1
|
Shi L, Shi W, Qiu Z, Yan S, Liu Z, Cao B. CaMAPK1 Plays a Vital Role in the Regulation of Resistance to Ralstonia solanacearum Infection and Tolerance to Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1775. [PMID: 38999615 PMCID: PMC11243954 DOI: 10.3390/plants13131775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
As an important member of mitogen-activated protein kinase (MAPK) cascades, MAPKs play an important role in plant defense response against biotic and abiotic stresses; however, the involvement of the majority of the MAPK family members against Ralstonia solanacearum and heat stress (HS) remains poorly understood. In the present study, CaMAPK1 was identified from the genome of pepper and its function against R. solanacearum and HS was analyzed. The transcript accumulations of CaMAPK1 and the activities of its native promoter were both significantly induced by R. solanacearum inoculation, HS, and the application of exogenous hormones, including SA, MeJA, and ABA. Transient expression of CaMAPK1 showed that CaMAPK1 can be targeted throughout the whole cells in Nicotiana benthamiana and triggered chlorosis and hypersensitive response-like cell death in pepper leaves, accompanied by the accumulation of H2O2, and the up-regulations of hormones- and H2O2-associated marker genes. The knock-down of CaMAPK1 enhanced the susceptibility to R. solanacearum partially by down-regulating the expression of hormones- and H2O2-related genes and impairing the thermotolerance of pepper probably by attenuating CaHSFA2 and CaHSP70-1 transcripts. Taken together, our results revealed that CaMAPK1 is regulated by SA, JA, and ABA signaling and coordinates responses to R. solanacearum infection and HS in pepper.
Collapse
Affiliation(s)
- Lanping Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Wei Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (Z.Q.); (S.Y.)
| |
Collapse
|
2
|
Caffeine and MDMA (Ecstasy) Exacerbate ER Stress Triggered by Hyperthermia. Int J Mol Sci 2022; 23:ijms23041974. [PMID: 35216090 PMCID: PMC8880705 DOI: 10.3390/ijms23041974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion, which causes ER exodosis, the secretion of ER-resident proteins. In rodent models, club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. In human studies, MDMA stimulated an acute, dose-dependent increase in core body temperature, but an examination of caffeine and MDMA in combination remains a topic for clinical research. Here we examine the secretion of ER-resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER-resident proteins, and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter the canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/GRP78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis, contributing to cellular toxicity.
Collapse
|
3
|
Thormann V, Rothkegel MC, Schöpflin R, Glaser LV, Djuric P, Li N, Chung HR, Schwahn K, Vingron M, Meijsing SH. Genomic dissection of enhancers uncovers principles of combinatorial regulation and cell type-specific wiring of enhancer-promoter contacts. Nucleic Acids Res 2019; 46:2868-2882. [PMID: 29385519 PMCID: PMC5888794 DOI: 10.1093/nar/gky051] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
Genomic binding of transcription factors, like the glucocorticoid receptor (GR), is linked to the regulation of genes. However, as we show here, GR binding is a poor predictor of GR-dependent gene regulation even when taking the 3D organization of the genome into account. To connect GR binding sites to the regulation of genes in the endogenous genomic context, we turned to genome editing. By deleting GR binding sites, individually or in combination, we uncovered how cooperative interactions between binding sites contribute to the regulation of genes. Specifically, for the GR target gene GILZ, we show that the simultaneous presence of a cluster of GR binding sites is required for the activity of an individual enhancer and that the GR-dependent regulation of GILZ depends on multiple GR-bound enhancers. Further, by deleting GR binding sites that are shared between different cell types, we show how cell type-specific genome organization and enhancer-blocking can result in cell type-specific wiring of promoter–enhancer contacts. This rewiring allows an individual GR binding site shared between different cell types to direct the expression of distinct transcripts and thereby contributes to the cell type-specific consequences of glucocorticoid signaling.
Collapse
Affiliation(s)
- Verena Thormann
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Maika C Rothkegel
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Laura V Glaser
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Petar Djuric
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Na Li
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Ho-Ryun Chung
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Kevin Schwahn
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| | - Sebastiaan H Meijsing
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-67, 14195 Berlin, Germany
| |
Collapse
|
4
|
Colbran LL, Chen L, Capra JA. Sequence Characteristics Distinguish Transcribed Enhancers from Promoters and Predict Their Breadth of Activity. Genetics 2019; 211:1205-1217. [PMID: 30696717 PMCID: PMC6456323 DOI: 10.1534/genetics.118.301895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
Enhancers and promoters both regulate gene expression by recruiting transcription factors (TFs); however, the degree to which enhancer vs. promoter activity is due to differences in their sequences or to genomic context is the subject of ongoing debate. We examined this question by analyzing the sequences of thousands of transcribed enhancers and promoters from hundreds of cellular contexts previously identified by cap analysis of gene expression. Support vector machine classifiers trained on counts of all possible 6-bp-long sequences (6-mers) were able to accurately distinguish promoters from enhancers and distinguish their breadth of activity across tissues. Classifiers trained to predict enhancer activity also performed well when applied to promoter prediction tasks, but promoter-trained classifiers performed poorly on enhancers. This suggests that the learned sequence patterns predictive of enhancer activity generalize to promoters, but not vice versa. Our classifiers also indicate that there are functionally relevant differences in enhancer and promoter GC content beyond the influence of CpG islands. Furthermore, sequences characteristic of broad promoter or broad enhancer activity matched different TFs, with predicted ETS- and RFX-binding sites indicative of promoters, and AP-1 sites indicative of enhancers. Finally, we evaluated the ability of our models to distinguish enhancers and promoters defined by histone modifications. Separating these classes was substantially more difficult, and this difference may contribute to ongoing debates about the similarity of enhancers and promoters. In summary, our results suggest that high-confidence transcribed enhancers and promoters can largely be distinguished based on biologically relevant sequence properties.
Collapse
Affiliation(s)
- Laura L Colbran
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee 37235
| | - Ling Chen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee 37235
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
- Center for Structural Biology, Departments of Biomedical Informatics and Computer Science, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
5
|
Medina-Rivera A, Santiago-Algarra D, Puthier D, Spicuglia S. Widespread Enhancer Activity from Core Promoters. Trends Biochem Sci 2018; 43:452-468. [PMID: 29673772 DOI: 10.1016/j.tibs.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023]
Abstract
Gene expression in higher eukaryotes is precisely regulated in time and space through the interplay between promoters and gene-distal regulatory regions, known as enhancers. The original definition of enhancers implies the ability to activate gene expression remotely, while promoters entail the capability to locally induce gene expression. Despite the conventional distinction between them, promoters and enhancers share many genomic and epigenomic features. One intriguing finding in the gene regulation field comes from the observation that many core promoter regions display enhancer activity. Recent high-throughput reporter assays along with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-related approaches have indicated that this phenomenon is common and might have a strong impact on our global understanding of genome organisation and gene expression regulation.
Collapse
Affiliation(s)
- Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - David Santiago-Algarra
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labéllisée, Ligue Contre le Cancer, Paris, France
| | - Denis Puthier
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labéllisée, Ligue Contre le Cancer, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, INSERM, TAGC, UMR 1090, Marseille, France; Equipe Labéllisée, Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
6
|
|
7
|
Garbuz DG, Evgen’ev MB. The evolution of heat shock genes and expression patterns of heat shock proteins in the species from temperature contrasting habitats. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Duarte FM, Fuda NJ, Mahat DB, Core LJ, Guertin MJ, Lis JT. Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation. Genes Dev 2016; 30:1731-46. [PMID: 27492368 PMCID: PMC5002978 DOI: 10.1101/gad.284430.116] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 12/24/2022]
Abstract
The coordinated regulation of gene expression at the transcriptional level is fundamental to development and homeostasis. Inducible systems are invaluable when studying transcription because the regulatory process can be triggered instantaneously, allowing the tracking of ordered mechanistic events. Here, we use precision run-on sequencing (PRO-seq) to examine the genome-wide heat shock (HS) response in Drosophila and the function of two key transcription factors on the immediate transcription activation or repression of all genes regulated by HS. We identify the primary HS response genes and the rate-limiting steps in the transcription cycle that GAGA-associated factor (GAF) and HS factor (HSF) regulate. We demonstrate that GAF acts upstream of promoter-proximally paused RNA polymerase II (Pol II) formation (likely at the step of chromatin opening) and that GAF-facilitated Pol II pausing is critical for HS activation. In contrast, HSF is dispensable for establishing or maintaining Pol II pausing but is critical for the release of paused Pol II into the gene body at a subset of highly activated genes. Additionally, HSF has no detectable role in the rapid HS repression of thousands of genes.
Collapse
Affiliation(s)
- Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| | - Nicholas J Fuda
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| | - Dig B Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| | - Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| | - Michael J Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| |
Collapse
|
9
|
Nguyen TA, Jones RD, Snavely AR, Pfenning AR, Kirchner R, Hemberg M, Gray JM. High-throughput functional comparison of promoter and enhancer activities. Genome Res 2016; 26:1023-33. [PMID: 27311442 PMCID: PMC4971761 DOI: 10.1101/gr.204834.116] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/14/2016] [Indexed: 01/26/2023]
Abstract
Promoters initiate RNA synthesis, and enhancers stimulate promoter activity. Whether promoter and enhancer activities are encoded distinctly in DNA sequences is unknown. We measured the enhancer and promoter activities of thousands of DNA fragments transduced into mouse neurons. We focused on genomic loci bound by the neuronal activity-regulated coactivator CREBBP, and we measured enhancer and promoter activities both before and after neuronal activation. We find that the same sequences typically encode both enhancer and promoter activities. However, gene promoters generate more promoter activity than distal enhancers, despite generating similar enhancer activity. Surprisingly, the greater promoter activity of gene promoters is not due to conventional core promoter elements or splicing signals. Instead, we find that particular transcription factor binding motifs are intrinsically biased toward the generation of promoter activity, whereas others are not. Although the specific biases we observe may be dependent on experimental or cellular context, our results suggest that gene promoters are distinguished from distal enhancers by specific complements of transcriptional activators.
Collapse
Affiliation(s)
- Thomas A Nguyen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard D Jones
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andrew R Snavely
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Andreas R Pfenning
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rory Kirchner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, United Kingdom
| | - Jesse M Gray
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
Manipulating leukocyte interactions in vivo through optogenetic chemokine release. Blood 2016; 127:e35-41. [PMID: 27057000 DOI: 10.1182/blood-2015-11-684852] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/29/2016] [Indexed: 12/13/2022] Open
Abstract
Light-mediated release of signaling ligands, such as chemoattractants, growth factors, and cytokines is an attractive strategy for investigation and therapeutic targeting of leukocyte communication and immune responses. We introduce a versatile optogenetic method to control ligand secretion, combining UV-conditioned endoplasmic reticulum-to-Golgi trafficking and a furin-processing step. As proof of principle, we achieved light-triggered chemokine secretion and demonstrated that a brief pulse of chemokine release can mediate a rapid flux of leukocyte contacts with target cells in vitro and in vivo. This approach opens new possibilities for dynamic investigation of leukocyte communication in vivo and may confer the potential to control the local release of soluble mediators in the context of immune cell therapies.
Collapse
|
11
|
Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation. Mol Cell 2016; 62:63-78. [PMID: 27052732 DOI: 10.1016/j.molcel.2016.02.025] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/01/2016] [Accepted: 02/18/2016] [Indexed: 12/25/2022]
Abstract
The heat shock response (HSR) is critical for survival of all organisms. However, its scope, extent, and the molecular mechanism of regulation are poorly understood. Here we show that the genome-wide transcriptional response to heat shock in mammals is rapid and dynamic and results in induction of several hundred and repression of several thousand genes. Heat shock factor 1 (HSF1), the "master regulator" of the HSR, controls only a fraction of heat shock-induced genes and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1. However, serum response factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent and is mediated through reduction of RNA polymerase II pause release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat shock that are largely modulated at pause release, and HSF1 plays a limited and specialized role.
Collapse
Affiliation(s)
- Dig B Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - H Hans Salamanca
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14850, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA.
| |
Collapse
|
12
|
Kim TK, Shiekhattar R. Architectural and Functional Commonalities between Enhancers and Promoters. Cell 2015; 162:948-59. [PMID: 26317464 DOI: 10.1016/j.cell.2015.08.008] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/23/2023]
Abstract
With the explosion of genome-wide studies of regulated transcription, it has become clear that traditional definitions of enhancers and promoters need to be revisited. These control elements can now be characterized in terms of their local and regional architecture, their regulatory components, including histone modifications and associated binding factors, and their functional contribution to transcription. This Review discusses unifying themes between promoters and enhancers in transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
13
|
Effect of Low Doses (5-40 cGy) of Gamma-irradiation on Lifespan and Stress-related Genes Expression Profile in Drosophila melanogaster. PLoS One 2015; 10:e0133840. [PMID: 26248317 PMCID: PMC4527671 DOI: 10.1371/journal.pone.0133840] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/03/2015] [Indexed: 02/04/2023] Open
Abstract
Studying of the effects of low doses of γ-irradiation is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. The goal of this work is to identify changes of lifespan and expression stress-sensitive genes in Drosophila melanogaster, exposed to low doses of γ-irradiation (5 – 40 cGy) on the imaginal stage of development. Although some changes in life extensity in males were identified (the effect of hormesis after the exposure to 5, 10 and 40 cGy) as well as in females (the effect of hormesis after the exposure to 5 and 40 cGy), they were not caused by the organism “physiological” changes. This means that the observed changes in life expectancy are not related to the changes of organism physiological functions after the exposure to low doses of ionizing radiation. The identified changes in gene expression are not dose-dependent, there is not any proportionality between dose and its impact on expression. These results reflect nonlinear effects of low dose radiation and sex-specific radio-resistance of the postmitotic cell state of Drosophila melanogaster imago.
Collapse
|
14
|
|
15
|
Li D, Li G, Wang K, Liu X, Li W, Chen X, Wang Y. Isolation and functional analysis of the promoter of the amphioxus Hsp70a gene. Gene 2012; 510:39-46. [DOI: 10.1016/j.gene.2012.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/21/2022]
|
16
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
17
|
Concha C, Edman RM, Belikoff EJ, Schiemann AH, Carey B, Scott MJ. Organization and expression of the Australian sheep blowfly (Lucilia cuprina) hsp23, hsp24, hsp70 and hsp83 genes. INSECT MOLECULAR BIOLOGY 2012; 21:169-180. [PMID: 22506286 DOI: 10.1111/j.1365-2583.2011.01123.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study we report the isolation and characterization of a heat shock protein 70 (hsp70) gene, the hsp83 gene and two genes that encode small Hsps (Lchsp23 and Lchsp24) from the Australian sheep blowfly, Lucilia cuprina, a major agricultural pest. Phylogenetic analyses indicate that the LcHsp23 protein is the orthologue of Drosophila melanogaster Hsp23 and LcHsp24 is the orthologue of Sarcophaga crassipalpis Hsp23. Quantitative reverse-transcriptase PCR analysis showed that the basal level of Lchsp83 RNA is relatively high at all developmental stages and only moderately induced by heat shock. In contrast, Lchsp70 transcripts are present at low levels and strongly induced by heat shock at all stages. The basal levels of expression and degrees of heat induction of the Lchsp23 and Lchsp24 transcripts were more variable across the different developmental stages. Putative heat shock factor binding sites were identified in the Lchsp24, Lchsp70 and Lchsp83 gene promoters. The isolation of these hsp gene promoters will facilitate constitutive or conditional expression of a gene of interest in transgenic Lucilia.
Collapse
Affiliation(s)
- C Concha
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
18
|
Fonseca LL, Chen PW, Voit EO. Canonical modeling of the multi-scale regulation of the heat stress response in yeast. Metabolites 2012; 2:221-41. [PMID: 24957376 PMCID: PMC3901190 DOI: 10.3390/metabo2010221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/16/2022] Open
Abstract
Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST), which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.
Collapse
Affiliation(s)
- Luis L Fonseca
- Instituto de Tecnologia Quıímica e Biológica, Universidade Nova de Lisboa / Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| | - Po-Wei Chen
- Integrative BioSystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332, USA.
| | - Eberhard O Voit
- Integrative BioSystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332, USA.
| |
Collapse
|
19
|
Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:104-19. [PMID: 22033015 DOI: 10.1016/j.bbagrm.2011.10.002] [Citation(s) in RCA: 540] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 12/13/2022]
Abstract
Ten years after the first overview of a complete plant Hsf family was presented for Arabidopsis thaliana by Nover et al. [1], we compiled data for 252 Hsfs from nine plant species (five eudicots and four monocots) with complete or almost complete genome sequences. The new data set provides interesting insights into phylogenetic relationships within the Hsf family in plants and allows the refinement of their classification into distinct groups. Numerous publications over the last decade document the diversification and functional interaction of Hsfs as well as their integration into the complex stress signaling and response networks of plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Klaus-Dieter Scharf
- Molecular Cellbiology of Plants, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt/M., Germany.
| | | | | | | |
Collapse
|
20
|
Kumar D, Patro S, Ranjan R, Sahoo DK, Maiti IB, Dey N. Development of useful recombinant promoter and its expression analysis in different plant cells using confocal laser scanning microscopy. PLoS One 2011; 6:e24627. [PMID: 21931783 PMCID: PMC3170401 DOI: 10.1371/journal.pone.0024627] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 08/16/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy. METHODOLOGY/PRINCIPAL FINDINGS We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, -271 to +31). Efficacies of recombinant promoters coupled to GUS and GFP reporter genes were tested in tobacco protoplasts. Among these, a 369-bp long hybrid sub-genomic transcript promoter (MSgt-FSgt) showed the highest activity in both transient and transgenic systems. In a transient system, MSgt-FSgt was 10.31, 2.86 and 2.18 times more active compared to the CaMV35S, MS8 and FS3 promoters, respectively. In transgenic tobacco (Nicotiana tabaccum, var. Samsun NN) and Arabidopsis plants, the MSgt-FSgt hybrid promoter showed 14.22 and 7.16 times stronger activity compared to CaMV35S promoter respectively. The correlation between GUS activity and uidA-mRNA levels in transgenic tobacco plants were identified by qRT-PCR. Both CaMV35S and MSgt-FSgt promoters caused gene silencing but the degree of silencing are less in the case of the MSgt-FSgt promoter compared to CaMV35S. Quantification of GUS activity in individual plant cells driven by the MSgt-FSgt and the CaMV35S promoter were estimated using confocal laser scanning microscopy and compared. CONCLUSION AND SIGNIFICANCE We propose strong recombinant promoter MSgt-FSgt, developed in this study, could be very useful for high-level constitutive expression of transgenes in a wide variety of plant cells.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Sunita Patro
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Rajiv Ranjan
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| | - Dipak K. Sahoo
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
- Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Indu B. Maiti
- Kentucky Tobacco Research and Development Center (KTRDC), College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Department of Biotechnology, Government of India, Nalco Square, Chandrasekherpur, Bhubaneswar, Orissa, India
| |
Collapse
|
21
|
Okuno Y, Matsuda M, Miyata Y, Fukuhara A, Komuro R, Shimabukuro M, Shimomura I. Human catalase gene is regulated by peroxisome proliferator activated receptor-gamma through a response element distinct from that of mouse. Endocr J 2010; 57:303-9. [PMID: 20075562 DOI: 10.1507/endocrj.k09e-113] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress has been implicated as a causal role in atherosclerosis, microvascular complications of diabetes as well as in beta cell failure in type 2 diabetes. PPARgamma agonists not only improve insulin sensitivity but also eliminate oxidative stress. In mouse, catalase, a major antioxidant enzyme, is directly regulated by PPARgamma through two PPARgamma binding elements in its promoter. This study examined the regulatory mechanisms of catalase expression in human. Expression of catalase was significantly upregulated in human primary adipocytes upon treatment with a PPARgamma agonist. However, the mouse PPARgamma response elements are not functionally conserved in human catalase promoter. In luciferase reporter assay containing human catalase promoter, PPARgamma /RXRalpha, in combination of a PPARgamma agonist significantly transactivated 19 kb of promoter and this was mediated via a novel PPARgamma response element (PPRE) at -12 kb from transcription initiation site of human catalase gene. Electrophoretic mobility shift assay showed direct binding of PPARgamma to this PPRE. Together, our results indicate that PPARgamma regulates the expression of catalase gene in human through a PPRE distinct from that of mouse, and could explain, at least in part, the observed inhibitory effects of PPARgamma on oxidative stress in human.
Collapse
Affiliation(s)
- Yosuke Okuno
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Paulmurugan R, Padmanabhan P, Ahn BC, Ray S, Willmann JK, Massoud TF, Biswal S, Gambhir SS. A novel estrogen receptor intramolecular folding-based titratable transgene expression system. Mol Ther 2009; 17:1703-11. [PMID: 19654568 DOI: 10.1038/mt.2009.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The use of regulated gene expression systems is important for successful gene therapy applications. In this study, ligand-induced structural change in the estrogen receptor (ER) was used to develop a novel ER intramolecular folding-based transcriptional activation system. The system was studied using ER-variants of different lengths, flanked on either side by the GAL4-DNA-binding domain and the VP16-transactivation domain (GAL4(DBD)-ER-VP16). The ER ligands of different types showed efficient ligand-regulated transactivation. We also characterized a bidirectional transactivation system based on the ER and demonstrated its utility in titrating both reporter and therapeutic gene expression. The ligand-regulated transactivation system developed by using a mutant form of the ER (G521T, lacking affinity for the endogenous ligand 17beta-estradiol, whereas maintaining affinity for other ligands) showed efficient activation by the ligand raloxifene in living mice without significant interference from the circulating endogenous ligand. The ligand-regulated transactivation system was used to test the therapeutic efficiency of the tumor suppressor protein p53 in HepG2 (p53(+/+)) and SKBr3 (p53(-/-)/mutant-p53(+/+)) cells in culture and tumor xenografts in living mice. The multifunctional capabilities of this system should be useful for gene therapy applications, to study ER biology, to evaluate gene regulation, ER ligand screening, and ER ligand biocharacterization in cells and living animals.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, 150 East Wing, 1st Floor, Stanford, CA 94305-5427, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Vitorino M, Jusuf PR, Maurus D, Kimura Y, Higashijima SI, Harris WA. Vsx2 in the zebrafish retina: restricted lineages through derepression. Neural Dev 2009; 4:14. [PMID: 19344499 PMCID: PMC2683830 DOI: 10.1186/1749-8104-4-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Accepted: 04/03/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neurons in the vertebrate retina arise from multipotent retinal progenitor cells (RPCs). It is not clear, however, which progenitors are multipotent or why they are multipotent. RESULTS In this study we show that the homeodomain transcription factor Vsx2 is initially expressed throughout the retinal epithelium, but later it is downregulated in all but a minor population of bipolar cells and all Müller glia. The Vsx2-negative daughters of Vsx2-positive RPCs divide and give rise to all other cell types in the retina. Vsx2 is a repressor whose targets include transcription factors such as Vsx1, which is expressed in the progenitors of distinct non-Vsx2 bipolars, and the basic helix-loop-helix transcription factor Ath5, which restricts the fate of progenitors to retinal ganglion cells, horizontal cells, amacrine cells and photoreceptors fates. Foxn4, expressed in the progenitors of amacrine and horizontal cells, is also negatively regulated by Vsx2. CONCLUSION Our data thus suggest Vsx2-positive RPCs are fully multipotent retinal progenitors and that when Vsx2 is downregulated, Vsx2-negative progenitors escape Vsx2 repression and so are able to express factors that restrict lineage potential.
Collapse
Affiliation(s)
- Marta Vitorino
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Chao CC, Sun FC, Wang CH, Lo CW, Chang YS, Chang KC, Chang MDT, Lai YK. Concerted actions of multiple transcription elements confer differential transactivation of HSP90 isoforms in geldanamycin-treated 9L rat gliosarcoma cells. J Cell Biochem 2008; 104:1286-96. [PMID: 18320580 DOI: 10.1002/jcb.21705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HSP90 chaperones are transducer proteins of many signaling pathways in cells. Using a highly specific inhibitor, geldanamycin (GA), an increasing number of the HSP90 client proteins have been identified. Nevertheless, there is little information on the differential transactivation of the two isoforms of the hsp90 genes, hsp90alpha and beta, in cells under stress conditions. Here, we demonstrate the differential expression of the HSP90 isoforms, HSP90alpha and beta, in rat gliosarcoma 9L cells using a modified SDS-PAGE system that allowed us to distinguish the isoforms. We subsequently assessed the transcriptional controls involving the transcription elements located in the promoter regions of the hsp90 genes. At the protein level, HSP90alpha is more responsive to GA in terms of rate of de novo synthesis and amount of accumulation, as shown by metabolic-labeling and Western-blotting analyses. Upregulation of the hsp90 genes was demonstrated by real-time qPCR. The promoter elements hsp90alpha-HSE2 and hsp90beta-HSE1 were also identified to be the major transcription elements involved in GA-activated gene expression, as shown by EMSA, whereas the results of supershift showed that the transcription factor HSF1 is also involved. Moreover, EMSA results of analysis of the GC box showed differences in both the initial amounts and inductive response of hsp90s transcripts, whereas analysis of the TATA box showed GA responsiveness in hsp90alpha only. Collectively, these results indicate that GA exerts its regulatory effects through transcription elements including heat-shock elements (HSEs), GC boxes and TATA boxes, resulting in differential transactivation of hsp90alpha and hsp90beta in rat gliosarcoma 9L cells.
Collapse
Affiliation(s)
- Chih-Chung Chao
- Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chuang KH, Ho SH, Song YL. Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp (Penaeus monodon). Gene 2007; 405:10-8. [PMID: 17931801 DOI: 10.1016/j.gene.2007.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/04/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
Heat shock cognate 70 (HSC70) functions as a molecular chaperon and plays an important role in protein folding. HSC70 cDNA of tiger shrimp (Penaeus monodon) was cloned and characterized in our previous study. After shrimps were treated with the 1-hr heat shock, the HSC70 mRNA level in hemocytes increased (approximately 8 fold) using real-time quantitative PCR. An hsc70 clone was obtained from genomic library screening. The gene contains 2 exons separated by a 1557-bp intron. The 5'-flanking region sequence (approximately 1 kb) ahead of the hsc70 gene contains a putative core promoter region and transcription elements including perfect heat shock element (HSE), imperfect HSE, CAAT elements, SP1, NF-kappaB and GC box. In insect Sf21 cells, the region could drive expression of the enhanced green fluorescent protein (EGFP) and luciferase gene to verify its promoter function. In the luciferase assay system, the effects of serial deletions on the hsc70 promoter were elucidated. Autographa californica multiple nuclear polyhedrosis virus infection (MOI=0.1) on Sf21 cells significantly increased the hsc70 promoter activity. In addition, the effects of amino acid analogs and arsenic acid incubation with the cells on the hsc70 promoter activity were examined.
Collapse
Affiliation(s)
- Kuo-Hung Chuang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
26
|
Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA. Yeast responses to stresses associated with industrial brewery handling: Figure 1. FEMS Microbiol Rev 2007; 31:535-69. [PMID: 17645521 DOI: 10.1111/j.1574-6976.2007.00076.x] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.
Collapse
Affiliation(s)
- Brian R Gibson
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | | | | | | | |
Collapse
|
27
|
Smart KA. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 2007; 24:993-1013. [PMID: 17879324 DOI: 10.1002/yea.1553] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.
Collapse
Affiliation(s)
- Katherine A Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
28
|
Zhang QH, Wang LL, Cao L, Peng C, Li XL, Tang K, Li WF, Liao P, Wang JR, Li GY. Study of a novel brain relatively specific gene LRRC4 involved in glioma tumorigenesis suppression using the Tet-on system. Acta Biochim Biophys Sin (Shanghai) 2005; 37:532-40. [PMID: 16077900 DOI: 10.1111/j.1745-7270.2005.00079.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
LRRC4 is a novel relatively specific gene, which displays significant down-regulation in primary brain tumor biopsies and has the potential to suppress brain tumor growth. In this study, we investigated the growth inhibitory effect of LRRC4 on tumorigencity in vivo and on cell proliferation in vitro by a tetracycline-inducible expression system. Results showed that LRRC4 significantly reduced the growth and malignant grade of xenografts arising from glioblastoma U251MG cells. Cell proliferation was markedly inhibited after U251MG Tet-on-LRRC4 cell induction with doxycycline. Flow cytometry and Western blot analysis demonstrated that LRRC4 mediated a delay of the cell cycle in late G1, possibly through up-regulating the expressions of p21Waf1/cip1 and p27Kip1 and down-regulating the expressions of cyclin-dependent kinase 2, retinoblastoma protein and epidermal growth factor receptors. Together, these findings provide clues to the function of LRRC4 as a negative regulator of cell growth and underscore a link between the above-mentioned cyclins, cyclin-associated molecules and tumorigenicity.
Collapse
Affiliation(s)
- Qiu-Hong Zhang
- Cancer Research Institute, Central South University, Changsha 410078, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ram D, Ziv E, Lantner F, Lardans V, Schechter I. Stage-specific alternative splicing of the heat-shock transcription factor during the life-cycle of Schistosoma mansoni. Parasitology 2005; 129:587-96. [PMID: 15552403 DOI: 10.1017/s003118200400602x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Stage-specific alternative splicing of the heat-shock transcription factor of Schistosoma mansoni (SmHSF) generates isoforms with structural diversity that may modulate the activity of SmHSF at different life-stages, and thus may regulate the expression of different genes at different developmental stages. RT-PCR, cloning and DNA-sequence analyses showed stage-specific alternative splicing inside the DNA-binding domain (DBD) involving introns I1 and I2, and beyond the DBD involving introns I4a and I7. Retention of introns I2 and I4 would inactivate SmHSF since they contain termination codons. Retention of intron I1 would add 11 amino acids inside the DBD and may change the DNA-binding specificity of SmHSF; intron I7 would add 13 amino acids to the effector region of HSF. Retention of introns was more pronounced in cercariae (larval stage living in water) than in adult worms (parasitic form in mammals). The isoforms were expressed in bacteria, but functional evaluation was not feasible, because only the isoform lacking introns was soluble while isoforms with introns were insoluble. However, stage-specific alternative splicing that changed HSF function in vivo was evidenced in intact cercariae. The cercarial SmHSF mRNA was enriched with introns I2 and I4a that contain termination codons. Therefore, translation of the SmHSF mRNA was impaired, and the SmHSF protein was undetectable. Consequently, the HSP70 gene could not be transcribed, and the HSP70 mRNA was missing. Alternative splicing was observed for short DNA segments (33-45 bp) bound by splice signals, located in the coding region. These are not bona fida exons since they are not flanked by introns. Yet, they are not regular introns since they are often found in mature mRNA. Alternative splicing of these DNA segments caused structural diversity that could modulate the function of the gene product.
Collapse
Affiliation(s)
- D Ram
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
30
|
Freitas FZ, Bertolini MC. Genomic organization of the Neurospora crassa gsn gene: possible involvement of the STRE and HSE elements in the modulation of transcription during heat shock. Mol Genet Genomics 2004; 272:550-61. [PMID: 15558319 DOI: 10.1007/s00438-004-1086-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase ( gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30 degrees C to 45 degrees C). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans -acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.
Collapse
Affiliation(s)
- F Zanolli Freitas
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP, 14800-900 Araraquara, SP, Brazil
| | | |
Collapse
|
31
|
Bajoghli B, Aghaallaei N, Heimbucher T, Czerny T. An artificial promoter construct for heat-inducible misexpression during fish embryogenesis. Dev Biol 2004; 271:416-30. [PMID: 15223344 DOI: 10.1016/j.ydbio.2004.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Revised: 04/13/2004] [Accepted: 04/15/2004] [Indexed: 11/21/2022]
Abstract
Beside spatial distribution, timing of gene expression is a key parameter controlling gene function during embryonic development. Gain-of-function experiments can therefore have quite opposing results, depending on the time of gene activation. Induction techniques are necessary to control timing in these experiments from outside of the organism. Natural heat shock promoters constitute a simple inducible misexpression system, the main disadvantage is a high background level of expression. We present here a new heat stress-inducible bidirectional promoter consisting of multimerized heat shock elements (HSE). The simplified architecture of this promoter largely improves the properties needed for an efficient induction system: dramatically reduced background activity, improved inducibility, and loss of all tissue specific components. Based on this new artificial promoter, we present a transient induction system for fish embryos. Application of this new induction system for Fgf8 misexpression during embryonic development reveals different windows of competence during eye development. A dramatic early phenotype resulting in loss of the eyes is observed for conventional mRNA injection. Later activation, by using our inducible promoter, uncovers different eye phenotypes like cyclopic eyes. Even after 14 days, an efficient heat stress response could be evoked in the injected embryos. The HSE promoter therefore represents a new artificial heat shock promoter with superior properties, making possible transient experiments with inducible misexpression at various stages of development.
Collapse
Affiliation(s)
- Baubak Bajoghli
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | | | | | | |
Collapse
|
32
|
Saydam N, Steiner F, Georgiev O, Schaffner W. Heat and heavy metal stress synergize to mediate transcriptional hyperactivation by metal-responsive transcription factor MTF-1. J Biol Chem 2003; 278:31879-83. [PMID: 12805380 DOI: 10.1074/jbc.m302138200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian cells react to heavy metal stress by transcribing a number of genes that contain metal-response elements (MREs) in their promoter/enhancer region; this activation is mediated by metal-responsive transcription factor-1 (MTF-1). Well-known target genes of MTF-1 are those encoding metallothioneins, small, cysteine-rich proteins with a high affinity for heavy metals. The response to heat shock, another cell stress, is mediated by heat shock transcription factor 1 (HSF1), which activates a battery of heat shock genes. Little is known about the cross-talk between the different anti-stress systems of the cell. Here we report a synergistic activation of metal-responsive promoters by heavy metal load (zinc or cadmium) and heat shock. An obvious explanation, cooperativity between MTF-1 and HSF1, seems unlikely: transfected HSF1 boosts the activity of an Hsp70 promoter but hardly affects an MRE-containing promoter upon exposure to metal and heat shock. A clue to the mechanism is given by our finding that heat shock leads to intracellular accumulation of heavy metals. We propose that the known anti-apoptotic effect of heat shock proteins allows for cell survival despite heavy metal accumulation and, consequently, results in a hyperactivation of the metal response pathway.
Collapse
Affiliation(s)
- Nurten Saydam
- Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
33
|
Shyu WC, Harn HJ, Saeki K, Kubosaki A, Matsumoto Y, Onodera T, Chen CJ, Hsu YD, Chiang YH. Molecular modulation of expression of prion protein by heat shock. Mol Neurobiol 2002; 26:1-12. [PMID: 12392052 DOI: 10.1385/mn:26:1:001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Prion diseases (also known as transmissible spongiform encephalopathies) are associated with the conversion of the normal cellular form of the prion protein (PrPC) to an abnormal scrapie-isoform (PrP(Sc). The conversion of PrP(C) to PrP(Sc) is post-translational and is owing to protein conformational change. This has led to the hypothesis that molecular chaperones may be involved in the folding of prion proteins, and hence the disease process. By treating human NT-2 cells with heat-shock stress, we found that both the mRNA levels for prion protein (PrP) and heat shock protein 70 (HSP70) increased simultaneously after heat treatment. Western-blot analysis of PrP also showed a two-fold increase in PrP protein level 3 after heat treatment. Furthermore, two heat-shock elements (HSEs) were located at the positions of -680 bp (HSE1; GGAACTATTCTTGACATTGCT), and -1653 bp (HSE2; TGAGAACTCAGGAAG) of the rat PrP (RaPrP) gene promoter. Luciferase reporter constructs of the RaPrP promoter with HSE expressed higher luciferase activity (10- to 15-fold) than those constructs without HSE. Electrophoretic gel mobility shift assay (EMSA) and super-shift assay confirmed the interaction of HSE1 and HSE2 with the heat-shock transcription factor-1 (HSTF-1). These results suggest that cellular stress up-regulates both the transcription and translation of PrP through interaction with the HSEs on the PrP gene promoter, resulting in an increase in protein synthesis.
Collapse
Affiliation(s)
- Woei-Cherng Shyu
- Department of Neurology, Mackay Memorial Hospital, Taipei, Taiwan, ROC.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The original model of gene therapy, that of efficient delivery, durable transfer, and stable expression of transgenes to correct a gene defect underlying an inherited disease, is limited in light of improved understanding of the processes involved. Techniques that enable regulated expression of transgenes may enhance safety and allow us to regulate the timing and level of expression with a goal of precisely targeting a therapeutic level between the extremes of suboptimal and supraoptimal thresholds. Using regulated systems to control protein expression has practical and possibly essential roles for the success of safe and effective gene therapy in a number of clinical situations. Pharmacologically regulated gene expression is an evolving tool, and no individual system may be effective in all clinical applications.
Collapse
Affiliation(s)
- P W Zoltick
- Institute for Human Gene Therapy, University of Pennsylvania, Philadelphia 19104, USA
| | | |
Collapse
|
35
|
Pietrzak M, Burri M, Herrero JJ, Mosbach K. Transcriptional activity is inducible in the cauliflower mosaic virus 35 S promoter engineered with the heat shock consensus sequence. FEBS Lett 2001. [DOI: 10.1016/0014-5793(89)80648-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Molina A, Di Martino E, Martial JA, Muller M. Heat shock stimulation of a tilapia heat shock protein 70 promoter is mediated by a distal element. Biochem J 2001; 356:353-9. [PMID: 11368761 PMCID: PMC1221845 DOI: 10.1042/0264-6021:3560353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We reported previously that a tilapia (Oreochromis mossambicus) heat shock protein 70 (HSP70) promoter is able to confer heat shock response on a reporter gene after transient expression both in cell culture and in microinjected zebrafish embryos. Here we present the first functional analysis of a fish HSP70 promoter, the tiHSP70 promoter. Using transient expression experiments in carp EPC (epithelioma papulosum cyprini) cells and in microinjected zebrafish embryos, we show that a distal heat shock response element (HSE1) at approx. -800 is predominantly responsible for the heat shock response of the tiHSP70 promoter. This element specifically binds an inducible transcription factor, most probably heat shock factor, and a constitutive factor. The constitutive complex is not observed with the non-functional, proximal HSE3 sequence, suggesting that both factors are required for the heat shock response mediated by HSE1.
Collapse
Affiliation(s)
- A Molina
- Laboratoire de Biologie Moléculaire et Génie Génétique, Université de Liège, Institut de Chimie B6, B-4000 Sart-Tilman, Belgium
| | | | | | | |
Collapse
|
37
|
Imbriano C, Bolognese F, Gurtner A, Piaggio G, Mantovani R. HSP-CBF is an NF-Y-dependent coactivator of the heat shock promoters CCAAT boxes. J Biol Chem 2001; 276:26332-9. [PMID: 11306579 DOI: 10.1074/jbc.m101553200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to toxic stimuli is elicited through the expression of heat shock proteins, a transcriptional process that relies upon conserved DNA elements in the promoters: the Heat Shock Elements, activated by the heat shock factors, and the CCAAT boxes. The identity of the CCAAT activator(s) is unclear because two distinct entities, NF-Y and HSP-CBF, have been implicated in the HSP70 system. The former is a conserved ubiquitous trimer containing histone-like subunits, the latter a 110-kDa protein with an acidic N-terminal. We analyzed two CCAAT-containing promoters, HSP70 and HSP40, with recombinant NF-Y and HSP-CBF using electrophoretic mobility shift assay, protein-protein interactions, transfections and chromatin immunoprecipitation assays (ChIP) assays. Both recognize a common DNA-binding protein in nuclear extracts, identified in vitro and in vivo as NF-Y. Both CCAAT boxes show high affinity for recombinant NF-Y but not for HSP-CBF. However, HSP-CBF does activate HSP70 and HSP40 transcription under basal and heat shocked conditions; for doing so, it requires an intact NF-Y trimer as judged by cotransfections with a diagnostic NF-YA dominant negative vector. HSP-CBF interacts in solution and on DNA with the NF-Y trimer through an evolutionary conserved region. In yeast two-hybrid assays HSP-CBF interacts with NF-YB. These data implicate HSP-CBF as a non-DNA binding coactivator of heat shock genes that act on a DNA-bound NF-Y.
Collapse
Affiliation(s)
- C Imbriano
- Dipartimento di Biologia Animale, U. di Modena e Reggio, Via Campi 213/d, 41100 Modena, Italy
| | | | | | | | | |
Collapse
|
38
|
Jaakkola P, Vihinen T, Jalkanen M. Proximal promoter-independent activation of the far-upstream FGF-inducible response element of syndecan-1 gene. Biochem Biophys Res Commun 2000; 278:432-9. [PMID: 11097854 DOI: 10.1006/bbrc.2000.3812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Far upstream enhancers are predicted to act by looping and activating general transcription factors on core promoters and to require proximal promoter sequences for appropriate gene activation in time and space. We have previously described an FGF-inducible response element (FiRE) located far upstream on the syndecan-1 gene. The FiRE is activated specifically by members of the fibroblast growth factor (FGF) family in NIH3T3 cells. Here we describe the requirements of syndecan-1 proximal promoter for the activation of FiRE by FGF-2. Transient and stable transfections revealed that neither proximal promoter SP1 sites nor TATA-box are required for the FGF-2 induced activation of FiRE. Notably, the enhancer is activated in both orientations by FGF-2 even in the absence of proximal promoter. Importantly, removal of the promoter did not affect the growth factor specificity of FiRE. Proximal promoter independent activation of syndecan-1 gene by FGF-2 might be required during development when syndecan-1 proximal promoter needs to be largely attenuated but simultaneous transient and rapid FGF-2 induced transcription is required.
Collapse
Affiliation(s)
- P Jaakkola
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, Tykistökatu 6B, BioCity, Turku, FIN-20520, Finland.
| | | | | |
Collapse
|
39
|
|
40
|
Adám A, Bártfai R, Lele Z, Krone PH, Orbán L. Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. Exp Cell Res 2000; 256:282-90. [PMID: 10739675 DOI: 10.1006/excr.2000.4805] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat-inducibility of two reporter constructs expressing lacZ gene under the control of mouse and Xenopus hsp70 promoters was tested in zebrafish (Danio rerio) embryos using a transient expression system. Cells expressing beta-galactosidase were stained blue by histochemical staining and their average number per embryo was used as an indicator of the expression level of the reporter gene. Both constructs were heat-inducible in the embryonic tissues and showed similar heat dependence (increasing expression levels from 35-36 degrees C up to 39 degrees C with an apparent decrease at 40 degrees C), resembling that of the zebrafish hsp70 genes. However, their induction kinetics were different, which might be due to differences in their 5' UTRs. Spatial expression patterns of the two hsp/lacZ constructs and an endogenous hsp70 gene were mostly similar on the RNA level. These results indicate that our approach is applicable for in vivo analysis of the heat-shock response and that exogenous heat-shock promoters may be useful for inducible expression of transgenes in fish.
Collapse
Affiliation(s)
- A Adám
- Laboratory of Aquatic Molecular Biology, Agricultural Biotechnology Center, Gödöllo, Hungary
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
42
|
Hung JJ, Cheng TJ, Dah-Tsyr Chang M, Chen KD, Huang HL, Lai YK. Involvement of heat shock elements and basal transcription elements in the differential induction of the 70-kDa heat shock protein and its cognate by cadmium chloride in 9L rat brain tumor cells. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19981001)71:1<21::aid-jcb3>3.0.co;2-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Liberati C, Ronchi A, Lievens P, Ottolenghi S, Mantovani R. NF-Y organizes the gamma-globin CCAAT boxes region. J Biol Chem 1998; 273:16880-9. [PMID: 9642249 DOI: 10.1074/jbc.273.27.16880] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCAAT-binding activator NF-Y is formed by three evolutionary conserved subunits, two of which contain putative histone-like domains. We investigated NF-Y binding to all CCAAT boxes of globin promoters in direct binding, competition, and supershift electrophoretic mobility shift assay; we found that the alpha, zeta, and proximal gamma CCAAT boxes of human and the prosimian Galago bind avidly, and distal gamma CCAAT boxes have intermediate affinity, whereas the epsilon and beta sequences bind NF-Y very poorly. We developed an efficient in vitro transcription system from erythroid K562 cells and established that both the distal and the proximal CCAAT boxes are important for optimal gamma-globin promoter activity. Surprisingly, NF-Y binding to a mutated distal CCAAT box (a C to T at position -114) is remarkably increased upon occupancy of the high affinity proximal element, located 27 base pairs away. Shortening the distance between the two CCAAT boxes progressively prevents simultaneous CCAAT binding, indicating that NF-Y interacts in a mutually exclusive way with CCAAT boxes closer than 24 base pairs apart. A combination of circular permutation and phasing analysis proved that (i) NF-Y-induced angles of the two gamma-globin CCAAT boxes have similar amplitudes; (ii) occupancy of the two CCAAT boxes leads to compensatory distortions; (iii) the two NF-Y bends are spatially oriented with combined twisting angles of about 100 degrees. Interestingly, such distortions are reminiscent of core histone-DNA interactions. We conclude that NF-Y binding imposes a high level of functionally important coordinate organization to the gamma-globin promoter.
Collapse
Affiliation(s)
- C Liberati
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
44
|
Abstract
The CCAAT box is one of the most common elements in eukaryotic promoters, found in the forward or reverse orientation. Among the various DNA binding proteins that interact with this sequence, only NF-Y (CBF, HAP2/3/4/5) has been shown to absolutely require all 5 nt. Analysis of a database with 178 bona fide NF-Y binding sites in 96 unrelated promoters confirms this need and points to specific additional flanking nucleotides (C, Pu, Pu on the 5'-side and C/G, A/G, G,A/C, G on the 3'-side) required for efficient binding. The frequency of CCAAT boxes appears to be relatively higher in TATA-less promoters, particularly in the reverse ATTGG orientation. In TATA-containing promoters the CCAAT box is preferentially located in the -80/-100 region (mean position -89) and is not found nearer to the Start site than -50. In TATA-less promoters it is usually closer to the +1 signal (at -66 on average) and is sometimes present in proximity to the Cap site. The consensus and location of NF-Y binding sites parallel almost perfectly a previous general statistical study on CCAAT boxes in 502 unrelated promoters. This is an indication that NF-Y is the major, if not the sole, CCAAT box recognizing protein and that it might serve different roles in TATA-containing and TATA-less promoters.
Collapse
Affiliation(s)
- R Mantovani
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
45
|
Maiti IB, Gowda S, Kiernan J, Ghosh SK, Shepherd RJ. Promoter/leader deletion analysis and plant expression vectors with the figwort mosaic virus (FMV) full length transcript (FLt) promoter containing single or double enhancer domains. Transgenic Res 1997; 6:143-56. [PMID: 9090062 DOI: 10.1023/a:1018477705019] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The boundaries required for maximal expression from the promoter/leader region of the full length transcript of figwort mosaic virus (FLt promoter) coupled to reporter genes were defined by 5' and 3' deletion analyses. In transient expression assays using protoplasts of Nicotiana edwardsonii, a 314 bp FLt promoter fragment sequence (-249 to +65 from the transcription start site) was sufficient for strong expression activity. Plant expression vectors developed with modified FLt promoters were tested with GUS or CAT as reporter genes in transgenic plants. The FLt promoter is a strong constitutive promoter, with strength comparable to or greater than that of the CaMV 35S promoter. The FLt promoter with its double enhancer domain linked to GUS or CAT reporter genes provides an average 4-fold greater activity than the FLt promoter with a single enhancer domain (-55 to -249 bp upstream fragment) in tests with transgenic plants and in protoplast transient expression assays.
Collapse
MESH Headings
- Base Sequence
- Caulimovirus/genetics
- Chimera/genetics
- Cloning, Molecular
- Gene Expression Regulation, Plant
- Genes, Reporter
- Genetic Vectors/genetics
- Molecular Sequence Data
- Plants, Genetically Modified
- Plants, Toxic
- Plasmids
- Promoter Regions, Genetic
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Sequence Deletion
- Nicotiana/genetics
- Transcription, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- I B Maiti
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | | | | | | | |
Collapse
|
46
|
Wang Y, DeMayo FJ, Tsai SY, O'Malley BW. Ligand-inducible and liver-specific target gene expression in transgenic mice. Nat Biotechnol 1997; 15:239-43. [PMID: 9062922 DOI: 10.1038/nbt0397-239] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transgenic mice have been used as models for tissue-specific gene regulation and to examine the molecular and cellular effects of altered expression of specific gene in disease processes such as tumorigenesis. Because of the deleterious effects of constitutive expression of transgenes, which frequently result in prenatal or postnatal death, only a limited number of disease models have been established in transgenic mice. We report an inducible binary transactivation system that permits the control of transgene expression in a tissue-specific and inducible fashion in mice. In this system, transcription of the target transgene is kept silent until turned on by the administration of an exogenous compound. We also demonstrate that expression level of the target gene can be induced three to four orders of magnitude and can be controlled by the administrated compound in a dose-dependent manner.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
47
|
Shopland LS, Lis JT. HSF recruitment and loss at most Drosophila heat shock loci is coordinated and depends on proximal promoter sequences. Chromosoma 1996; 105:158-71. [PMID: 8781184 DOI: 10.1007/bf02509497] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The heat shock response in Drosophila is primarily dependent on the binding of the heat shock transcription factor, HSF, to conserved sequences in heat shock gene promoters, the heat shock elements (HSEs). Here we examine the kinetic relationship of HSF binding to chromosomal loci and heat shock gene transcription in vivo. The features of heat shock promoters that determine the kinetics of HSF binding are also examined. Analyses of HSF association by indirect immunofluorescence with an anti-HSF antibody reveal that fluorescent signals at many loci on polytene chromosomes rapidly increase and then gradually decrease as heat shock time progresses. While overall amounts of fluorescent signal vary from locus to locus, the patterns of acquisition and loss of HSF at most loci are coordinated with only one identified exception. Immunostaining with an anti-RNA polymerase II antibody indicates that the kinetics of RNA polymerase II accumulation on the heat shock loci are similar to those of HSF. Furthermore, nuclear run-on assays confirm that the major heat shock genes are coordinately transcribed during the attenuation period. In contrast, the kinetics of HSF association with HSE "polymers" in a transgenic fly strain are not coordinated with those of endogenous loci. The addition of core promoter sequences to one of the HSEs found in the polymer restores coordinate HSF binding, suggesting that the kinetic patterns of HSF binding depend on a core promoter located near the HSEs. Finally, the distribution of the heat shock protein HSP70 is examined for its role in regulating the attenuated response of HSF to heat shock.
Collapse
Affiliation(s)
- L S Shopland
- Section of Biochemistry, Molecular and Cell Biology, 417 Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
48
|
Morimoto RI, Kroeger PE, Cotto JJ. The transcriptional regulation of heat shock genes: a plethora of heat shock factors and regulatory conditions. EXS 1996; 77:139-63. [PMID: 8856973 DOI: 10.1007/978-3-0348-9088-5_10] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The inducible regulation of heat shock gene transcription is mediated by a family of heat shock factors (HSF) that respond to diverse forms of physiological and environmental stress including elevated temperature, amino acid analogs, heavy metals, oxidative stress, anti-inflammatory drugs, arachidonic acid, and a number of pathophysiological disease states. The vertebrate genome encodes a family of HSFs which are expressed ubiquitously, yet the DNA binding properties of each factor are negatively regulated and activated in response to specific conditions. This chapter will discuss the regulation of the HSF multi-gene family and the role of these transcriptional activators in the inducible expression of genes encoding heat shock proteins and molecular chaperones.
Collapse
Affiliation(s)
- R I Morimoto
- Department of Biochemistry, Molecular Biology and Cell Biology Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
49
|
Landsberger N, Wolffe AP. Role of chromatin and Xenopus laevis heat shock transcription factor in regulation of transcription from the X. laevis hsp70 promoter in vivo. Mol Cell Biol 1995; 15:6013-24. [PMID: 7565754 PMCID: PMC230853 DOI: 10.1128/mcb.15.11.6013] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Xenopus laevis oocytes activate transcription from the Xenopus hsp70 promoter within a chromatin template in response to heat shock. Expression of exogenous Xenopus heat shock transcription factor 1 (XHSF1) causes the activation of the wild-type hsp70 promoter within chromatin. XHSF1 activates transcription at normal growth temperatures (18 degrees C), but heat shock (34 degrees C) facilitates transcriptional activation. Titration of chromatin in vivo leads to constitutive transcription from the wild-type hsp70 promoter. The Y box elements within the hsp70 promoter facilitate transcription in the presence or absence of chromatin. The presence of the Y box elements prevents the assembly of canonical nucleosomal arrays over the promoter and facilitates transcription. In a mutant hsp70 promoter lacking Y boxes, exogenous XHSF1 activates transcription from a chromatin template much more efficiently under heat shock conditions. Activation of transcription from the mutant promoter by exogenous XHSF1 correlates with the disappearance of a canonical nucleosomal array over the promoter. Chromatin structure on a mutant hsp70 promoter lacking Y boxes can restrict XHSF1 access; however, on both mutant and wild-type promoters, chromatin assembly can also restrict the function of the basal transcriptional machinery. We suggest that chromatin assembly has a physiological role in establishing a transcriptionally repressed state on the Xenopus hsp70 promoter in vivo.
Collapse
Affiliation(s)
- N Landsberger
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2710, USA
| | | |
Collapse
|
50
|
Locke M, Noble EG. Stress proteins: the exercise response. CANADIAN JOURNAL OF APPLIED PHYSIOLOGY = REVUE CANADIENNE DE PHYSIOLOGIE APPLIQUEE 1995; 20:155-67. [PMID: 7640643 DOI: 10.1139/h95-011] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A class of proteins that undergoes preferential synthesis following a variety of stressors has been demonstrated to carry out important cellular functions under both stressed and nonstressed conditions. These so-called heat shock (HSP) or stress (SP) proteins have been termed "molecular chaperones" and play important roles in cellular transportation, assembly/degradation, and cell survival. This review provides a basic introduction to the function and regulation of these proteins. Emphasis is placed on members of the HSP 70 family of proteins (especially HSP 72) and their role in cellular protection, their pattern of distribution in skeletal muscle, and changes in their expression following exercise and exercise training.
Collapse
Affiliation(s)
- M Locke
- Deborah Research Institute, Browns Mills, NJ 08015-1799, USA
| | | |
Collapse
|