1
|
de Beer RJAC, Zarzycka B, Mariman M, Amatdjais-Groenen HIV, Mulders MJ, Quaedflieg PJLM, van Delft FL, Nabuurs SB, Rutjes FPJT. Papain-specific activating esters in aqueous dipeptide synthesis. Chembiochem 2012; 13:1319-26. [PMID: 22615272 DOI: 10.1002/cbic.201200017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Indexed: 11/06/2022]
Abstract
Enzymatic peptide synthesis has the potential to be a viable alternative for chemical peptide synthesis. Because of the increasing commercial interest in peptides, new and improved enzymatic synthesis methods are desirable. In recently developed enzymatic strategies such as substrate mimetic approaches and enzyme-specific activation, use of the guanidinophenyl ester (OGp) group has been shown to suffer from some drawbacks. OGp esters are sensitive to spontaneous chemical hydrolysis and the group is expensive to synthesize and therefore not suitable for large-scale applications. On the basis of earlier computational studies, we hypothesized that OGp might be replaceable by simpler ester groups to make the enzyme-specific activation approach to peptide bond formation more accessible. To this end, a set of potential activating esters (Z-Gly-Act) was designed, synthesized, and evaluated. Both the benzyl (OBn) and the dimethylaminophenyl (ODmap) esters gave promising results. For these esters, the scope of a model dipeptide synthesis reaction under aqueous conditions was investigated by varying the amino acid donor. The results were compared with those obtained from a previous study of Z-X(AA) -OGp esters. Computational docking analysis of the set of esters was performed in order to provide insight into the differences in the reactivities of all the potential activating esters. Finally, selected ODmap- and OBn-activated amino acids were applied in the synthesis of two biologically active dipeptides on preparative scales.
Collapse
Affiliation(s)
- Roseri J A C de Beer
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Nuijens T, Cusan C, Schepers AC, Kruijtzer JA, Rijkers DT, Liskamp RM, Quaedflieg PJ. Enzymatic synthesis of activated esters and their subsequent use in enzyme-based peptide synthesis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Dong Y, Tan J, Cui MZ, Zhao G, Mao G, Singh N, Xu X. Calpain inhibitor MDL28170 modulates Abeta formation by inhibiting the formation of intermediate Abeta46 and protecting Abeta from degradation. FASEB J 2005; 20:331-3. [PMID: 16354722 DOI: 10.1096/fj.05-4524fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The observations that three major cleavages within the transmembrane domain of APP, namely, the gamma-cleavage, -cleavage, and the newly identified zeta-cleavage, are involved in the generation of secreted Abeta40 and Abeta42 prompted us to determine how the calpain inhibitor III MDL 28170 influences these three cleavages and Abeta formation. With the use of a cell culture system, our data demonstrate that 1) at either high concentrations, or at a low range of concentrations, at early time points, MDL 28170 inhibits the formation of secreted Abeta40 and Abeta42. However, this effect is due to inhibition of the intermediate Abeta46 generation by zeta-cleavage and not due to direct inhibition of the gamma-cleavage that produces Abeta40/42 from Abeta46; 2) at low range of concentrations and at late time points, MDL 28170 causes an increase in secreted Abeta40/42 that likely results from inhibition of degradation of both the initial substrate, CTFbeta, and the final product, Abeta40/42, of gamma-secretase. These data strongly suggest that formation of Abeta46 is a key step in the gamma-secretase mediated generation of Abeta40/42 and provide a new target for the development of Abeta inhibitors. These data also suggest that calpain and related proteases, which are sensitive to MDL 28170, play an important role in the accumulation of secreted Abeta.
Collapse
Affiliation(s)
- Yunzhou Dong
- Department of Pathobiology, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Farquhar M, Soomets U, Bates RL, Martin A, Langel U, Howl J. Novel mastoparan analogs induce differential secretion from mast cells. CHEMISTRY & BIOLOGY 2002; 9:63-70. [PMID: 11841939 DOI: 10.1016/s1074-5521(01)00098-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cationic amphiphilic peptides stimulate secretion via a receptor-independent action upon G proteins. We have previously utilized chimeric analogs of mastoparan (MP), including galparan (galanin(1-13)-MP ), as molecular probes of secretion. Here, we further resolve the structure-activity relationship of peptidyl secretagogs, including rationally designed chimeric MP analogs. The secretory efficacies of 10 MP analogs were significantly higher than 45 unrelated basic peptides. Comparative studies identified MP analogs that are differential secretagogs for 5-hydroxytryptamine (5-HT) and beta-hexosaminidase. Peptide-induced activation of phospholipase D (PLD), an enzyme intimately involved in regulated exocytosis [5], correlated with the secretion of beta-hexosaminidase but not 5-HT. Thus, these data indicate that different mechanisms are responsible for the exocytosis of 5-HT and beta-hexosaminidase, respectively. Moreover, mastoparan analogs are novel tools for probing the molecular details of exocytosis and other biological phenomena.
Collapse
Affiliation(s)
- Michelle Farquhar
- Molecular Pharmacology Group, School of Health Sciences, University of Wolverhampton, 62-68 Lichfield Street, WV1 1DJ, Wolverhampton, United Kingdom
| | | | | | | | | | | |
Collapse
|
5
|
Effects of arachidonic and docosahexaenoic acids on secretion and degradation of bile salt-dependent lipase in AR4-2J cells. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31572-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Mzhavia N, Berman YL, Qian Y, Yan L, Devi LA. Cloning, expression, and characterization of human metalloprotease 1: a novel member of the pitrilysin family of metalloendoproteases. DNA Cell Biol 1999; 18:369-80. [PMID: 10360838 DOI: 10.1089/104454999315268] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel cDNA, designated human metalloendoprotease 1 (hMP1), was identified on the basis of homology to known metalloendoproteases of the pitrilysin family. The full-length MP1 codes for a protein with an open reading frame of 1038 amino acids. The N-terminal region contains the HXXEH(X)76E catalytic domain that is conserved in the members of pitrilysin family, namely insulin-degrading enzyme and NRD convertase. The hMP1 mRNA is expressed in a number of cell lines and tissues as a single species of about 3.4 kb. The expression of hMP1 mRNA is higher in muscle and heart than in brain, pancreas, liver, lung, and placenta. The full-length hMP1 was expressed in the baculovirus system and purified to homogeneity using isoelectrofocusing and ion-exchange chromatography. The enzyme exhibited a neutral pH optimum and high sensitivity to thiol reagents. HMP1 was inactivated by 1,10-phenanthroline, a specific inhibitor of Zn(+2)-dependent metalloproteases. The enzyme was not inhibited by agents that inhibit neutral metalloendoproteases of the thermolysin family such as thimet endo-oligopeptidase, enkephalinase, or angiotensin-converting enzyme. HMP1 cleaved a prodynorphin-derived peptide, leumorphin, N-terminal to Arg in the monobasic processing site, as evidenced by MALDI-TOF mass spectrometry. However, the enzyme did not exhibit strict monobasic cleavage specificity, as peptide substrates with amino acid substitutions around the monobasic site was cleaved efficiently by hMP1. Taken together, these results suggest that hMP1 is a novel member of the metalloendoprotease superfamily with ubiquitous distribution that could play a broad role in general cellular regulation.
Collapse
Affiliation(s)
- N Mzhavia
- Department of Pharmacology, New York University School of Medicine, NY 10016, USA
| | | | | | | | | |
Collapse
|
7
|
Ruiz P, Zacharievich N, Hao L, Viciana AL, Shenkin M. Human thymocyte dipeptidyl peptidase IV (CD26) activity is altered with stage of ontogeny. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1998; 88:156-68. [PMID: 9714693 DOI: 10.1006/clin.1998.4550] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nonintegrin receptor CD26, also known as dipeptidyl peptidase IV (DPP IV) is a transmembrane 110- to 120-kDa serine aminopeptidase glycoprotein with multiple functions, including cellular trafficking through extracellular matrix, and costimulatory potential during T cell activation, and is an influence upon T cell differentiation during their maturation in the thymus. In order to further define the expression and functional activity of this membrane exopeptidase in human thymus, we utilized a nondisruptive, cytofluorogenic assay which allowed simultaneous measurement of intracellular DPP IV activity using a fluorochrome-conjugated peptide substrate with surface staining of plasma membrane-associated T lymphocyte lineage antigens CD4 and CD8, as well as CD26. Human thymi were examined using the three-color assay, and significant differences in time-dependent DPP IV activity were found among the thymocyte subsets defined by their CD4/CD8 phenotype. In this regard, CD4(-)/CD8(-) thymocytes displayed the lowest DPP IV activity and had higher activity than the smaller-sized CD26(+) cells. Thymocytes containing greater percentages of apoptotic cells expressed lower DPP IV activity than viable cells. Thus, DPP IV appears to be upregulated as thymocytes mature and is reduced among thymocyte populations enriched for cells undergoing programmed cell death, suggesting that CD26-associated enzymatic activity is ontogenically controlled during T cell maturation and may be involved in thymic deletion of emerging clones.
Collapse
Affiliation(s)
- P Ruiz
- Department of Pathology, University of Miami School of Medicine, Miami, Florida, 33101, USA.
| | | | | | | | | |
Collapse
|
8
|
Ruiz P, Zacharievich N, Shenkin M. Multicolor cytoenzymatic evaluation of dipeptidyl peptidase IV (CD26) function in normal and neoplastic human T-lymphocyte populations. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1998; 5:362-8. [PMID: 9605992 PMCID: PMC104525 DOI: 10.1128/cdli.5.3.362-368.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dipeptidyl peptidase IV (DPP IV), also identified as the glycoprotein CD26, is a transmembrane 110- to 120-kDa serine aminopeptidase involved in immune responses by influencing T-cell costimulation and by cleaving cytokines. Additionally, CD26 is a nonintegrin receptor that contains a binding site for extracellular matrix and other molecules. In order to further define the expression and functional activity of this membrane exopeptidase in human T cells, we developed a nondisruptive, four-color cytofluorogenic assay that utilizes three separate antibodies to cell-surface molecules (e.g., CD4/CD8/CD26 and CD19/CD56/CD26) along with a rhodamine 110-conjugated dipeptide substrate that allows the measurement of DPP IV activity in phenotypically defined cells. We found normal human thymi to have notable differences in time-dependent DPP IV activity among the thymocyte subsets defined by their CD4/CD8 phenotype, with CD4-/CD8- thymocytes containing less DPP IV activity than cells expressing CD4 and/or CD8 (i.e., maturing). CD26 positivity was moderately intense in thymocytes and tended to identify cells with higher DPP IV activity. The four-color technique was also used to examine mature peripheral blood lymphocytes, along with an assortment of leukemias and transformed T-cell lines. These experiments revealed that while DPP IV was consistently evident in normal T cells, neoplastic T cells could vary in their expression patterns. Furthermore, the presence (or intensity) of surface CD26 in some abnormal T cells and certain normal peripheral blood mononuclear cells was separable from the level of DPP IV measured intracellularly. Our results established that multicolor cytofluorographic analysis can be a practical means to measure DPP IV activity in various human cell populations. Furthermore, we found that DPP IV activity could vary in T cells according to their differentiation status and that under certain circumstances surface CD26 expression can be disassociated from the level of measured enzyme (i.e., DPP IV) activity.
Collapse
Affiliation(s)
- P Ruiz
- Department of Pathology, University of Miami School of Medicine, Florida 33101, USA.
| | | | | |
Collapse
|
9
|
Ingersoll EP, Wilt FH. Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo. Dev Biol 1998; 196:95-106. [PMID: 9527883 DOI: 10.1006/dbio.1998.8857] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary mesenchyme cells of the sea urchin embryo construct an elaborate calcareous endoskeletal spicule beginning at gastrulation. This process begins by ingression of prospective primary mesenchyme cells into the blastocoel, after which they migrate and then fuse to form a syncytium. Skeleton deposition occurs in spaces enclosed by the cytoplasmic cables between the cell bodies. Experiments are described which probe the role of proteases in these early events of spicule formation and their role in the continued elaboration of the spicule during later stages of embryogenesis. We find that several inhibitors of metalloproteinases inhibit the continuation of spiculogenesis, an effect first reported by Roe et al. (Exp. Cell Res. 181, 542-550, 1989). A detailed study of one of these inhibitors, BB-94, shows that fusion of primary mesenchyme cells still occurs in the presence of the inhibitor and the formation of the first calcite granule is not impeded. Continued elaboration of the spicule, however, is completely stopped; addition of the inhibitor during the active elongation of the spicule stops further elongation immediately. Removal of the inhibitor allows resumption of spicule growth. The inhibition is accompanied by almost complete cessation of massive Ca ion transport via the primary mesenchyme cells to the spicule. The inhibitor does not prevent the continued synthesis of several spicule matrix proteins. Electron microscopic examination of inhibited primary mesenchyme cells shows an accumulation of characteristic vesicles in the cytoplasm. Gel zymography demonstrates that although most proteases in homogenates of primary mesenchyme cells are not sensitive to the inhibitor in vitro, a protease of low abundance detectable in the medium of cultured primary mesenchyme cells is inhibited by BB-94. We propose that the inhibitor is interfering with the delivery of precipitated calcium carbonate and matrix proteins to the site(s) of spicule growth.
Collapse
Affiliation(s)
- E P Ingersoll
- Department of Molecular and Cell Biology, University of California, Life Sciences Addition, Berkeley, California 94720, USA
| | | |
Collapse
|
10
|
Ruiz P, Hao L, Zucker K, Zacharievich N, Viciana AL, Shenkin M, Miller J. Dipeptidyl peptidase IV (CD26) activity in human alloreactive T cell subsets varies with the stage of differentiation and activation status. Transpl Immunol 1997; 5:152-61. [PMID: 9269038 DOI: 10.1016/s0966-3274(97)80056-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dipeptidyl peptidase IV (DPP IV), also known as CD26, is a transmembrane serine aminopeptidase which has an ontogenically related expression on T cells and participates on several immunological functions. CD26 appears to play an important role in alloimmunity during host T cell activation subsequent to alloantigen encounter and is a way by which effector T cells traverse graft endothelial barriers. In order to help to elucidate the role of the CD26 molecule in alloimmune responses, DPP IV activity and CD26 antigenic expression were assessed during the initial phases of completely MHC-disparate human mixed lymphocyte reactions (MLRs) and in several long-term alloreactive T cell clones. Our methods involved the use of a rhodamine-110-conjugated dipeptide substrate specific for DPP IV in two-colour cytofluorographic analysis that allowed stimultaneous lineage marker evaluation. Polyclonal populations of alloreactive CD4 and CD8 T cells contained DPP IV activity at 1 and 10 min of incubation that was variably elevated from resting T cells with the enzyme activity confined to CD26+ cells. T cell clones derived from MLRs were established with IL-2 supplementation and alloantigen restimulation and had reduced CD62L expression with functional specificity to the stimulating MHC. While CD26 expression remained stable, DPP IV activity was variable in the alloreactive T cell clones, with enzyme function in the latter appearing to coincide with the timing of alloantigen restimulation. These studies demonstrate that DPP IV activity varies among phenotypically distinct alloreactive T cell subsets and appears to be altered with the activation status of the effector cells. These findings raise the potential of a role for CD26/DPP IV in the generation of specific alloimmunity. With this methodology, it may be possible to reveal whether specific alterations in the activity of this molecule in T cell populations promote graft acceptance and to determine the molecular requirements for these changes.
Collapse
Affiliation(s)
- P Ruiz
- Department of Pathology, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Podbilewicz B. ADM-1, a protein with metalloprotease- and disintegrin-like domains, is expressed in syncytial organs, sperm, and sheath cells of sensory organs in Caenorhabditis elegans. Mol Biol Cell 1996; 7:1877-93. [PMID: 8970152 PMCID: PMC276037 DOI: 10.1091/mbc.7.12.1877] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A search was carried out for homologues of possible fusogenic proteins to study their function in a genetically tractable animal. The isolation, molecular, and cellular characterization of the Caenorhabditis elegans adm-1 gene (a disintegrin and metalloprotease domain) are described. A glycoprotein analogous to viral fusion proteins has been identified on the surface of guinea pig sperm (PH-30/fertilin) and is implicated in sperm-egg fusion. adm-1 is the first reported invertebrate gene related to PH-30 and a family of proteins containing snake venom disintegrin- and metalloprotease-like domains. ADM-1 shows a domain organization identical to PH-30. It contains prepro, metalloprotease, disintegrin, cysteine rich with putative fusion peptide, epidermal growth factor-like repeat, transmembrane, and cytoplasmic domains. Antibodies which recognize ADM-1 protein in immunoblots were generated. Using immunofluorescence and in situ hybridization, the products of adm-1 have been detected in specific cells during different stages of development. The localization of ADM-1 to the plasma membrane of embryonic cells and to the sheath cells of sensory organs suggests a function in cell adhesion. ADM-1 expression in the hypodermis, pharynx, vulva, and mature sperm is consistent with a putative role in somatic and gamete cell fusions.
Collapse
Affiliation(s)
- B Podbilewicz
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Ivessa NE, De Lemos-Chiarandini C, Gravotta D, Sabatini DD, Kreibich G. The Brefeldin A-induced retrograde transport from the Golgi apparatus to the endoplasmic reticulum depends on calcium sequestered to intracellular stores. J Biol Chem 1995; 270:25960-7. [PMID: 7592786 DOI: 10.1074/jbc.270.43.25960] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribophorin I is a type I transmembrane glycoprotein specific to the rough endoplasmic reticulum. We have previously shown that, when expressed in transfected HeLa cells, a carboxyl-terminally truncated form of ribophorin I that contains most of the luminal domain (RI332) is, like the native protein, retained in the endoplasmic reticulum (ER). Brefeldin A (BFA) treatment of these HeLa cells leads to O-glycosylation of RI332 by glycosyltransferases that are redistributed from the Golgi apparatus to the ER (Ivessa, N. E., De Lemos-Chiarandini, C., Tsao, Y.-S., Takatsuki, A., Adesnik, M., Sabatini, D. D., and Kreibich, G. (1992) J. Cell Biol. 117, 949-958). Using the state of glycosylation of RI332 as a measure for the BFA-induced backflow of enzymes of the Golgi apparatus to the ER, we now demonstrate that the retrograde transport is inhibited when cells are treated with various agents that affect intracellular Ca2+ concentrations, such as the dipeptide benzyloxycarbonyl (Cbz)-Gly-Phe-amide, the Ca2+ ionophore A23187, and thapsigargin, an inhibitor of the Ca(2+)-transporting ATPase of the ER. These treatments prevent the BFA-induced O-glycosylation of RI332. Immunofluorescence localization of the Golgi markers, MG-160 and galactosyltransferase, shows that when BFA is applied in the presence of Ca2+ modulating agents, the markers remain confined to the Golgi apparatus and are not redistributed to the ER, as is the case when BFA alone is used. Cbz-Gly-Phe-amide does not, however, interfere with the BFA-induced release of beta-COP from the Golgi apparatus. We conclude that the maintenance of a Ca2+ gradient between the cytoplasm and the lumen of the ER and the Golgi apparatus is required for the BFA-induced retrograde transport from the Golgi apparatus to the ER to occur.
Collapse
Affiliation(s)
- N E Ivessa
- New York University School of Medicine, New York, USA
| | | | | | | | | |
Collapse
|
13
|
Becker AB, Roth RA. Insulysin and pitrilysin: insulin-degrading enzymes of mammals and bacteria. Methods Enzymol 1995; 248:693-703. [PMID: 7674956 DOI: 10.1016/0076-6879(95)48046-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A B Becker
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
14
|
|
15
|
Nichols JC, Bronk SF, Mellgren RL, Gores GJ. Inhibition of nonlysosomal calcium-dependent proteolysis by glycine during anoxic injury of rat hepatocytes. Gastroenterology 1994; 106:168-76. [PMID: 8276179 DOI: 10.1016/s0016-5085(94)95147-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS The mechanism by which glycine protects against hepatocyte death during anoxia remains unclear. Nonlysosomal proteolysis, including calpain proteolysis, has been implicated as a mechanism of lethal cell injury. However, the effect of glycine on nonlysosomal proteolysis is unknown. The aim of this study was to ascertain if glycine cytoprotection is associated with inhibition of nonlysosomal proteolysis. METHODS Rat hepatocyte suspensions were rendered anoxic using an anaerobic chamber. Cell viability was measured by propidium iodide fluorometry. Nonlysosomal protease activity was quantitated by the release of trichloroacetic acid-soluble free amines or tyrosine. Calpain protease activity was measured using a fluorogenic substrate. RESULTS Glycine and alanine (but not valine) markedly improved cell viability during anoxia in a concentration-dependent manner. During anoxia, the majority of nonlysosomal proteolysis (60%) was dependent on extracellular Ca2+. Glycine only inhibited that portion of nonlysosomal proteolysis that was dependent on extracellular Ca2+. Amino acids inhibited the anoxia-stimulated increase in calpain protease activity with the same specificity and concentration-dependence observed for cytoprotection. Glycine was more potent in directly inhibiting purified m-calpain as compared with mu-calpain protease activity. CONCLUSIONS Glycine may exert its cytoprotective activity during lethal anoxic hepatocyte injury, in part by inhibiting Ca(2+)-dependent degradative, nonlysosomal proteases, including calpains.
Collapse
Affiliation(s)
- J C Nichols
- Department of Internal Medicine, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota
| | | | | | | |
Collapse
|
16
|
Flaherty SP, Swann NJ. Proteases are not involved in the membrane fusion events of the lysolecithin-mediated guinea pig sperm acrosome reaction. J Cell Sci 1993; 104 ( Pt 1):163-72. [PMID: 8449994 DOI: 10.1242/jcs.104.1.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The guinea pig sperm acrosome reaction is characterized by a complex temporal and structural pattern of membrane fusions. In this study, we have used specific protease inhibitors to determine if proteases regulate this pattern of membrane fusions during the lysolecithin-mediated guinea pig sperm acrosome reaction. Inhibitors were chosen so as to cover a wide range of different types of proteases, and all were used at the highest concentration that did not adversely affect sperm motility. Of the eight inhibitors tested, leupeptin, soya bean trypsin inhibitor (SBTI), p-aminobenzamidine (pAB) and nitrophenyl p'-guanidino benzoate (NPGB) inhibited completion of the acrosome reaction, while diethylenetriaminepentaacetic acid (DTPA), phosphoramidon, bestatin and pepstatin had no effect. Sperm that had been acrosome-reacted in the presence of each inhibitor were examined by transmission electron microscopy to assess whether the inhibitors altered the pattern of membrane fusions during the acrosome reaction. DTPA, phosphoramidon, bestatin and pepstatin had no effect on membrane fusion or matrix dispersal. Serine protease inhibitors such as leupeptin, SBTI, pAB and NPGB prevented complete dispersal of the acrosomal matrix and completion of the acrosome reaction, but did not alter the temporal sequence or structural pattern of membrane fusions. The undispersed matrix was present along the dorsal and ventral aspects of the apical segment and throughout the principal segment. We conclude that proteases are not involved in regulating the temporal and structural pattern of membrane fusions which occurs during the lysolecithin-mediated acrosome reaction of guinea pig sperm.
Collapse
Affiliation(s)
- S P Flaherty
- Department of Obstetrics and Gynaecology, University of Adelaide, Queen Elizabeth Hospital, Woodville, South Australia
| | | |
Collapse
|
17
|
De Santis R, Shirakawa H, Nakada K, Miyazaki S, Hoshi M, Marino R, Pinto MR. Evidence that metalloendoproteases are involved in gamete fusion of Ciona intestinalis, ascidia. Dev Biol 1992; 153:165-71. [PMID: 1516747 DOI: 10.1016/0012-1606(92)90101-l] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The use of specific inhibitors and substrates of metalloendoproteases provides evidence that in many systems these enzymes are involved in membrane fusion events. In this study, we investigated whether metalloendoproteases are involved in Ciona sperm-egg fusion. In vitro fertilization assays with the metal chelator 1,10-phenanthroline, specific metalloendoprotease substrates, and the vital stain Hoechst 33342 suggested that a Zn(2+)-dependent metalloendoprotease(s) takes part in Ciona sperm-egg fusion. Furthermore, electrophysiological recordings showed that insemination carried out in the presence of either 1,10-phenanthroline or the substrate CBZ-Gly-Phe-NH2 fails to induce fertilization potential or any other change in membrane potential. These results support the hypothesis that in Ciona intestinalis, a metalloendoprotease(s) is functional in gamete fusion.
Collapse
Affiliation(s)
- R De Santis
- Department of Cell Biology, Stazione Zoologica A. Dohrn, Napoli, Italia
| | | | | | | | | | | | | |
Collapse
|
18
|
Becker AB, Roth RA. An unusual active site identified in a family of zinc metalloendopeptidases. Proc Natl Acad Sci U S A 1992; 89:3835-9. [PMID: 1570301 PMCID: PMC525585 DOI: 10.1073/pnas.89.9.3835] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An unusual active site has been identified in a family of zinc metalloendopeptidases that includes bacterial protease III and the human and Drosophila insulin-degrading enzymes. All of these enzymes have been characterized as metalloendopeptidases and purified protease III has been shown to contain stoichiometric levels of zinc. However, all three proteases lack the consensus sequence (HEXXH) described in the active site of other zinc metalloendopeptidases. Instead, these proteases contain an inversion of this motif, HXXEH. To determine whether this region could represent the active site in these proteins, the two histidines in protease III were individually mutated to arginine and the glutamate was mutated to glutamine. All three mutants were devoid of proteolytic activity toward an exogenous substrate, insulin, as compared to the wild-type protease. Three lines of evidence indicate that this loss of activity in the mutants is not due to distortion of the three-dimensional structure of the protein: (i) the mutants are secreted into the periplasmic space and chromatograph normally; (ii) all three mutants are expressed at levels nearly identical to wild-type protein and do not appear to have an increased susceptibility to proteolysis in the bacteria; and (iii) the mutants compete equally with wild-type protein in a radioimmunoassay. The purified wild-type and glutamate mutants were found to contain stoichiometric amounts of zinc by atomic absorption spectrophotometry, whereas both histidine mutants had negligible zinc signals. These findings are consistent with this region being the active site in this protein, with the histidine residues coordinating the essential zinc atom and the glutamate involved in catalysis.
Collapse
Affiliation(s)
- A B Becker
- Department of Pharmacology, Stanford University School of Medicine, CA 94305
| | | |
Collapse
|
19
|
Díaz-Pérez E, Meizel S. Importance of mammalian sperm metalloendoprotease activity during the acrosome reaction to subsequent sperm-egg fusion: inhibitor studies with human sperm and zona-free hamster eggs. Mol Reprod Dev 1992; 31:122-30. [PMID: 1599680 DOI: 10.1002/mrd.1080310206] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have previously shown that each of the metalloendoprotease (MEP) inhibitors phosphoramidon, diethylenetriaminepentaacetic acid, and carbobenzoxy-L-phenylalanine, when present only during the human sperm acrosome reaction (AR), will not inhibit the AR or sperm motility but will decrease the number of sperm that penetrate zona-free hamster eggs. The present study was designed to investigate whether this inhibition of penetration is due to an effect on sperm binding to the egg plasma membrane and/or to an effect on the actual membrane fusion event. In these studies we used ionomycin to initiate the AR and assayed binding in a Ca(2+)-free medium and fusion in Ca(2+)-containing medium in the same experiment. Eggs were loaded with the fluorescent dye Hoechst 33342, and the appearance of fluorescence in a sperm head indicated that fusion had occurred. The three MEP inhibitors reduced binding only slightly but inhibited the actual fusion step by 50-60% (determined with an equation that corrected for any inhibition of fusion due to inhibition of binding). MEP inhibitors present only during gamete interactions had little or no effect on fusion. We also found that phosphoramidon-inhibitable MEP activity was released during the ionomycin-initiated AR. Incubation of AR supernatant containing MEP activity with previously acrosome-reacted, phosphoramidon-treated sperm resulted in a large reversal of the phosphoramidon-inhibitory effect on sperm-egg fusion. These results support the hypothesis that the acrosomal phosphoramidon-inhibitable MEP released during the AR acts directly or indirectly during that event to increase the fusibility of the sperm plasma membrane region required for subsequent sperm-egg fusion.
Collapse
Affiliation(s)
- E Díaz-Pérez
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis 95616-8643
| | | |
Collapse
|
20
|
Proteolytic cleavage of ricin A chain in endosomal vesicles. Evidence for the action of endosomal proteases at both neutral and acidic pH. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54537-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Wileman T, Kane LP, Terhorst C. Degradation of T-cell receptor chains in the endoplasmic reticulum is inhibited by inhibitors of cysteine proteases. CELL REGULATION 1991; 2:753-65. [PMID: 1835888 PMCID: PMC361869 DOI: 10.1091/mbc.2.9.753] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endoplasmic reticulum, or an organelle closely associated with it, contains proteases that can be used to remove partially assembled or improperly folded proteins. Very little is known at present about the types of protease that degrade these proteins. The beta chain and cluster of differentiation (CD)3 delta subunit of the human T-cell antigen receptor (TCR) are degraded shortly after synthesis. In this study Chinese hamster ovary (CHO) cells transfected with either beta or delta were incubated with a panel of protease inhibitors, and the rates of degradation of the transfected proteins were followed using chain-specific enzyme-linked immunosorbent assays (ELISAs). Of the protease inhibitors tested, degradation of both chains was highly sensitive to sulfhydryl reagents and peptidyl inhibitors of cysteine proteases. Concentrations of inhibitors that produced near complete inhibition of degradation in the endoplasmic reticulum did not cause gross changes in cellular ATP levels nor did they significantly slow constitutive secretion from CHO cells. The inhibitors did not affect the ability of CHO cells to synthesize and assemble disulphide-linked TCR zeta dimers. We conclude that the protease inhibitors were not toxic to cells and did not affect the biosynthetic activity of the endoplasmic reticulum. Furthermore, they did not alter the ability of the endoplasmic reticulum to deliver its content to the Golgi apparatus. Taken together, these results suggest that the cysteine protease inhibitors slow degradation in the endoplasmic reticulum through an action on cysteine proteases. The results imply that the endoplasmic reticulum contains cysteine proteases that can be used to remove retained proteins.
Collapse
Affiliation(s)
- T Wileman
- Dana Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
22
|
Lew DJ, Simon SM. Characterization of constitutive exocytosis in the yeast Saccharomyces cerevisiae. J Membr Biol 1991; 123:261-8. [PMID: 1744905 DOI: 10.1007/bf01870409] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Constitutive exocytosis was investigated in the yeast Saccharomyces cerevisiae using temperature-sensitive mutant (sec) strains which do not allow vesicle fusion to the plasma membrane at the restrictive temperature. Secretory vesicles were accumulated in the cell at the restrictive temperature and then protein synthesis was blocked with cycloheximide. Upon returning the cells to the permissive temperature the contents of the accumulated vesicles were secreted. This allowed the study of constitutive exocytosis independent of the processes responsible for vesicular biosynthesis. Neither the kinetics nor magnitude of exocytosis were affected by removal of external Ca2+ or perturbations of cytosolic Ca2+. This suggests that in those systems where calcium is required for exocytosis it is a regulatory molecule and not part of the mechanism of membrane fusion. Release occurred over a very broad range of pH and in media with different ionic compositions, suggesting that ionic and potential gradients across the plasma membrane play no role in exocytosis in yeast. High osmolarity inhibited the rate, but not the extent, of release. A novel inhibitory effect of azide was detected which occurred only at low pH. Vanadate also inhibited release in a pH-independent manner. Secretion occurred at the same rate in cells with or without accumulated vesicles. This infers a rate-limiting step following vesicle accumulation, perhaps a limiting number of release sites on the plasma membrane.
Collapse
Affiliation(s)
- D J Lew
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | |
Collapse
|
23
|
Burgoyne RD. Control of exocytosis in adrenal chromaffin cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:174-202. [PMID: 1649638 DOI: 10.1016/0304-4157(91)90024-q] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R D Burgoyne
- Department of Physiology, University of Liverpool, U.K
| |
Collapse
|
24
|
Lennarz WJ, Strittmatter WJ. Cellular functions of metallo-endoproteinases. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:149-58. [PMID: 1854793 DOI: 10.1016/0304-4157(91)90022-o] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- W J Lennarz
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook
| | | |
Collapse
|
25
|
Affiliation(s)
- J A Nadel
- Cardiovascular Research Institute, University of California, San Francisco 94143
| |
Collapse
|
26
|
Brostrom MA, Prostko CR, Gmitter-Yellen D, Grandison LJ, Kuznetsov G, Wong WL, Brostrom CO. Inhibition of translational initiation by metalloendoprotease antagonists. Evidence for involvement of sequestered Ca2+ stores. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89606-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
27
|
Epand RM, Stafford AR, Debanne MT. Action of insulin in rat adipocytes and membrane properties. Biochemistry 1991; 30:2092-8. [PMID: 1998671 DOI: 10.1021/bi00222a014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several small peptides inhibit insulin-promoted glucose uptake in rat adipocytes. At 10 microM peptide concentration, the extent of their inhibition of the insulin effect is related to the ability of these peptides to raise the bilayer- to hexagonal-phase transition temperature in model membranes. Hexane and DL-threo-dihydrosphingosine lower this phase transition temperature in model membranes, and they promote glucose uptake in adipocytes. There is thus an empirical relationship between the action of membrane additives on glucose uptake in adipocytes and their effect on the hexagonal-phase-forming tendency in model membranes. The most potent of the bilayer-stabilizing peptides tested in this work is carbobenzoxy-D-Phe-L-Phe-Gly. This peptide also inhibits insulin-stimulated protein synthesis in adipocytes. In contrast, DL-threo-dihydrosphingosine stimulates protein synthesis. The uptake of [125I]iodoinsulin by adipocytes is inhibited by carbobenzoxy-D-Phe-L-Phe-Gly. The mechanism of action of the bilayer-stabilizing peptides includes inhibition of insulin-dependent protein phosphorylation in adipocytes. The peptides are not specific inhibitors of a single function but are suggested to cause their effects by altering the physical properties of the membrane in a nonspecific manner. These results demonstrate that insulin-dependent functions of rat adipocytes can be modified by membrane additives in a manner predictable from the properties of these additives in model membranes.
Collapse
Affiliation(s)
- R M Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
28
|
Schmalzing G, Kröner S. Micromolar free calcium exposes ouabain-binding sites in digitonin-permeabilized Xenopus laevis oocytes. Biochem J 1990; 269:757-66. [PMID: 2167664 PMCID: PMC1131652 DOI: 10.1042/bj2690757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As demonstrated previously, digitonin-permeabilized Xenopus oocytes have a large internal pool of sodium pumps which are inaccessible to cytosolic ouabain [Schmalzing, Kröner & Passow (1989) Biochem. J. 260, 395-399]. Access to internal ouabain-binding sites required permeabilization of inner membranes with SDS. In the present study, micromolar free Ca2+ was found to stimulate ouabain binding in the digitonin-permeabilized cells (K0.5 0.5 microM-Ca2+, h 1.9, average of seven experiments) without disrupting intracellular membranes. Sustained incubation at 9 microM-Ca2+ was as effective as SDS in inducing access to the ouabain-binding sites of the internal sodium pumps. Omission of either Mg2+ or ATP completely abolished the Ca2+ effect. Half-maximal stimulation by Ca2+ required approx. 0.4 mM-MgATP. Of a variety of nucleotides tested, none was as effective as ATP (rank order ATP greater than ADP greater than ATP[S] (adenosine 5'-[gamma-thio]triphosphate) greater than CTP greater than UTP greater than ITP = XTP greater than GTP). Pi, AMP, cyclic AMP, cyclic GMP, GTP[S] (guanosine 5'-[gamma-thio]triphosphate) and a stable ATP analogue p[NH]ppA (adenosine 5'-[beta gamma-imido]triphosphate), were ineffective. The metalloendoproteinase inhibitor carbobenzoxy-Gly-Phe-amide reduced the Ca2+ effect by some 50%. Inhibitors of chymotrypsin and the Ca2+ proteinase calpain had no effect. Ca2+ ionophores (A23187 and ionomycin) and the polycations neomycin and polymixin B blocked the Ca2+ response entirely. Neomycin also abolished a Ca2(+)-independent stimulation of ouabain binding by the wasp venom mastoparan. The requirements for increasing the accessibility of ouabain-binding sites are remarkably similar to those for exocytosis in secretory cells, suggesting that oocytes and eggs possess a Ca2(+)-regulated pathway for the plasma membrane insertion of sodium pumps.
Collapse
Affiliation(s)
- G Schmalzing
- Max-Planck-Institut für Biophysik, Frankfurt, Federal Republic of Germany
| | | |
Collapse
|
29
|
Sommerhoff CP, Nadel JA, Basbaum CB, Caughey GH. Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J Clin Invest 1990; 85:682-9. [PMID: 2107207 PMCID: PMC296483 DOI: 10.1172/jci114492] [Citation(s) in RCA: 196] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To investigate the hypothesis that neutrophil proteases stimulate airway gland secretion, we studied the effect of human cathepsin G and elastase on secretion of 35S-labeled macromolecules from cultured bovine airway gland serous cells. Both proteases stimulated secretion in a concentration-dependent fashion with a threshold of greater than or equal to 10(-10) M. Elastase was more potent than cathepsin G, causing a maximal secretory response of 1,810 +/- 60% over baseline at 10(-8) M. The maximal response to cathepsin G (1,810 +/- 70% over baseline at 10(-7) M) was similar to the maximal response to elastase. These responses were greater than 10-fold larger than the response to other agonists such as histamine. Protease-induced secretion was noncytotoxic and required catalytically active enzymes. The predominant sulfated macromolecule released by proteases was chondroitin sulfate proteoglycan. Immunocytochemical staining demonstrated chondroitin sulfate in cytoplasmic granules and decreased granular staining after stimulation of cells with elastase. The neutrophil proteases also degraded the proteoglycan released from serous cells. Cathepsin G and elastase in supernatant obtained by degranulation of human peripheral neutrophils also caused a secretory response. Thus, neutrophil proteases stimulate airway gland serous cell secretion of chondroitin sulfate proteoglycan and degrade the secreted product. These findings suggest a potential role for neutrophil proteases in the pathogenesis of increased and abnormal submucosal gland secretions in diseases associated with inflammation and neutrophil infiltration of the airways.
Collapse
Affiliation(s)
- C P Sommerhoff
- Cardiovascular Research Institute, University of California, San Francisco, 94143-0130
| | | | | | | |
Collapse
|
30
|
Bauvois B. Murine thymocytes possess specific cell surface-associated exoaminopeptidase activities: preferential expression by immature CD4-CD8- subpopulation. Eur J Immunol 1990; 20:459-68. [PMID: 2108042 DOI: 10.1002/eji.1830200302] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Murine thymocytes are shown to possess at least three well-defined exo-N-aminopeptidase activities on their surface. One of them cleaves the prolyl bond in the synthetic dipeptide nitroanilide Gly-Pro-pNA (Km 0.95 mM and Vmax 8 nmol/h at pH 7.4 and 37 degrees C) and is specifically inhibited by phenylmethane sulfonyl fluoride, diprotin A, Gly-Pro-Ala and Gly-Pro-Gly-Gly. These data further support identification of this enzyme with a serine exopeptidase dipeptidyl peptidase IV (DPP IV), previously reported to be specific for collagen. The two other forms of N-exopeptidase activities are detected when Ala-pNA and Leu-pNA are used as substrates. Leu-aminopeptidase activity (Km 1.4 mM, Vmax 15 nmol/h) and Ala-aminopeptidase activity (Km 4.0 mM, Vmax 20 nmol/h) are inhibited by inhibitors for thiol- and trypsin-like proteinases, i.e. tosyl lysyl chloromethyl ketone, leupeptin and N-ethylmaleimide. Addition inhibition of Leu-aminopeptidase activity by peptstatin, a known inhibitor of carboxyl proteases, suggests that aminopeptidase activity detected with Leu-pNA is different in part from Ala-aminopeptidase activity. Among the various lymphoid cell populations tested, the three aminopeptidase activities are increased by three- to fourfold in the immature CD4-CD8- thymocyte subset as well as in the thymoma BW5147. In contrast, cortisone-resistant thymocytes, lymph node and spleen cells exhibit levels of activities almost similar to that of unfractionated thymocytes. During ontogeny, the levels of these activities are increased four- to sevenfold on fetal thymocytes (from days 14 to 16). Finally, when thymocytes or spleen cells are cultured with a mitogenic concentration of concanavalin A, their proliferative responses are correlated with an enhancement of the aminopeptidase activities (1.3- to 5-fold). From these results, a correlation between the presence of these peptidases on the cell surface of immature and mature lymphoid cells and biological responsiveness is suggested.
Collapse
Affiliation(s)
- B Bauvois
- Laboratoire de Physiopathologie du Développement, CNRS URA 230, Paris, France
| |
Collapse
|
31
|
Plattner H. Regulation of membrane fusion during exocytosis. INTERNATIONAL REVIEW OF CYTOLOGY 1990; 119:197-286. [PMID: 2695484 DOI: 10.1016/s0074-7696(08)60652-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- H Plattner
- Faculty of Biology, University of Konstanz, Federal Republic of Germany
| |
Collapse
|
32
|
Chang A, Jamieson JD. Structural and Secretory Polarity in the Pancreatic Acinar Cell. Compr Physiol 1989. [DOI: 10.1002/cphy.cp060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Chiba K, Hoshi M. Three Phases of Cortical Maturation during Meiosis Reinitiation in Starfish Oocytes. (starfish oocytes/fertilization envelope/calcium maturation). Dev Growth Differ 1989. [DOI: 10.1111/j.1440-169x.1989.00447.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Matsumura K, Aketa K. Activation of Ca2+ channels during the acrosome reaction of sea urchin sperm is inhibited by inhibitors of chymotrypsin-like proteases. GAMETE RESEARCH 1989; 23:255-66. [PMID: 2550337 DOI: 10.1002/mrd.1120230303] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Probable participation of sperm protease in the acrosome reaction was investigated using several inhibitors and substrates. Among those examined, L-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK) and chymostatin, chymotrypsin inhibitors, p-nitrophenyl-p'-guanidinobenzoate (NPGB), a serine protease inhibitor, and N-benzoyl-L-tyrosine ethyl ester (BTEE), a chymotrypsin substrate, inhibited the egg jelly-induced acrosome reaction of Strongylocentrotus intermedius. TPCK and BTEE, however, did not inhibit the reaction caused by ionophores, A23187, or nigericin. To know the mechanism of inhibition by chymotrypsin inhibitors and substrates of the egg jelly-induced acrosome reaction, intracellular Ca2+ concentration [( Ca2+]i) and pH (pHi) were measured with fura-2 and 2',7'-bis (carboxy-ethyl)carboxyfluorescein (BCECF), respectively. Egg jelly caused increase of [Ca2+]i, which was depressed by BTEE. Egg jelly also caused a transient rise of pHi, which was not depressed by BTEE. In the presence of verapamil, the acrosome reaction by egg jelly was significantly inhibited concomitant with depressed increase of [Ca2+]i. The rise of pHi was not depressed by verapamil. Thus, modes of action of BTEE and of verapamil are similar to each other. Bringing these findings together, the authors present a view that a chymotrypsin-like protease of sea urchin sperm activates verapamil-sensitive Ca2+ channels, which take part in the acrosome reaction.
Collapse
Affiliation(s)
- K Matsumura
- Akkeshi Marine Biological Station, Faculty of Science, Hokkaido University, Japan
| | | |
Collapse
|
35
|
Roe JL, Park HR, Strittmatter WJ, Lennarz WJ. Inhibitors of metalloendoproteases block spiculogenesis in sea urchin primary mesenchyme cells. Exp Cell Res 1989; 181:542-50. [PMID: 2924802 DOI: 10.1016/0014-4827(89)90110-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metalloendoproteases have been implicated in a variety of fusion processes including plasma membrane fusion and exocytosis. As a prerequisite to skeleton formation in the sea urchin embryo, primary mesenchyme cells undergo fusion via filopodia to form syncytia. The spicule is formed within the syncytial cable by matrix and mineral deposition. To investigate the potential involvement of a metalloendoprotease in spiculogenesis, the effect of inhibitors of this enzyme on skeleton formation was studied. Experiments with primary mesenchyme cells in vitro and in normal embryos revealed that skeleton formation was blocked by these inhibitors. These findings implicate a metalloendoprotease in spiculogenesis; such an enzyme has been demonstrated in homogenates of primary mesenchyme cells. The most likely site of action of the metalloendoprotease is at the cell membrane fusion stage and/or at subsequent events requiring membrane fusion.
Collapse
Affiliation(s)
- J L Roe
- Department of Biochemistry and Molecular Biology, UT M.D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
36
|
Rappay G. Proteinases and their inhibitors in cells and tissues. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1989; 18:1-61. [PMID: 2657864 DOI: 10.1016/s0079-6336(89)80003-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A large body of evidence has been assembled to indicate the substantial importance of proteolytic processes in various physiological functions. It has recently become clear too that endo-acting peptide bond hydrolases provisionally characterized and classified at present as serine, cysteine, aspartic and metallo together with unknown catalytic mechanism proteinases sometimes act in cascades. They are controlled by natural proteinase inhibitors present in cells and body fluids. In the first part of the present monograph the author was concerned to present an overview on the morphological and physiological approach to localization, surveying reaction principles and methods suitable for visualization of proteolytic enzymes and their natural and synthetic inhibitors. In the second part the roles played by proteinases have been summarized from the point of view of cell biology. The selection of earlier and recent data reviewed on the involvement of proteolysis in the behavior of individual cells reveals that enzymes, whether they be exogeneous or intrinsic, can be effective and sensitive modulators of cellular growth and morphology. There exists a close correlation between malignant growth and degradation of cells. It appears likely that as yet unknown or at least so far inadequately characterized factors that influence the survival or the death of cells may turn out to be proteinases. The causal role of extracellular proteolysis in cancer cell metastases, in stopping cancer cell growth and in cytolysis remains for further investigated. Ovulation, fertilization and implantation are basic biological functions in which proteolytic enzymes play a key role. The emergence of new approaches in reproductive biology and a growing factual basis will inevitably necessitate a reevaluation of present knowledge of proteolytic processes involved. The molecular aspects of intracellular protein catabolism have been discussed in terms of the inhibition of lysosomal and/or non-lysosomal protein breakdown. Peptide and protein hormone biosynthesis and inactivation are still at the centre of interest in cell biology, and a number of proteinases have been implicated in both processes. A number of conjectures partly based on the author's own work have been discussed which suggest the possibility of the involvement of proteolysis in exocytosis and endocytosis. The author's optimistic conclusion is that through the common action of biochemists, cell biologists, cytochemists, and pharmacologists the mystery of cellular proteolysis is beginning to be solved.
Collapse
Affiliation(s)
- G Rappay
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| |
Collapse
|
37
|
Abstract
Metalloendoprotease activity that was sensitive to the metal chelator 1,10-phenanthroline and to synthetic dipeptide substrates of the enzyme was detected in homogenates of dorsal root ganglia (DRG) and spinal nerve from the bullfrog. Exposure of an intact in vitro preparation of DRG and spinal nerves to 1,10-phenanthroline led to a dose-dependent depression in the accumulation of fast-transported 3H-labeled protein proximal to a nerve ligature. In nonligated preparations, the chelator treatment reduced the amount of transported protein entering the nerve; no marked effect on the transport rate was observed. Exposure of a desheathed region of spinal nerve to 1,10-phenanthroline, while DRG were maintained in control medium, resulted in a slight depression of fast transport. This effect was not dose dependent over the range that produced a dose response when both DRG and spinal nerve were exposed to the drug. Treatment of DRG and spinal nerve with the metalloendoprotease substrate analogues carbobenzoxy (CBZ)-Ser-Leu-amide or CBZ-Gly-Leu-amide inhibited fast axonal transport, whereas treatment with CBZ-Gly-Gly-amide, which is not a substrate, had no detectable effect on transport. Selective exposure of desheathed nerve trunk to CBZ-Ser-Leu-amide inhibited fast transport, but the effect was less marked than when DRG and nerve trunk were treated. Although previous studies have focused on the role of metalloendoprotease activity in exocytosis, the present data suggest that the enzyme may also be involved in earlier stages of intracellular transport.
Collapse
Affiliation(s)
- R Hammerschlag
- Division of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | | |
Collapse
|
38
|
Affholter JA, Fried VA, Roth RA. Human insulin-degrading enzyme shares structural and functional homologies with E. coli protease III. Science 1988; 242:1415-8. [PMID: 3059494 DOI: 10.1126/science.3059494] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A proteinase with high affinity for insulin has been proposed to play a role in the cellular processing of this hormone. A complementary DNA (cDNA) coding for this enzyme has been isolated and sequenced. The deduced amino acid sequence of the enzyme contained the sequences of 13 peptides derived from the isolated protein. The cDNA could be transcribed in vitro to yield a synthetic RNA that in cell-free translations produced a protein that coelectrophoresed with the native proteinase and could be immunoprecipitated with monoclonal antibodies to this enzyme. The deduced sequence of this proteinase did not contain the consensus sequences for any of the known classes of proteinases (that is, metallo, cysteine, aspartic, or serine), but it did show homology to an Escherichia coli proteinase (called protease III), which also cleaves insulin and is present in the periplasmic space. Thus, these two proteins may be members of a family of proteases that are involved in intercellular peptide signaling.
Collapse
Affiliation(s)
- J A Affholter
- Department of Pharmacology, Stanford University School of Medicine, CA 94305
| | | | | |
Collapse
|
39
|
Strous GJ, van Kerkhof P, Dekker J, Schwartz AL. Metalloendoprotease inhibitors block protein synthesis, intracellular transport, and endocytosis in hepatoma cells. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)81345-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Katunuma N, Kido H. Biological functions of serine proteases in mast cells in allergic inflammation. J Cell Biochem 1988; 38:291-301. [PMID: 2467915 DOI: 10.1002/jcb.240380408] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Serine proteases in mast cell granules, such as chymase, atypical chymase, and tryptase, which are major proteins in the granules, may play important roles in the process of immunoglobulin E (IgE)-mediated degranulation and in pathobiological alterations in tissues. Indeed, inhibitors of chymase, substrate analogs, and antichymase F(ab')2, but not inhibitors of tryptase, markedly inhibited histamine release induced by IgE-receptor bridging but not that induced by Ca ionophore. In contrast, inhibitors of metalloprotease inhibited histamine release induced not only by IgE-receptor bridging but also by Ca ionophore. These results suggest that chymase and metalloprotease are involved at different steps in the process of degranulation. The extents of inhibition of histamine release were closely correlated with the amounts of the inhibitors of chymase accumulated in the granules. After degranulation, the released proteases may in part contribute to pathobiological alterations in allergic disorders through generations of C3a anaphylatoxin and thrombin by human and rat tryptase, respectively, and those of angiotensin II and a chemotactic factor of neutrophils by human and rat chymase, respectively. Moreover, chymase and atypical chymase from rat were shown to destroy type IV collagen, and human tryptase was found to hydrolyze various plasma proteins, such as fibrinogen and high-molecular-weight kininogen. The biological activities of tryptase and chymase from rat may be regulated by their dissociation from and association with trypstatin, an endogenous inhibitor of these proteases.
Collapse
Affiliation(s)
- N Katunuma
- Division of Enzyme Chemistry, University of Tokushima, Japan
| | | |
Collapse
|
41
|
Díaz-Pérez E, Thomas P, Meizel S. Evidence suggesting a role for sperm metalloendoprotease activity in penetration of zona-free hamster eggs by human sperm. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1988; 248:213-21. [PMID: 3199094 DOI: 10.1002/jez.1402480213] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It has been reported that metalloendoprotease (MEP) activity is involved in somatic cell membrane fusion events and in the sea urchin sperm acrosome reaction (AR). MEP activity also has been demonstrated in human and other mammalian sperm. The present study was concerned with investigating whether a human sperm MEP is important in membrane events necessary for sperm egg fusion. Ejaculated human sperm were washed, capacitated in vitro, and preincubated with the competitive MEP inhibitors phosphoramidon (50 microM) or CBZ-L-phenylalanine (1 mM), with 100 microM diethylenetriaminepentaacetic acid (DTPA), a heavy metal chelator, or as controls, with the appropriate solvents. The AR was initiated in vitro with preovulatory human follicular fluid and the sperm washed to dilute inhibitors and then coincubated with zona-free golden hamster eggs (zonae and cumuli removed with trypsin and hyaluronidase, respectively). Eggs were washed after 0.5 h, and the number of sperm remaining bound was counted. After 2.5 h further incubation, the eggs were stained with acetolacmoid or acetoorcein and penetration was assayed by counting the number of decondensed sperm heads per egg (penetration index) and the percent of penetrated eggs. The inhibitor treatments did not decrease the percentage of penetrated eggs (range 80-90%), but a significant reduction in the penetration index was observed. Phosphoramidon reduced the penetration index by 45%, CBZ-L-phenylalanine by 57%, and DTPA by 56%. None of the inhibitors decreased the penetration index or the percentage of penetrated eggs when added directly to suspensions of acrosome-reacted sperm and zona-free eggs at the diluted levels that would have been present after washing inhibitor-treated sperm.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Díaz-Pérez
- Department of Human Anatomy, School of Medicine, University of California, Davis 95616
| | | | | |
Collapse
|
42
|
Roe JL, Farach HA, Strittmatter WJ, Lennarz WJ. Evidence for involvement of metalloendoproteases in a step in sea urchin gamete fusion. J Biophys Biochem Cytol 1988; 107:539-44. [PMID: 3417761 PMCID: PMC2115212 DOI: 10.1083/jcb.107.2.539] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Membrane fusion events are required in three steps in sea urchin fertilization: the acrosome reaction in sperm, fusion of the plasma membrane of acrosome-reacted sperm with the plasma membrane of the egg, and exocytosis of the contents of the egg cortical granules. We recently reported the involvement of a Zn2+-dependent metalloendoprotease in the acrosome reaction (Farach, H. C., D. I. Mundy, W. J. Strittmatter, and W. J. Lennarz. 1987. J. Biol. Chem. 262:5483-5487). In the current study, we investigated the possible involvement of metalloendoproteases in the two other fusion events of fertilization. The use of inhibitors of metalloendoproteases provided evidence that at least one of the fusion events subsequent to the acrosome reaction requires such enzymes. These inhibitors did not block the binding of sperm to egg or the process of cortical granule exocytosis. However, sperm-egg fusion, assayed by the ability of the bound sperm to establish cytoplasmic continuity with the egg, was inhibited by metalloendoprotease substrate. Thus, in addition to the acrosome reaction, an event in the gamete fusion process requires a metalloendoprotease.
Collapse
Affiliation(s)
- J L Roe
- Department of Biochemistry and Molecular Biology, University of Texas System Cancer Center, M. D. Anderson Hospital and Tumor Institute, Houston 77030
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- G L Decker
- Department of Biochemistry and Molecular Biology, University of Texas System Cancer Center, M. D. Anderson Hospital and Tumor Institute, Houston 77030
| | | |
Collapse
|
44
|
Hara K, Kominami E, Katunuma N. Effect of proteinase inhibitors on intracellular processing of cathepsin B, H and L in rat macrophages. FEBS Lett 1988; 231:229-31. [PMID: 3360127 DOI: 10.1016/0014-5793(88)80737-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of various proteinase inhibitors on the processing of lysosomal cathepsins B, H and L were investigated in cultured rat peritoneal macrophages. The processing of newly synthesized pro-cathepsins B, H and L to the mature single-chain enzymes was sensitive to a metal chelator,1,10-phenanthroline, and a synthetic metalloendopeptidase substrate, Z-Gly-Leu-NH2, and insensitive to inhibitors of serine proteinases, aspartic proteinases and cysteine proteinases. Inhibitors of cysteine proteinases, E-64-d and leupeptin, inhibited the processing of the single-chain forms of cathepsins B, H and L to the two-chain forms. These results suggest that (a) metal endopeptidase(s) is (are) involved in the propeptide processing of cathepsin B, H and L, and that proteolytic cleavages of the mature single-chain cathepsins are accomplished by cysteine proteinases in lysosomes.
Collapse
Affiliation(s)
- K Hara
- Division of Enzyme Chemistry, University of Tokushima, Japan
| | | | | |
Collapse
|
45
|
Strittmatter WJ. Molecular mechanisms of exocytosis: the adrenal chromaffin cell as a model system. Cell Mol Neurobiol 1988; 8:19-25. [PMID: 3042141 DOI: 10.1007/bf00712907] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The release of neurotransmitters, hormones, and enzymes involves exquisitely regulated events which ultimately result in the fusion of the secretory vesicle with the cell's plasma membrane, releasing the vesicle contents into the extracellular space. 2. The biochemical and cellular mechanisms mediating exocytosis have been extensively studied in a model system of primary cultured adrenal chromaffin cells. 3. This paper briefly reviews current understanding, and directions of future studies in exocytosis using this model system.
Collapse
Affiliation(s)
- W J Strittmatter
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
46
|
Berdan RC, Gilula NB. The arthropod gap junction and pseudo-gap junction: isolation and preliminary biochemical analysis. Cell Tissue Res 1988; 251:257-74. [PMID: 2830976 DOI: 10.1007/bf00215833] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hepatopancreas of the crayfish, Procambarus clarkii, contains an unusual abundance of gap junctions, suggesting that this tissue might provide an ideal source from which to isolate the arthropod-type of gap junction. A membrane fraction obtained by subcellular fractionation of this organ contained smooth septate junctions, zonulae adhaerentes, gap junctions and pentalaminar membrane structures (pseudo-gap junctions) as determined by electron microscopy. A further enrichment of plasma membranes and gap junctions was achieved by the use of linear sucrose gradients and extraction with 5 mM NaOH. The enrichment of gap junctions correlated with the enrichment of a 31 Kd protein band on polyacrylamide gels. Extraction with greater than or equal to 20 mM NaOH or greater than or equal to 0.5% (w/v) Sarkosyl NL97 resulted in the disruption and/or solubilization of gap junctions. Negative staining revealed a uniform population of 9.6 nm diameter subunits within the gap junctions with an apparent sixfold symmetry. Using antisera to the major gap junctional protein of rat liver (32 Kd) and to the lens membrane protein (MP 26), we failed to detect any homologous antigenic components in the arthropod material by immunoblotting-enriched gap junction fractions or by immunofluorescence on tissue sections. The enrichment of another membrane structure (pseudo-gap junctions), closely resembling a gap junction, correlated with the enrichment of two protein bands, 17 and 16 Kd, on polyacrylamide gels. These structures appeared to have originated from intracellular myelin-like figures in phagolysosomal structures. They could be distinguished from gap junctions on the basis of their thickness, detergent-alkali insolubility, and lack of association with other plasma membrane structures, such as the septate junction. Pseudo-gap junctions may be related to a class of pentalaminar contacts among membranes involved in intracellular fusion in many eukaryotic cell types. We conclude that pseudo-gap junctions and gap junctions are different cellular structures, and that gap junctions from this arthropod tissue are uniquely different from mammalian gap junctions of rat liver in their detergent-alkali solubility, equilibrium density on sucrose gradients, and protein content (antigenic properties).
Collapse
Affiliation(s)
- R C Berdan
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
47
|
Epand RM, Stafford AR, Cheetham JJ, Bottega R, Ball EH. The relationship between the bilayer to hexagonal phase transition temperature in membranes and protein kinase C activity. Biosci Rep 1988; 8:49-54. [PMID: 3395673 DOI: 10.1007/bf01128971] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A number of substances affect the activity of protein kinase C. Among uncharged and zwitterionic compounds, those which activate protein kinase C also lower the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine while substances which inhibit protein kinase C raise this transition temperature. Using this criteria, we have identified 3 beta-chloro-5-cholestene, 5 beta-cholan-24-ol and eicosane as new protein kinase C activators and have shown that Z-Ser-Leu-NH2, Z-Gly-Leu-NH2, Z-Tyr-Leu-NH2, cyclosporin A and cholestan-3 beta, 5 alpha, 6 beta-triol are protein kinase C inhibitors.
Collapse
Affiliation(s)
- R M Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ontario
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Mundy D, Hermann T, Strittmatter WJ. Specific inhibitors implicate a soluble metalloendoproteinase in exocytosis. Cell Mol Neurobiol 1987; 7:425-37. [PMID: 3330469 DOI: 10.1007/bf00733794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Previous studies have demonstrated that exocytosis in adrenal chromaffin cells appears to require zinc-dependent endoproteinase activity. 2. Chromaffin cells have metal-dependent endoproteinases in both the plasma membrane and the soluble fraction of homogenized cells. In order to further study critically the role of metalloproteinase in exocytosis, and prior to purification, we needed to determine which one of several adrenal metalloproteinases is implicated in exocytosis. 3. The studies described here demonstrate that the metal-dependent endoproteinases in these two subcellular fractions can be differentiated by selective inhibitors. In both intact and permeabilized cells, the plasma membrane metalloproteinase, but not the soluble proteinases, is inhibited by phosphoramidon. Phosphoramidon does not block exocytosis in either intact or permeabilized cells. 4. In addition, the plasma membrane metalloproteinase appears to have its catalytic site facing the outside of the cell. 5. Because of these observations the plasma membrane metalloproteinase does not appear to be required in exocytosis. Since soluble metalloproteinase activity is inhibited by proteinase inhibitors at concentrations which block exocytosis, a soluble, and not the plasma membrane, metalloproteinase appears to be required in exocytosis.
Collapse
Affiliation(s)
- D Mundy
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
50
|
Abstract
We examined the role of proteolytic ligand modification in endosomal targeting using vitellogenin (VTG) uptake by Xenopus oocytes as a model system. Non-cleavable VTG is internalized, but does not appear in yolk platelets. We identified two inhibitors of VTG processing into the yolk proteins: the ionophore monensin and pepstatin A, a specific inhibitor of cathepsin D. Pepstatin neither affected ligand binding and internalization, nor inhibited the degradation of nonspecifically incorporated proteins, whereas monensin inhibited all of these processes. Inhibiting VTG processing prevented its deposition into yolk platelets by strongly interfering with endosome-yolk platelet fusion. Monensin treatment resulted in morphologically abnormal endosomes, while pepstatin only inhibited VTG cleavage and the subsequent fusion of endosomes with yolk platelets. Since VTG cleavage is initiated prior to its deposition in platelets, we postulate that ligand proteolysis could be necessary for normal endosomal targeting.
Collapse
Affiliation(s)
- L K Opresko
- Department of Pathology, University of Utah, Salt Lake City 84132
| | | |
Collapse
|