell types, beyond their function as odorant sensors in the olfactory epithelium. These previous findings have suggested that ORs could be diagnostic markers and promising therapeutic targets in several pathological conditions. In the current study, we sought to characterize the changes in the expression of ORs in the HaCaT human keratinocytes cell line exposed to ultraviolet (UV) light or inflammation, well-recognized stimulus for skin barrier disruption. We confirmed that major olfactory signaling components, including ORs, GNAL, Ric8b, and adenylate cyclase type 3, are highly expressed in HaCaT cells. We have also demonstrated that the 12 ectopic ORs detectable in HaCaT cells are more highly expressed in UV-irradiated or inflamed conditions than in normal conditions. We further assessed the specific OR-mediated biological responses of HaCaT cells in the presence of known odorant ligands of ORs and observed that specific ligand-activated ORs downregulate skin barrier genes in HaCaT cells. This study shows the potential of OR as a marker for skin barrier abnormalities. Further research is needed to explore how OR is implicated in the development and progression of barrier dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Korea; (W.K.); (B.S.); (S.P.); (D.C.)
| |
Collapse
|
36
|
PKCα/ERK/C7ORF41 axis regulates epidermal keratinocyte differentiation through the IKKα nuclear translocation. Biochem J 2021; 478:839-854. [PMID: 33528492 DOI: 10.1042/bcj20200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Aberrant differentiation of keratinocytes disrupts the skin barrier and causes a series of skin diseases. However, the molecular basis of keratinocyte differentiation is still poorly understood. In the present study, we examined the expression of C7ORF41 using tissue microarrays by immunohistochemistry and found that C7ORF41 is specifically expressed in the basal layers of skin epithelium and its expression is gradually decreased during keratinocytes differentiation. Importantly, we corroborated the pivotal role of C7ORF41 during keratinocyte differentiation by C7ORF41 knockdown or overexpression in TPA-induced Hacat keratinocytes. Mechanismly, we first demonstrated that C7ORF41 inhibited keratinocyte differentiation mainly through formatting a complex with IKKα in the cytoplasm, which thus blocked the nuclear translocation of IKKα. Furthermore, we also demonstrated that inhibiting the PKCα/ERK signaling pathway reversed the reduction in C7ORF41 in TPA-induced keratinocytes, indicating that C7ORF41 expression could be regulated by upstream PKCα/ERK signaling pathway during keratinocyte differentiation. Collectively, our study uncovers a novel regulatory network PKCα/ERK/C7ORF41/IKKα during keratinocyte differentiation, which provides potential therapeutic targets for skin diseases.
Collapse
|
37
|
Bengalli R, Colantuoni A, Perelshtein I, Gedanken A, Collini M, Mantecca P, Fiandra L. In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NANOIMPACT 2021; 21:100282. [PMID: 35559774 DOI: 10.1016/j.impact.2020.100282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 06/15/2023]
Abstract
In the context of nosocomial infections, there is an urgent need to develop efficient nanomaterials (NMs) with antibacterial properties for the prevention of infection diseases. Metal oxide nanoparticles (MeO-NPs) are promising candidates for the development of new antibacterial textiles. However, the direct exposure to MeO-NPs and MeO-coated NMs through skin contact could constitute a severe hazard for human health. In this work, the toxicity of copper and zinc oxide (CuO, ZnO) NPs antimicrobial-coated textiles was assessed on an in vitro reconstructed 3D model of epidermis. Thus, MeO-NPs and extracts from MeO-coated NMs were tested on EpiDerm™ skin model according to OECD TG 431 (Corrosion Test) and 439 (Irritation Test), respectively. Skin surface fluids composition is a crucial aspect to be considered in the development of NMs that have to encounter this tissue. So, for the irritation test, coated textiles were extracted in artificial sweat solutions at pH 4.7 and 6.5. Skin tissue viability, pro-inflammatory interleukin-8 secretion and morphological alteration of intermediate and actin filaments of keratinocytes were evaluated after 18 h exposure to extracts from CuO- and ZnO-coated textiles. Analysis of extracts at the two pH conditions indicated that released ions and not NPs are involved in promoting adverse effects on epidermis. Since Cu2+ and Zn2+ ions are known to penetrate epidermis, Balb/3 T3 cells were used as model of dermis. Fibroblasts viability was investigated after the exposure to trans-epidermis permeated ions, collected from EpiDerm™ basal supernatants, and to extracts, as representative of a direct interaction of ions with dermis cells by wounded skin. From our data we can conclude that: 1) skin surface fluids composition is a key parameter for the stability of NPs-coated textiles; 2) MeO ions released from coated textiles can deeply affect the epidermal tissue and the underlying dermal cells upon trans-epidermal permeation; 3) skin barrier integrity is a fundamental prerequisite that should be taken into account during the assessment of NMs safety by direct contact exposure.
Collapse
Affiliation(s)
- Rossella Bengalli
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - Alessandra Colantuoni
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy
| | - Ilana Perelshtein
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Israel
| | - Aharon Gedanken
- Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Israel
| | - Maddalena Collini
- Department of Physic "Giuseppe Occhialini", University of Milano - Bicocca, Milano, Italy
| | - Paride Mantecca
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy; Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy.
| | - Luisa Fiandra
- POLARIS Research Centre, Department of Earth and Environmental Sciences, University of Milano - Bicocca, Milano, Italy; Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Italy
| |
Collapse
|
38
|
Effect of SUV39H1 Histone Methyltransferase Knockout on Expression of Differentiation-Associated Genes in HaCaT Keratinocytes. Cells 2020; 9:cells9122628. [PMID: 33297464 PMCID: PMC7762351 DOI: 10.3390/cells9122628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Keratinocytes undergo a complex differentiation process, coupled with extensive changes in gene expression through which they acquire distinctive features indispensable for cells that form the external body barrier—epidermis. Disturbed epidermal differentiation gives rise to multiple skin diseases. The involvement of epigenetic factors, such as DNA methylation or histone modifications, in the regulation of epidermal gene expression and differentiation has not been fully recognized yet. In this work we performed a CRISPR/Cas9-mediated knockout of SUV39H1, a gene-encoding H3K9 histone methyltransferase, in HaCaT cells that originate from spontaneously immortalized human keratinocytes and examined changes in the expression of selected differentiation-specific genes located in the epidermal differentiation complex (EDC) and other genomic locations by RT-qPCR. The studied genes revealed a diverse differentiation state-dependent or -independent response to a lower level of H3K9 methylation. We also show, by means of chromatin immunoprecipitation, that the expression of genes in the LCE1 subcluster of EDC was regulated by the extent of trimethylation of lysine 9 in histone H3 bound to their promoters. Changes in gene expression were accompanied by changes in HaCaT cell morphology and adhesion.
Collapse
|
39
|
Sanz Ressel BL, Massone AR, Barbeito CG. Expression of the epidermal stem cell marker p63/CK5 in cutaneous papillomas and cutaneous squamous cell carcinomas of dogs. Res Vet Sci 2020; 135:366-370. [PMID: 33162109 DOI: 10.1016/j.rvsc.2020.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/25/2022]
Abstract
Cutaneous papillomas (CPs) and cutaneous squamous cell carcinomas (CSCCs) are usual epidermal tumours in dogs. CPs and CSCCs probably arise from the neoplastic transformation of the keratinocytes within the stem cell compartment, since these cells are the only keratinocytes that would reside long enough to accumulate the number of molecular alterations to drive the progression towards a tumour cell phenotype. However, the role of these cells in common epidermal tumours in dogs is still unknown. Thus, the purpose of this study was to evaluate the immunohistochemical expression pattern of p63 together with CK5, molecular markers of epidermal stem cells, on sections of tissue microarrays constructed from canine samples of CP and CSCC to investigate the contribution of stem cells in those canine tumours. p63/CK5 coexpression was retained in most basal and some suprabasal cells in CPs and CSCCs. In addition, increased coexpression of these molecules was observed in a group of CPs and CSCCs, as a result of a higher p63 expression. These results suggest that the coexpression of p63/CK5 may mark epidermal keratinocytes that possess self-renewal capacity rather than only stem cells, and suggest that transit amplifying cells, and even differentiated keratinocytes, may also contribute to the pathogenesis of epidermal tumours in dogs.
Collapse
Affiliation(s)
- B L Sanz Ressel
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, Consejo nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - A R Massone
- Laboratorio de Patología Especial Veterinaria Dr. Bernardo Epstein, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, Consejo nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
40
|
iRhom2: An Emerging Adaptor Regulating Immunity and Disease. Int J Mol Sci 2020; 21:ijms21186570. [PMID: 32911849 PMCID: PMC7554728 DOI: 10.3390/ijms21186570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rhomboid family are evolutionary conserved intramembrane proteases. Their inactive members, iRhom in Drosophila melanogaster and iRhom1 and iRhom2 in mammals, lack the catalytic center and are hence labelled “inactive” rhomboid family members. In mammals, both iRhoms are involved in maturation and trafficking of the ubiquitous transmembrane protease a disintegrin and metalloprotease (ADAM) 17, which through cleaving many biologically active molecules has a critical role in tumor necrosis factor alpha (TNFα), epidermal growth factor receptor (EGFR), interleukin-6 (IL-6) and Notch signaling. Accordingly, with iRhom2 having a profound influence on ADAM17 activation and substrate specificity it regulates these signaling pathways. Moreover, iRhom2 has a role in the innate immune response to both RNA and DNA viruses and in regulation of keratin subtype expression in wound healing and cancer. Here we review the role of iRhom2 in immunity and disease, both dependent and independent of its regulation of ADAM17.
Collapse
|
41
|
Mancino G, Sibilio A, Luongo C, Di Cicco E, Miro C, Cicatiello AG, Nappi A, Sagliocchi S, Ambrosio R, De Stefano MA, Di Girolamo D, Porcelli T, Murolo M, Saracino F, Perruolo G, Formisano P, Stornaiuolo M, Dentice M. The Thyroid Hormone Inactivator Enzyme, Type 3 Deiodinase, Is Essential for Coordination of Keratinocyte Growth and Differentiation. Thyroid 2020; 30:1066-1078. [PMID: 32111151 DOI: 10.1089/thy.2019.0557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Thyroid hormones (THs) are key regulators of development, tissue differentiation, and maintenance of metabolic balance in virtually every cell of the body. Accordingly, severe alteration of TH action during fetal life leads to permanent deficits in humans. The skin is among the few adult tissues expressing the oncofetal protein type 3 deiodinase (D3), the TH inactivating enzyme. Here, we demonstrate that D3 is dynamically regulated during epidermal ontogenesis. Methods: To investigate the function of D3 in a postdevelopmental context, we used a mouse model of conditional epidermal-specific D3 depletion. Loss of D3 resulted in tissue hypoplasia and enhanced epidermal differentiation in a cell-autonomous manner. Results: Accordingly, wound healing repair and hair follicle cycle were altered in the D3-depleted epidermis. Further, in vitro ablation of D3 in primary culture of keratinocytes indicated that various markers of stratified epithelial layers were upregulated, thereby confirming the pro-differentiative action of D3 depletion and the consequent increased intracellular triiodothyronine levels. Notably, loss of D3 reduced the clearance of systemic TH in vivo, thereby demonstrating the critical requirement for epidermal D3 in the maintenance of TH homeostasis. Conclusion: In conclusion, our results show that the D3 enzyme is a key TH-signaling component in the skin, thereby providing a striking example of a physiological context for deiodinase-mediated TH metabolism, as well as a rationale for therapeutic manipulation of deiodinases in pathophysiological contexts.
Collapse
Affiliation(s)
- Giuseppina Mancino
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annarita Sibilio
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Cristina Luongo
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Caterina Miro
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Annarita Nappi
- Department of Public Health, and Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | | | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Daniela Di Girolamo
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Tommaso Porcelli
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Federica Saracino
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Giuseppe Perruolo
- Department of Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Pietro Formisano
- Department of Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy; Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR); University of Naples "Federico II," Naples, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| |
Collapse
|
42
|
Malak M, Grantham J, Ericson MB. Monitoring calcium-induced epidermal differentiation in vitro using multiphoton microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-11. [PMID: 32388932 PMCID: PMC7210787 DOI: 10.1117/1.jbo.25.7.071205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Research in tissue engineering and in vitro organ formation has recently intensified. To assess tissue morphology, the method of choice today is restricted primarily to histology. Thus novel tools are required to enable noninvasive, and preferably label-free, three-dimensional imaging that is more compatible with futuristic organ-on-a-chip models. AIM We investigate the potential for using multiphoton microscopy (MPM) as a label-free in vitro approach to monitor calcium-induced epidermal differentiation. APPROACH In vitro epidermis was cultured at the air-liquid interface in varying calcium concentrations. Morphology and tissue architecture were investigated using MPM based on visualizing cellular autofluorescence. RESULTS Distinct morphologies corresponding to epidermal differentiation were observed. In addition, Ca2 + -induced effects could be distinguished based on the architectural differences in stratification in the tissue cultures. CONCLUSIONS Our study shows that MPM based on cellular autofluorescence enables visualization of Ca2 + -induced differentiation in epidermal skin models in vitro. The technique has potential to be further adapted as a noninvasive, label-free, and real-time tool to monitor tissue regeneration and organ formation in vitro.
Collapse
Affiliation(s)
- Monika Malak
- University of Gothenburg, Biomedical Photonics Group, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| | - Julie Grantham
- University of Gothenburg, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| | - Marica B. Ericson
- University of Gothenburg, Biomedical Photonics Group, Department of Chemistry and Molecular Biology, Faculty of Science, Gothenburg, Sweden
| |
Collapse
|
43
|
Apprich V, Licka T, Freiler S, Gabriel C. Equine Hoof Canker: Bovine Papillomavirus Infection Is Not Associated With Impaired Keratinocyte Differentiation. Vet Pathol 2020; 57:525-534. [PMID: 32347169 DOI: 10.1177/0300985820921820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impaired keratinocyte differentiation has recently been suggested as a key event in equine hoof canker development. Koilocytotic appearance of keratinocytes, one of the most characteristic morphological alterations in hoof canker tissue, is also a common marker for papillomavirus (PV) infection, and bovine PV-1 and/or -2 (BPV-1/2) has previously been detected in equine canker patients. Therefore, the present study aimed to correlate the frequency and severity of koilocytotic keratinocytes with BPV detection in hoof canker samples. Hoof tissue of 5/18 canker-affected horses and 2/6 control horses tested positive for BPV-1/2 DNA using polymerase chain reaction. Thus, no association between the presence of BPV-1/2 papillomaviral DNA and koilocytotic appearance was found. Proteins associated with but not specific for PV infection were also investigated. Using immunohistochemistry, specific adhesion molecules (E-cadherin and β-catenin) and intermediate filaments (keratins 6 and 14) important for intact epidermal barrier function and keratinocyte differentiation were documented in control samples (n = 6) and in hoof canker tissue samples (n = 19). Altered expression patterns of intermediate filaments and adhesion molecules were demonstrated in canker tissue, confirming the importance of incomplete keratinocyte differentiation, as well as the crucial role of keratinocyte differentiation in hoof canker.
Collapse
Affiliation(s)
| | - Theresia Licka
- University of Veterinary Medicine, Vienna, Austria.,University of Edinburgh, Midlothian, UK
| | | | | |
Collapse
|
44
|
Steen K, Chen D, Wang F, Majumdar R, Chen S, Kumar S, Lombard DB, Weigert R, Zieman AG, Parent CA, Coulombe PA. A role for keratins in supporting mitochondrial organization and function in skin keratinocytes. Mol Biol Cell 2020; 31:1103-1111. [PMID: 32213122 PMCID: PMC7353162 DOI: 10.1091/mbc.e19-10-0565] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS), and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from Krt16 null mouse skin, a model for pachyonychia congenita (PC)–associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria. Electron microscopy revealed major anomalies in mitochondrial ultrastructure in late stage, E18.5, Krt6a/Krt6b null embryonic mouse skin. Follow-up studies utilizing biochemical, metabolic, and live imaging readouts showed that, relative to controls, skin keratinocytes null for Krt6a/Krt6b or Krt16 exhibit elevated ROS, reduced mitochondrial respiration, intracellular distribution differences, and altered movement of mitochondria within the cell. These findings highlight a novel role for K6 and K16 in regulating mitochondrial morphology, dynamics, and function and shed new light on the causes of oxidative stress observed in PC and related keratin-based skin disorders.
Collapse
Affiliation(s)
- Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Desu Chen
- Laboratory for Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ritankar Majumdar
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Roberto Weigert
- Laboratory for Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Abigail G Zieman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
45
|
Serum lipids, retinoic acid and phenol red differentially regulate expression of keratins K1, K10 and K2 in cultured keratinocytes. Sci Rep 2020; 10:4829. [PMID: 32179842 PMCID: PMC7076045 DOI: 10.1038/s41598-020-61640-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/27/2020] [Indexed: 01/30/2023] Open
Abstract
Abnormal keratinocyte differentiation is fundamental to pathologies such as skin cancer and mucosal inflammatory diseases. The ability to grow keratinocytes in vitro allows the study of differentiation however any translational value is limited if keratinocytes get altered by the culture method. Although serum lipids (SLPs) and phenol red (PR) are ubiquitous components of culture media their effect on differentiation is largely unknown. We show for the first time that PR and SLP themselves suppress expression of differentiation-specific keratins K1, K10 and K2 in normal human epidermal keratinocytes (NHEK) and two important cell lines, HaCaT and N/TERT-1. Removal of SLP increased expression of K1, K10 and K2 in 2D and 3D cultures, which was further enhanced in the absence of PR. The effect was reversed for K1 and K10 by adding all-trans retinoic acid (ATRA) but increased for K2 in the absence of PR. Furthermore, retinoid regulation of differentiation-specific keratins involves post-transcriptional mechanisms as we show KRT2 mRNA is stabilised whilst KRT1 and KRT10 mRNAs are destabilised in the presence of ATRA. Taken together, our results indicate that the presence of PR and SLP in cell culture media may significantly impact in vitro studies of keratinocyte differentiation.
Collapse
|
46
|
Jie H, Xu ZX, Su Y, Lei MY, Zeng DJ, Zhao GJ, Feng XL, Zheng CL, Zhang CL, Liang ZJ, Li DY. The transcriptome analysis of males musk gland in Moschus berezovskii (Artiodactyla: Moschidae). EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1681525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- H. Jie
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Yucheng, China
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Z. X. Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Yucheng, China
| | - Y. Su
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Yucheng, China
| | - M. Y. Lei
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - D. J. Zeng
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - G. J. Zhao
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - X. L. Feng
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - C. L. Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu, China
| | - C. L. Zhang
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - Z. J. Liang
- Chongqing Engineering Technology Research Center for GAP of Genuine Medicinal Materials, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| | - D. Y. Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Yucheng, China
| |
Collapse
|
47
|
Lee J, Jang H, Park S, Myung H, Kim K, Kim H, Jang WS, Lee SJ, Myung JK, Shim S. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. J Transl Med 2019; 17:295. [PMID: 31462256 PMCID: PMC6714411 DOI: 10.1186/s12967-019-2044-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022] Open
Abstract
Background The skin is impacted by every form of external radiation therapy. However, effective therapeutic options for severe, acute radiation-induced skin reactions are limited. Although platelet-rich plasma (PRP) is known to improve cutaneous wound healing, its effects in the context of high-dose irradiation are still poorly understood. Methods We investigated the regenerative functions of PRP by subjecting the dorsal skin of mice to local irradiation (40 Gy) and exposing HaCaT cells to gamma rays (5 Gy). The cutaneous benefits of PRP were gauged by wound size, histologic features, immunostains, western blot, and transepithelial water loss (TEWL). To assess the molecular effects of PRP on keratinocytes of healing radiation-induced wounds, we evaluated AKT signaling. Results Heightened expression of keratin 14 (K14) was documented in irradiated HaCaT cells and skin tissue, although the healing capacity of injured HaCaT cells declined. By applying PRP, this capacity was restored via augmented AKT signaling. In our mouse model, PRP use achieved the following: (1) healing of desquamated skin, acutely injured by radiation; (2) activated AKT signaling, improving migration and proliferation of K14 cells; (3) greater expression of involucrin in keratin 10 cells and sebaceous glands; and (4) reduced TEWL, strengthening the cutaneous barrier function. Conclusions Our findings indicate that PRP enhances the functions of K14 cells via AKT signaling, accelerating the regeneration of irradiated skin. These wound-healing benefits may have merit in a clinical setting.
Collapse
Affiliation(s)
- Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea. .,Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
48
|
Son YJ, Tse JW, Zhou Y, Mao W, Yim EKF, Yoo HS. Biomaterials and controlled release strategy for epithelial wound healing. Biomater Sci 2019; 7:4444-4471. [PMID: 31436261 DOI: 10.1039/c9bm00456d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The skin and cornea are tissues that provide protective functions. Trauma and other environmental threats often cause injuries, infections and damage to these tissues, where the degree of injury is directly correlated to the recovery time. For example, a superficial skin or corneal wound may recover within days; however, more severe injuries can last up to several months and may leave scarring. Thus, therapeutic strategies have been introduced to enhance the wound healing efficiency and quality. Although the skin and cornea share similar anatomic structures and wound healing process, therapeutic agents and formulations for skin and cornea wound healing differ in accordance with the tissue and wound type. In this review, we describe the anatomy and epithelial wound healing processes of the skin and cornea, and summarize the therapeutic molecules that are beneficial to the respective regeneration process. In addition, biomaterial scaffolds that inherently possess bioactive properties or modified with therapeutic molecules for topical controlled release and enhanced wound healing efficiency are also discussed.
Collapse
Affiliation(s)
- Young Ju Son
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - John W Tse
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Yiran Zhou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea. and Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
49
|
Fuchs E. Skin Stem Cells in Silence, Action, and Cancer. Stem Cell Reports 2019; 10:1432-1438. [PMID: 29742389 PMCID: PMC5995444 DOI: 10.1016/j.stemcr.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
In studying how stem cells make and maintain tissues, nearly every chapter of a cell biology textbook takes on special interest. The field even allows us to venture where no chapters have yet been written. In studying this basic problem, we are continually bombarded by nature's surprises and challenges. Stem cell biology has captured my interest for nearly my entire scientific career. Below, I focus on my laboratory's contributions to this fascinating field, to which so many friends and colleagues have made seminal discoveries equally deserving of this award.
Collapse
Affiliation(s)
- Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Zhang X, Yin M, Zhang LJ. Keratin 6, 16 and 17-Critical Barrier Alarmin Molecules in Skin Wounds and Psoriasis. Cells 2019; 8:E807. [PMID: 31374826 PMCID: PMC6721482 DOI: 10.3390/cells8080807] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022] Open
Abstract
Located at the skin surface, keratinocytes (KCs) are constantly exposed to external stimuli and are the first responders to invading pathogens and injury. Upon skin injury, activated KCs secrete an array of alarmin molecules, providing a rapid and specific innate immune response against danger signals. However, dysregulation of the innate immune response of KCs may lead to uncontrolled inflammation and psoriasis pathogenesis. Keratins (KRT) are the major structural intermediate filament proteins in KCs and are expressed in a highly specific pattern at different differentiation stages of KCs. While KRT14-KRT5 is restricted to basal proliferative KCs, and KRT10-KRT1 is restricted to suprabasal differentiated KCs in normal skin epidermis, the wound proximal KCs downregulate KRT10-K1 and upregulate KRT16/KRT17-KRT6 upon skin injury. Recent studies have recognized KRT6/16/17 as key early barrier alarmins and upregulation of these keratins alters proliferation, cell adhesion, migration and inflammatory features of KCs, contributing to hyperproliferation and innate immune activation of KCs in response to an epidermal barrier breach, followed by the autoimmune activation of T cells that drives psoriasis. Here, we have reviewed how keratins are dysregulated during skin injury, their roles in wound repairs and in initiating the innate immune system and the subsequent autoimmune amplification that arises in psoriasis.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Meimei Yin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ling-Juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|