1
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
2
|
Osaka R, Kobayashi N, Shimada K, Ishii A, Oka N, Kondo K. VP26, a herpes simplex virus type 1 capsid protein, increases DNA methylation in COASY promoter region. Brain Behav Immun Health 2022; 26:100545. [PMID: 36345321 PMCID: PMC9636445 DOI: 10.1016/j.bbih.2022.100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
It has been reported that some specific changes in DNA methylation can be due to aging or infection by tumor-related viruses but the effect of herpes simplex virus type 1 (HSV-1) in this regard is unknown. HSV-1 is a well-known virus that causes cold sores. After the primary infection, the virus switches to latent infection and remains in the body for the whole life. As the location of DNA methylation, we focused on the promoter region of the COASY gene, which codes for coenzyme A synthase, because methylation in this region is reportedly associated with Alzheimer's disease (AD). During HSV-1 lytic infection, compared to non-infected cells, COASY DNA methylation decreased but when HSV-1 replication was inhibited by acyclovir, an anti-herpes agent, COASY DNA methylation increased. In addition, for expression of immediate early protein only, there was no significant change in COASY DNA methylation, while for expression of the capsid protein VP26, a late protein known to bind with DNA methyltransferase DNMT3A, in the nucleus only, COASY DNA methylation significantly increased compared to the control, without changes in DNMT3A mRNA. Our results suggested that DNA methylation occurred not due to transcriptional changes in DNMT3A but through translational regulation. In this research, we showed that host COASY DNA methylation is altered by HSV-1 infection, in particular by HSV-1 VP26. It is a potential cause of various diseases, and this is particularly relevant for AD.
Collapse
Affiliation(s)
- Rui Osaka
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Azusa Ishii
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Erdogan YC, Altun HY, Secilmis M, Ata BN, Sevimli G, Cokluk Z, Zaki AG, Sezen S, Akgul Caglar T, Sevgen İ, Steinhorn B, Ai H, Öztürk G, Belousov VV, Michel T, Eroglu E. Complexities of the chemogenetic toolkit: Differential mDAAO activation by d-amino substrates and subcellular targeting. Free Radic Biol Med 2021; 177:132-142. [PMID: 34687864 PMCID: PMC8639799 DOI: 10.1016/j.freeradbiomed.2021.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
A common approach to investigate oxidant-regulated intracellular pathways is to add exogenous H2O2 to living cells or tissues. However, the addition of H2O2 to the culture medium of cells or tissues approach does not accurately replicate intracellular redox-mediated cell responses. d-amino acid oxidase (DAAO)-based chemogenetic tools represent informative methodological advances that permit the generation of H2O2 on demand with a high spatiotemporal resolution by providing or withdrawing the DAAO substrate d-amino acids. Much has been learned about the intracellular transport of H2O2 through studies using DAAO, yet these valuable tools remain incompletely characterized in many cultured cells. In this study, we describe and characterize in detail the features of a new modified variant of DAAO (termed mDAAO) with improved catalytic activities. We tested mDAAO functionality in several cultured cell lines employing live-cell imaging techniques. Our imaging experiments show that mDAAO is suitable for the generation of H2O2 under hypoxic conditions imaged with the novel ultrasensitive H2O2 sensor (HyPer7). Moreover, this approach was suitable for generating H2O2 in a reversible and concentration-dependent manner in subcellular locales. Furthermore, we show that the choice of d-amino acids differentially affects mDAAO-dependent intracellular H2O2 generation. When paired with the hydrogen sulfide (H2S) sensor hsGFP, administration of the sulfur-containing amino acid d-cysteine to cells expressing mDAAO generates robust H2S signals. We also show that chemogenetic H2O2 generation in different cell types yields distinct HyPer7 profiles. These studies fully characterize the new mDAAO as a novel chemogenetic tool and provide multiparametric approaches for cell manipulation that may open new lines of investigations for redox biochemists to dissect the role of ROS signaling pathways with high spatial and temporal precision.
Collapse
Affiliation(s)
- Yusuf C Erdogan
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Hamza Y Altun
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Melike Secilmis
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Busra N Ata
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Gulsah Sevimli
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Zeynep Cokluk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Asal Ghaffari Zaki
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Serap Sezen
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Tuba Akgul Caglar
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - İlker Sevgen
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Benjamin Steinhorn
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huiwang Ai
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gürkan Öztürk
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Physiology Department, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Vsevelod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Institute of Cardiovascular Physiology, Universitätsmedizin Göttingen, 37073, Göttingen, Germany
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Emrah Eroglu
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria; Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.
| |
Collapse
|
4
|
Bajpai A, Quazi TA, Tang HW, Manzar N, Singh V, Thakur A, Ateeq B, Perrimon N, Sinha P. A Drosophila model of oral peptide therapeutics for adult intestinal stem cell tumors. Dis Model Mech 2020; 13:dmm044420. [PMID: 32540914 PMCID: PMC7390633 DOI: 10.1242/dmm.044420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 11/20/2022] Open
Abstract
Peptide therapeutics, unlike small-molecule drugs, display crucial advantages of target specificity and the ability to block large interacting interfaces, such as those of transcription factors. The transcription co-factor of the Hippo pathway, YAP/Yorkie (Yki), has been implicated in many cancers, and is dependent on its interaction with the DNA-binding TEAD/Sd proteins via a large Ω-loop. In addition, the mammalian vestigial-like (VGLL) proteins, specifically their TONDU domain, competitively inhibit YAP-TEAD interaction, resulting in arrest of tumor growth. Here, we show that overexpression of the TONDU peptide or its oral uptake leads to suppression of Yki-driven intestinal stem cell tumors in the adult Drosophila midgut. In addition, comparative proteomic analyses of peptide-treated and untreated tumors, together with chromatin immunoprecipitation analysis, reveal that integrin pathway members are part of the Yki-oncogenic network. Collectively, our findings establish Drosophila as a reliable in vivo platform to screen for cancer oral therapeutic peptides and reveal a tumor suppressive role for integrins in Yki-driven tumors.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anjali Bajpai
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Taushif Ahmad Quazi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nishat Manzar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Virender Singh
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashwani Thakur
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bushra Ateeq
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
5
|
Yang GJ, Yang Y, Shaddeau A, Cai CX, Li Y, Gulla K, Zhang Y, Ou L, Cooper JW, Lei QP. A unique algorithm for the determination of peptide-carrier protein conjugation ratio by amino acid analysis using intrinsic internal standard. Vaccine 2020; 38:4507-4511. [PMID: 32448620 DOI: 10.1016/j.vaccine.2020.04.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 11/26/2022]
Abstract
An N-terminal peptide of the HIV-1 fusion peptide (FP) with eight amino acid residues (FP8) was conjugated to a recombinant Tetanus Toxoid Heavy Chain Fragment C (rTTHc) as a carrier protein to help boosting immunogenicity against HIV-1. In this rapid communication, a unique algorithm to determine FP-rTTHc conjugation ratio was developed based off the amino acid analysis. Five well recovered amino acids (present in both FP and rTTHc) were used to calculate the conjugation ratio, while proline (present only in rTTHc) was identified and utilized as the intrinsic internal standard for normalization. With this calculation, the assay variability was minimized (<20%), especially for conjugates with moderate to low conjugation ratios as being compared to previously reported methods. The approach offers a reliable tool to determine the efficiency of the conjugation reactions for in-process monitoring and for final conjugate product characterization.
Collapse
Affiliation(s)
- Gengcheng J Yang
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Yanhong Yang
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Andrew Shaddeau
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Cindy X Cai
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Yile Li
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Krishana Gulla
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Yaqiu Zhang
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Li Ou
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Jonathan W Cooper
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States
| | - Q Paula Lei
- Vaccine Production Program Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD, United States.
| |
Collapse
|
6
|
Del Caño-Ochoa F, Ramón-Maiques S. The multienzymatic protein CAD leading the de novo biosynthesis of pyrimidines localizes exclusively in the cytoplasm and does not translocate to the nucleus. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1320-1334. [PMID: 31997698 DOI: 10.1080/15257770.2019.1706743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CAD, the multienzymatic protein that initiates and controls the de novo biosynthesis of pyrimidines, plays a major role in nucleotide homeostasis, cell growth and proliferation. Despite its interest as a potential antitumoral target, there is a lack of understanding on CAD's structure and functioning mechanisms. Although mainly identified as a cytosolic complex, different studies support the translocation of CAD into the nucleus, where it could have a yet undefined function. Here, we track the subcellular localization of CAD by using fluorescent chimeras, cell fractionation and immunoblotting with specific antibodies. Contradicting previous studies, we demonstrate that CAD is exclusively localized at the cytosol and discard a possible translocation to the nucleus.
Collapse
Affiliation(s)
- Francisco Del Caño-Ochoa
- Genome Dynamics and Function Program, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Santiago Ramón-Maiques
- Genome Dynamics and Function Program, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
7
|
Mullis AS, Schlichtmann BW, Narasimhan B, Cademartiri R, Mallapragada SK. Ligand-cascading nano-delivery devices to enable multiscale targeting of anti-neurodegenerative therapeutics. Biomed Mater 2018; 13:034102. [DOI: 10.1088/1748-605x/aaa778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
OKA M, YONEDA Y. Importin α: functions as a nuclear transport factor and beyond. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:259-274. [PMID: 30078827 PMCID: PMC6117492 DOI: 10.2183/pjab.94.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleocytoplasmic transport is an essential process in eukaryotes. The molecular mechanisms underlying nuclear transport that involve the nuclear transport receptor, small GTPase Ran, and the nuclear pore complex are highly conserved from yeast to humans. On the other hand, it has become clear that the nuclear transport system diverged during evolution to achieve various physiological functions in multicellular eukaryotes. In this review, we first summarize the molecular mechanisms of nuclear transport and how these were elucidated. Then, we focus on the diverse functions of importin α, which acts not merely an import factor but also as a multi-functional protein contributing to a variety of cellular functions in higher eukaryotes.
Collapse
Affiliation(s)
- Masahiro OKA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro YONEDA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Correspondence should be addressed: Y. Yoneda, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan (e-mail: )
| |
Collapse
|
9
|
Baxter D, Perry SR, Hill TA, Kok WM, Zaccai NR, Brady RL, Fairlie DP, Mason JM. Downsizing Proto-oncogene cFos to Short Helix-Constrained Peptides That Bind Jun. ACS Chem Biol 2017. [PMID: 28636317 DOI: 10.1021/acschembio.7b00303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oncogenic transcription factor activator protein-1 (AP-1) is a DNA-binding protein that assembles through dimerization of Fos and Jun protein subunits, their leucine-rich helical sequences entwining into a coiled-coil structure. This study reports on downsizing the proto-oncogene cFos protein (380 residues) to shorter peptides (37-25 residues) modified with helix-inducing constraints to enhance binding to Jun. A crystal structure is reported for a 37-residue Fos-derived peptide (FosW) bound to Jun. This guided iterative downsizing of FosW to shorter peptide sequences that were constrained into stable water-soluble α-helices by connecting amino acid side chains to form cyclic pentapeptide components. Structural integrity in the presence and absence of Jun was assessed by circular dichroism spectroscopy, while the thermodynamics of binding to cFos was measured by isothermal titration calorimetry. A 25-residue constrained peptide, one-third shorter yet 25% more helical than the structurally characterized 37-residue Fos-derived peptide, retained 80% of the binding free energy as a result of preorganization in a Jun-binding helix conformation, with the entropy gain (TΔS = +3.2 kcal/mol) compensating for the enthalpy loss. Attaching a cell-penetrating peptide (TAT48-57) and a nuclear localization signal (SV40) promoted cell uptake, localization to the nucleus, and inhibition of the proliferation of two breast cancer cell lines.
Collapse
Affiliation(s)
- Daniel Baxter
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Samuel R. Perry
- Division
of Chemistry and Structural Biology, Australian Research Council Centre
of Excellence in Advanced Molecular Imaging, Institute for Molecular
Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division
of Chemistry and Structural Biology, Australian Research Council Centre
of Excellence in Advanced Molecular Imaging, Institute for Molecular
Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - W. Mei Kok
- Division
of Chemistry and Structural Biology, Australian Research Council Centre
of Excellence in Advanced Molecular Imaging, Institute for Molecular
Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nathan R. Zaccai
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - R. Leo Brady
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - David P. Fairlie
- Division
of Chemistry and Structural Biology, Australian Research Council Centre
of Excellence in Advanced Molecular Imaging, Institute for Molecular
Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jody M. Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
10
|
Richie CT, Whitaker LR, Whitaker KW, Necarsulmer J, Baldwin HA, Zhang Y, Fortuno L, Hinkle JJ, Koivula P, Henderson MJ, Sun W, Wang K, Smith JC, Pickel J, Ji N, Hope BT, Harvey BK. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic Cre-reporter rat, and other neuronal studies. J Neurosci Methods 2017; 284:1-14. [PMID: 28380331 PMCID: PMC5501963 DOI: 10.1016/j.jneumeth.2017.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND The use of genetically-encoded fluorescent reporters is essential for the identification and observation of cells that express transgenic modulatory proteins. Near-infrared (NIR) fluorescent proteins have superior light penetration through biological tissue, but are not yet widely adopted. NEW METHOD Using the near-infrared fluorescent protein, iRFP713, improves the imaging resolution in thick tissue sections or the intact brain due to the reduced light-scattering at the longer, NIR wavelengths used to image the protein. Additionally, iRFP713 can be used to identify transgenic cells without photobleaching other fluorescent reporters or affecting opsin function. We have generated a set of adeno-associated vectors in which iRFP713 has been fused to optogenetic channels, and can be expressed constitutively or Cre-dependently. RESULTS iRFP713 is detectable when expressed in neurons both in vitro and in vivo without exogenously supplied chromophore biliverdin. Neuronally-expressed iRFP713 has similar properties to GFP-like fluorescent proteins, including the ability to be translationally fused to channelrhodopsin or halorhodopsin, however, it shows superior photostability compared to EYFP. Furthermore, electrophysiological recordings from iRFP713-labeled cells compared to cells labeled with mCherry suggest that iRFP713 cells are healthier and therefore more stable and reliable in an ex vivo preparation. Lastly, we have generated a transgenic rat that expresses iRFP713 in a Cre-dependent manner. CONCLUSIONS Overall, we have demonstrated that iRFP713 can be used as a reporter in neurons without the use of exogenous biliverdin, with minimal impact on viability and function thereby making it feasible to extend the capabilities for imaging genetically-tagged neurons in slices and in vivo.
Collapse
Affiliation(s)
- Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Leslie R Whitaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Keith W Whitaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States; US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States
| | - Julie Necarsulmer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Heather A Baldwin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Yajun Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States; Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, United States
| | - Lowella Fortuno
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Josh J Hinkle
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Pyry Koivula
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Mark J Henderson
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Wenzhi Sun
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Kai Wang
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Jeffrey C Smith
- Intramural Research Program, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, United States
| | - Jim Pickel
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892, United States
| | - Na Ji
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States.
| |
Collapse
|
11
|
Chen J, Guan X, Hu Y, Tian H, Chen X. Peptide-Based and Polypeptide-Based Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:32. [DOI: 10.1007/s41061-017-0115-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
12
|
Xu Y, Liang W, Qiu Y, Cespi M, Palmieri GF, Mason AJ, Lam JKW. Incorporation of a Nuclear Localization Signal in pH Responsive LAH4-L1 Peptide Enhances Transfection and Nuclear Uptake of Plasmid DNA. Mol Pharm 2016; 13:3141-52. [PMID: 27458925 DOI: 10.1021/acs.molpharmaceut.6b00338] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major intracellular barriers associated with DNA delivery using nonviral vectors are inefficient endosomal/lysosomal escape and poor nuclear uptake. LAH4-L1, a pH responsive cationic amphipathic peptide, is an efficient DNA delivery vector that promotes the release of nucleic acid into cytoplasm through endosomal escape. Here we further enhance the DNA transfection efficiency of LAH4-L1 by incorporating nuclear localizing signal (NLS) to promote nuclear importation. Four NLSs were investigated: Simian virus 40 (SV40) large T-antigen derived NLS, nucleoplasmin targeting signal, M9 sequence, and the reverse SV40 derived NLS. All peptides tested were able to form positively charged nanosized complexes with DNA. Significant improvement in DNA transfection was observed in slow-dividing epithelial cancer cells (Calu-3), macrophages (RAW264.7), dendritic cells (JAWSII), and thymidine-induced growth-arrested cells, but not in rapidly dividing cells (A549). Among the four NLS-modified peptides, PK1 (modified with SV40 derived NLS) and PK2 (modified with reverse SV40 derived NLS) were the most consistent in improving DNA transfection; up to a 10-fold increase in gene expression was observed for PK1 and PK2 over the unmodified LAH4-L1. Additionally PK1 and PK2 were shown to enhance cellular uptake as well as nuclear entry of DNA. Overall, we show that the incorporation of SV40 derived NLS, in particular, to LAH4-L1 is a promising strategy to improve DNA delivery efficiency in slow-dividing cells and dendritic cells, with development potential for in vivo applications and as a DNA vaccine carrier.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Wanling Liang
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Yingshan Qiu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Marco Cespi
- School of Pharmacy, University of Camerino , Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Giovanni F Palmieri
- School of Pharmacy, University of Camerino , Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - A James Mason
- Institute of Pharmaceutical Science, King's College London , 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
13
|
Sun Y, Xian L, Xing H, Yu J, Yang Z, Yang T, Yang L, Ding P. Factors influencing the nuclear targeting ability of nuclear localization signals. J Drug Target 2016; 24:927-933. [DOI: 10.1080/1061186x.2016.1184273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Gao L, Li D, Ma K, Zhang W, Xu T, Fu C, Jing C, Jia X, Wu S, Sun X, Dong M, Deng M, Chen Y, Zhu W, Peng J, Wan F, Zhou Y, Zon LI, Pan W. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis. PLoS Genet 2015; 11:e1005346. [PMID: 26131719 PMCID: PMC4488437 DOI: 10.1371/journal.pgen.1005346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022] Open
Abstract
In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dantong Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Xu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Fu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changbin Jing
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoe Jia
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Wu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mei Dong
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Deng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D.C., United States of America
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Yi Zhou
- Stem Cell Program, Hematology/Oncology Program at Children's Hospital Boston and Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leonard I. Zon
- Stem Cell Program, Hematology/Oncology Program at Children's Hospital Boston and Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weijun Pan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
15
|
Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev 2014; 66:26-41. [PMID: 24270008 DOI: 10.1016/j.addr.2013.11.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 10/30/2013] [Accepted: 11/13/2013] [Indexed: 01/07/2023]
Abstract
To efficiently deliver therapeutics into cancer cells, a number of strategies have been recently investigated. The toxicity associated with the administration of chemotherapeutic drugs due to their random interactions throughout the body necessitates the development of drug-encapsulating nanopreparations that significantly mask, or reduce, the toxic side effects of the drugs. In addition to reduced side effects associated with drug encapsulation, nanocarriers preferentially accumulate in tumors as a result of its abnormally leaky vasculature via the Enhanced Permeability and Retention (EPR) effect. However, simple passive nanocarrier delivery to the tumor site is unlikely to be enough to elicit a maximum therapeutic response as the drug-loaded carriers must reach the intracellular target sites. Therefore, efficient translocation of the nanocarrier through the cell membrane is necessary for cytosolic delivery of the cargo. However, crossing the cell membrane barrier and reaching cytosol might still not be enough for achieving maximum therapeutic benefit, which necessitates the delivery of drugs directly to intracellular targets, such as bringing pro-apoptotic drugs to mitochondria, nucleic acid therapeutics to nuclei, and lysosomal enzymes to defective lysosomes. In this review, we discuss the strategies developed for tumor targeting, cytosolic delivery via cell membrane translocation, and finally organelle-specific targeting, which may be applied for developing highly efficacious, truly multifunctional, cancer-targeted nanopreparations.
Collapse
Affiliation(s)
- Swati Biswas
- Center for Pharmaceutical Biotechnology and Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, 02115, USA; Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, 02115, USA.
| |
Collapse
|
16
|
Synthesis and in vitro evaluation of a PDT active BODIPY–NLS conjugate. Bioorg Med Chem Lett 2013; 23:3204-7. [DOI: 10.1016/j.bmcl.2013.03.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 11/23/2022]
|
17
|
Kim BK, Kang H, Doh KO, Lee SH, Park JW, Lee SJ, Lee TJ. Homodimeric SV40 NLS peptide formed by disulfide bond as enhancer for gene delivery. Bioorg Med Chem Lett 2012; 22:5415-8. [PMID: 22871581 DOI: 10.1016/j.bmcl.2012.07.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Recently, cysteine residue incorporation increased liposome-mediated transfection compared to unmodified peptide. Therefore, we designed novel modified SV40 NLS peptides, homodimeric (NLS-CTHD, NLS-NTHD) and closed structure (cyclic NLS), simply using disulfide bond between cysteines to develop more efficient and safe non-viral gene delivery system. The simple mix of NLS-CTHD among these novel transfection enhancing peptides with DNA increased the gene transfer potency of cationic liposomes more efficiently with no additional cytotoxicity.
Collapse
Affiliation(s)
- Bieong-Kil Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Malecki M, Malecki B. Routing of Biomolecules and Transgenes' Vectors in Nuclei of Oocytes. JOURNAL OF FERTILIZATION IN VITRO 2012; 2012:108-118. [PMID: 22896814 PMCID: PMC3418068 DOI: 10.4172/2165-74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The molecular architecture of Nuclear Pore Complexes (NPCs), as well as the import and export of molecules through them, has been intensively studied in a variety of cells, including oocytes. However, the structures and mechanisms, involved in the transport of molecules beyond the NPCs, remained unclear, until now. The specific aim of this work was, therefore, to determine, if there exist any intranuclear structures in continuum with the NPCs. This information could help in explaining the mechanisms, which propel the distribution of biomolecules and vectors inside the cell nuclei.To attain this aim, we used rapid cryo-immobilization to capture molecular processes of living cells with millisecond resolution. We pursued molecular imaging, including electron energy loss spectroscopy and energy dispersive x-ray spectroscopy, to reveal structures with nanometer spatial resolution. We also bioengineered single chain variable fragments to track biomolecules and transgenes' constructs.Herein, we reveal the Nuclear Routing Networks (NRNs) in the oocytes of Xenopus laevis. The NRNs originate at and extend from the tops of intranuclear baskets of the NPCs to interconnect them, while creating a complex, intra-nuclear, three-dimensional architecture. The NRNs guide the export of both tRNA, as well as the Nuclear Export Signal (NES) equipped vectors, from the nuclei. Moreover, the NRNs guide the import of both nucleoplasmin, as well as the Nuclear Localization Signals (NLS) modified transgenes' vectors, into the nuclei. The vectors equipped with these NLS and NES shuttle back and forth through the NPCs and NRNs.To summarize, we reveal the NRN, which functions as the guided distribution system in the Xenopus laevis oocytes' nuclei. We further proceed with the identification of its molecular components.
Collapse
Affiliation(s)
- Marek Malecki
- Western University of Health Sciences (WUHS), Pomona, CA, USA
- University of Wisconsin, Madison, WI, USA
- Phoenix Biomolecular Engineering Foundation (PBMEF), San Francisco, CA, USA
| | - Bianca Malecki
- Phoenix Biomolecular Engineering Foundation (PBMEF), San Francisco, CA, USA
- Jagiellonian University (JU), Krakow, PL, EU
| |
Collapse
|
19
|
A femto-injection technique for dynamic analysis of protein function in living embryonic stem cells. Biotechnol Lett 2012; 34:1257-62. [DOI: 10.1007/s10529-012-0922-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/06/2012] [Indexed: 12/29/2022]
|
20
|
Li X, Kuang Y, Xu B. "Molecular trinity" for soft nanomaterials: Integrating nucleobases, amino acids, and glycosides to construct multifunctional hydrogelators. SOFT MATTER 2012; 8:10.1039/C2SM06920B. [PMID: 24368929 PMCID: PMC3870146 DOI: 10.1039/c2sm06920b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This highlight introduces the development of hydrogelators consisting of nucleobases, amino acids, and glycosides (i.e., molecular trinity), or nucleobases and amino acids (i.e., nucleopeptides). These novel small molecule hydrogelators self-assemble in water to form stable supramolecular nanofibers/hydrogels and exhibit useful biological properties (e.g., biocompatibility, biostability, and the ability to bind and transport DNA into live cells). The approach discussed here not only provides a new strategy to develop soft biomaterials as a form of nanomedicines, but also contributes to the understanding of molecular self-assembly in water by modulating the non-covalent interactions derived from the three basic building blocks used in living organisms.
Collapse
Affiliation(s)
- Xinming Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454 USA, Fax: 781-736-2516. Tel: 781-736-5201
| | - Yi Kuang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454 USA, Fax: 781-736-2516. Tel: 781-736-5201
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454 USA, Fax: 781-736-2516. Tel: 781-736-5201
| |
Collapse
|
21
|
Bolhassani A. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:232-46. [DOI: 10.1016/j.bbcan.2011.07.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022]
|
22
|
Benedict M, Eckerstorfer M, Franz G, Gaugitsch H, Greiter A, Heissenberger A, Knols B, Kumschick S, Nentwig W, Rabitsch W. Defining Environment Risk Assessment Criteria for Genetically Modified Insects to be placed on the EU Market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010; 90:1103-63. [PMID: 20664080 DOI: 10.1152/physrev.00038.2009] [Citation(s) in RCA: 956] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Green fluorescent protein (GFP) from the jellyfish Aequorea victoria and its homologs from diverse marine animals are widely used as universal genetically encoded fluorescent labels. Many laboratories have focused their efforts on identification and development of fluorescent proteins with novel characteristics and enhanced properties, resulting in a powerful toolkit for visualization of structural organization and dynamic processes in living cells and organisms. The diversity of currently available fluorescent proteins covers nearly the entire visible spectrum, providing numerous alternative possibilities for multicolor labeling and studies of protein interactions. Photoactivatable fluorescent proteins enable tracking of photolabeled molecules and cells in space and time and can also be used for super-resolution imaging. Genetically encoded sensors make it possible to monitor the activity of enzymes and the concentrations of various analytes. Fast-maturing fluorescent proteins, cell clocks, and timers further expand the options for real time studies in living tissues. Here we focus on the structure, evolution, and function of GFP-like proteins and their numerous applications for in vivo imaging, with particular attention to recent techniques.
Collapse
|
24
|
Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 2010; 49:3280-94. [PMID: 20401880 PMCID: PMC3930332 DOI: 10.1002/anie.200904359] [Citation(s) in RCA: 1601] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications.
Collapse
Affiliation(s)
| | | | - Weston L. Daniel
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (USA), Fax: (+1) 847-467-5123
| | - Matthew D. Massich
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (USA), Fax: (+1) 847-467-5123
| | - Pinal C. Patel
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (USA), Fax: (+1) 847-467-5123
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (USA), Fax: (+1) 847-467-5123
| |
Collapse
|
25
|
Giljohann D, Seferos D, Daniel W, Massich M, Patel P, Mirkin C. Goldnanopartikel in Biologie und Medizin. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904359] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Sibrian-Vazquez M, Jensen TJ, Vicente MGH. Influence of the number and distribution of NLS peptides on the photosensitizing activity of multimeric porphyrin–NLS. Org Biomol Chem 2010; 8:1160-72. [DOI: 10.1039/b917280g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Caballero I, Piedrahita JA. Evaluation of theSerratia MarcescensNuclease (NucA) as a Transgenic Cell Ablation System in Porcine. Anim Biotechnol 2009; 20:177-85. [DOI: 10.1080/10495390903048235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Naamati A, Regev-Rudzki N, Galperin S, Lill R, Pines O. Dual targeting of Nfs1 and discovery of its novel processing enzyme, Icp55. J Biol Chem 2009; 284:30200-8. [PMID: 19720832 DOI: 10.1074/jbc.m109.034694] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, each subcellular compartment harbors a specific group of proteins that must accomplish specific tasks. Nfs1 is a highly conserved mitochondrial cysteine desulfurase that participates in iron-sulfur cluster assembly as a sulfur donor. Previous genetic studies, in Saccharomyces cerevisiae, have suggested that this protein distributes between the mitochondria and the nucleus with biochemically undetectable amounts in the nucleus (termed "eclipsed distribution"). Here, we provide direct evidence for Nfs1 nuclear localization (in addition to mitochondria) using both alpha-complementation and subcellular fractionation. We also demonstrate that mitochondrial and nuclear Nfs1 are derived from a single translation product. Our data suggest that the Nfs1 distribution mechanism involves at least partial entry of the Nfs1 precursor into mitochondria, and then retrieval of a minor subpopulation (probably by reverse translocation) into the cytosol and then the nucleus. To further elucidate the mechanism of Nfs1 distribution we determined the N-terminal mitochondrial sequence of Nfs1 by Edman degradation. This led to the discovery of a novel mitochondrial processing enzyme, Icp55. This enzyme removes three amino acids from the N terminus of Nfs1 after cleavage by mitochondrial processing peptidase. Intriguingly, Icp55 protease (like its substrate Nfs1) appears to be dual distributed between the nucleus and mitochondria.
Collapse
Affiliation(s)
- Adi Naamati
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
29
|
Tartakoff AM, Tao T. Comparative and evolutionary aspects of macromolecular translocation across membranes. Int J Biochem Cell Biol 2009; 42:214-29. [PMID: 19643202 DOI: 10.1016/j.biocel.2009.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 01/10/2023]
Abstract
Membrane barriers preserve the integrity of organelles of eukaryotic cells, yet the genesis and ongoing functions of the same organelles requires that their limiting membranes allow import and export of selected macromolecules. Multiple distinct mechanisms are used for this purpose, only some of which have been traced to prokaryotes. Some can accommodate both monomeric and also large heterooligomeric cargoes. The best characterized of these is nucleocytoplasmic transport. This synthesis compares the unidirectional and bidirectional mechanisms of macromolecular transport of the endoplasmic reticulum, mitochondria, peroxisomes and the nucleus, calls attention to the powerful experimental approaches which have been used for their elucidation, discusses their regulation and evolutionary origins, and highlights relatively unexplored areas.
Collapse
Affiliation(s)
- Alan M Tartakoff
- Department of Pathology & Cell Biology Program, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | | |
Collapse
|
30
|
Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. THE JOURNAL OF IMMUNOLOGY 2009; 182:3173-82. [PMID: 19234215 DOI: 10.4049/jimmunol.0802367] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of caspase 1 is essential for the maturation and release of IL-1beta and IL-18 and occurs in multiprotein complexes, referred to as inflammasomes. The apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is the essential adaptor protein for recruiting pro-caspase 1 into inflammasomes, and consistently gene ablation of ASC abolishes caspase 1 activation and secretion of IL-1beta and IL-18. However, distribution of endogenous ASC has not yet been examined in detail. In the present study, we demonstrated that ASC localized primarily to the nucleus in resting human monocytes/macrophages. Upon pathogen infection, ASC rapidly redistributed to the cytosol, followed by assembly of perinuclear aggregates, containing several inflammasome components, including caspase 1 and Nod-like receptors. Prevention of ASC cytosolic redistribution completely abolished pathogen-induced inflammasome activity, which affirmed that cytosolic localization of ASC is essential for inflammasome function. Thus, our study characterized a novel mechanism of inflammasome regulation in host defense.
Collapse
Affiliation(s)
- Nicole B Bryan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
31
|
Chumakov SP, Ilyinskaya GV, Kravchenko JE, Frolova EI, Prasolov VS, Chumakov PM. Lentiviral vector-based assay system for quantitative detection of intracellular translocations of recombinant proteins. Mol Biol 2008. [DOI: 10.1134/s0026893308060095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Mueller J, Kretzschmar I, Volkmer R, Boisguerin P. Comparison of Cellular Uptake Using 22 CPPs in 4 Different Cell Lines. Bioconjug Chem 2008; 19:2363-74. [DOI: 10.1021/bc800194e] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Judith Mueller
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Hessische Str. 3−4, 10115 Berlin, Germany
| | - Ines Kretzschmar
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Hessische Str. 3−4, 10115 Berlin, Germany
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Hessische Str. 3−4, 10115 Berlin, Germany
| | - Prisca Boisguerin
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Hessische Str. 3−4, 10115 Berlin, Germany
| |
Collapse
|
33
|
Liu Y, Franzen S. Factors determining the efficacy of nuclear delivery of antisense oligonucleotides by gold nanoparticles. Bioconjug Chem 2008; 19:1009-16. [PMID: 18393455 DOI: 10.1021/bc700421u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study investigates the applicability of nanoparticle delivery vectors for two-stage targeting that involves both cell entry by endocytosis and nuclear targeting using viral peptide signals. A nanoparticle vector consists of four components: a carrier nanoparticle, a stabilizer, targeting peptides, and a therapeutic cargo. Extensive study of bovine serum albumin (BSA)-peptide stabilized nanoparticle conjugates demonstrated limitations of these systems due to colloidal instability when oligonucleotides and multiple peptides were attached to the BSA protein. We found that the widely used protein streptavidin (SA) was an appropriate alternative to BSA for cell-targeting experiments. Targeting peptides and gene splicing oligonucleotides were attached to SA-nanoparticles using biotin labels. The present study uses a gene-splicing assay as a test for oligonucleotide delivery to the cell nucleus. Successful modification of gene splicing by an antisense oligonucleotide indicates that the latter must have crossed the plasma membrane, entered the nucleus, found the target sequence in the newly transcribed pre-mRNA, and hybridized to it in the spliceosome strongly enough to displace the splicing factors designed to interact with the target sequence. Targeting nanoparticles that carry gene-splicing oligonucleotides were compared with a control experiment that used lipofectamine (LF). While enhanced activity was observed in the control experiment, in the presence of LF, no gene splicing was observed for the nanoparticle targeting vectors without LF. We conclude that sequestration of cargo from the harsh conditions of the endosome is a desirable strategy for cell-targeting nanoparticles.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
34
|
Marcocci L, Casadei M, Faso C, Antoccia A, Stano P, Leone S, Mondovì B, Federico R, Tavladoraki P. Inducible expression of maize polyamine oxidase in the nucleus of MCF-7 human breast cancer cells confers sensitivity to etoposide. Amino Acids 2008; 34:403-12. [PMID: 17610126 DOI: 10.1007/s00726-007-0558-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
In this study, polyamine oxidase from maize (MPAO), which is involved in the terminal catabolism of spermidine and spermine to produce an aminoaldehyde, 1,3-diaminopropane and H(2)O(2), has been conditionally expressed at high levels in the nucleus of MCF-7 human breast cancer cells, with the aim to interfere with polyamine homeostasis and cell proliferation. Recombinant MPAO expression induced accumulation of a high amount of 1,3-diaminopropane, an increase of putrescine levels and no alteration in the cellular content of spermine and spermidine. Furthermore, recombinant MPAO expression did not interfere with cell growth of MCF-7 cells under normal conditions but it did confer higher growth sensitivity to etoposide, a DNA topoisomerase II inhibitor widely used as antineoplastic drug. These data suggest polyamine oxidases as a potential tool to improve the efficiency of antiproliferative agents despite the difficulty to interfere with cellular homeostasis of spermine and spermidine.
Collapse
Affiliation(s)
- L Marcocci
- Department of Biochemical Sciences A. Rossi Fanelli, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nagase T, Yamakawa H, Tadokoro S, Nakajima D, Inoue S, Yamaguchi K, Itokawa Y, Kikuno RF, Koga H, Ohara O. Exploration of human ORFeome: high-throughput preparation of ORF clones and efficient characterization of their protein products. DNA Res 2008; 15:137-49. [PMID: 18316326 PMCID: PMC2650635 DOI: 10.1093/dnares/dsn004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we established new systematic protocols for the preparation of cDNA clones, conventionally termed open reading frame (ORF) clones, suitable for characterization of their gene products by adopting a restriction-enzyme-assisted cloning method using the Flexi cloning system. The system has following advantages: (1) preparation of ORF clones and their transfer into other vectors can be achieved efficiently and at lower cost; (2) the system provides a seamless connection to the versatile HaloTag labeling system, in which a single fusion tag can be used for various proteomic analyses; and (3) the resultant ORF clones show higher expression levels both in vitro and in vivo. With this system, we prepared ORF clones encoding 1,929 human genes and characterized the HaloTag-fusion proteins of its subset that are expressed in vitro or in mammalian cells. Results thus obtained have demonstrated that our Flexi ORF clones are efficient for the production of HaloTag-fusion proteins that can provide a new versatile set for a variety of functional analyses of human genes.
Collapse
Affiliation(s)
- Takahiro Nagase
- Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pan H, Kopecek J. Multifunctional Water-Soluble Polymers for Drug Delivery. MULTIFUNCTIONAL PHARMACEUTICAL NANOCARRIERS 2008. [DOI: 10.1007/978-0-387-76554-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Ip DTM, Wong KB, Wan DCC. Characterization of novel orange fluorescent protein cloned from cnidarian tube anemone Cerianthus sp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:469-78. [PMID: 17530459 DOI: 10.1007/s10126-007-9005-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/05/2007] [Indexed: 05/15/2023]
Abstract
A novel orange fluorescent protein (OFP) was cloned from the tentacles of Cnidarian tube anemone Cerianthus sp. It consists of 222 amino acid residues with a calculated molecular mass of 25.1 kDa. A BLAST protein sequence homology search revealed that native OFP has 81% sequence identity to Cerianthus membranaceus green fluorescent protein (cmFP512), 38% identity to Entacmaea quadricolor red fluorescent protein (eqFP611), 37% identity to Discosoma red fluorescent protein (DsRed), 36% identity to Fungia concinna Kusabira-orange fluorescent protein (KO), and a mere 21% identity to green fluorescent protein (GFP). It is most likely that OFP also adopts the 11-strand beta-barrel structure of fluorescent proteins. Spectroscopic analysis indicated that it has a wide absorption spectrum peak at 548 nm with two shoulders at 487 and 513 nm. A bright orange fluorescence maximum at 573 nm was observed when OFP was excited at 515 nm or above. When OFP was excited well below 515 nm, a considerable amount of green emission maximum at 513 nm was also observed. It has a fluorescence quantum yield (Phi) of 0.64 at 25 degrees C. The molar absorption coefficients (epsilon) of folded OFP at 278 and 548 nm are 47,000 and 60,000 M(-1) x cm(-1), respectively. Its fluorescent brightness (epsilon Phi) at 25 degrees C is 38,400 M(-1) x cm(-1). Like other orange-red fluorescent proteins, OFP is also tetrameric. It was readily expressed as soluble protein in Escherichia coli at 37 degrees C, and no aggregate was observed in transfected HeLa cells under our experimental conditions. Fluorescent intensity of OFP is detectable over a pH range of 3 to 12.
Collapse
Affiliation(s)
- Denis Tsz-Ming Ip
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | |
Collapse
|
38
|
Golbs A, Heck N, Luhmann HJ. A new technique for real-time analysis of caspase-3 dependent neuronal cell death. J Neurosci Methods 2007; 161:234-43. [PMID: 17197034 DOI: 10.1016/j.jneumeth.2006.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/21/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Several markers are available to identify cells undergoing programmed cell death, but so far they are only applicable on fixed material. Therefore, no information on the kinetics of apoptosis can be obtained, although apoptosis is a dynamic cell process. Here, we describe a new technique that allows the real-time observation of the onset of apoptosis in primary neurons. Neurons are transfected with a plasmid that codes for a fluorescent protein localized in the soma. Upon activation of caspase-3, which represents the point-of-no-return in the apoptosis process, the fusion protein is cleaved and as a consequence translocates into the nucleus. The onset of apoptosis is thus visualized by translocation of the fluorescent signal from the soma to the nucleus. The translocation process was found to be specific for the apoptosis process as it correlates with the activation of caspase-3 and TUNEL staining. This tool does not require complex detection systems and allows for the first time the analysis of the kinetics of apoptosis in a simple and efficient manner.
Collapse
Affiliation(s)
- Antje Golbs
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | | | | |
Collapse
|
39
|
Abstract
Although currently less efficient than their viral counterparts, nonviral vectors are under intense investigation as a safer alternative for gene therapy. For successful delivery, the nonviral vector must be able to overcome many barriers to protect DNA and specifically deliver it for efficient gene expression in target cells. The use of peptides as gene delivery vectors is advantageous over other nonviral agents in that they are able to achieve all of these goals. This review will focus on the application of peptides to mediate nonviral gene delivery. By examining the literature over the past 20 years, it becomes clear that no other class of biomolecules are simultaneously capable of DNA condensation, blocking metabolism, endosomal escape, nuclear localization, and receptor targeting. Based on virtually limitless diversity of peptide sequence and function information from nature, it is increasingly clear that peptide-guided gene delivery is still in its infancy.
Collapse
Affiliation(s)
- Molly E. Martin
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, 115 S Grand Avenue, 52242 Iowa City, IA
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, 115 S Grand Avenue, 52242 Iowa City, IA
| |
Collapse
|
40
|
Price AL, Patel NH. Investigating divergent mechanisms of mesoderm development in arthropods: the expression ofPh-twist andPh-mef2 inParhyale hawaiensis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 310:24-40. [PMID: 17152085 DOI: 10.1002/jez.b.21135] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The evolution of mesoderm was important for the development of complex body plans as well as key organ systems. Genetic and molecular studies in the fruitfly, Drosophila melanogaster, have provided the majority of information concerning mesoderm development in arthropods. In Drosophila, twist is necessary for the specification and correct morphogenesis of mesoderm and myocyte enhancing factor 2 (mef2) is involved downstream of twist to activate muscle differentiation. In Drosophila, mesoderm is defined by positional cues in the blastoderm embryo, while in another arthropod group, the amphipod crustaceans, cell lineage plays a greater role in defining the mesoderm. It is not known how different mechanistic strategies such as positional information vs. cell-lineage-dependent development affect the timing and use of gene networks. Here we describe the development of the mesoderm in a malacostracan crustacean, Parhyale hawaiensis, and characterize the expression of Parhyale twist and mef2 orthologues. In Parhyale, the mesoderm of the post-mandibular segments arises mainly through the asymmetric division of mesoteloblasts as the germband elongates. Ph-twist expression is seen in a subset of segmental mesoderm during germband development, but not during early cleavages when the specific mesodermal cell lineages first arise. ph-mef2 expression starts after the segmental mesoderm begins to proliferate and persists in developing musculature. While the association of these genes with mesoderm differentiation appears to be conserved across the animal kingdom, the timing of expression and relationship with different mechanisms of mesoderm development may give us greater insight into the ancestral use of these genes during mesoderm differentiation.
Collapse
Affiliation(s)
- Alivia L Price
- Department of Molecular Genetics and Cell Biology, Committee on Developmental Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
41
|
Tresini M, Lorenzini A, Torres C, Cristofalo VJ. Modulation of replicative senescence of diploid human cells by nuclear ERK signaling. J Biol Chem 2006; 282:4136-51. [PMID: 17145763 DOI: 10.1074/jbc.m604955200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Normal somatic cells have a limited replicative lifespan, and serial subcultivation ultimately results in senescence. Senescent cells are irreversibly growth-arrested and show impaired responses to mitogens. Activation of the ERK signaling pathway, an absolute requirement for cell proliferation, results in nuclear relocalization of active ERKs, an event impaired in senescent fibroblasts. This impairment coincides with increased activity of the nuclear ERK phosphatase MKP2. Here we show that replicative lifespan can be altered by changes in nuclear ERK activity. Ectopic expression of MKP2 results in premature senescence. In contrast, knock-down of MKP2 expression, through transduction of MKP2 sequence-specific short hairpin RNA, or expression of the phosphatase resistant ERK2(D319N) mutant, abrogates the effects of increased endogenous MKP2 levels and senescence is postponed. Nuclear targeting of ERK2(D319N) significantly augments its effects and the transduced cultures show higher than 60% increase in replicative lifespan compared with cultures transduced with wt ERK2. Long-lived cultures senesce with altered molecular characteristics and retain the ability to express c-fos, and Rb is maintained in its inactive form. Our results support that MKP2-mediated inactivation of nuclear ERK2 represents a key event in the establishment of replicative senescence. Although it is evident that senescence can be imposed through multiple mechanisms, restoration of nuclear ERK activity can bypass a critical senescence checkpoint and, thus, extend replicative lifespan.
Collapse
Affiliation(s)
- Maria Tresini
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA.
| | | | | | | |
Collapse
|
42
|
Friedrich B, Quensel C, Sommer T, Hartmann E, Köhler M. Nuclear localization signal and protein context both mediate importin alpha specificity of nuclear import substrates. Mol Cell Biol 2006; 26:8697-709. [PMID: 17000757 PMCID: PMC1636818 DOI: 10.1128/mcb.00708-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.
Collapse
Affiliation(s)
- Beate Friedrich
- The Max Delbrueck Center for Molecular Medicine, Robert Roessle Strasse 10, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
43
|
Sibrian-Vazquez M, Jensen TJ, Hammer RP, Vicente MGH. Peptide-mediated cell transport of water soluble porphyrin conjugates. J Med Chem 2006; 49:1364-72. [PMID: 16480271 DOI: 10.1021/jm050893b] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five new porphyrin-peptide conjugates bearing a nuclear localizing sequence SV40 or a fusogenic peptide (HIV-1Tat 40-60 or octa-arginine) linked by low molecular weight poly(ethylene glycol) have been synthesized. In vitro studies using human HEp2 cells show that the cellular uptake of the conjugates depends significantly on the nature and sequence of amino acids in the peptide and on the nature of the substituents on the porphyrin macrocycle. The fusogenic peptide sequences HIV-1Tat 40-60 and octa-arginine were the most effective in delivering the conjugates to the cells. The subcellular distribution of the conjugates was found to be dependent on the nature of substituents on the porphyrin macrocycle. The conjugates bearing a hydrophobic porphyrin localized preferentially in the endoplasmic reticulum and were significantly more phototoxic to HEp2 cells than the carboxylic acid functionalized porphyrin conjugates, which localized mainly in the lysosomes.
Collapse
|
44
|
van der Aa MAEM, Mastrobattista E, Oosting RS, Hennink WE, Koning GA, Crommelin DJA. The Nuclear Pore Complex: The Gateway to Successful Nonviral Gene Delivery. Pharm Res 2006; 23:447-59. [PMID: 16525863 DOI: 10.1007/s11095-005-9445-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/10/2005] [Indexed: 02/04/2023]
Abstract
One of the limiting steps in the efficiency of nonviral gene delivery is transport of genetic material across the nuclear membrane. Trafficking of nuclear proteins from the cytoplasm into the nucleus occurs via the nuclear pore complex and is mediated by nuclear localization signals and their nuclear receptors. Several strategies employing this transport mechanism have been designed and explored to improve nonviral gene delivery. In this article, we review the mechanism of nuclear import through the nuclear pore complex and the strategies used to facilitate nuclear import of exogenous DNA and improve gene expression.
Collapse
Affiliation(s)
- Marieke A E M van der Aa
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Surguladze N, Patton S, Cozzi A, Fried M, Connor J. Characterization of nuclear ferritin and mechanism of translocation. Biochem J 2005; 388:731-40. [PMID: 15675895 PMCID: PMC1183451 DOI: 10.1042/bj20041853] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ferritin, normally considered a cytoplasmic iron-storage protein, is also found in cell nuclei. It is an established fact that H-ferritin is the major form of nuclear ferritin, but little is known about the roles of ferritin in nuclei or about the mechanisms that control its appearance within the nuclear volume. In the present study, we show that, for human SW1088 astrocytoma cells, the nuclear and cytoplasmic forms of H-ferritin are products of the same mRNA. Histochemical and biochemical evidence is presented showing that ferritin is distributed non-randomly within the nuclear volume and that it preferentially associates with heterochromatin. Both cytoplasmic and nuclear populations of H-ferritin contain mixtures of non- and O-glycosylated forms, but the nuclear population is enriched in O-glycosylated forms. Cells treated with alloxan, a potent inhibitor of O-glycosylation, contained significantly less nuclear ferritin compared with cells grown in control media. Alloxan inhibited the reappearance of H-ferritin in nuclei of cells released from conditions of iron depletion, but did not prevent its disappearance from nuclei of cells undergoing iron depletion. These results suggest that O-glycosylation accompanies the transfer of ferritin from the cytoplasm to the nucleus, but does not influence the reverse process. The picture that emerges is one in which ferritin translocation between the cytoplasm and the nucleus is post-translationally regulated and responds to environmental and nutritional cues.
Collapse
Affiliation(s)
- Nodar Surguladze
- *Department of Neurosurgery, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Stephanie Patton
- *Department of Neurosurgery, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Anna Cozzi
- †Biological and Technological Research Department, Istituto di Ricovero e Cura a Carattere Scientifico, H. San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Michael G. Fried
- ‡Department of Molecular and Cellular Biochemistry, University of Kentucky, MS 607A Medical Science Building, Lexington, KY 40536-0298, U.S.A
| | - James R. Connor
- *Department of Neurosurgery, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, U.S.A
- To whom correspondence should be addressed, at G.M. Leader Family Laboratory for Alzheimer's Disease, M.S. Hershey Medical Center, Penn State University College of Medicine, Hershey, PA 17033, U.S.A. (email )
| |
Collapse
|
46
|
Tatematsu K, Yoshimoto N, Koyanagi T, Tokunaga C, Tachibana T, Yoneda Y, Yoshida M, Okajima T, Tanizawa K, Kuroda S. Nuclear-Cytoplasmic Shuttling of a RING-IBR Protein RBCK1 and Its Functional Interaction with Nuclear Body Proteins. J Biol Chem 2005; 280:22937-44. [PMID: 15833741 DOI: 10.1074/jbc.m413476200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The intracellular localization of a RING-IBR protein, RBCK1, possessing DNA binding and transcriptional activities, has been investigated. The endogenous RBCK1 was found in both the cytoplasm and nucleus. Particularly in the nucleus, it was localized in the granular structures, most likely nuclear bodies. In contrast, the over-expressed RBCK1 was detected exclusively in the cytoplasm. When the cells were treated with leptomycin B, the over-expressed RBCK1 accumulated in the nuclear bodies. These results suggest that RBCK1 possesses the signal sequences responsible for the nuclearcytoplasmic translocation. Mutational analysis of RBCK1 has indicated that an N-terminal region containing Leu-142 and Leu-145 and a C-terminal one containing the RING-IBR domain serve as the nuclear export and localization signals, respectively. Thus, RBCK1 is a transcription factor dynamically shuttling between cytoplasm and nucleus. Furthermore, RBCK1 was found to interact with nuclear body proteins, CREB-binding protein (CBP), and promyelocytic leukemia protein (PML). Coexpression of RBCK1 with CBP significantly enhanced the transcriptional activity of RBCK1. Although PML per se showed no effect on the transcriptional activity of RBCK1, the CBP-enhanced activity was repressed by coexpression with PML, presumably through the interaction of PML and CBP. Taken together, our data demonstrate that RBCK1 is involved in transcriptional machinery in the nuclear bodies, and its transcriptional activity is regulated by nucleocytoplasmic shuttling.
Collapse
Affiliation(s)
- Kenji Tatematsu
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Eguchi A, Furusawa H, Yamamoto A, Akuta T, Hasegawa M, Okahata Y, Nakanishi M. Optimization of nuclear localization signal for nuclear transport of DNA-encapsulating particles. J Control Release 2005; 104:507-19. [PMID: 15911050 DOI: 10.1016/j.jconrel.2005.02.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 02/11/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
The nuclear membrane is a tight barrier against the delivery of therapeutic genes into non-dividing tissue cells. Overcoming this barrier with the aid of peptidic nuclear localization signals (NLS) is crucial for improving the performance of synthetic gene-delivery vehicles. In this article, we examine the nuclear transport of lambda phage particles displaying various peptides containing the minimum NLS of SV40 T antigen on their surface. As the minimum NLS (PKKKRKV) is a binding domain to importin alpha, recombinant proteins and molecular conjugates containing this peptide accumulate into the nucleus efficiently. However, we find that the C-terminal and N-terminal structures besides the minimum NLS profoundly affect the efficiency of the nuclear transport of the phage particles as well as their binding capacity to importin alpha: either truncation of a few amino acid residues from the C-terminus or the replacement of the N-terminus with a FLAG- or c-myc-tag abolish both of these biological activities. The structure of the optimized NLS is unpredictable from conventional protein transport assay and from the structural analysis in silico. Our results reveal that the objects with 50 nm in diameter can pass through the nuclear pore complex when the optimized NLS is displayed at a sufficient density on their surface.
Collapse
Affiliation(s)
- Akiko Eguchi
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Sigoillot FD, Kotsis DH, Serre V, Sigoillot SM, Evans DR, Guy HI. Nuclear localization and mitogen-activated protein kinase phosphorylation of the multifunctional protein CAD. J Biol Chem 2005; 280:25611-20. [PMID: 15890648 DOI: 10.1074/jbc.m504581200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CAD is a multifunctional protein that initiates and regulates mammalian de novo pyrimidine biosynthesis. The activation of the pathway required for cell proliferation is a consequence of the phosphorylation of CAD Thr-456 by mitogen-activated protein (MAP) kinase. Although most of the CAD in the cell was cytosolic, cell fractionation and fluorescence microscopy showed that Thr(P)-456 CAD was primarily localized within the nucleus in association with insoluble nuclear substructures, including the nuclear matrix. CAD in resting cells was cytosolic and unphosphorylated. Upon epidermal growth factor stimulation, CAD moved to the nucleus, and Thr-456 was found to be phosphorylated. Mutation of the CAD Thr-456 and inhibitor studies showed that nuclear import is not mediated by MAP kinase phosphorylation. Two fluorescent CAD constructs, NLS-CAD and NES-CAD, were prepared that incorporated strong nuclear import and export signals, respectively. NLS-CAD was exclusively nuclear and extensively phosphorylated. In contrast, NES-CAD was confined to the cytoplasm, and Thr-456 remained unphosphorylated. Although alternative explanations can be envisioned, it is likely that phosphorylation occurs within the nucleus where much of the activated MAP kinase is localized. Trapping CAD in the nucleus had a minimal effect on pyrimidine metabolism. In contrast, when CAD was excluded from the nucleus, the rate of pyrimidine biosynthesis, the nucleotide pools, and the growth rate were reduced by 21, 36, and 60%, respectively. Thus, the nuclear import of CAD appears to promote optimal cell growth. UMP synthase, the bifunctional protein that catalyzes the last two steps in the pathway, was also found in both the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Frederic D Sigoillot
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
49
|
Magens B, Düllmann J, Schümann K, Wulfhekel U, Nielsen P. Nuclear iron deposits in hepatocytes of iron-loaded HFE-knock-out mice: a morphometric and immunocytochemical analysis. Acta Histochem 2005; 107:57-65. [PMID: 15866286 DOI: 10.1016/j.acthis.2004.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 08/09/2004] [Accepted: 08/10/2004] [Indexed: 10/25/2022]
Abstract
Nuclear deposits of stainable iron in hepatocytes are a sign of liver iron overload in mice. Animals with no, partial or total knock-out of the HFE alleles, the deletion of which is responsible for hereditary haemochromatosis, were given different forms of dietary iron to measure nuclear iron deposits which were then related to cytoplasmic iron load. Wild type and heterozygous HFE-knock-out mice kept for 52 weeks on a standard diet showed no such deposits. These were, however, demonstrated in low numbers and with small diameters in homozygous HFE-knock-out mice kept on this diet. Nuclear iron deposits were most abundant in all type of mice fed carbonyl iron (2.5% w/w) for 52 weeks almost irrespective of their genetic background. The diameter of these deposits increased with the genetically conditioned extent of hepatocellular iron overload. Mice that were fed a diet containing TMH-ferrocene for 4 weeks showed amounts of hepatic iron that were comparable to those in the carbonyl iron-fed group but nuclear deposits were small and present in only 0.3% of the hepatocytes. While surrounding karyoplasm was immunostained for H- and L-ferritin, the nuclear iron deposits were not. As the nuclear iron deposits corresponded electron microscopically to aggregated ferritin molecules, they represent a non-immunoreactive form of presumably denatured ferritin.
Collapse
Affiliation(s)
- Björn Magens
- Institute of Anatomy II: Experimental Morphology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany.
| | | | | | | | | |
Collapse
|
50
|
Glomm WR. Functionalized Gold Nanoparticles for Applications in Bionanotechnology. J DISPER SCI TECHNOL 2005. [DOI: 10.1081/dis-200052457] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|