1
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
2
|
Differential Effects of Human Adenovirus E1A Protein Isoforms on Aerobic Glycolysis in A549 Human Lung Epithelial Cells. Viruses 2020; 12:v12060610. [PMID: 32503156 PMCID: PMC7354625 DOI: 10.3390/v12060610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Viruses alter a multitude of host-cell processes to create a more optimal environment for viral replication. This includes altering metabolism to provide adequate substrates and energy required for replication. Typically, viral infections induce a metabolic phenotype resembling the Warburg effect, with an upregulation of glycolysis and a concurrent decrease in cellular respiration. Human adenovirus (HAdV) has been observed to induce the Warburg effect, which can be partially attributed to the adenovirus protein early region 4, open reading frame 1 (E4orf1). E4orf1 regulates a multitude of host-cell processes to benefit viral replication and can influence cellular metabolism through the transcription factor avian myelocytomatosis viral oncogene homolog (MYC). However, E4orf1 does not explain the full extent of Warburg-like HAdV metabolic reprogramming, especially the accompanying decrease in cellular respiration. The HAdV protein early region 1A (E1A) also modulates the function of the infected cell to promote viral replication. E1A can interact with a wide variety of host-cell proteins, some of which have been shown to interact with metabolic enzymes independently of an interaction with E1A. To determine if the HAdV E1A proteins are responsible for reprogramming cell metabolism, we measured the extracellular acidification rate and oxygen consumption rate of A549 human lung epithelial cells with constitutive endogenous expression of either of the two major E1A isoforms. This was followed by the characterization of transcript levels for genes involved in glycolysis and cellular respiration, and related metabolic pathways. Cells expressing the 13S encoded E1A isoform had drastically increased baseline glycolysis and lower maximal cellular respiration than cells expressing the 12S encoded E1A isoform. Cells expressing the 13S encoded E1A isoform exhibited upregulated expression of glycolysis genes and downregulated expression of cellular respiration genes. However, tricarboxylic acid cycle genes were upregulated, resembling anaplerotic metabolism employed by certain cancers. Upregulation of glycolysis and tricarboxylic acid cycle genes was also apparent in IMR-90 human primary lung fibroblast cells infected with a HAdV-5 mutant virus that expressed the 13S, but not the 12S encoded E1A isoform. In conclusion, it appears that the two major isoforms of E1A differentially influence cellular glycolysis and oxidative phosphorylation and this is at least partially due to the altered regulation of mRNA expression for the genes in these pathways.
Collapse
|
3
|
Ip WH, Dobner T. Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett 2019; 594:1848-1860. [PMID: 31821536 DOI: 10.1002/1873-3468.13717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Extensive studies on viral-mediated oncogenic transformation by human adenoviruses have revealed much of our current understanding on the molecular mechanisms that are involved in the process. To date, these studies have shown that cell transformation is a multistep process regulated by the cooperation of several adenoviral gene products encoded in the early regions 1 (E1) and 4 (E4). Early region 1A immortalizes primary rodent cells, whereas co-expression of early region protein 1B induces full manifestation of the transformed phenotype. Beside E1 proteins, also some E4 proteins have partial transforming activities through regulating many cellular pathways. Here, we summarize recent data of how adenoviral oncoproteins may contribute to viral transformation and discuss the challenge of pinpointing the underlying mechanisms.
Collapse
Affiliation(s)
- Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
4
|
Ashshi AM, El-Shemi AG, Dmitriev IP, Kashentseva EA, Curiel DT. Combinatorial strategies based on CRAd-IL24 and CRAd-ING4 virotherapy with anti-angiogenesis treatment for ovarian cancer. J Ovarian Res 2016; 9:38. [PMID: 27349517 PMCID: PMC4924320 DOI: 10.1186/s13048-016-0248-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023] Open
Abstract
Background A major hurdle incurrent to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy agents is their limited therapeutic efficacy. In this study we evaluated whether arming our previously reported Ad5/3Δ24 CRAd vector containing a 24-base pair deletion in the E1A conserved region 2, which allows selective replication within Rb-p16-deficient tumor cells, to express therapeutic genes could improve oncolytic virus potency in ovarian cancer cells. We choose to assess the therapeutic benefits achieved by virus-mediated expression of interleukin 24 (IL-24), a cytokine-like protein of the IL-10 family, and the inhibitor of growth 4 (ING4) tumor suppressor protein. Results The generated CRAd-IL24 and CRAd-ING4 vectors were tested in ovarian cancer cell lines in vitro to compare their replication, yield, and cytotoxic effects with control CRAd Ad5/3∆24 lacking the therapeutic gene. These studies showed that CRAd-IL24 infection resulted in significantly increased yield of infectious particles, which translated to a marked enhancement of virus-induced cytotoxic effects as compared to CRAd-ING4 and non-armed CRAd. Testing CRAd-IL24 and CRAd-ING4 vectors combined together did not revealed synergistic effects exceeding oncolytic potency of single CRAD-IL24 vector. Both CRAds were also tested along with anti-VEGF monoclonal antibody Avastin and showed no significant augmentation of viral cytolysis by anti-angiogenesis treatment in vitro. Conclusions Our studies validated that arming with these key immunomodulatory genes was not deleterious to virus-mediated oncolysis. These findings thus, warrant further preclinical studies of CRAd-IL24 tumoricidal efficacy in murine ovarian cancer models to establish its potential utility for the virotherapy of primary and advanced neoplastic diseases.
Collapse
Affiliation(s)
- Ahmad Mohammad Ashshi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia
| | - Adel Galal El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, PO Box 7607, Holy Makkah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Igor P Dmitriev
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Elena A Kashentseva
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA
| | - David T Curiel
- The Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO, 63110, USA.
| |
Collapse
|
5
|
Zhao LJ, Loewenstein PM, Green M. The adenovirus E1A oncoprotein N-terminal transcriptional repression domain enhances p300 autoacetylation and inhibits histone H3 Lys18 acetylation. Genes Cancer 2015; 6:30-7. [PMID: 25821559 PMCID: PMC4362482 DOI: 10.18632/genesandcancer.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/07/2015] [Indexed: 11/25/2022] Open
Abstract
Expression of the adenovirus E1A N-terminal transcription repression domain alone (E1A 1-80) represses transcription from specific promoters such as HER2 [1] and from reconstituted chromatin [2]. Significantly, E1A 1-80 can induce the death of human breast cancer cells over-expressing the HER2 oncogene [1] as well as other cancer cells. Here, we report that E1A 1-80 alone is sufficient to inhibit H3K18 acetylation in vivo and p300-mediated H3K18 acetylation in reconstituted chromatin. Of interest, hypoacetylation of H3K18 has been correlated with the survival of tumor cells and the poor prognosis of many cancers [3, 4]. E1A 1-80 enhances p300 autoacetylation and concurrently inhibits H3K18 acetylation in chromatin in a dose-dependent manner. Pre-acetylation of p300 by incubation with acetyl-CoA alone reduces p300's ability to acetylate H3K18 in chromatin. Additional acetylation of p300 in the presence of E1A 1-80 produces stronger inhibition of H3K18 acetylation. These findings indicate that autoacetylation of p300 greatly reduces its ability to acetylate H3K18. The results reported here combined with our previous findings suggest that E1A can repress transcription by multiple strategies, including altering the chromatin modifying activity of p300 and dissociating TFIID from the TATA box thus disrupting formation of the transcription pre-initiation complex [5, 6]
Collapse
Affiliation(s)
- Ling-Jun Zhao
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| | - Paul M Loewenstein
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| | - Maurice Green
- Institute for Molecular Virology, Saint Louis University School of Medicine, Doisy research Center, St. Louis, Missouri
| |
Collapse
|
6
|
Toth K, Ying B, Tollefson AE, Spencer JF, Balakrishnan L, Sagartz JE, Buller RML, Wold WSM. Valganciclovir inhibits human adenovirus replication and pathology in permissive immunosuppressed female and male Syrian hamsters. Viruses 2015; 7:1409-28. [PMID: 25807051 PMCID: PMC4379578 DOI: 10.3390/v7031409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 12/14/2022] Open
Abstract
Adenovirus infections of immunocompromised pediatric hematopoietic stem cell transplant patients can develop into serious and often deadly multi-organ disease. There are no drugs approved for adenovirus infections. Cidofovir (an analog of 2-deoxycytidine monophosphate) is used at times but it can be nephrotoxic and its efficacy has not been proven in clinical trials. Brincidofovir, a promising lipid-linked derivative of cidofovir, is in clinical trials. Ganciclovir, an analog of 2-deoxyguanosine, has been employed occasionally but with unknown efficacy in the clinic. In this study, we evaluated valganciclovir against disseminated adenovirus type 5 (Ad5) infection in our permissive immunosuppressed Syrian hamster model. We administered valganciclovir prophylactically, beginning 12 h pre-infection or therapeutically starting at Day 1, 2, 3, or 4 post-infection. Valganciclovir significantly increased survival, reduced viral replication in the liver, and mitigated the pathology associated with Ad5 infection. In cultured cells, valganciclovir inhibited Ad5 DNA replication and blocked the transition from early to late stage of infection. Valganciclovir directly inhibited Ad5 DNA polymerase in vitro, which may explain, at least in part, its mechanism of action. Ganciclovir and valganciclovir are approved to treat infections by certain herpesviruses. Our results support the use of valganciclovir to treat disseminated adenovirus infections in immunosuppressed patients.
Collapse
Affiliation(s)
- Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Lata Balakrishnan
- Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - John E Sagartz
- Department of Comparative Medicine, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - Robert Mark L Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, USA.
| |
Collapse
|
7
|
Ganciclovir inhibits human adenovirus replication and pathogenicity in permissive immunosuppressed Syrian hamsters. Antimicrob Agents Chemother 2014; 58:7171-81. [PMID: 25224011 DOI: 10.1128/aac.03860-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus infections of immunocompromised patients can develop into deadly multiorgan or systemic disease. The virus is especially threatening for pediatric allogeneic hematopoietic stem cell transplant recipients; according to some studies, 10% or more of these patients succumb to disease resulting from adenovirus infection. At present, there is no drug approved for the treatment or prevention of adenovirus infections. Compounds that are approved to treat other virus infections are used off-label to combat adenovirus, but only anecdotal evidence of the efficacy of these drugs exists. Ganciclovir, a drug approved for the treatment of herpesvirus infection, was previously reported to be effective against human adenoviruses in vitro. To model adenovirus infections in immunocompromised humans, we examined ganciclovir's efficacy in immunosuppressed Syrian hamsters intravenously infected with type 5 human adenovirus (Ad5). This animal model is permissive for Ad5 replication, and the animals develop symptoms similar to those seen in humans. We demonstrate that ganciclovir suppresses Ad5 replication in the liver of infected hamsters and that it mitigates the consequences of Ad5 infections in these animals when administered prophylactically or therapeutically. We show that ganciclovir inhibits Ad5 DNA synthesis and late gene expression. The mechanism of action for the drug is not clear; preliminary data suggest that it exerts its antiadenoviral effect by directly inhibiting the adenoviral DNA polymerase. While more extensive studies are required, we believe that ganciclovir is a promising drug candidate to treat adenovirus infections. Brincidofovir, a drug with proven activity against Ad5, was used as a positive control in the prophylactic experiment.
Collapse
|
8
|
Wu FYH. Spectroscopic Studies of Metalloproteins and Metalloenzymes. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.198900078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Adenovirus L-E1A activates transcription through mediator complex-dependent recruitment of the super elongation complex. J Virol 2013; 87:3425-34. [PMID: 23302885 DOI: 10.1128/jvi.03046-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus large E1A (L-E1A) protein is a prototypical transcriptional activator, and it functions through the action of a conserved transcriptional activation domain, CR3. CR3 interacts with a mediator subunit, MED23, that has been linked to the transcriptional activity of CR3. Our unbiased proteomic analysis revealed that human adenovirus 5 (HAdv5) L-E1A was associated with many mediator subunits. In MED23-depleted cells and in Med23 knockout (KO) cells, L-E1A was deficient in association with other mediator subunits, suggesting that MED23 links CR3 with the mediator complex. Short interfering RNA (siRNA)-mediated depletion of several mediator subunits suggested differential effects of various subunits on transcriptional activation of HAdv5 early genes. In addition to MED23, mediator subunits such as MED14 and MED26 were also essential for the transcription of HAdv5 early genes. The L-E1A proteome contained MED26-associated super elongation complex. The catalytic component of the elongation complex, CDK9, was important for the transcriptional activity of L-E1A and HAdv5 replication. Our results suggest that L-E1A-mediated transcriptional activation involves a transcriptional elongation step, like HIV Tat, and constitutes a therapeutic target for inhibition of HAdv replication.
Collapse
|
10
|
Loewenstein PM, Green M. Expression of the Adenovirus Early Gene 1A Transcription-Repression Domain Alone Downregulates HER2 and Results in the Death of Human Breast Cancer Cells Upregulated for the HER2 Proto-Oncogene. Genes Cancer 2012; 2:737-44. [PMID: 22207899 DOI: 10.1177/1947601911426570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/22/2011] [Indexed: 02/03/2023] Open
Abstract
Adenovirus (Ad) early gene 1A 243 residue protein (E1A 243R) possesses a potent transcription-repression function within the N-terminal 80 amino acids (E1A 1-80). We examined the ability of E1A 243R and E1A 1-80 to repress transcription of both an exogenous and the endogenous HER2 promoter in a human breast cancer cell line upregulated for the HER2 proto-oncogene (SK-BR-3). Both moieties repressed HER2 expression by over 90%. When E1A 1-80 was expressed from a nonreplicative Ad vector, levels of expression were lower than anticipated. Addition of nonspecific sequences to the E1A 1-80 C-terminus (E1A 1-80 C+) enhanced its expression 10- to 20-fold. Because "oncogene addiction" suggests that repression of HER2 could kill HER2 upregulated cells, we examined the ability of full-length E1A 243R and E1A 1-80 C+ delivered by an Ad vector to kill HER2 upregulated SK-BR-3 cells. Expression of both E1A 243R and E1A 1-80 C+ killed SK-BR-3 cells but not normal breast cells. E1A 1-80 C+ is a particularly effective killer of SK-BR-3 cells. At 144 h post infection, over 85% of SK-BR-3 cells were killed by a 100 moi of the Ad vector expressing E1A 1-80 C+. As controls, Ad vectors expressing E1A 243R with deletion of all known functional domains or expressing unrelated β-galactosidase had no effect. Three additional human breast cancer cells lines reported to be upregulated for HER2 or another EGF family member (EGFR) were found to be efficiently killed by expression of E1A 1-80 C+, whereas three additional "normal" cell lines (two derived from breast and one from foreskin) were not. The ability of the E1A transcription-repression domain alone to kill HER2 upregulated breast cancer cells has potential for development of therapies for treatment of aggressive human breast cancers and potentially other human cancers that overexpress HER2.
Collapse
Affiliation(s)
- Paul M Loewenstein
- Saint Louis University School of Medicine, Institute for Molecular Virology, Saint Louis, MO, USA
| | | |
Collapse
|
11
|
Cellular GCN5 is a novel regulator of human adenovirus E1A-conserved region 3 transactivation. J Virol 2012; 86:8198-209. [PMID: 22623781 DOI: 10.1128/jvi.00289-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The largest isoform of adenovirus early region 1A (E1A) contains a unique region termed conserved region 3 (CR3). This region activates viral gene expression by recruiting cellular transcription machinery to the early viral promoters. Recent studies have suggested that there is an optimal level of E1A-dependent transactivation required by human adenovirus (hAd) during infection and that this may be achieved via functional cross talk between the N termini of E1A and CR3. The N terminus of E1A binds GCN5, a cellular lysine acetyltransferase (KAT). We have identified a second independent interaction of E1A with GCN5 that is mediated by CR3, which requires residues 178 to 188 in hAd5 E1A. GCN5 was recruited to the viral genome during infection in an E1A-dependent manner, and this required both GCN5 interaction sites on E1A. Ectopic expression of GCN5 repressed transactivation by both E1A CR3 and full-length E1A. In contrast, RNA interference (RNAi) depletion of GCN5 or treatment with the KAT inhibitor cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH2) resulted in increased E1A CR3 transactivation. Moreover, activation of the adenovirus E4 promoter by E1A was increased during infection of homozygous GCN5 KAT-defective (hat/hat) mouse embryonic fibroblasts (MEFs) compared to wild-type control MEFs. Enhanced histone H3 K9/K14 acetylation at the viral E4 promoter required the newly identified binding site for GCN5 within CR3 and correlated with repression and reduced occupancy by phosphorylated RNA polymerase II. Treatment with CPTH2 during infection also reduced virus yield. These data identify GCN5 as a new negative regulator of transactivation by E1A and suggest that its KAT activity is required for optimal virus replication.
Collapse
|
12
|
Pelka P, Ablack JNG, Shuen M, Yousef AF, Rasti M, Grand RJ, Turnell AS, Mymryk JS. Identification of a second independent binding site for the pCAF acetyltransferase in adenovirus E1A. Virology 2009; 391:90-8. [PMID: 19541337 DOI: 10.1016/j.virol.2009.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/22/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
The conserved region 3 (CR3) portion of the human adenovirus (HAdV) 5 E1A protein functions as a potent transcriptional activator that induces expression of viral early genes during infection. Expression of HAdV-5 CR3 in the yeast Saccharomyces cerevisiae inhibits growth, as do the corresponding regions of the HAdV-3, 4, 9, 12 and 40 E1A proteins, which represent the remaining five HAdV subgroups. Growth inhibition is alleviated by disruption of the SAGA transcriptional regulatory complex, suggesting that CR3 targets the yeast SAGA complex. In yeast, transcriptional activation by several, but not all, of the CR3 regions requires the Gcn5 acetyltransferase component of SAGA. The CR3 regions of HAdV-3, 5, 9 and 40, but not HAdV-4 and 12 interact with the pCAF acetyltransferase, a mammalian ortholog of yeast Gcn5. Disruption of the previously described N-terminal pCAF binding site abrogates binding by the HAdV-5 243R E1A protein, but not the larger 289R E1A protein, which is otherwise identical except for the presence of CR3. RNA interference directed against pCAF decreased HAdV-5 CR3 dependent transcriptional activation in mammalian cells. Our results identify a second independent binding site for pCAF in E1A and suggest that it contributes to CR3 dependent transcriptional activation.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | | | | | | | | | | | |
Collapse
|
13
|
How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 2009; 384:274-84. [PMID: 19150725 DOI: 10.1016/j.virol.2008.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation.
Collapse
|
14
|
Pelka P, Ablack JNG, Torchia J, Turnell AS, Grand RJA, Mymryk JS. Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP. Nucleic Acids Res 2009; 37:1095-106. [PMID: 19129215 PMCID: PMC2651774 DOI: 10.1093/nar/gkn1057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human adenovirus type 5 (HAdV-5) E1A 13S oncoprotein is a potent regulator of gene expression and is used extensively as a model for transcriptional activation. It possesses two independent transcriptional activation domains located in the N-terminus/conserved region (CR) 1 and CR3. The protein acetyltransferase p300 was previously identified by its association with the N-terminus/CR1 portion of E1A and this association is required for oncogenic transformation by E1A. We report here that transcriptional activation by 13S E1A is inhibited by co-expression of sub-stoichiometric amounts of the smaller 12S E1A isoform, which lacks CR3. Transcriptional inhibition by E1A 12S maps to the N-terminus and correlates with the ability to bind p300/CBP, suggesting that E1A 12S is sequestering this limiting factor from 13S E1A. This is supported by the observation that the repressive effect of E1A 12S is reversed by expression of exogenous p300 or CBP, but not by a CBP mutant lacking actyltransferase activity. Furthermore, we show that transcriptional activation by 13S E1A is greatly reduced by siRNA knockdown of p300 and that CR3 binds p300 independently of the well-characterized N-terminal/CR1-binding site. Importantly, CR3 is also required to recruit p300 to the adenovirus E4 promoter during infection. These results identify a new functionally significant interaction between E1A CR3 and the p300/CBP acetyltransferases, expanding our understanding of the mechanism by which this potent transcriptional activator functions.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Green M, Panesar NK, Loewenstein PM. The transcription-repression domain of the adenovirus E1A oncoprotein targets p300 at the promoter. Oncogene 2008; 27:4446-55. [PMID: 18408753 DOI: 10.1038/onc.2008.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extensive mutational/functional analysis of the transcription-repression domain encoded in the N-terminal 80 amino acids of the adenovirus E1A 243R oncoprotein suggests a model for the molecular mechanism of E1A repression: E1A accesses transcriptional co-activators such as p300 on specific promoters and then interacts with TBP to disrupt the TBP-TATA complex. In support of this model, as reported here, a basal core promoter activated by tethering p300 is repressible by E1A at the promoter level as shown by chromatin immunoprecipitation (ChIP) analysis. Sequestration of p300 by E1A does not play a significant role, as indicated by dose-response measurements. Furthermore, when the core promoter is transcriptionally activated by tethering activation domains of several transcription factors that can recruit p300 (p65, MyoD, cMyb and TFE3), transcription is repressible by E1A. However, when the core promoter is activated by factors not known to recruit p300 (USF1 and USF2), transcription is resistant to E1A repression. Finally, tethering p300 to the non-repressible adenovirus major late promoter (MLP) renders it repressible by E1A. ChIP analysis shows that E1A occupies the repressed MLP. These findings provide support for the hypothesis that p300 can serve as a scaffold for the E1A repression domain to access specific cellular gene promoters involved in growth regulation.
Collapse
Affiliation(s)
- M Green
- Institute for Molecular Virology, Saint Louis University School of Medicine, St Louis, MO 63104, USA.
| | | | | |
Collapse
|
16
|
Koehler-Hansner K, Flore O, Opalka B, Hengge UR. Interaction of Adenovirus E1A with the HHV8 Promoter of Latent Genes: E1A Proteins are Able to Activate the HHV-8 LANAp in MV3 Reporter Cells. Open Virol J 2008; 2:61-8. [PMID: 19440465 PMCID: PMC2678816 DOI: 10.2174/1874357900802010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 06/05/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) is associated with Kaposi's sarcoma, body cavity-based lymphoma, and Castleman's disease. Adenoviral (Ad) E1A proteins regulate the activity of cellular and viral promoters/enhancers and transcription factors and can suppress tumorigenicity of human cancers. As (i) HHV-8 and Ad may co-exist in immunocompromised patients and (ii) E1A might be considered as therapeutic transgene for HHV-8-associated neoplasms we investigated whether the promoter of the latency-associated nuclear antigen (LANAp) controlling expression of vCyclin, vFLIP, and LANA proteins required for latent type infection is regulated by E1A. Transfection experiments in MV3 melanoma cells revealed activation of the LANAp by Ad5 E1A constructs containing an intact N terminus (aa 1-119). In particular, an Ad12 E1A mutant, Spm2, lacking six consecutive alanine residues in the "spacer" region activated the HHV-8 promoter about 15-fold compared to vector controls. In summary, we report the activation of the LANAp by E1A as a novel interaction of E1A with a viral promoter. These data may have relevance for the management of viral infections in immunocompromised patients. A role for E1A as a therapeutic in this context remains to be defined.
Collapse
Affiliation(s)
- Karin Koehler-Hansner
- Department of Internal Medicine (Cancer Research), University of Duisburg-Essen Medical School, Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | |
Collapse
|
17
|
Landis MW, Brown NE, Baker GL, Shifrin A, Das M, Geng Y, Sicinski P, Hinds PW. The LxCxE pRb interaction domain of cyclin D1 is dispensable for murine development. Cancer Res 2007; 67:7613-20. [PMID: 17699765 DOI: 10.1158/0008-5472.can-07-1207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyclin D1 is a multifunctional, tumor-associated protein that interacts with pRb via a conserved LxCxE motif, activates a kinase partner, directs the phosphorylation of pRb, activates cyclin E-cyclin-dependent kinase 2 (cdk2) by titrating Cip/Kip cdk inhibitors, and modulates the activity of a variety of transcription factors. It is thought that some of the proproliferative function of cyclin D1 is exerted by LxCxE-dependent binding to the pRb pocket domain, which might interfere with the ability of pRb to repress transcription by recruiting cellular chromatin remodeling proteins to E2F-dependent promoters. To test the importance of the LxCxE domain in vivo, we have generated a "knock-in" mouse by replacing the wild-type cyclin D1 gene with a mutant allele precisely lacking the nucleotides encoding the LxCxE domain. Analysis of this mouse has shown that the LxCxE protein is biochemically similar to wild-type cyclin D1 in all tested respects. Moreover, we were unable to detect abnormalities in growth, retinal development, mammary gland development, or tumorigenesis, all of which are affected by deleting cyclin D1. Although we cannot exclude the presence of subtle defects, these results suggest that the LxCxE domain of cyclin D1 is not necessary for function despite the absolute conservation of this motif in the D-type cyclins from plants and vertebrates.
Collapse
Affiliation(s)
- Mark W Landis
- Molecular Oncology Research Institute, Tufts-New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Buchkovich K, Dyson N, Whyte P, Harlow E. Cellular proteins that are targets for transformation by DNA tumour viruses. CIBA FOUNDATION SYMPOSIUM 2007; 150:262-71; discussion 271-8. [PMID: 2142644 DOI: 10.1002/9780470513927.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small DNA tumour viruses produce proteins that redirect cellular gene expression and growth control. The E1A polypeptides of adenovirus perform the functions of transcriptional activation and cellular transformation. These two functions are carried out by different domains within the E1A protein. The E1A protein associates with several cellular proteins, including the product of the retinoblastoma gene, pRb-1. Mutational analysis correlates transformation with the sites required for binding pRb and two other cellular proteins, p107 and a 300 kDa polypeptide. This correlation suggests that these proteins are targets for E1A-mediated transformation. Transforming proteins from other small DNA tumour viruses interact with pRb, raising the possibility that a common event in viral transformation is the inactivation of proteins that inhibit cellular proliferation. The role of the E1A-associated 60 kDa protein, p60, in transformation is being investigated. In the absence of E1A, p60 binds to the human homologue of the Schizosaccharomyces pombe cdc2 gene product, p34, to form a complex that has kinase activity that oscillates during the cell cycle. Ongoing studies of the effect of adenovirus infection, and specifically E1A expression, on this cellular kinase may provide clues to how E1A overcomes cell cycle controls and transforms cells.
Collapse
|
19
|
Miakotina OL, McCoy DM, Shi L, Look DC, Mallampalli RK. Human adenovirus modulates surfactant phospholipid trafficking. Traffic 2007; 8:1765-1777. [PMID: 17897321 DOI: 10.1111/j.1600-0854.2007.00641.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Surfactant, highly enriched with phosphatidylcholine (PC), is secreted into the airspace by a classic apical secretory route, thereby maintaining lung stability. Herein, we show that adenoviral infection decreases surfactant PC in lungs by inhibiting its apical secretion and redirecting its export in alveolar cells by a basolateral route. These effects were not observed with replication-deficient adenovirus (Ad), specifically lacking early region 1 (E1) gene products. Adenoviral stimulation of basolateral PC export from cells was not observed after pharmacologic inhibition of ATP-binding cassette proteins, after introduction of small interfering RNA to the lipid pump ATP-binding cassette transporter A1 (ABCA1) or in ABCA1-defective human Tangier disease fibroblasts. Adenovirus and its E1A gene product increased ABCA1 levels by transcriptionally activating the ABCA1 gene. Thus, Ad lowers surfactant, in part, by triggering ABCA1-directed basolateral PC export, thereby limiting the cellular pool of surfactant PC destined for apical secretion. The results support a novel pathway, whereby a viral pathogen disrupts surfactant trafficking.
Collapse
Affiliation(s)
- Olga L Miakotina
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Diann M McCoy
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lei Shi
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Dwight C Look
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Biochemistry, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
20
|
Tollefson AE, Ying B, Doronin K, Sidor PD, Wold WSM. Identification of a new human adenovirus protein encoded by a novel late l-strand transcription unit. J Virol 2007; 81:12918-26. [PMID: 17881437 PMCID: PMC2169129 DOI: 10.1128/jvi.01531-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A short open reading frame named the "U exon," located on the adenovirus (Ad) l-strand (for leftward transcription) between the early E3 region and the fiber gene, is conserved in mastadenoviruses. We have observed that Ad5 mutants with large deletions in E3 that infringe on the U exon display a mild growth defect, as well as an aberrant Ad E2 DNA-binding protein (DBP) intranuclear localization pattern and an apparent failure to organize replication centers during late infection. Mutants in which the U exon DNA is reconstructed have a reversed phenotype. Chow et al. (L. T. Chow et al., J. Mol. Biol. 134:265-303, 1979) described mRNAs initiating in the region of the U exon and spliced to downstream sequences in the late DBP mRNA leader and the DBP-coding region. We have cloned this mRNA (as cDNA) from Ad5 late mRNA; the predicted protein is 217 amino acids, initiating in the U exon and continuing in frame in the DBP leader and in the DBP-coding region but in a different reading frame from DBP. Polyclonal and monoclonal antibodies generated against the predicted U exon protein (UXP) showed that UXP is approximately 24K in size by immunoblot and is a late protein. At 18 to 24 h postinfection, UXP is strongly associated with nucleoli and is found throughout the nucleus; later, UXP is associated with the periphery of replication centers, suggesting a function relevant to Ad DNA replication or RNA transcription. UXP is expressed by all four species C Ads. When expressed in transient transfections, UXP complements the aberrant DBP localization pattern of UXP-negative Ad5 mutants. Our data indicate that UXP is a previously unrecognized protein derived from a novel late l-strand transcription unit.
Collapse
Affiliation(s)
- Ann E Tollefson
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, 1100 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
21
|
Berg JM. Metal-Binding Domains in Nucleic Acid-Binding and Gene-Regulatory Proteins. PROGRESS IN INORGANIC CHEMISTRY 2007. [DOI: 10.1002/9780470166383.ch3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Loewenstein PM, Arackal S, Green M. Mutational and functional analysis of an essential subdomain of the adenovirus E1A N-terminal transcription repression domain. Virology 2006; 351:312-21. [PMID: 16678877 DOI: 10.1016/j.virol.2006.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 01/10/2006] [Accepted: 03/21/2006] [Indexed: 11/22/2022]
Abstract
Adenovirus early gene 1A (E1A) possesses a potent transcriptional repression function within the first 80 amino acids (E1A 1-80). Our previous analysis of subdomain 1 (residues 1 to 30) revealed strong correlations between residues required for repression and for disruption of TBP-TATA complexes. Here, we report a functional analysis of subdomain 2 (48 to 60) by alanine-scanning mutagenesis. 53Ala, 54Pro, 55Glu, and 56Asp are required for repression in vitro and in vivo and for efficient interaction with p300 but not for disruption of TBP-TATA. These combined results suggest a model for E1A transcription repression. E1A through subdomains 1 and 2 uses coactivators like p300 as scaffolds to access E1A repressible promoters. At the promoter, subdomain 1 interacts with TBP to disrupt TBP-TATA and abort transcription initiation. In further support of this model, we show that E1A 1-80 bound to the p300-binding site retains the ability to interact with TBP.
Collapse
Affiliation(s)
- Paul M Loewenstein
- Institute for Molecular Virology, Saint Louis University School of Medicine, St. Louis, MI 63110, USA
| | | | | |
Collapse
|
23
|
Avvakumov N, Kajon AE, Hoeben RC, Mymryk JS. Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. Virology 2004; 329:477-92. [PMID: 15518825 DOI: 10.1016/j.virol.2004.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/22/2004] [Accepted: 08/09/2004] [Indexed: 01/27/2023]
Abstract
Despite extensive study of human adenovirus type 5 E1A, surprisingly little is known about the E1A proteins of other adenoviruses. We report here a comprehensive analysis of the sequences of 34 E1A proteins. These represent all six primate adenovirus subgroups and include all human representatives of subgroups A, C, E, and F, eight from subgroup B, nine from subgroup D, and seven simian adenovirus E1A sequences. We observed that many, but not all, functional domains identified in human adenovirus type 5 E1A are recognizably present in the other E1A proteins. Importantly, we identified highly conserved sequences without known activities or binding partners, suggesting that previously unrecognized determinants of E1A function remain to be uncovered. Overall, our analysis forms a solid foundation for future study of the activities and features of the E1A proteins of different serotypes and identifies new avenues for investigating E1A function.
Collapse
Affiliation(s)
- N Avvakumov
- Department of Microbiology and Immunology, London Regional Cancer Centre, The University of Western Ontario, London, Ontario, Canada N6A 4L6
| | | | | | | |
Collapse
|
24
|
Gomez-Manzano C, Balague C, Alemany R, Lemoine MG, Mitlianga P, Jiang H, Khan A, Alonso M, Lang FF, Conrad CA, Liu TJ, Bekele BN, Yung WKA, Fueyo J. A novel E1A-E1B mutant adenovirus induces glioma regression in vivo. Oncogene 2004; 23:1821-8. [PMID: 15014451 DOI: 10.1038/sj.onc.1207321] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malignant gliomas are the most frequently occurring primary brain tumors and are resistant to conventional therapy. Conditionally replicating adenoviruses are a novel strategy in glioma treatment. Clinical trials using E1B mutant adenoviruses have been reported recently and E1A mutant replication-competent adenoviruses are in advanced preclinical testing. Here we constructed a novel replication-selective adenovirus (CB1) incorporating a double deletion of a 24 bp Rb-binding region in the E1a gene, and a 903 bp deleted region in the E1b gene that abrogates the expression of a p53-binding E1B-55 kDa protein. CB1 exerted a potent anticancer effect in vitro in U-251 MG, U-373 MG, and D-54 MG human glioma cell lines, as assessed by qualitative and quantitative viability assays. Replication analyses demonstrated that CB1 replicates in vitro in human glioma cells. Importantly, CB1 acquired a highly attenuated replicative phenotype in both serum-starved and proliferating normal human astrocytes. In vivo experiments using intracranially implanted D-54 MG glioma xenografts in nude mice showed that a single dose of CB1 (1.5 x 10(8) PFU/tumor) significantly improved survival. Immunohistochemical analyses of expressed adenoviral proteins confirmed adenoviral replication within the tumors. The CB1 oncolytic adenovirus induces a potent antiglioma effect and could ultimately demonstrate clinical relevance and therapeutic utility.
Collapse
Affiliation(s)
- Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dasgupta A, Scovell WM. TFIIA abrogates the effects of inhibition by HMGB1 but not E1A during the early stages of assembly of the transcriptional preinitiation complex. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1627:101-10. [PMID: 12818428 DOI: 10.1016/s0167-4781(03)00080-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Successful assembly of the transcriptional preinitiation complex (PIC) is prerequisite to transcriptional initiation. At each stage of PIC assembly, regulation may occur as repressors and activators compete with and influence the incorporation of general transcription factors (GTFs). Both TFIIA and HMGB1 bind individually to the TATA-binding protein (TBP) to increase the rate of binding and to stabilize TBP binding to the TATA element. The competitive binding between these two cofactors for TBP/TATA was examined to show that TFIIA binds preferentially to TBP and inhibits HMGB1 binding. TFIIA can also readily dissociate HMGB1 from the preestablished HMGB1/TBP/TATA complex. This suggests that TFIIA and HMGB1 may bind to the same or overlapping sites on TBP and/or compete for similar DNA sites that are 5' to the TATA element. In addition, EMSA studies show that adenovirus E1A(13S) oncoprotein is unable to disrupt either the preestablished TFIIA/TBP/TATA or TFIIA/TFIIB/TBP/TATA complexes, but does inhibit complex formation when all transcription factors were simultaneously added. The inhibitory effect of E1A(13S) on the assembly of the PIC is overcome when excess TBP is added back in the reaction, while addition of either excess TFIIA or TFIIB were ineffective. This shows that the main target for E1A(13S) is free TBP and emphasizes the primary competition between E1A and the TATA-element for unbound TBP. This may be the principal point, if not the only point, at which E1A can target TBP to exert its inhibitory effect. This work, coupled with previous findings in our laboratory, indicates that TFIIA is much more effective than TFIIB in reversing the inhibitory effect of HMGB1 binding in the early stages of PIC assembly, which is consistent with the in vitro transcription results.
Collapse
Affiliation(s)
- A Dasgupta
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0213, USA
| | | |
Collapse
|
26
|
Kladney RD, Tollefson AE, Wold WSM, Fimmel CJ. Upregulation of the Golgi protein GP73 by adenovirus infection requires the E1A CtBP interaction domain. Virology 2002; 301:236-46. [PMID: 12359426 DOI: 10.1006/viro.2002.1523] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
GP73 is a novel type II Golgi transmembrane protein that is expressed at high levels in the hepatocytes of patients with viral hepatitis (R. D. Kladney, G. A. Bulla, L. Guo, A. L. Mason, A. E. Tollefson, D. J. Simon, Z. Koutoubi, and C. J. Fimmel, 2000, Gene 249, 53-65) and is induced in cultured cells by infection with viruses including adenoviruses. Its biological function and the mechanisms by which its expression may be regulated by viral infection are unknown. Here we report that GP73 is induced at the RNA and protein level in human Hep3B hepatoma cells infected by human Ad5 and Ad2. Hep3B cells were infected with wild-type or mutant adenoviruses. GP73 expression was measured by RNase protection assay, immunoblotting, or immunofluorescence microscopy. GP73 RNA and protein levels were strikingly induced following infection. The rise in GP73 expression coincided with the appearance of the adenovirus E1A and DBP proteins and preceded the expression of the fiber protein, a marker of the late phase of infection. Infection did not affect the expression of giantin, GPP130, or golgin-84, three integral Golgi membrane proteins with structural similarities to GP73. Mapping studies using a panel of mutant adenoviruses demonstrated that the E1A C-terminus, specifically its CtBP interaction domain (CID), is required for GP73 expression. Subsequently, Hep3B cells were transiently transfected with plasmids expressing wild-type or mutant E1A proteins. These studies confirmed that E1A induced GP73 expression via the CID. Our studies establish GP73 as a novel adenovirus-induced cellular protein whose expression is regulated through the CID of the E1A protein.
Collapse
Affiliation(s)
- Raleigh D Kladney
- GI Section, John Cochran Veterans Affairs Medical Center, St. Louis, Missouri 63106, USA
| | | | | | | |
Collapse
|
27
|
Boyd JM, Loewenstein PM, Tang Qq QQ, Yu L, Green M. Adenovirus E1A N-terminal amino acid sequence requirements for repression of transcription in vitro and in vivo correlate with those required for E1A interference with TBP-TATA complex formation. J Virol 2002; 76:1461-74. [PMID: 11773419 PMCID: PMC135854 DOI: 10.1128/jvi.76.3.1461-1474.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2001] [Accepted: 10/17/2001] [Indexed: 11/20/2022] Open
Abstract
The adenovirus (Ad) E1A 243R oncoprotein encodes an N-terminal transcription repression domain that is essential for early viral functions, cell immortalization, and cell transformation. The transcription repression function requires sequences within amino acids 1 to 30 and 48 to 60. To elucidate the roles of the TATA-binding protein (TBP), p300, and the CREB-binding protein (CBP) in the mechanism(s) of E1A repression, we have constructed 29 amino acid substitution mutants and 5 deletion mutants spanning the first 30 amino acids within the E1A 1-80 polypeptide backbone. These mutant E1A polypeptides were characterized with regard to six parameters: the ability to repress transcription in vitro and in vivo, to disrupt TBP-TATA box interaction, and to bind TBP, p300, and CBP. Two regions within E1A residues 1 to 30, amino acids 2 to 6 and amino acid 20, are critical for E1A transcription repression in vitro and in vivo and for the ability to interfere with TBP-TATA interaction. Replacement of 6Cys with Ala in the first region yields the most defective mutant. Replacement of 20Leu with Ala, but not substitutions in flanking residues, yields a substantially defective phenotype. Protein binding assays demonstrate that replacement of 6Cys with Ala yields a mutant completely defective in interaction with TBP, p300, and CBP. Our findings are consistent with a model in which the E1A repression function involves interaction of E1A with p300/CBP and interference with the formation of a TBP-TATA box complex.
Collapse
Affiliation(s)
- Janice M Boyd
- Institute for Molecular Virology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
28
|
Ikeda K, Stuehler T, Meisterernst M. The H1 and H2 regions of the activation domain of herpes simplex virion protein 16 stimulate transcription through distinct molecular mechanisms. Genes Cells 2002; 7:49-58. [PMID: 11856373 DOI: 10.1046/j.1356-9597.2001.00492.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Herpes Simplex Virion Protein 16 (VP16) contains a strong activation domain which can be subdivided into two regions, H1 and H2, both of which independently activate transcription in vivo. Several components of the basal transcription machinery have been shown to interact with the activation domain of VP16, mostly through the H1 region. RESULTS We show that the H2 region binds directly to histone acetyltransferase, CBP (CREB (cAMP Responsive Element Binding Protein) Binding Protein) both in vivo and in vitro. The sites of interaction with the H2 region were mapped to both the amino- and carboxy-terminal segments of CBP. A mutation in the H2 region disrupts the interaction with CBP and abolishes the ability of VP16 to mediate in vitro transactivation from chromatin templates in an acetyl-CoA dependent manner. In contrast, human Mediator, another co-activator complex, binds specifically to both the H1 and H2 regions. CONCLUSION The H1 and H2 regions of the VP16 activation domain activate transcription via distinct pathways. The H2 requires CBP for activation, whereas the H1 may function through Mediator and general transcription factors.
Collapse
Affiliation(s)
- Keiko Ikeda
- Department of Biology, Jichi Medical School, Minamikawachi-machi, Kawachi, Tochigi 329-0498, Japan.
| | | | | |
Collapse
|
29
|
Deleu L, Shellard S, Alevizopoulos K, Amati B, Land H. Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 2001; 20:8270-5. [PMID: 11781841 DOI: 10.1038/sj.onc.1205159] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2001] [Accepted: 11/05/2001] [Indexed: 12/17/2022]
Abstract
TRRAP links Myc with histone acetylases and appears to be an important mediator of its oncogenic function. Here we show that interaction with TRRAP is required for cellular transformation not only by Myc, but also by the adenovirus E1A protein. Substitution of the 262 N-terminal residues of Myc with a small domain of E1A (residues 12-54) restores Myc transforming function. E1A(12-54) contains a TRRAP-interaction domain, that recruits TRRAP to either E1A-Myc chimeras, or the native 12S E1A protein. Overexpression of a competing TRRAP fragment in vivo blocks interaction of cellular TRRAP with either E1A-Myc or E1A, and suppresses cellular transformation by both oncoproteins. Moreover, E1A(Delta26-35) that fails to bind TRRAP but is capable of binding the Retinoblastoma (Rb)-family and p300/CBP proteins is defective in cellular immortalization, transformation and cell cycle deregulation. Thus in addition to disrupting Rb and p300/CBP functions, E1A must recruit TRRAP to transform cells.
Collapse
Affiliation(s)
- L Deleu
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
30
|
Tollefson AE, Toth K, Doronin K, Kuppuswamy M, Doronina OA, Lichtenstein DL, Hermiston TW, Smith CA, Wold WS. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. J Virol 2001; 75:8875-87. [PMID: 11533151 PMCID: PMC114456 DOI: 10.1128/jvi.75.19.8875-8887.2001] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Accepted: 06/04/2001] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus infections. The ability of adenovirus to inhibit killing through these receptors may prolong acute and persistent infections.
Collapse
Affiliation(s)
- A E Tollefson
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Helt AM, Galloway DA. Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J Virol 2001; 75:6737-47. [PMID: 11435552 PMCID: PMC114400 DOI: 10.1128/jvi.75.15.6737-6747.2001] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E7 oncoprotein of human papillomavirus type 16 promotes cell proliferation in the presence of antiproliferative signals. Mutagenesis of E7 has revealed that this activity requires three regions, conserved regions 1 and 2 and a C-terminal zinc finger. Binding to the retinoblastoma tumor repressor (Rb) through an LxCxE motif in conserved region 2 is necessary, but not sufficient, for E7 to induce proliferation. We tested the hypothesis that binding to Rb is not sufficient because conserved region 1 and/or the C terminus are required for E7 to functionally inactivate Rb and thus induce proliferation. One mechanism proposed for how E7 inactivates Rb is by blocking Rb-E2F binding. Either conserved region 1 or the C terminus was necessary, in combination with the LxCxE motif, for E7 to block Rb-E2F binding in vitro. While all full-length E7 proteins with mutations outside of the LxCxE motif inhibited Rb-E2F binding, some failed to abrogate cell cycle arrest, demonstrating that blocking Rb-E2F binding is not sufficient for abrogating antiproliferative signals. Another mechanism proposed for how E7 inactivates Rb is by promoting the destabilization of Rb protein. Mutations in conserved region 1 or the LxCxE motif prevented E7 from reducing the half-life of Rb. Though no specific C-terminal residues of E7 were essential for destabilizing Rb, a novel class of mutations that uncouple the destabilization of Rb from the deregulation of keratinocyte proliferation was discovered. Destabilization of Rb correlated with the abrogation of Rb-induced quiescence but was not sufficient for overriding DNA damage-induced cell cycle arrest or for increasing keratinocyte life span. Finally, the same regions of E7 required for destabilizing Rb were required for reducing p107 and p130 levels. Together, these results suggest that inactivation of all three Rb family members is not sufficient to deregulate keratinocyte cell cycle control.
Collapse
Affiliation(s)
- A M Helt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
32
|
Sang N, Severino A, Russo P, Baldi A, Giordano A, Mileo AM, Paggi MG, De Luca A. RACK1 interacts with E1A and rescues E1A-induced yeast growth inhibition and mammalian cell apoptosis. J Biol Chem 2001; 276:27026-33. [PMID: 11358958 DOI: 10.1074/jbc.m010346200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenoviral E1A proteins are able to promote proliferation and transformation, inhibit differentiation, induce apoptosis, and suppress tumor growth. The extreme N terminus and conserved region one of E1A, which are indispensable for transcriptional regulation and for binding to p300/CBP, TBP, and pCAF, play essential roles in these abilities. These observations strongly suggest an intrinsic link between E1A-mediated transcriptional regulation and other effects. In this report, we show that E1A inhibits the normal growth of Saccharomyces cerevisiae HF7c, and this inhibition also depends on the domains required for transcriptional regulation. We demonstrate that E1A associates with histone acetyltransferase activity and represses the transactivation activity of transcription factor in S. cerevisiae, suggesting that E1A may suppress the expression of genes required for normal growth. Based on yeast growth rescue, we present a genetic screening strategy that identified RACK1 as an E1A antagonizing factor. Expression of human RACK1 efficiently relieves E1A-mediated growth inhibition in HF7c and protects human tumor cells from E1A-induced apoptosis. Finally, we show that RACK1 decreases E1A-associated histone acetyltransferase activity in yeast and mammalian cells, and physically interacts with E1A. Our data demonstrate that RACK1 is a repressor of E1A, possibly by antagonizing the effects of E1A on host gene transcription.
Collapse
Affiliation(s)
- N Sang
- Cardeza Foundation, Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cao JX, Krell PJ, Nagy E. The ORF RTL1 transcript of fowl adenovirus type-8 is spliced and truncated at late stages of the virus replication cycle. Virus Genes 2001; 20:135-7. [PMID: 10872874 DOI: 10.1023/a:1008114430408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two transcription products were found for the open reading frame (ORF) RTL1 located near the right terminus of the fowl adenovirus type-8 genome. The larger transcript, which was transcribed mostly during the early stage of the virus infection, contains the complete sequence (933 nucleotides) of the predicted ORF from the genomic DNA sequence encoding a 311 amino acid (aa) polypeptide. In contrast, the shorter transcript, which was more predominant at the late stage of the infection, was missing 580 nucleotides (from nucleotide 117 to 696). A premature stop codon was introduced at 210 nucleotides downstream from the start codon and the shorter transcript would encode a 70 aa polypeptide. This observation indicates that the ORF RTL1 may produce two different proteins, which function differently at different stages of the virus infection. Another possibility is that the virus may use alternative splicing as a mechanism to control the expression of the ORF, since the spliced transcript was prematurely terminated at the late stage of the infection.
Collapse
Affiliation(s)
- J X Cao
- Department of Pathobiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
34
|
Krucher NA, Zygmunt A, Mazloum N, Tamrakar S, Ludlow JW, Lee MY. Interaction of the retinoblastoma protein (pRb) with the catalytic subunit of DNA polymerase delta (p125). Oncogene 2000; 19:5464-70. [PMID: 11114723 DOI: 10.1038/sj.onc.1203930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retinoblastoma gene product (pRb) interacts with many cellular proteins to function in the control of cell division, differentiation, and apoptosis. Several pRb binding proteins complex with pRb through an amino acid sequence called the LXCXE motif. The catalytic subunit of DNA polymerase delta (p125) contains a LXCXE motif. To further study the biochemical function of this polymerase, we sought to determine if p125 interacts with pRb. Experiments using GST-pRb fusion proteins showed that p125 from breast epithelial (MCF10A) cell extracts associates with pRb. In addition, GST-p125 fusion proteins bound pRb from the same cell extracts. The pRb that associated with GST-p125 was largely unphosphorylated. Coimmunoprecipitation experiments using cell cycle synchronized cells revealed that p125 and pRb form a complex predominantly during G1 phase, the phase during which pRb is mostly unphosphorylated. In vitro phosphorylation of GST-pRb by the cyclin dependent kinases reduced the ability of p125 to associate with GST-pRh. Addition of the LXCXE containing protein SV40 large T antigen to GST-pRb blocks the ability of p125 to associate with pRb, suggesting that it may be through a LXCXE sequence by which p125 interacts with pRb. Finally, in vitro polymerase assays demonstrate that GST-pRb fusion protein stimulates DNA polymerase delta activity.
Collapse
Affiliation(s)
- N A Krucher
- Department of Biological Sciences, Pace University, Pleasantville, NY 10570, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sanchez TA, Habib I, Leland Booth J, Evetts SM, Metcalf JP. Zinc finger and carboxyl regions of adenovirus E1A 13S CR3 are important for transactivation of the cytomegalovirus major immediate early promoter by adenovirus. Am J Respir Cell Mol Biol 2000; 23:670-7. [PMID: 11062146 DOI: 10.1165/ajrcmb.23.5.3675] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) is an important cause of disease in susceptible patients. We previously demonstrated that an adenovirus early gene product can transactivate the CMV major immediate early (IE) promoter in inflammatory cells. This effect was due to the conserved region 3 (CR3) of the adenovirus E1A 13S gene product. There are two domains in the CR3 region, a zinc finger (aa 147-177) and a carboxyl (aa 180-188) domain. Both are crucial for transactivation of downstream promoter elements of adenovirus in E1A 13S. We sought to determine if either or both of these specific domains is also necessary for transactivation of the CMV IE promoter by the adenovirus E1A 13S gene product. We cotransfected T-lymphocyte Jurkat cells and monocyte/macrophage-like THP-1 cells with plasmids expressing wild-type (WT) or CR3 mutant E1A 13S and a CMV IE chloramphenicol acetyltransferase (CAT) reporter construct. With extracts of cells coinfected with E1A WT set to 100%, mutation in the zinc finger domain, the carboxyl domain, or both domains decreased CMV IE CAT activity by >/= 96%. In contrast, a mutation in the region between the zinc finger and carboxyl domains reduced CMV IE CAT activity by only 24 to 26%. Mixing studies in Jurkat cells confirmed the importance of these domains. We also evaluated the active site of the CMV IE promoter involved in transactivation in THP-1 cells using CMV IE promoter deletions and single promoter element constructs. These studies showed that progressive deletion of the 19-bp CMV IE repeats containing cyclic AMP response element binding protein/activating transcription factor (CREB/ATF) sites resulted in progressive loss of activity. The importance of this element was confirmed using single promoter elements containing CMV IE 16-, 18-, 19-, and 21-bp repeats. Finally, using a 19-bp single promoter element construct and the CR3 mutants we demonstrated that mutations in the zinc finger (C171S) carboxyl region (S185N) or both regions (C171S/ S185N) resulted in significant (83, 94, and 85%) loss of activity. We conclude that the zinc finger and carboxyl domains of the CR3 region of E1A 13S are necessary for transactivation of the CMV promoter and that this occurs mainly through activation of the 19-bp CREB/ATF site of the promoter.
Collapse
Affiliation(s)
- T A Sanchez
- Pulmonary and Critical Care Division, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
36
|
Masselink H, Bernards R. The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. Oncogene 2000; 19:1538-46. [PMID: 10734313 DOI: 10.1038/sj.onc.1203421] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BS69 was first identified as a protein that interacts directly with the transactivation domain (conserved region 3) of the 289R adenovirus type 5 E1A protein. We show here that BS69 is a potent repressor of transcription. BS69 mediates repression, at least in part, through interaction with the co-repressor N-CoR. BS69 interacts with N-CoR through a MYND domain in its carboxyl terminus. A recently cloned splice variant of BS69, designated BRAM1, is also capable of interacting with N-CoR and E1A, but unlike BS69, is not able to repress transcription, indicating that N-CoR interaction is necessary but not sufficient for BS69 repression. Expression of E1A inhibits repression mediated by BS69. Our data suggest that BS69 participates in transcriptional repressor complexes and that E1A can modulate these complexes through interaction with BS69.
Collapse
Affiliation(s)
- H Masselink
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Mori A, Higashi H, Hoshikawa Y, Imamura M, Asaka M, Hatakeyama M. Granulocytic differentiation of myeloid progenitor cells by p130, the retinoblastoma tumor suppressor homologue. Oncogene 1999; 18:6209-21. [PMID: 10597219 DOI: 10.1038/sj.onc.1203044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The retinoblastoma protein (pRB) and the related pocket proteins, p107 and p130, play crucial roles in mammalian cell cycle control. Recent studies indicate that these pocket proteins are also involved in cellular differentiation processes. We demonstrate in this work that the pRB-related p130 selectively accumulates during the in vitro differentiation of the myeloid progenitor cell, 32Dcl3, into granulocyte in response to granulocyte-colony stimulating factor (G-CSF). This G-CSF-dependent granulocytic differentiation is blocked by the adenovirus E1A oncoprotein, which binds to and inactivates the pRB family of pocket proteins including p130. Furthermore, enforced overexpression of p130 but not pRB inhibits the myeloid cell proliferation that is concomitantly associated with granulocytic differentiation morphologically characterized by nuclear segmentation. However, simple G1-cell cycle arrest induced by cytokine deprivation or ectopic overexpression of the p27 cyclin-dependent kinase inhibitor, or inhibition of E2F activities by dominant negative DP-1 is not sufficient to trigger granulocytic differentiation. The differentiation-promoting activity of p130 in myeloid cells requires both the pocket domain and the spacer domain. Our results indicate that the pRB-related p130 plays a critical role in myeloid cell differentiation and suggest that coupling of cell cycle exit with the cellular differentiation program may be specifically achieved by p130.
Collapse
Affiliation(s)
- A Mori
- Department of Viral Oncology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Perini G, Oetjen E, Green MR. The hepatitis B pX protein promotes dimerization and DNA binding of cellular basic region/leucine zipper proteins by targeting the conserved basic region. J Biol Chem 1999; 274:13970-7. [PMID: 10318808 DOI: 10.1074/jbc.274.20.13970] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The hepatitis B virus pX protein is a potent transcriptional activator of viral and cellular genes whose mechanism of action is poorly understood. Here we show that pX dramatically stimulates in vitro DNA binding of a variety of cellular proteins that contain basic region/leucine zipper (bZIP) DNA binding domains. The basis for increased DNA binding is a direct interaction between pX and the conserved bZIP basic region, which promotes bZIP dimerization and the increased concentration of the bZIP homodimer then drives the DNA binding reaction. Unexpectedly, we found that the DNA binding specificity of various pX-bZIP complexes differs from one another and from that of the bZIP itself. Thus, through recognition of the conserved basic region, pX promotes dimerization, increases DNA binding, and alters DNA recognition. These properties of pX are remarkably similar to those of the human T-cell lymphotrophic virus type I Tax protein. Although Tax and pX are not homologous, we show that the regions of the two proteins that stimulate bZIP binding contain apparent metal binding sites. Finally, consistent with this in vitro activity, we provide evidence that both Tax and pX activate transcription in vivo, at least in part, by facilitating occupancy of bZIPs on target promoters.
Collapse
Affiliation(s)
- G Perini
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
39
|
Tung SF, Chuang JY, Lin CT, Lai MY, Wu CW, Lin YS. Inhibition of hTAFII32-binding implicated in the transcriptional repression by central regions of mutant p53 proteins. J Biol Chem 1999; 274:7748-55. [PMID: 10075665 DOI: 10.1074/jbc.274.12.7748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a movable and regulable inactivation function within the central region (CRts247) of a temperature-sensitive p53 (p53(ts)) mutant, p53(N247I). Here we showed that central regions from several p53(ts) mutants behaved similarly, i.e. they repressed a neighboring activation domain only when existing in the mutant status. Using chimeric protein GAL4VP16-CRts247 as an example, we demonstrated that de novo protein synthesis was not required for the reactivation of the chimeric protein, indicating that a post-translational mechanism was involved in the control of CRts247 activity. The CRts247-conferred thermo-regulability did not work via a mechanism demanding either an alteration of the subcellular compartmentalization of or the inactivation of DNA-binding activity of the GAL4 chimera. Further, CRts247 did not function in trans, eliminating the possibility that the observed repression was because of the competition for a putative factor(s) by the mutant p53 domain. Rather, CRts247 bestowed temperature-dependent interaction with hTAFII32 to the VP16 activation domain. In a parallel experiment, CRts247 also caused a large reduction in the affinity of hTAFII32 to the p53 activation domain at the nonpermissive temperature. These results strongly suggested that inhibition of hTAFII32 binding could be one of the mechanisms responsible for the transcriptional repression by mutant p53 central regions.
Collapse
Affiliation(s)
- S F Tung
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Molloy DP, Smith KJ, Milner AE, Gallimore PH, Grand RJ. The structure of the site on adenovirus early region 1A responsible for binding to TATA-binding protein determined by NMR spectroscopy. J Biol Chem 1999; 274:3503-12. [PMID: 9920896 DOI: 10.1074/jbc.274.6.3503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous detailed mutational analysis has shown that the binding site on adenovirus (Ad) early region 1A (E1A) for TATA-binding protein (TBP) is located toward the N terminus of conserved region 3 (CR3). Here we demonstrate that synthetic peptides of between 15 and 22 amino acids, identical to amino acid sequences of CR3 present in the larger Ad5 E1A (13 S product) and in both the Ad12 E1A (13 and 12 S products) proteins that lie N-terminal to the zinc finger motif, can disrupt binding of E1A to TBP. These findings suggest that the peptides are biologically active in terms of interacting with TBP and must therefore comprise some, if not all, of the TBP binding site on E1A. The interaction between Ad12 E1A and TBP was confirmed by direct co-precipitation experiments. In 1H NMR studies of CR3 peptides, regular patterns of NOEs were observed from which their conformational preferences in aqueous solution were determined. Both Ad5 and Ad12 peptides were shown to contain regions of helical backbone structure in 50% trifluoroethanol. In each case, the type and intensities of NOE cross-peaks observed correlated best to alpha-helical turns. These helices are more extensive in larger peptides and extend from Glu141 to Val147 and from Arg144 to Pro152 in the full-length Ad5 and Ad12 13S E1A proteins, respectively. The structure of a 19-residue Ad5 CR3 peptide carrying the V147L mutation in the full-length protein that abolishes TBP binding was examined. No significant differences between the substituted and wild type peptides were observed, suggesting that this substitution in the intact protein may cause disruption of global rather than local structures.
Collapse
Affiliation(s)
- D P Molloy
- CRC Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TA, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Goldsmith KT, Dion LD, Curiel DT, Garver RI. trans E1 component requirements for maximal replication of E1-defective recombinant adenovirus. Virology 1998; 248:406-19. [PMID: 9721248 DOI: 10.1006/viro.1998.9293] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Strategies that enable E1-defective recombinant adenoviruses to selectively undergo replication in neoplastic tissue may be useful for future investigations or therapies of malignancies. A growing body of evidence suggests that some molecular alterations commonly associated with malignancies, such as p53 mutations, can modify the specific E1 requirements for replication of human serotype adenoviruses. In the studies reported here, a panel of human non-small cell lung cancer cell lines with previously defined p53 status were characterized for basal interleukin-6 (IL-6) and bcl-2 content because previous studies have indicated both proteins can functionally substitute for the replication requirements provided by native E1 viral proteins. Cell lines were infected with E1-defective adenovirus 5 and simultaneously transfected with different combinations of E1 plasmids, or a bcl-2 expression plasmid, and adenovirus present in the cells was quantified 6 days later. These assays demonstrated that E1A with both 19- and 55-kDa E1B-encoding plasmids were required for maximal adenoviral replication, independent of the varying p53/IL-6/basal bcl-2 phenotypes of the host cell lines. E1A was required for maximal replication enablement, independent of the basal IL-6 content of these cell lines, and exogenous IL-6 also did not obviate the E1A requirement. Interestingly, the bcl-2 expression plasmid did not consistently substitute for the 19-kDa expression plasmid in the context of this replication complementation assay. These results suggest that (1) basal levels of IL-6 greater than that present in these cell lines are necessary for functional replacement of the E1A replication function and (2) bcl-2 does not predictably substitute for the 19-kDa E1B replication function in the context of trans complementation.
Collapse
Affiliation(s)
- K T Goldsmith
- Gene Therapy Program, Birmingham VAMC, Birmingham, Alabama, 35294, USA
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- P P Hu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
43
|
Chiou SK, White E. Inhibition of ICE-like proteases inhibits apoptosis and increases virus production during adenovirus infection. Virology 1998; 244:108-18. [PMID: 9581784 DOI: 10.1006/viro.1998.9077] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-1b converting enzyme (ICE)-related cysteine proteases are required for E1A-induced, p53-dependent apoptosis in baby rat kidney (BRK) cells. Adenovirus E1B 19K protein, which is a potent inhibitor of apoptosis, inhibits activation of these proteases in BRK cells. E1A expression induces apoptosis during infection of human cells by mutant adenoviruses which contain nonfunctional E1B 19K. The question arises as to whether ICE-related proteases are involved in E1A-induced apoptosis during mutant adenovirus infection of human cells. To test the involvement of the cysteine proteases in E1A-induced apoptosis during productive adenovirus infection of HeLa cells, we examined whether Z-VAD-FMK, an inhibitor of ICE-related proteases, can inhibit apoptosis induced by mutant adenovirus which lacks functional E1B 19K. Z-VAD-FMK inhibited E1A-induced apoptosis in adenovirus-infected Hela cells, suggesting that the ICE family proteases are involved in this apoptosis pathway. Z-VAD-FMK also inhibited cleavage of substrates such as cysteine protease CPP32 and nuclear lamins, whereas cleavage of poly(ADP-ribose) polymerase was partially inhibited during infection with an E1B 19K mutant. Inhibition of apoptosis by Z-VAD-FMK significantly enhanced production of infectious adenovirus and attenuated virus release. Thus apoptosis may be a method for the host cell to limit virus production and release at the end of the infection cycle.
Collapse
Affiliation(s)
- S K Chiou
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
44
|
Taniura H, Taniguchi N, Hara M, Yoshikawa K. Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J Biol Chem 1998; 273:720-8. [PMID: 9422723 DOI: 10.1074/jbc.273.2.720] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Necdin is a nuclear protein expressed in virtually all postmitotic neurons, and ectopic expression of this protein strongly suppresses the proliferation of NIH3T3 cells. Simian virus 40 large T antigen targets both p53 and the retinoblastoma protein (Rb) for cellular transformation. By analogy with the interactions of the large T antigen with these nuclear growth suppressors, we examined the ability of necdin to bind to the large T antigen. Necdin was co-immunoprecipitated with the large T antigen from the nuclear extract of necdin cDNA-transfected COS-1 cells. Yeast two-hybrid and in vitro binding analyses revealed that necdin bound to an amino-terminal region of the large T antigen, which encompasses the Rb-binding domain. Moreover, necdin bound to adenovirus E1A, another viral oncoprotein that forms a specific complex with Rb. We then examined the ability of necdin to bind to the transcription factor E2F1, a cellular Rb-binding factor involved in cell-cycle progression. Intriguingly, necdin, like Rb, bound to a carboxyl-terminal domain of E2F1, and repressed E2F-dependent transactivation in vivo. In addition, necdin suppressed the colony formation of Rb-deficient SAOS-2 osteosarcoma cells. These results suggest that necdin is a postmitotic neuron-specific growth suppressor that is functionally similar to Rb.
Collapse
Affiliation(s)
- H Taniura
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565, Japan
| | | | | | | |
Collapse
|
45
|
Sang N, Claudio PP, Fu Y, Horikoshi N, Graeven U, Weinmann R, Giordano A. Transforming region of 243R E1A contains two overlapping but distinct transactivation domains. DNA Cell Biol 1997; 16:1321-33. [PMID: 9407004 DOI: 10.1089/dna.1997.16.1321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Conserved regions 1 and 2 as well as the amino terminus of E1A are required for the transforming activity of the E1A oncoprotein. We show here that the amino terminus of 243R E1A has transactivation activity when brought to a promoter in yeast. Recruitment to a specific promoter is essential. Mutagenesis studies correlated the transactivation function with the extreme amino terminus and the conserved region 1 of E1A. Cotransfection assays in rodent cells confirmed that two overlapping but distinguishable domains, amino acids 1-65 and 37-80, can transactivate independently when targeted to a promoter. We also observed that when recruited to the proliferating cell nuclear antigen (PCNA) promoter, the amino-terminal region was sufficient to transactivate the PCNA promoter. On the other hand, deletion of the amino terminus of E1A resulted in failure to induce PCNA expression. Fusion of VP16 with the amino-terminal-deleted E1A mutant was able to restore the ability to induce the PCNA promoter. We further show that the amino-terminal region also is required for 243R E1A to repress the transactivation mediated by a universal transactivator DBD.VP16 and DBD.E1A. This repression could be specifically relieved by overexpression of TBP but not TFIIB. In addition, we show that the amino terminus of E1A is involved in in vitro interaction with the TATA binding protein (TBP). Thus the amino-terminal transforming region of E1A may regulate cellular gene expression in species that are distant in evolution via a common mechanism, functionally targeting TBP.
Collapse
Affiliation(s)
- N Sang
- Department of Pathology, Anatomy & Cell Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The RIZ (G3B/MTB-Zf) gene was first isolated based on its ability to bind to the retinoblastoma protein (Rb). An acidic, approximately 100-amino-acid region around the Rb-binding motif of RIZ has structural and antigenic similarity to the conserved sequences of the E1A viral oncogene. We show here that this region interacts specifically with the E1A-binding domain of Rb. This interaction could be disrupted by E1A or by a peptide of RIZ homologous to the CR2 motif of E1A which is involved in binding to Rb family proteins. Also like E1A, RIZ can form a ternary complex with Rb and E2F1. Despite this similarity to E1A, however, RIZ could not bind to the Rb family proteins p107 and p130 in vitro. The data show that the RIZ CR2 motif can mediate differential binding to Rb family proteins. We also mapped the shared antigenic determinant between RIZ and E1A to a conserved sequence, designated CE1, which is located in the C terminus of E1A. Unlike that of ETA, the CE1 motif of RIZ is located next to the CR2 motif. Despite this proximity, CE1 and CR2 appear to act independently. The data show similarities as well as differences between the homologous sequences of RIZ and E1A and contribute to an understanding of the biochemistry of these proteins.
Collapse
Affiliation(s)
- I M Buyse
- La Jolla Cancer Research Center, Burnham Institute, California 92037, USA
| | | |
Collapse
|
47
|
Malladi A, Quinlan MP. Mutations in CR1 of E1A 12S yield dominant negative suppressors of immortalization and the lytic cycle. Virology 1997; 233:51-62. [PMID: 9201216 DOI: 10.1006/viro.1997.8605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Adenovirus 5 E1A 12S gene is responsible for the establishment of immortalization of primary cells by Adenovirus. We have identified two mutants of 12S (30K and NTdl814), which, when coexpressed with wild-type 12S in primary baby rat kidney cells, were capable of suppressing the immortalizing function of the wild-type 12S gene, even when the mutant proteins were expressed at levels lower than wild type. 30K and NTdl814 did not affect the ability of the coexpressed 12S to activate the cell cycle, but have a suppressive effect on 12S-induced DNA synthesis and proliferation at late times in the immortalization pathway. Both the dominant negative mutants have a deletion in conserved region (CR)1 in the first exon of E1A, which encompasses one of the pRb-family binding regions. However, the mutants did not effect the binding of cellular proteins to full-length 12S. A suppressive effect on wild-type 12S was not observed with mutants that have lost any other region or function. In addition, expression of 30K, which is equivalent to the protein encoded by the 10S mRNA of E1A, inhibited E1A function in lytic cycle. Thus, loss of the CR1 seems to be a prerequisite for a mutant to have a dominant negative effect on E1A functions.
Collapse
Affiliation(s)
- A Malladi
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
48
|
Whalen SG, Marcellus RC, Whalen A, Ahn NG, Ricciardi RP, Branton PE. Phosphorylation within the transactivation domain of adenovirus E1A protein by mitogen-activated protein kinase regulates expression of early region 4. J Virol 1997; 71:3545-53. [PMID: 9094626 PMCID: PMC191501 DOI: 10.1128/jvi.71.5.3545-3553.1997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A critical role of the 289-residue (289R) E1A protein of human adenovirus type 5 during productive infection is to transactivate expression of all early viral transcription. Sequences within and proximal to conserved region 3 (CR3) promote expression of these viral genes through interactions with a variety of transcription factors requiring the zinc binding motif in CR3 and in some cases a region at the carboxy-terminal end of CR3, including residues 183 to 188. It is known that 3',5' cyclic AMP (cAMP) reduces the level of phosphorylation of the 289R E1A protein through the activation of protein phosphatase 2A by the E4orf4 protein. This study was designed to identify the E1A phosphorylation sites affected by E4orf4 expression and to determine their importance in regulation of E1A activity. We report here that two previously unidentified sites at Ser-185 and Ser-188 are the targets for decreased phosphorylation in response to cAMP. At least one of these sites, presumably Ser-185, is phosphorylated in vitro by purified mitogen-activated protein kinase (MAPK), and both are hyperphosphorylated in cells which express a constitutively active form of MAPK kinase. Analysis of E1A-mediated transactivation activity indicated that elevated phosphorylation at these sites increased expression of the E4 promoter but not that of E3. We have recently shown that one or more E4 products induce cell death due to p53-independent apoptosis, and thus it seems likely that one role of the E4orf4 protein is to limit production of toxic E4 products by limiting expression of the E4 promoter.
Collapse
Affiliation(s)
- S G Whalen
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Mymryk JS, Smith MM. Influence of the adenovirus 5 E1A oncogene on chromatin remodelling. Biochem Cell Biol 1997. [DOI: 10.1139/o97-029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Song CZ, Loewenstein PM, Toth K, Tang Q, Nishikawa A, Green M. The adenovirus E1A repression domain disrupts the interaction between the TATA binding protein and the TATA box in a manner reversible by TFIIB. Mol Cell Biol 1997; 17:2186-93. [PMID: 9121468 PMCID: PMC232067 DOI: 10.1128/mcb.17.4.2186] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human adenovirus E1A 243 amino acid oncoprotein possesses a transcription repression function that appears to be linked with its ability to induce cell cycle progression and to inhibit cell differentiation. The molecular mechanism of E1A repression has been poorly understood. Recently, we reported that the TATA binding protein (TBP) is a cellular target of E1A repression. Here we demonstrate that the interaction between TBP and the E1A repression domain is direct and specific. The TBP binding domain within E1A 243R maps to E1A N-terminal residues approximately 1 to 35 and is distinct from the TBP binding domain within conserved region 3 unique to the E1A 289R transactivator. An E1A protein fragment consisting of only the E1A N-terminal 80 amino acids (E1A 1-80) and containing the E1A repression function was found to block the interaction between TBP and the TATA box element as shown by gel mobility and DNase protection analysis. Interestingly, a preformed TBP-TATA box promoter complex can be dissociated by E1A 1-80. Further, TFIIB can prevent E1A disruption of TBP-TATA box interaction. TFIIB, like TBP, can overcome E1A repression of transcription in vitro. The ability of the E1A repression domain to block TBP interaction with the TATA box and the ability of TFIIB to reverse E1A disruption of the TBP-TATA box complex implies a mechanism for E1A repression distinct from those of known cellular repressors that target TBP.
Collapse
Affiliation(s)
- C Z Song
- Institute for Molecular Virology, Saint Louis University School of Medicine, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|