1
|
Regulation of the MIE Locus During HCMV Latency and Reactivation. Pathogens 2020; 9:pathogens9110869. [PMID: 33113934 PMCID: PMC7690695 DOI: 10.3390/pathogens9110869] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.
Collapse
|
2
|
Liu N, Sun Q, Wan L, Wang X, Feng Y, Luo J, Wu H. CUX1, A Controversial Player in Tumor Development. Front Oncol 2020; 10:738. [PMID: 32547943 PMCID: PMC7272708 DOI: 10.3389/fonc.2020.00738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023] Open
Abstract
CUX1 belongs to the homeodomain transcription factor family and is evolutionarily and functionally conserved from Drosophila to humans. In addition to the involvement in various physiological events including tissue development, cell proliferation, differentiation and migration, and DNA damage response, CUX1 has been implicated in tumorigenesis. Interestingly, CUX1 has been recently recognized as a haploinsufficient tumor suppressor, which is paradoxically overexpressed in tumor cells. While loss of heterozygosity and/or mutations of CUX1 have been frequently detected in many types of cancers, genomic amplification, and overexpression of CUX1 have also been reported in cancer tissues and are correlated with higher tumor grade and poor prognosis. Therefore, deciphering the roles of different CUX1 isoforms and in different tumor stages is required to establish a CUX1-based therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Ning Liu
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Qiliang Sun
- Department of Respiratory Medicine, Taian City Central Hospital, Tai'an, China
| | - Long Wan
- Department of Clinical Oncology, Taian City Central Hospital, Tai'an, China
| | - Xuan Wang
- Department of Liver Diseases, Central Laboratory, Institute of Clinical Immunology, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yu Feng
- Department of General Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Judong Luo
- Department of Radiation Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hailong Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.,Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Chen Y, Gao J, Xie J, Liang J, Zheng G, Xie L, Zhang R. Transcriptional regulation of the matrix protein Shematrin-2 during shell formation in pearl oyster. J Biol Chem 2018; 293:17803-17816. [PMID: 30282805 DOI: 10.1074/jbc.ra118.005281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/21/2018] [Indexed: 01/17/2023] Open
Abstract
The molluscan shell is a fascinating biomineral consisting of a highly organized calcium carbonate composite. Biomineralization is elaborately controlled and involves several macromolecules, especially matrix proteins, but little is known about the regulatory mechanisms. The matrix protein Shematrin-2, expression of which peaks in the mantle tissues and in the shell components of the pearl oyster Pinctada fucata, has been suggested to be a key participant in biomineralization. Here, we expressed and purified Shematrin-2 from P. fucata and explored its function and transcriptional regulation. An in vitro functional assay revealed that Shematrin-2 binds the calcite, aragonite, and chitin components of the shell, decreases the rate of calcium carbonate deposition, and changes the morphology of the deposited crystal in the calcite crystallization system. Furthermore, we cloned the Shematrin-2 gene promoter, and analysis of its sequence revealed putative binding sites for the transcription factors CCAAT enhancer-binding proteins (Pf-C/EBPs) and nuclear factor-Y (NF-Y). Using transient co-transfection and reporter gene assays, we found that cloned and recombinantly expressed Pf-C/EBP-A and Pf-C/EBP-B greatly and dose-dependently up-regulate the promoter activity of the Shematrin-2 gene. Importantly, Pf-C/EBP-A and Pf-C/EBP-B knockdowns decreased Shematrin-2 gene expression and induced changes in the inner-surface structures in prismatic layers that were similar to those of antibody-based Shematrin-2 inhibition. Altogether, our data reveal that the transcription factors Pf-C/EBP-A and Pf-C/EBP-B up-regulate the expression of the matrix protein Shematrin-2 during shell formation in P. fucata, improving our understanding of the transcriptional regulation of molluscan shell development at the molecular level.
Collapse
Affiliation(s)
- Yan Chen
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jing Gao
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jun Xie
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jian Liang
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Guilan Zheng
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Liping Xie
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084.
| | - Rongqing Zhang
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang Province, China.
| |
Collapse
|
4
|
Li G, Wang L, Wang Y, Li H, Liu Z, Wang H, Xu B, Guo X. Developmental characterization and environmental stress responses of Y-box binding protein 1 gene (AccYB-1) from Apis cerana cerana. Gene 2018; 674:37-48. [DOI: 10.1016/j.gene.2018.06.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
|
5
|
Abstract
Cux1 and Cux2 are the vertebrate members of a family of homeodomain transcription factors (TF) containing Cut repeat DNA-binding sequences. Perturbation of their expression has been implicated in a wide variety of diseases and disorders, ranging from cancer to autism spectrum disorder (ASD). Within the nervous system, both genes are expressed during neurogenesis and in specific neuronal subpopulations. Their role during development and circuit specification is discussed here, with a particular focus on the cortex where their restricted expression in pyramidal neurons of the upper layers appears to be responsible for many of the specialized functions of these cells, and where their functions have been extensively investigated. Finally, we discuss how Cux TF represent a promising avenue for manipulating neuronal function and for reprogramming.
Collapse
|
6
|
Dolfini D, Zambelli F, Pedrazzoli M, Mantovani R, Pavesi G. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors. Nucleic Acids Res 2016; 44:4684-702. [PMID: 26896797 PMCID: PMC4889920 DOI: 10.1093/nar/gkw096] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein–protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein–protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Via Amendola 165/A, 70126, Italy
| | - Maurizio Pedrazzoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| |
Collapse
|
7
|
He T, Quan T, Fisher GJ. Ultraviolet irradiation represses TGF-β type II receptor transcription through a 38-bp sequence in the proximal promoter in human skin fibroblasts. Exp Dermatol 2015; 23 Suppl 1:2-6. [PMID: 25234828 DOI: 10.1111/exd.12389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-β (TGF-β) is a major regulator of collagen gene expression in human skin fibroblasts. Cellular responses to TGF-β are mediated primarily through its cell surface type I (TβRI) and type II (TβRII) receptors. Ultraviolet (UV) irradiation impairs TGF-β signalling largely due to reduced TβRII gene expression, thereby decreasing type I procollagen synthesis, in human skin fibroblasts. UV irradiation does not alter either TβRII mRNA or protein stability, indicating that UV reduction in TβRII expression likely results from transcriptional or translational repression. To understand how UV irradiation regulates TβRII transcription, we used a series of TβRII promoter-luciferase 5'-deletion constructs (covering 2 kb of the TβRII proximal promoter) to determine transcriptional rate in response to UV irradiation. We identified a 137-bp region upstream of the transcriptional start site that exhibited high promoter activity and was repressed 60% by UV irradiation, whereas all other TβRII promoter reporter constructs exhibited either low promoter activities or no regulation by UV irradiation. Mutation of potential transcription factor binding sites within the promoter region revealed that an inverted CCAAT box (-81 bp from transcription start site) is required for promoter activity. Mutation of the CCAAT box completely abolished UV irradiation regulation of the TβRII promoter. Protein-binding assay, as determined by electrophoretic mobility-shift assays (EMSAs) using the inverted CCAAT box as probe (-100/-62), demonstrated significantly enhanced protein binding in response to UV irradiation. Super shift experiments indicated that nuclear factor Y (NFY) is able to binding to this sequence, but NFY binding was not altered in response to UV irradiation, indicating additional protein(s) are capable of binding this sequence in response to UV irradiation. Taken together, these data indicate that UV irradiation reduces TβRII expression, at least partially, through transcriptional repression. This repression is mediated by a 38-bp sequence in TβRII promoter, in human skin fibroblasts.
Collapse
Affiliation(s)
- Tianyuan He
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
8
|
Teng YN, Chuang PJ, Liu YW. Nuclear factor-κB (NF-κB) regulates the expression of human testis-enriched Leucine-rich repeats and WD repeat domain containing 1 (LRWD1) gene. Int J Mol Sci 2012; 14:625-39. [PMID: 23275029 PMCID: PMC3565286 DOI: 10.3390/ijms14010625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022] Open
Abstract
The human Leucine-rich Repeats and WD repeat Domain containing 1 (LRWD1) gene was originally identified by cDNA microarray as one of the genes down-regulated in the testicular tissues of patients with severe spermatogenic defects. Human LRWD1 is a testicular-enriched protein that is present predominantly in the cytoplasm of spermatocytes and spermatids and colocalizes with the centrosome at the base of sperm tail. Reporter assay, Chromatin immunoprecipitation (ChIP) analysis, and gel electrophoretic mobility shift assay (EMSA) were used to identify the core promoter region of LRWD1. A 198 bp segment upstream of the LRWD1 transcription initiation site exhibited promoter activity. The LRWD1 core promoter lacked a TATA box but contained a NF-κB binding site. Chromatin immunoprecipitation (ChIP) analysis and gel electrophoretic mobility shift assay (EMSA) showed basal binding of the NF-κB subunit to the LRWD1 promoter. LRWD1 promoter activity was positively regulated by NF-κB, and this regulation was dependent on the presence of the conserved κB site in the LRWD1 promoter region. Our data suggest that NF-κB is an important regulator for the expression of LRWD1. This is the first study showing that the expression of the testis-enriched LRWD1 gene is regulated by NF-κB.
Collapse
Affiliation(s)
- Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City 700, Taiwan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-6-2133111 (ext. 795); Fax: +886-6-2606153
| | - Po-Jung Chuang
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Sec. 1, Pao-An, Jen-Te Hsiang, Tainan 717, Taiwan; E-Mail:
| | - Yo-Wen Liu
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City 700, Taiwan; E-Mail:
| |
Collapse
|
9
|
Li B, Ding L, Li W, Story MD, Pace BS. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation. BMC Genomics 2012; 13:153. [PMID: 22537182 PMCID: PMC3353202 DOI: 10.1186/1471-2164-13-153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 04/26/2012] [Indexed: 12/14/2022] Open
Abstract
Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation.
Collapse
Affiliation(s)
- Biaoru Li
- Department Pediatrics, Georgia Health Sciences University, 1120 15th St, CN-4112, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
10
|
Hulea L, Nepveu A. CUX1 transcription factors: from biochemical activities and cell-based assays to mouse models and human diseases. Gene 2012; 497:18-26. [PMID: 22306263 DOI: 10.1016/j.gene.2012.01.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 01/19/2023]
Abstract
ChIP-chip and expression analyses indicated that CUX1 transcription factors regulate a large number of genes and microRNAs involved in multiple cellular processes. Indeed, in proliferating cells CUX1 was shown to regulate several genes involved in DNA replication, progression into S phase and later, the spindle assembly checkpoint that controls progression through mitosis. siRNA-mediated knockdown established that CUX1 is required for cell motility. Moreover, higher expression of short CUX1 isoforms, as observed in many cancers, was shown to stimulate cell migration and invasion. In parallel, elevated expression particularly in higher grade tumors of breast and pancreatic cancers implicated CUX1 in tumor initiation and progression. Indeed, transgenic mouse models demonstrated a causal role of CUX1 in cancers originating from various cell types. These studies revealed that higher CUX1 expression or activity not only stimulates cell proliferation and motility, but also promotes genetic instability. CUX1 has also been implicated in the etiology of polycystic kidney diseases, both from a transgenic approach and the analysis of CUX1 activity in multiple mouse models of this disease. Studies in neurobiology have uncovered a potential implication of CUX1 in cognitive disorders, neurodegeneration and obesity. CUX1 was shown to be expressed specifically in pyramidal neurons of the neocortex upper layers where it regulates dendrite branching, spine development, and synapse formation. In addition, modulation of CUX1 expression in neurons of the hypothalamus has been associated with changes in leptin receptor trafficking in the vicinity of the primary cilium resulting in altered leptin signaling and ultimately, eating behavior. Overall, studies in various fields have allowed the development of several cell-based assays to monitor CUX1 function and have extended the range of organs in which CUX1 plays an important role in development and tissue homeostasis.
Collapse
Affiliation(s)
- Laura Hulea
- Goodman Cancer Centre, McGill University, 1160 Pine avenue West, Montreal, Quebec, Canada H3A 1A3
| | | |
Collapse
|
11
|
CpG methylation at the USF-binding site mediates cell-specific transcription of human ascorbate transporter SVCT2 exon 1a. Biochem J 2011; 440:73-84. [PMID: 21770893 DOI: 10.1042/bj20110392] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SVCT2 (sodium-vitamin C co-transporter 2) is the major transporter mediating vitamin C uptake in most organs. Its expression is driven by two promoters (CpG-poor exon 1a promoter and CpG-rich exon 1b promoter). In the present study, we mapped discrete elements within the proximal CpG-poor promoter responsible for exon 1a transcription. We identified two E boxes for USF (upstream stimulating factor) binding and one Y box for NF-Y (nuclear factor Y) binding. We show further that NF-Y and USF bind to the exon 1a promoter in a co-operative manner, amplifying the binding of each to the promoter, and is absolutely required for the full activity of the exon 1a promoter. The analysis of the CpG site located at the upstream USF-binding site in the promoter showed a strong correlation between expression and demethylation. It was also shown that exon 1a transcription was induced in cell culture treated with the demethylating agent decitabine. The specific methylation of this CpG site impaired both the binding of USF and the formation of the functional NF-Y-USF complex as well as promoter activity, suggesting its importance for cell-specific transcription. Thus CpG methylation at the upstream USF-binding site functions in establishing and maintaining cell-specific transcription from the CpG-poor SVCT2 exon 1a promoter.
Collapse
|
12
|
Fragiadaki M, Ikeda T, Witherden A, Mason RM, Abraham D, Bou-Gharios G. High doses of TGF-β potently suppress type I collagen via the transcription factor CUX1. Mol Biol Cell 2011; 22:1836-44. [PMID: 21471005 PMCID: PMC3103400 DOI: 10.1091/mbc.e10-08-0669] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Uncontrolled expression of collagen often leads to tissue scarring and loss of organ function. In this study, we identify a molecular mechanism that may enable us to switch off collagen production when unnecessary (i.e., fibrosis). We conclude that CUX1, which is a CCAAT binding factor displacement protein, may serve as a therapeutic target in treating fibrosis. Transforming growth factor-β (TGF-β) is an inducer of type I collagen, and uncontrolled collagen production leads to tissue scarring and organ failure. Here we hypothesize that uncovering a molecular mechanism that enables us to switch off type I collagen may prove beneficial in treating fibrosis. For the first time, to our knowledge, we provide evidence that CUX1 acts as a negative regulator of TGF-β and potent inhibitor of type I collagen transcription. We show that CUX1, a CCAAT displacement protein, is associated with reduced expression of type I collagen both in vivo and in vitro. We show that enhancing the expression of CUX1 results in effective suppression of type I collagen. We demonstrate that the mechanism by which CUX1 suppresses type I collagen is through interfering with gene transcription. In addition, using an in vivo murine model of aristolochic acid (AA)-induced interstitial fibrosis and human AA nephropathy, we observe that CUX1 expression was significantly reduced in fibrotic tissue when compared to control samples. Moreover, silencing of CUX1 in fibroblasts from kidneys of patients with renal fibrosis resulted in increased type I collagen expression. Furthermore, the abnormal CUX1 expression was restored by addition of TGF-β via the p38 mitogen-activated protein kinase pathway. Collectively, our study demonstrates that modifications of CUX1 expression lead to aberrant expression of type I collagen, which may provide a molecular basis for fibrogenesis.
Collapse
Affiliation(s)
- Maria Fragiadaki
- Renal Medicine, Imperial College London, Hammersmith Campus, London W12 ONN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Thön M, Al Abdallah Q, Hortschansky P, Scharf DH, Eisendle M, Haas H, Brakhage AA. The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes. Nucleic Acids Res 2009; 38:1098-113. [PMID: 19965775 PMCID: PMC2831313 DOI: 10.1093/nar/gkp1091] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The heterotrimeric CCAAT-binding complex is evolutionary conserved in eukaryotic organisms. The corresponding Aspergillus nidulans CCAAT- binding factor (AnCF) consists of the subunits HapB, HapC and HapE. All of the three subunits are necessary for DNA binding. Here, we demonstrate that AnCF senses the redox status of the cell via oxidative modification of thiol groups within the histone fold motif of HapC. Mutational and in vitro interaction analyses revealed that two of these cysteine residues are indispensable for stable HapC/HapE subcomplex formation and high-affinity DNA binding of AnCF. Oxidized HapC is unable to participate in AnCF assembly and localizes in the cytoplasm, but can be recycled by the thioredoxin system in vitro and in vivo. Furthermore, deletion of the hapC gene led to an impaired oxidative stress response. Therefore, the central transcription factor AnCF is regulated at the post-transcriptional level by the redox status of the cell serving for a coordinated activation and deactivation of antioxidative defense mechanisms including the specific transcriptional activator NapA, production of enzymes such as catalase, thioredoxin or peroxiredoxin, and maintenance of a distinct glutathione homeostasis. The underlying fine-tuned mechanism very likely represents a general feature of the CCAAT-binding complexes in eukaryotes.
Collapse
Affiliation(s)
- Marcel Thön
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Siam R, Harada R, Cadieux C, Battat R, Vadnais C, Nepveu A. Transcriptional activation of the Lats1 tumor suppressor gene in tumors of CUX1 transgenic mice. Mol Cancer 2009; 8:60. [PMID: 19656388 PMCID: PMC2731069 DOI: 10.1186/1476-4598-8-60] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 08/05/2009] [Indexed: 02/01/2023] Open
Abstract
Background Lats1 (large tumor suppressor 1) codes for a serine/threonine kinase that plays a role in the progression through mitosis. Genetic studies demonstrated that the loss of LATS1 in mouse, and of its ortholog wts (warts) in Drosophila, is associated with increased cancer incidence. There are conflicting reports, however, as to whether overexpression of Lats1 inhibits cell proliferation. CUX1 is a transcription factor that exists in different isoforms as a result of proteolytic processing or alternative transcription initiation. Expression of p110 and p75 CUX1 in transgenic mice increases the susceptibility to cancer in various organs and tissues. In tissue culture, p110 CUX1 was shown to accelerate entry into S phase and stimulate cell proliferation. Results Genome-wide location arrays in cell lines of various cell types revealed that Lats1 was a transcriptional target of CUX1. Scanning ChIP analysis confirmed that CUX1 binds to the immediate promoter of Lats1. Expression of Lats1 was reduced in cux1-/- MEFs, whereas it was increased in cells stably or transiently expressing p110 or p75 CUX1. Reporter assays confirmed that the immediate promoter of Lats1 was sufficient to confer transcriptional activation by CUX1. Lats1 was found to be overexpressed in tumors from the mammary gland, uterus and spleen that arise in p110 or p75 CUX1 transgenic mice. In tissue culture, such elevated LATS1 expression did not hinder cell cycle progression in cells overexpressing p110 CUX1. Conclusion While inactivation of Lats1/wts in mouse and Drosophila can increase cancer incidence, results from the present study demonstrate that Lats1 is a transcriptional target of CUX1 that can be overexpressed in tumors of various tissue-types. Interestingly, two other studies documented the overexpression of LATS1 in human cervical cancers and basal-like breast cancers. We conclude that, similarly to other genes involved in mitotic checkpoint, cancer can be associated with either loss-of-function or overexpression of Lats1.
Collapse
Affiliation(s)
- Rania Siam
- Goodman Cancer Center, McGill University, 1160 Pine Avenue West, Room 410, Montreal, Quebec H3A 1A3, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Ebacher DJS, Todi SV, Eberl DF, Boekhoff-Falk GE. Cut mutant Drosophila auditory organs differentiate abnormally and degenerate. Fly (Austin) 2009; 1:86-94. [PMID: 18820445 DOI: 10.4161/fly.4242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Drosophila antenna is a sophisticated structure that functions in both olfaction and audition. Previous studies have identified Homothorax, Extradenticle, and Distal-less, three homeodomain transcription factors, as required for specification of antennal identity. Antennal expression of cut is activated by Homothorax and Extradenticle, and repressed by Distal-less. cut encodes the Drosophila homolog of human CAAT-displacement protein, a cell cycle-regulated homeodomain transcription factor. Cut is required for normal development of external mechanosensory structures and Malphigian tubules (kidney analogs). The role of cut in the Drosophila auditory organ, Johnston's organ, has not been characterized. We have employed the FLP/FRT system to generate cut null clones in developing Johnston's organ. In cut mutants, the scolopidial subunits that constitute Johnston's organ differentiate abnormally and subsequently degenerate. Electrophysiological experiments confirm that adult Drosophila with cut null antennae are deaf. We find that cut acts in parallel to atonal, spalt-major, and spalt-related, which encode other transcription factors required for Johnston's organ differentiation. We speculate that Cut functions in conjunction with these factors to regulate transcription of as yet unidentified targets.
Collapse
Affiliation(s)
- Dominic J S Ebacher
- Department of Anatomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
16
|
Seguin L, Liot C, Mzali R, Harada R, Siret A, Nepveu A, Bertoglio J. CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S phase. Mol Cell Biol 2009; 29:570-81. [PMID: 19015243 PMCID: PMC2612504 DOI: 10.1128/mcb.01275-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/13/2008] [Accepted: 11/03/2008] [Indexed: 01/19/2023] Open
Abstract
Rho GTPases are critical for mitosis progression and completion of cytokinesis. During mitosis, the GDP/GTP cycle of Rho GTPases is regulated by the exchange factor Ect2 and the GTPase activating protein MgcRacGAP which associates with the kinesin MKLP1 in the centralspindlin complex. We report here that expression of Ect2, MgcRacGAP, and MKLP1 is tightly regulated during cell cycle progression. These three genes share similar cell cycle-related signatures within their promoter regions: (i) cell cycle gene homology region (CHR) sites located at -20 to +40 nucleotides of their transcription start sites that are required for repression in G(1), (ii) E2F binding elements, and (iii) tandem repeats of target sequences for the CUX1 transcription factor. CUX1 and E2F1 bind these three promoters upon S-phase entry, as demonstrated by chromatin immunoprecipitation, and regulate transcription of these genes, as established using promoter-luciferase reporter constructs and expression of activated or dominant negative transcription factors. Overexpression of either E2F1 or CUX1 increased the levels of the endogenous proteins whereas small interfering RNA knockdown of E2F1 or use of a dominant negative E2F1 reduced their expression levels. Thus, CUX1, E2F, and CHR elements provide the transcriptional controls that coordinate induction of Ect2, MgcRacGAP, and MKLP1 in S phase, leading to peak expression of these interacting proteins in G(2)/M, at the time they are required to regulate cytokinesis.
Collapse
Affiliation(s)
- Laetitia Seguin
- INSERM U749, Faculté de Pharmacie Paris XI, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Stern JL, Cao JZ, Xu J, Mocarski ES, Slobedman B. Repression of human cytomegalovirus major immediate early gene expression by the cellular transcription factor CCAAT displacement protein. Virology 2008; 378:214-25. [PMID: 18614194 DOI: 10.1016/j.virol.2008.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 05/13/2008] [Accepted: 05/22/2008] [Indexed: 01/19/2023]
Abstract
Initiation of human cytomegalovirus (HCMV) productive infection is dependent on the major immediate early (MIE) genes ie1 and ie2. Several putative binding sites for CCAAT displacement protein (CDP or CUX1) were identified within the MIE promoter/regulatory region. Binding assays demonstrated binding of CUX1 to MIE-region oligonucleotides containing the CUX1 core binding sequence ATCGAT and mutagenesis of this sequence abrogated CUX1 binding. Furthermore, CUX1 repressed expression of a luciferase reporter construct controlled by the MIE promoter, and mutation of CUX1 binding sites within the promoter diminished this repressive function of CUX1. In the context of virus infection of HEK293 cells transfected with the CUX1 expression vector, CUX1 showed evidence of association with the HCMV MIE regulatory region and inhibited the capacity of the virus to express ie1 and ie2 transcripts, suggesting that this cellular factor regulates MIE gene expression following virus entry. These data identify a role for CUX1 in repressing HCMV gene expression essential for initiation of the replicative cycle.
Collapse
Affiliation(s)
- J Lewis Stern
- Centre for Virus Research, Westmead Millennium Institute, PO Box 412, Westmead, New South Wales 2145, Australia
| | | | | | | | | |
Collapse
|
18
|
Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. EUKARYOTIC CELL 2008; 7:1168-79. [PMID: 18503007 DOI: 10.1128/ec.00108-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Iron is an essential nutrient that is severely limited in the mammalian host. Candida albicans encodes a family of 15 putative ferric reductases, which are required for iron acquisition and utilization. Despite the central role of ferric reductases in iron acquisition and mobilization, relatively little is known about the regulatory networks that govern ferric reductase gene expression in C. albicans. Here we have demonstrated the differential regulation of two ferric reductases, FRE2 and FRP1, in response to distinct iron-limited environments. FRE2 and FRP1 are both induced in alkaline-pH environments directly by the Rim101 transcription factor. However, FRP1 but not FRE2 is also induced by iron chelation. We have identified a CCAAT motif as the critical regulatory sequence for chelator-mediated induction and have found that the CCAAT binding factor (CBF) is essential for FRP1 expression in iron-limited environments. We found that a hap5Delta/hap5Delta mutant, which disrupts the core DNA binding activity of CBF, is unable to grow under iron-limited conditions. C. albicans encodes three CBF-dependent transcription factors, and we identified the Hap43 protein as the CBF-dependent transcription factor required for iron-limited responses. These studies provide key insights into the regulation of ferric reductase gene expression in the fungal pathogen C. albicans.
Collapse
|
19
|
|
20
|
Iotti G, Ferrari-Amorotti G, Rosafio C, Corradini F, Lidonnici MR, Ronchetti M, Bardini M, Zhang Y, Martinez R, Blasi F, Calabretta B. Expression of CCL9/MIP-1gamma is repressed by BCR/ABL and its restoration suppresses in vivo leukemogenesis of 32D-BCR/ABL cells. Oncogene 2006; 26:3482-91. [PMID: 17160016 DOI: 10.1038/sj.onc.1210146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transformation of hematopoietic cells by the BCR/ABL oncogene is caused by perturbation of signal transduction pathways leading to altered patterns of gene expression and activity. By oligonucleotide microarray hybridization of polysomal RNA of untreated and STI571-treated 32D-BCR/ABL cells, we identified the beta-chemokine CCL9 as a gene regulated by BCR/ABL in a tyrosine kinase-dependent manner. BCR/ABL repressed CCL9 expression at the transcriptional level by mechanisms involving suppression of p38 MAP kinase, and modulation of the activity of CDP/cut and C/EBPalpha, two transcription regulators of myeloid differentiation. However, repression of C/EBP-dependent transcription did not prevent the induction of CCL9 expression by STI571, suggesting that C/EBPalpha is involved in maintaining rather than in inducing CCL9 expression. Restoration of CCL9 expression in 32D-BCR/ABL cells had no effect on the in vitro proliferation of these cells, but reduced their leukemogenic potential in vivo, possibly by recruitment of CD3-positive immune cells. Together, these findings suggest that downregulation of chemokine expression may be involved in BCR/ABL-dependent leukemogenesis by altering the relationship between transformed cells and the microenvironment.
Collapse
MESH Headings
- Animals
- Benzamides
- Bone Marrow Cells/pathology
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Carcinogenicity Tests
- Cell Proliferation
- Chemokines, CC
- Down-Regulation
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Imatinib Mesylate
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/metabolism
- Mice
- Mice, Inbred C3H
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tumor Cells, Cultured
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- G Iotti
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cánovas D, Andrianopoulos A. Developmental regulation of the glyoxylate cycle in the human pathogen Penicillium marneffei. Mol Microbiol 2006; 62:1725-38. [PMID: 17427290 DOI: 10.1111/j.1365-2958.2006.05477.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Penicillium marneffei is a thermally dimorphic opportunistic human pathogen with a saprophytic filamentous hyphal form at 25 degrees C and a pathogenic unicellular yeast form at 37 degrees C. During infection. P. marneffei yeast cells exist intracellularly in macrophages. To cope with nutrient deprivation during the infection process, a number of pathogens employ the glyoxylate cycle to utilize fatty acids as carbon sources. The genes which constitute this pathway have been implicated in pathogenesis. To investigate acetate and fatty acid utilization, the acuD gene encoding a key glyoxylate cycle enzyme (isocitrate lyase) was cloned. The acuD gene is regulated by both carbon source and temperature in P. marneffei, being strongly induced at 37 degrees C even in the presence of a repressing carbon source such as glucose. When introduced into the non-pathogenic monomorphic fungus Aspergillus nidulans, the P. marneffei acuD promoter only responds to carbon source. Similarly, when the A. nidulans acuD promoter is introduced into P. marneffei it only responds to carbon source suggesting that P. marneffei possesses both cis elements and trans-acting factors to control acuD by temperature. The Zn(II)2Cys6 DNA binding motif transcriptional activator FacB was cloned and is responsible for carbon source-, but not temperature-, dependent induction of acuD. The expression of acuD at 37 degrees C is induced by AbaA, a key regulator of morphogenesis in P. marneffei, but deletion of abaA does not completely eliminate temperature-dependent induction, suggesting that acuD and the glyoxylate cycle are regulated by a complex network of factors in P. marneffei which may contribute to its pathogenicity.
Collapse
Affiliation(s)
- David Cánovas
- Department of Genetics, University of Melbourne, Vic. 3010, Australia
| | | |
Collapse
|
22
|
Xu Y, Zhou YL, Luo W, Zhu QS, Levy D, MacDougald OA, Snead ML. NF-Y and CCAAT/enhancer-binding protein alpha synergistically activate the mouse amelogenin gene. J Biol Chem 2006; 281:16090-8. [PMID: 16595692 DOI: 10.1074/jbc.m510514200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amelogenin is the major protein component of the forming enamel matrix. In situ hybridization revealed a periodicity for amelogenin mRNA hybridization signals ranging from low to high transcript abundance on serial sections of developing mouse teeth. This in vivo observation led us to examine the amelogenin promoter for the activity of transcription factor(s) that account for this expression aspect of the regulation for the amelogenin gene. We have previously shown that CCAAT/enhancer-binding protein alpha (C/EBPalpha) is a potent transactivator of the mouse X-chromosomal amelogenin gene acting at the C/EBPalpha cis-element located in the -70/+52 minimal promoter. The minimal promoter contains a reversed CCAAT box (-58/-54) that is four base pairs downstream from the C/EBPalpha binding site. Similar to the C/EBPalpha binding site, the integrity of the reversed CCAAT box is also required for maintaining the activity of the basal promoter. We therefore focused on transcription factors that interact with the reversed CCAAT box. Using electrophoretic mobility shift assays we demonstrated that NF-Y was directly bound to this reversed CCAAT site. Co-transfection of C/EBPalpha and NF-Y synergistically increased the promoter activity. In contrast, increased expression of NF-Y alone had only marginal effects on the promoter. A dominant-negative DNA binding-deficient NF-Y mutant (NF-YAm29) dramatically decreased the promoter activity both in the absence or presence of exogenous expression of C/EBPalpha. We identified protein-protein interactions between C/EBPalpha and NF-Y by a co-immunoprecipitation analysis. These results suggest that C/EBPalpha and NF-Y synergistically activate the mouse amelogenin gene and can contribute to its physiological regulation during amelogenesis.
Collapse
Affiliation(s)
- Yucheng Xu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tüncher A, Spröte P, Gehrke A, Brakhage AA. The CCAAT-binding Complex of Eukaryotes: Evolution of a Second NLS in the HapB Subunit of the Filamentous Fungus Aspergillus nidulans Despite Functional Conservation at the Molecular Level between Yeast, A.nidulans and Human. J Mol Biol 2005; 352:517-33. [PMID: 16098534 DOI: 10.1016/j.jmb.2005.06.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 06/24/2005] [Accepted: 06/29/2005] [Indexed: 11/22/2022]
Abstract
The heterotrimeric CCAAT-binding complex is evolutionarily conserved in eukaryotic organisms, including fungi, plants and mammals. In the filamentous fungus Aspergillus nidulans, the corresponding complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF consists of the subunits HapB, HapC and HapE. All three subunits are necessary for DNA binding. HapB contains two putative nuclear localisation signal sequences (NLSs) designated NLS1 and NLS2. Previously, it was shown that only NLS2 was required for nuclear localisation of HapB. Furthermore, HapC and HapE are transported to the nucleus only in complex with HapB via a piggy back mechanism. Here, by using various GFP constructs and by establishing a novel marker gene for transformation of A.nidulans, i.e. the pabaA gene encoding p-aminobenzoic acid synthase, it was shown that the HapB homologous proteins of both Saccharomyces cerevisiae (Hap2p) and human (NF-YA) use an NLS homologous to HapB NLS1 for nuclear localisation in S.cerevisiae. Interestingly, for A.nidulans HapB, NLS1 was sufficient for nuclear localisation in S.cerevisiae. In A.nidulans, HapB NLS1 was also functional when present in a different protein context. However, in A.nidulans, both S.cerevisiae Hap2p and human NF-YA entered the nucleus only when HapB NLS2 was present in the respective proteins. In that case, both proteins Hap2p and NF-YA complemented, at least in part, the hap phenotype of A.nidulans with respect to lack of growth on acetamide. Similarly, A.nidulans HapB and human NF-YA complemented a hap2 mutant of S.cerevisiae. In summary, HapB, Hap2p and NF-YA are interchangeable. Because the A.nidulans hapB mutant was complemented, at least in part, by both the human NF-YA and S.cerevisiae Hap2p this finding suggests that the piggy-back mechanism of nuclear transport found for A.nidulans is conserved in yeast and human.
Collapse
Affiliation(s)
- André Tüncher
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
24
|
Santaguida M, Nepveu A. Differential regulation of CDP/Cux p110 by cyclin A/Cdk2 and cyclin A/Cdk1. J Biol Chem 2005; 280:32712-21. [PMID: 16081423 DOI: 10.1074/jbc.m505417200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous experiments with peptide fusion proteins suggested that cyclin A/Cdk1 and Cdk2 might exhibit similar yet distinct phosphorylation specificities. Using a physiological substrate, CDP/Cux, our study confirms this notion. Proteolytic processing of CDP/Cux by cathepsin L generates the CDP/Cux p110 isoform at the beginning of S phase. CDP/Cux p110 makes stable interactions with DNA during S phase but is inhibited in G2 following the phosphorylation of serine 1237 by cyclin A/Cdk1. In this study, we propose that differential phosphorylation by cyclin A/Cdk1 and cyclin A/Cdk2 enables CDP/Cux p110 to exert its function as a transcriptional regulator specifically during S phase. We found that like cyclin A/Cdk1, cyclin A/Cdk2 interacted efficiently with recombinant CDP/Cux proteins that contain the Cut homeodomain and an adjacent cyclin-binding motif (Cy). In contrast to cyclin A/Cdk1, however, cyclin A/Cdk2 did not efficiently phosphorylate CDP/Cux p110 on serine 1237 and did not inhibit its DNA binding activity in vitro. Accordingly, co-expression with cyclin A/Cdk2 in cells did not inhibit the DNA binding and transcriptional activities of CDP/Cux p110. To confirm that the sequence surrounding serine 1237 was responsible for the differential regulation by Cdk1 and Cdk2, we replaced 4 amino acids flanking the phosphorylation site to mimic a known Cdk2 phosphorylation site present in the Cdc6 protein. Both cyclin A/Cdk2 and Cdk1 efficiently phosphorylated the CDP/Cux(Cdc6) mutant and inhibited its DNA binding activity. Altogether our results help explain why the DNA binding activity of CDP/Cux p110 is maximal during S phase and decreases in G2 phase.
Collapse
Affiliation(s)
- Marianne Santaguida
- Molecular Oncology Group, McGill University Health Center, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | |
Collapse
|
25
|
Seo J, Lozano MM, Dudley JP. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J Biol Chem 2005; 280:24600-9. [PMID: 15851481 DOI: 10.1074/jbc.m414076200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Special AT-rich binding protein 1 (SATB1) originally was identified as a protein that bound to the nuclear matrix attachment regions (MARs) of the immunoglobulin heavy chain intronic enhancer. Subsequently, SATB1 was shown to repress many genes expressed in the thymus, including interleukin-2 receptor alpha, c-myc, and those encoded by mouse mammary tumor virus (MMTV), a glucocorticoid-responsive retrovirus. SATB1 binds to MARs within the MMTV provirus to repress transcription. To address the role of the nuclear matrix in SATB1-mediated repression, a series of SATB1 deletion constructs was used to determine protein localization. Wild-type SATB1 localized to the soluble nuclear, chromatin, and nuclear matrix fractions. Mutants lacking amino acids 224-278 had a greatly diminished localization to the nuclear matrix, suggesting the presence of a nuclear matrix targeting sequence (NMTS). Transient transfection experiments showed that NMTS fusions to green fluorescent protein or LexA relocalized these proteins to the nuclear matrix. Difficulties with previous assay systems prompted us to develop retroviral vectors to assess effects of different SATB1 domains on expression of MMTV proviruses or integrated reporter genes. SATB1 overexpression repressed MMTV transcription in the presence and absence of functional glucocorticoid receptor. Repression was alleviated by deletion of the NMTS, which did not affect DNA binding, or by deletion of the MAR-binding domain. Our studies indicate that both nuclear matrix association and DNA binding are required for optimal SATB1-mediated repression of the integrated MMTV promoter and may allow insulation from cellular regulatory elements.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Nucleus/metabolism
- DNA/chemistry
- DNA Primers/chemistry
- Dimerization
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Humans
- Interleukin-2 Receptor alpha Subunit
- Introns
- Jurkat Cells
- Ligands
- Mammary Glands, Animal
- Mammary Tumor Virus, Mouse/genetics
- Matrix Attachment Region Binding Proteins/metabolism
- Matrix Attachment Region Binding Proteins/physiology
- Mice
- Microscopy, Fluorescence
- Mutation
- Plasmids/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- RNA/metabolism
- Rats
- Receptors, Glucocorticoid/metabolism
- Receptors, Interleukin/metabolism
- Recombinant Fusion Proteins/chemistry
- Retroviridae/genetics
- Ribonucleases/metabolism
- Subcellular Fractions
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Jin Seo
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
26
|
Chen K, Knorr C, Moser G, Gatphayak K, Brenig B. Molecular characterization of the porcine testis-specificphosphoglycerate kinase 2 (PGK2) gene and its association with male fertility. Mamm Genome 2004; 15:996-1006. [PMID: 15599558 DOI: 10.1007/s00335-004-2405-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 07/30/2004] [Indexed: 11/26/2022]
Abstract
We have isolated and characterized the porcine testis-specific phosphoglycerate kinase 2 (PGK2) gene, and 1665 bp of full-length PGK2 cDNA were also compiled using modified rapid amplification 5'-RACE and 3'-RACE information. The results of genomic and cDNA sequences of the porcine PGK2 gene demonstrated that it is a single-exon intronless gene with a complete open reading frame of 1251 bp encoding a PGK protein of 417 amino acids. Real-time quantitative PCR results showed that PGK2 mRNA was solely expressed in the testis. There was a lower amount of PGK2 expression in the testis of a 10-month-old herniated boar and a very small amount of PGK2 expression in the testis of an 8-week-old cryptorchid piglet compared to an adult boar. Two SNPs in the PGK2 gene (SNP-A: T427C; SNP-B: C914A) resulting in amino acid substitutions (SNP-A: Ser102-Pro102; SNP-B: Thr264-Lys264) were detected and genotyped among six pig breeds. The nucleotide C at SNP-A responsible for the amino acid exchange to proline could lead to the loss of a casein kinase II (CK2) phosphorylation site in the PGK2 peptide. Association analyses between PGK2 genotypes and several traits of sperm quantity and quality were performed. The results showed that SNP-B has a positive significant effect on semen volume in the breed Pietrain (p = 0.08), i.e., boars carrying genotype CC revealed an increased volume of 49 ml compared with boars having the genotype AA.
Collapse
Affiliation(s)
- Kefei Chen
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | | | | | | | | |
Collapse
|
27
|
Schrem H, Klempnauer J, Borlak J. Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. Pharmacol Rev 2004; 56:291-330. [PMID: 15169930 DOI: 10.1124/pr.56.2.5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the first part of our review (see Pharmacol Rev 2002;54:129-158), we discussed the basic principles of gene transcription and the complex interactions within the network of hepatocyte nuclear factors, coactivators, ligands, and corepressors in targeted liver-specific gene expression. Now we summarize the role of basic region/leucine zipper protein family members and particularly the albumin D site-binding protein (DBP) and the CAAT/enhancer-binding proteins (C/EBPs) for their importance in liver-specific gene expression and their role in liver function and development. Specifically, regulatory networks and molecular interactions were examined in detail, and the experimental findings summarized in this review point to pivotal roles of DBP and C/EBPs in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liver-specific gene regulation. These regulatory proteins are therefore of great importance in liver physiology, liver disease, and liver development. Furthermore, interpretation of the vast data generated by novel genomic platform technologies requires a thorough understanding of regulatory networks and particularly the hierarchies that govern transcription and translation of proteins as well as intracellular protein modifications. Thus, this review aims to stimulate discussions on directions of future research and particularly the identification of molecular targets for pharmacological intervention of liver disease.
Collapse
Affiliation(s)
- Harald Schrem
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institut für Toxikologie und Experimentelle Medizin, Nicolai Fuchs Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
28
|
Truscott M, Raynal L, Wang Y, Bérubé G, Leduy L, Nepveu A. The N-terminal Region of the CCAAT Displacement Protein (CDP)/Cux Transcription Factor Functions as an Autoinhibitory Domain that Modulates DNA Binding. J Biol Chem 2004; 279:49787-94. [PMID: 15377665 DOI: 10.1074/jbc.m409484200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The CCAAT displacement protein/Cut homeobox (CDP/Cux) transcription factor is expressed as multiple isoforms that may contain up to four DNA-binding domains: Cut repeats 1, 2, and 3 (CR1, CR2, CR3) and the Cut homeodomain (HD). The full-length protein, which contains all four DNA-binding domains, is surprisingly less efficient than the shorter isoforms in DNA binding. Using a panel of recombinant proteins expressed in mammalian or bacterial cells, we have identified a domain at the extreme N terminus of the protein that can inhibit DNA binding. This domain was able to inhibit the activity of full-length CDP/Cux and of proteins containing various combinations of DNA-binding domains: CR1CR2, CR3HD, or CR2CR3HD. Since inhibition of DNA binding was also observed with purified proteins obtained from bacteria, we conclude that autoinhibition does not require post-translational modification or interaction with an interacting protein but instead functions through an intramolecular mechanism. Antibodies directed against the N-terminal region were able to partially relieve inhibition. In vivo, the transition between the inactive and active states for DNA binding is likely to be governed by posttranslational modifications and/or interaction with one or more protein partners. In addition, we show that the relief of autoinhibition can be accomplished via the proteolytic processing of CDP/Cux. Altogether, these results reveal a novel mode of regulation that serves to modulate the DNA binding activity of CDP/Cux.
Collapse
Affiliation(s)
- Mary Truscott
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Kaul-Ghanekar R, Jalota A, Pavithra L, Tucker P, Chattopadhyay S. SMAR1 and Cux/CDP modulate chromatin and act as negative regulators of the TCRbeta enhancer (Ebeta). Nucleic Acids Res 2004; 32:4862-75. [PMID: 15371550 PMCID: PMC519105 DOI: 10.1093/nar/gkh807] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin modulation at various cis-acting elements is critical for V(D)J recombination during T and B cell development. MARbeta, a matrix-associated region (MAR) located upstream of the T cell receptor beta (TCRbeta) enhancer (Ebeta), serves a crucial role in silencing Ebeta-mediated TCR activation. By DNaseI hypersensitivity assays, we show here that overexpression of the MAR binding proteins SMAR1 and Cux/CDP modulate the chromatin structure at MARbeta. We further demonstrate that the silencer function of MARbeta is mediated independently by SMAR1 and Cux/CDP as judged by their ability to repress Ebeta-dependent reporter gene expression. Moreover, the repressor activity of SMAR1 is strongly enhanced in the presence of Cux/CDP. These two proteins physically interact with each other and colocalize within the perinuclear region through a SMAR1 domain required for repression. The repression domain of SMAR1 is separate from the MARbeta binding domain and contains a nuclear localization signal and an arginine-serine (RS)-rich domain, characteristic of pre-mRNA splicing regulators. Our data suggest that at the double positive stage of T cell development, cis-acting MARbeta elements recruit the strong negative regulators Cux and SMAR1 to control Ebeta-mediated recombination and transcription.
Collapse
|
30
|
Zhu Q, Maitra U, Johnston D, Lozano M, Dudley JP. The homeodomain protein CDP regulates mammary-specific gene transcription and tumorigenesis. Mol Cell Biol 2004; 24:4810-23. [PMID: 15143175 PMCID: PMC416401 DOI: 10.1128/mcb.24.11.4810-4823.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The CCAAT-displacement protein (CDP) has been implicated in developmental and cell-type-specific regulation of many cellular and viral genes. We previously have shown that CDP represses mouse mammary tumor virus (MMTV) transcription in tissue culture cells. Since CDP-binding activity for the MMTV long terminal repeat declines during mammary development, we tested whether binding mutations could alter viral expression. Infection of mice with MMTV proviruses containing CDP binding site mutations elevated viral RNA levels in virgin mammary glands and shortened mammary tumor latency. To determine if CDP has direct effects on MMTV transcription rather than viral spread, virgin mammary glands of homozygous CDP-mutant mice lacking one of three Cut repeat DNA-binding domains (DeltaCR1) were examined by reverse transcription-PCR. RNA levels of endogenous MMTV as well as alpha-lactalbumin and whey acidic protein (WAP) were elevated. Heterozygous mice with a different CDP mutation that eliminated the entire C terminus and the homeodomain (DeltaC mice) showed increased levels of MMTV, beta-casein, WAP, and alpha-lactalbumin RNA in virgin mammary glands compared to those from wild-type animals. No differences in amounts of WDNM1, epsilon-casein, or glyceraldehyde-3-phosphate dehydrogenase RNA were observed between the undifferentiated mammary tissues from wild-type and mutant mice, indicating the specificity of this effect. These data show independent contributions of different CDP domains to negative regulation of differentiation-specific genes in the mammary gland.
Collapse
Affiliation(s)
- Quan Zhu
- Section of Molecular Genetics and Microbiology, The University of Texas at Austin, One University Station, A5000, 24th and Speedway, ESB 226, Austin, TX 78712-0162, USA
| | | | | | | | | |
Collapse
|
31
|
Gupta S, Luong MX, Bleuming SA, Miele A, Luong M, Young D, Knudsen ES, Van Wijnen AJ, Stein JL, Stein GS. Tumor suppressor pRB functions as a co-repressor of the CCAAT displacement protein (CDP/cut) to regulate cell cycle controlled histone H4 transcription. J Cell Physiol 2003; 196:541-56. [PMID: 12891711 DOI: 10.1002/jcp.10335] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The CCAAT displacement protein (CDP-cut/CUTL1/cux) performs a key proliferation-related function as the DNA binding subunit of the cell cycle controlled HiNF-D complex. HiNF-D interacts with all five classes (H1, H2A, H2B, H3, and H4) of the cell-cycle dependent histone genes, which are transcriptionally and coordinately activated at the G(1)/S phase transition independent of E2F. The tumor suppressor pRB/p105 is an intrinsic component of the HiNF-D complex. However, the molecular interactions that enable CDP and pRB to form a complex and thus convey cell growth regulatory information onto histone gene promoters must be further defined. Using transient transfections, we show that CDP represses the H4 gene promoter and that pRB functions with CDP as a co-repressor. Direct physical interaction between CDP and pRB was observed in glutathione-S-transferase (GST) pull-down assays. Furthermore, interactions between these proteins were established by yeast and mammalian two-hybrid experiments and co-immunoprecipitation assays. Confocal microscopy shows that subsets of each protein are co-localized in situ. Using a series of pRB mutants, we find that the CDP/pRB interaction, similar to the E2F/pRB interaction, utilizes the A/B large pocket (LP) of pRB. Thus, several converging lines of evidence indicate that complexes between CDP and pRB repress cell cycle regulated histone gene promoters.
Collapse
Affiliation(s)
- Sunita Gupta
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hall NM, Brown GM, Furlong RA, Sargent CA, Mitchell M, Rocha D, Affara NA. Usp9y (ubiquitin-specific protease 9 gene on the Y) is associated with a functional promoter and encodes an intact open reading frame homologous to Usp9x that is under selective constraint. Mamm Genome 2003; 14:437-47. [PMID: 12925892 DOI: 10.1007/s00335-002-3068-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Accepted: 03/25/2003] [Indexed: 01/27/2023]
Abstract
Sequences complementary to the X-linked ubiquitin-specific protease gene Usp9x (Dffrx) have been shown to map to the Sxr(b) interval of the mouse Y Chromosome (chr) and to be expressed in a testis-specific manner. In humans, ubiquitously expressed functional homologues (USP9Y and USP9X DFFRY/DFFRX) are present on both sex chromosomes, whereas in mouse it remains to be demonstrated that the Y-linked sequences encode a functional protein. In this paper, it is shown that the Usp9y gene encodes a potentially functional ubiquitin-specific protease possessing a core promoter region that shares several features characteristic of other testis-specific genes. Analysis of synonymous and nonsynonymous nucleotide changes suggests that there is constraint on the amino acid sequence of both the mouse Usp9x and Usp9y genes, a finding that mirrors similar analysis of the human orthologs. Thus, in both mouse and human, selection is acting to maintain the amino acid sequence of the X and Y-linked genes. This indicates that in both species the genes on each sex chromosome continue to encode an important function.
Collapse
Affiliation(s)
- Nicola M Hall
- Human Molecular Genetics Group, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Erturk E, Ostapchuk P, Wells SI, Yang J, Gregg K, Nepveu A, Dudley JP, Hearing P. Binding of CCAAT displacement protein CDP to adenovirus packaging sequences. J Virol 2003; 77:6255-64. [PMID: 12743282 PMCID: PMC154998 DOI: 10.1128/jvi.77.11.6255-6264.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adenovirus (Ad) type 5 DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent upon the cis-acting packaging domain located between nucleotides 194 and 380. Seven A/T-rich repeats have been identified within this domain that direct packaging. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Two cellular activities that bind to minimal packaging domains in vitro have been previously identified. These binding activities are P complex, an uncharacterized protein(s), and chicken ovalbumin upstream promoter transcription factor (COUP-TF). In this work, we report that a third cellular protein, octamer-1 protein (Oct-1), binds to minimal packaging domains. In vitro binding analyses and in vivo packaging assays were used to examine the relevance of these DNA binding activities to Ad DNA packaging. The results of these experiments reveal that COUP-TF and Oct-1 binding does not play a functional role in Ad packaging, whereas P-complex binding directly correlates with packaging function. We demonstrate that P complex contains the cellular protein CCAAT displacement protein (CDP) and that full-length CDP is found in purified virus particles. In addition to cellular factors, previous evidence indicates that viral factors play a role in the initiation of viral DNA packaging. We propose that CDP, in conjunction with one or more viral proteins, binds to the packaging sequences of Ad to initiate the encapsidation process.
Collapse
Affiliation(s)
- Ece Erturk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, New York 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Truscott M, Raynal L, Premdas P, Goulet B, Leduy L, Bérubé G, Nepveu A. CDP/Cux stimulates transcription from the DNA polymerase alpha gene promoter. Mol Cell Biol 2003; 23:3013-28. [PMID: 12665598 PMCID: PMC152546 DOI: 10.1128/mcb.23.8.3013-3028.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CDP/Cux (CCAAT-displacement protein/cut homeobox) contains four DNA binding domains, namely, three Cut repeats (CR1, CR2, and CR3) and a Cut homeodomain. CCAAT-displacement activity involves rapid but transient interaction with DNA. More stable DNA binding activity is up-regulated at the G(1)/S transition and was previously shown to involve an N-terminally truncated isoform, CDP/Cux p110, that is generated by proteolytic processing. CDP/Cux has been previously characterized as a transcriptional repressor. However, here we show that expression of reporter plasmids containing promoter sequences from the human DNA polymerase alpha (pol alpha), CAD, and cyclin A genes is stimulated in cotransfections with N-terminally truncated CDP/Cux proteins but not with full-length CDP/Cux. Moreover, expression of the endogenous DNA pol alpha gene was stimulated following the infection of cells with a retrovirus expressing a truncated CDP/Cux protein. Chromatin immunoprecipitation (ChIP) assays revealed that CDP/Cux was associated with the DNA pol alpha gene promoter specifically in the S phase. Using linker scanning analyses, in vitro DNA binding, and ChIP assays, we established a correlation between binding of CDP/Cux to the DNA pol alpha promoter and the stimulation of gene expression. Although we cannot exclude the possibility that stimulation of gene expression by CDP/Cux involved the repression of a repressor, our data support the notion that CDP/Cux participates in transcriptional activation. Notwithstanding its mechanism of action, these results establish CDP/Cux as an important transcriptional regulator in the S phase.
Collapse
Affiliation(s)
- Mary Truscott
- Molecular Oncology Group, McGill University Health Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen HJ, Carr K, Jerome RE, Edenberg HJ. A retroviral repetitive element confers tissue-specificity to the human alcohol dehydrogenase 1C (ADH1C) gene. DNA Cell Biol 2002; 21:793-801. [PMID: 12489990 DOI: 10.1089/104454902320908441] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The human ADH1A, ADH1B, and ADH1C genes encode alcohol dehydrogenases (ADHs) that metabolize ethanol. They evolved by recent tandem duplications and have similar proximal cis-acting elements, but differ in tissue-specificity. We hypothesized that distal cis-acting elements confer tissue-specificity. In this article, we identify multiple cis-acting elements in the ADH1C upstream region. Negative elements in the fragments from bp -1,078 to -622 and from bp -3,957 to -2,651 decreased transcription activity to 41 and 14%, respectively. A tissue-specific regulatory element in the region between bp -1,503 and -1,053 stimulated transcription sixfold in H4IIE-C3 hepatoma cells but reduced transcription to 23% in HeLa cells. This regulatory element was mapped to a repetitive sequence that is similar to the U3 repeat within the long terminal repeat of human endogenous retrovirus ERV9. The 30-fold difference in expression between two cell lines demonstrates that this upstream U3 element, which inserted after the duplications that created the three class I ADH genes, plays an important role in regulating tissue-specificity of ADH1C. The ubiquitous Nuclear factor-Y (NF-Y) and an H4IIE-C3/liver-specific factor bound to the subrepeat sequence. This result suggested that tissue specificity might result from combinatorial regulation by these two transcription factors.
Collapse
Affiliation(s)
- Hui-Ju Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | |
Collapse
|
36
|
Gillingham AK, Pfeifer AC, Munro S. CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol Biol Cell 2002; 13:3761-74. [PMID: 12429822 PMCID: PMC133590 DOI: 10.1091/mbc.e02-06-0349] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Large coiled-coil proteins are being found in increasing numbers on the membranes of the Golgi apparatus and have been proposed to function in tethering of transport vesicles and in the organization of the Golgi stack. Members of one class of Golgi coiled-coil protein, comprising giantin and golgin-84, are anchored to the bilayer by a single C-terminal transmembrane domain (TMD). In this article, we report the characterization of another mammalian coiled-coil protein, CASP, that was originally identified as an alternatively spliced product of the CUTL1 gene that encodes CCAAT-displacement protein (CDP), the human homologue of the Drosophila homeodomain protein Cut. We find that the Caenorhabditis elegans homologues of CDP and CASP are also generated from a single gene. CASP lacks the DNA binding motifs of CDP and was previously reported to be a nuclear protein. Herein, we show that it is in fact a Golgi protein with a C-terminal TMD and shares with giantin and golgin-84 a conserved histidine in its TMD. However, unlike these proteins, CASP has a homologue in Saccharomyces cerevisiae, which we call COY1. Deletion of COY1 does not affect viability, but strikingly restores normal growth to cells lacking the Golgi soluble N-ethylmaleimide-sensitive factor attachment protein receptor Gos1p. The conserved histidine is necessary for Coy1p's activity in cells lacking Gos1p, suggesting that the TMD of these transmembrane Golgi coiled-coil proteins is directly involved in their function.
Collapse
|
37
|
Caruso ML, Litzka O, Martic G, Lottspeich F, Brakhage AA. Novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene. J Mol Biol 2002; 323:425-39. [PMID: 12381299 DOI: 10.1016/s0022-2836(02)00965-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cis-acting CCAAT elements are found frequently in eukaryotic promoter regions. Many of the genes containing such elements in their promoters are regulated by a conserved multimeric CCAAT-binding complex. In the fungus Emericella (Aspergillus) nidulans, this complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF regulates several genes, including the penicillin biosynthesis genes ipnA and aatA. Since it is estimated that the CCAAT-binding complex regulates more than 200 genes, an important question concerns the regulation mechanism that allows so many genes to be regulated by a single complex in a gene-specific manner. One of the answers to this question appears to lie in the interaction of AnCF with other transcription factors. Here, a novel transcription factor designated AnBH1 was isolated. The corresponding anbH1 gene was cloned and found to be located on chromosome IV. The deduced AnBH1 protein belongs to the family of basic-region helix-loop-helix (bHLH) transcription factors. AnBH1 binds in vitro as a homodimer to an, not previously described, asymmetric E-box within the aatA promoter that overlaps with the AnCF-binding site. This is the first report demonstrating that the CCAAT-binding complex and a bHLH transcription factor bind to overlapping sites. Since deletion of anbH1 appears to be lethal, the anbH1 gene was replaced by a regulatable alcAp-anbH1 gene fusion. The analysis of aatAp-lacZ expression in such a strain indicated that AnBH1 acts as a repressor of aatA gene expression and therefore counteracts the positive action of AnCF.
Collapse
Affiliation(s)
- Maria Louise Caruso
- Institut für Mikrobiologie, Universität Hannover, Schneiderberg 50, 30167 Hannover, Germany
| | | | | | | | | |
Collapse
|
38
|
Goebel P, Montalbano A, Ayers N, Kompfner E, Dickinson L, Webb CF, Feeney AJ. High frequency of matrix attachment regions and cut-like protein x/CCAAT-displacement protein and B cell regulator of IgH transcription binding sites flanking Ig V region genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2477-87. [PMID: 12193717 DOI: 10.4049/jimmunol.169.5.2477] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A major component in controlling V(D)J recombination is differential accessibility through localized changes in chromatin structure. Attachment of DNA to the nuclear matrix via matrix attachment region (MAR) sequences, and interaction with MAR-binding proteins have been shown to alter chromatin conformation, promote histone acetylation, and influence gene transcription. In this study, the flanking regions of several human and mouse Ig V(H) and Ig Vkappa genes were analyzed extensively for the presence of MARs by in vitro matrix-binding assay, and for interaction with the MAR-binding proteins cut-like protein x/CCAAT-displacement protein (Cux/CDP), B cell regulator of IgH transcription (Bright), and special AT-rich sequence-binding protein (SATB1) by EMSA. Cux/CDP and SATB1 are associated with repression, while Bright is an activator of Ig transcription. Binding sites were identified in the vicinity of all analyzed Ig V genes, and were also found flanking TCR Vbeta genes. We also show that the binding sites of the different factors do not always occur at MAR sequences. MAR sequences were also found within the Ig V loci at a much higher frequency than throughout the rest of the genome. Overall, the frequency and location of binding sites relative to the coding regions, and the strength of DNA-protein interaction showed much heterogeneity. Thus, variations in factor binding and MAR activity could potentially influence the extent of localized accessibility to V(D)J recombination and thus could play a role in unequal rearrangement of individual V genes. These sites could also contribute to effective transcription of Ig genes in mature and/or activated B cells, bringing both the promoter as well as the enhancer regions into close proximity at the nuclear matrix.
Collapse
Affiliation(s)
- Peter Goebel
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Tanabe O, Katsuoka F, Campbell AD, Song W, Yamamoto M, Tanimoto K, Engel JD. An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J 2002; 21:3434-42. [PMID: 12093744 PMCID: PMC126089 DOI: 10.1093/emboj/cdf340] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We recently described an erythroid epsilon-globin gene repressor activity, which we named DRED (direct repeat erythroid-definitive). We show that DRED binds with high affinity to DR1 sites in the human embryonic (epsilon-) and fetal (gamma-) globin gene promoters, but the adult beta-globin promoter has no DR1 element. DRED is a 540 kDa complex; sequence determination showed that it contains the nuclear orphan receptors TR2 and TR4. TR2 and TR4 form a heterodimer that binds to the epsilon and gamma promoter DR1 sites. One mutation in a DR1 site causes elevated gamma-globin transcription in human HPFH (hereditary persistence of fetal hemoglobin) syndrome, and we show that this mutation reduces TR2/TR4 binding in vitro. The two receptor mRNAs are expressed at all stages of murine and human erythropoiesis; their forced transgenic expression reduces endogenous embryonic epsilony-globin transcription. These data suggest that TR2/TR4 forms the core of a larger DRED complex that represses embryonic and fetal globin transcription in definitive erythroid cells, and therefore that inhibition of its activity might be an attractive intervention point for treating sickle cell anemia.
Collapse
MESH Headings
- Adult
- Anemia, Sickle Cell/metabolism
- Animals
- Dimerization
- Drug Design
- Erythroid Precursor Cells/metabolism
- Erythropoiesis
- Fetal Blood/metabolism
- Fetal Hemoglobin/biosynthesis
- Fetal Hemoglobin/genetics
- Gene Expression Regulation, Developmental
- Globins/genetics
- Hemoglobinopathies/genetics
- Humans
- K562 Cells/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Macromolecular Substances
- Mice
- Mice, Transgenic
- Neoplasm Proteins/metabolism
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/physiology
- Nuclear Receptor Subfamily 2, Group C, Member 1
- Point Mutation
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- Receptors, Steroid/chemistry
- Receptors, Steroid/physiology
- Receptors, Thyroid Hormone/chemistry
- Receptors, Thyroid Hormone/physiology
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/chemistry
- Repressor Proteins/physiology
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
| | | | | | | | - Masayuki Yamamoto
- Department of Biochemistry, Molecular Biology and Cell Biology, and Robert H.Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208-3500, USA and
Centre for TARA, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan Corresponding author e-mail:
| | - Keiji Tanimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, and Robert H.Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208-3500, USA and
Centre for TARA, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan Corresponding author e-mail:
| | - James Douglas Engel
- Department of Biochemistry, Molecular Biology and Cell Biology, and Robert H.Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208-3500, USA and
Centre for TARA, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan Corresponding author e-mail:
| |
Collapse
|
40
|
Abstract
A common myeloid progenitor gives rise to both granulocytes and monocytes. The early stages of granulopoiesis are mediated by the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and the later stages require C/EBPepsilon, PU.1, and CDP. Monocyte development requires PU.1 and interferon consensus sequence binding protein and can be induced by Maf-B, c-Jun, or Egr-1. Cytokine receptor signals modulate transcription factor activities but do not determine cell fates. Several mechanisms orchestrate the myeloid developmental program, including cooperative gene regulation, protein:protein interactions, regulation of factor levels, and induction of cell cycle arrest.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| |
Collapse
|
41
|
Abstract
Granulocytes and monocytes develop from a common myeloid progenitor. Early granulopoiesis requires the C/EBPalpha, PU.1, RAR, CBF, and c-Myb transcription factors, and terminal neutrophil differentiation is dependent upon C/EBPepsilon, PU.1, Sp1, CDP, and HoxA10. Monopoiesis can be induced by Maf-B, c-Jun, or Egr-1 and is dependent upon PU.1, Sp1, and ICSBP. Signals eminating from cytokine receptors modulate factor activities but do not determine cell fates. Orchestration of the myeloid developmental program is achieved via cooperative gene regulation, via synergistic and inhibitory protein-protein interactions, via promoter auto-regulation and cross-regulation, via regulation of factor levels, and via induction of cell cycle arrest: For example, c-Myb and C/EBPalpha cooperate to activate the mim-1 and NE promoters, PU.1, C/EBPalpha, and CBF, regulate the NE, MPO, and M-CSF Receptor genes. PU.1:GATA-1 interaction and C/EBP suppression of FOG transcription inhibits erythroid and megakaryocyte gene expression. c-Jun:PU.1, ICSBP:PU.1, and perhaps Maf:Jun complexes induce monocytic genes. PU.1 and C/EBPalpha activate their own promoters, C/EBPalpha rapidly induces PU.1 and C/EBPepsilon RNA expression, and RARalpha activates the C/EBPepsilon promoter. Higher levels of PU.1 are required for monopoiesis than for B-lymphopoiesis, and higher C/EBP levels may favor granulopoiesis over monopoiesis. CBF and c-Myb stimulate proliferation whereas C/EBPalpha induces a G1/S arrest; cell cycle arrest is required for terminal myelopoiesis, perhaps due to expression of p53 or hypo-phosphorylated Rb.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA.
| |
Collapse
|
42
|
Bernard HU. Gene Expression of Genital Human Papillomaviruses and Considerations on Potential Antiviral Approaches. Antivir Ther 2002. [DOI: 10.1177/135965350200700401] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genital human papillomaviruses (HPVs) are carcinogenic to humans and are associated with most cases of cervical cancer, genital and laryngeal warts, and certain cutaneous neoplastic lesions. Five of the more than 50 known genital HPV types, HPV-6, -11, -16, -18 and -31, have become the models to study gene expression. The comparison of the studies of these five viruses and analyses of the genomic sequences of those genital HPV types that have not been transcriptionally studied make it likely that genital HPVs share most strategies for regulating their transcription. These strategies are quite different from those of unrelated human and animal papillomaviruses. Among these common properties are (i) a specific promoter structure allowing for fine-tuned negative feedback, (ii) a transcriptional enhancer that is specific for epithelial cells, (iii) regulation by progesterone and glucocorticoid hormones, (iv) silencers, whose principal function appears to be transcriptional repression in the basal layer of infected epithelia, (v) specifically positioned nucleosomes that mediate the functions of some enhancer and the silencer factors, (vi) nuclear matrix attachment regions that can, under different conditions, repress or stimulate transcription, and (vii) as yet poorly understood late promoters positioned very remote from the late genes. Most of these properties are controlled by cellular proteins that, due to their simultaneous importance for cellular processes, may not be useful as HPV-specific drug targets. It should be possible, however, to target complex cis-responsive elements unique to these HPV genomes by nucleotide sequence-specific molecules, such as antisense RNA, polyamides and artificial transcription factors. The application of small molecule-based drugs may be restricted to target proteins encoded by the HPV DNA, such as the replication factor E1 and the transcription/replication factor E2.
Collapse
|
43
|
Luong MX, van der Meijden CM, Xing D, Hesselton R, Monuki ES, Jones SN, Lian JB, Stein JL, Stein GS, Neufeld EJ, van Wijnen AJ. Genetic ablation of the CDP/Cux protein C terminus results in hair cycle defects and reduced male fertility. Mol Cell Biol 2002; 22:1424-37. [PMID: 11839809 PMCID: PMC134686 DOI: 10.1128/mcb.22.5.1424-1437.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Murine CDP/Cux, a homologue of the Drosophila Cut homeoprotein, modulates the promoter activity of cell cycle-related and cell-type-specific genes. CDP/Cux interacts with histone gene promoters as the DNA binding subunit of a large nuclear complex (HiNF-D). CDP/Cux is a ubiquitous protein containing four conserved DNA binding domains: three Cut repeats and a homeodomain. In this study, we analyzed genetically targeted mice (Cutl1(tm2Ejn), referred to as Delta C) that express a mutant CDP/Cux protein with a deletion of the C terminus, including the homeodomain. In comparison to the wild-type protein, indirect immunofluorescence showed that the mutant protein exhibited significantly reduced nuclear localization. Consistent with these data, DNA binding activity of HiNF-D was lost in nuclear extracts derived from mouse embryonic fibroblasts (MEFs) or adult tissues of homozygous mutant (Delta C(-/-)) mice, indicating the functional loss of CDP/Cux protein in the nucleus. No significant difference in growth characteristics or total histone H4 mRNA levels was observed between wild-type and Delta C(-/-) MEFs in culture. However, specific histone genes (H4.1 and H1) containing CDP/Cux binding sites have reduced expression levels in homozygous mutant MEFs. Stringent control of growth and differentiation appears to be compromised in vivo. Homozygous mutant mice have stunted growth (20 to 50% weight reduction), a high postnatal death rate of 60 to 70%, sparse abnormal coat hair, and severely reduced fertility. The deregulated hair cycle and severely diminished fertility in Cutl1(tm2Ejn/tm2Ejn) mice suggest that CDP/Cux is required for the developmental control of dermal and reproductive functions.
Collapse
Affiliation(s)
- Mai X Luong
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhu Q, Dudley JP. CDP binding to multiple sites in the mouse mammary tumor virus long terminal repeat suppresses basal and glucocorticoid-induced transcription. J Virol 2002; 76:2168-79. [PMID: 11836394 PMCID: PMC135928 DOI: 10.1128/jvi.76.5.2168-2179.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Accepted: 11/27/2001] [Indexed: 01/19/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) is transcribed at high levels in the lactating mammary gland to ensure transmission of virus from the milk of infected female mice to susceptible offspring. We previously have shown that the transcription factor CCAAT displacement protein (CDP) is expressed in high amounts in virgin mammary gland, yet DNA-binding activity for the MMTV long terminal repeat (LTR) disappears as mammary tissue differentiates during lactation. CDP is a repressor of MMTV expression and, therefore, MMTV expression is suppressed during early mammary gland development. In this study, we have shown using DNase I footprinting and electrophoretic mobility shift assays that there are at least five CDP-binding sites in the MMTV LTR upstream of those previously described in the promoter-proximal negative regulatory element (NRE). Single mutations in two of these upstream sites (+691 or +692 and +735 relative to the first base of the LTR) reduced CDP binding to the cognate sites and elevated reporter gene expression from the full-length MMTV LTR. Combination of a mutation in the promoter-distal NRE with a mutation in the proximal NRE gave approximately additive increases in LTR-reporter gene activity, suggesting that these binding sites act independently. Mutations in several different CDP-binding sites allowed elevation of reporter gene activity from the MMTV promoter in the absence and presence of glucocorticoids, hormones that contribute to high levels of MMTV transcription during lactation by activation of hormone receptor binding to the LTR. In addition, overexpression of CDP in transient-transfection assays suppressed both basal and glucocorticoid-induced LTR-mediated transcription in a dose-dependent manner. These data suggest that multiple CDP-binding sites contribute independently to regulate binding of positive factors, including glucocorticoid receptor, to the MMTV LTR during mammary gland development.
Collapse
Affiliation(s)
- Quan Zhu
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 100 W. 24th St., Austin, TX 78705, USA
| | | |
Collapse
|
45
|
Sinclair AM, Lee JA, Goldstein A, Xing D, Liu S, Ju R, Tucker PW, Neufeld EJ, Scheuermann RH. Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood 2001; 98:3658-67. [PMID: 11739170 DOI: 10.1182/blood.v98.13.3658] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CCAAT displacement protein (cux/CDP) is an atypical homeodomain protein that represses expression of several developmentally regulated lymphoid and myeloid genes in vitro, including gp91-phox, immunoglobulin heavy chain, the T-cell receptor beta and gamma chains, and CD8. To determine how this activity affects cell development in vivo, a hypomorphic allele of cux/CDP was created by gene targeting. Homozygous mutant mice (cux/CDP(Delta HD/Delta HD)) demonstrated a partial neonatal lethality phenotype. Surviving animals suffered from a wasting disease, which usually resulted in death between 2 and 3 weeks of age. Analysis of T lymphopoiesis demonstrated that cux/CDP(Delta HD/Delta HD) mice had dramatically reduced thymic cellularity due to enhanced apoptosis, with a preferential loss of CD4(+)CD8(+) thymocytes. Ectopic CD25 expression was also observed in maturing thymocytes. B lymphopoiesis was also perturbed, with a 2- to 3-fold reduction in total bone marrow B-lineage cells and a preferential loss of cells in transition from pro-B/pre-BI to pre-BII stages due to enhanced apoptosis. These lymphoid abnormalities were independent of effects related to antigen receptor rearrangement. In contrast to the lymphoid demise, cux/CDP(Delta HD/Delta HD) mice demonstrated myeloid hyperplasia. Bone marrow reconstitution experiments identified that many of the hematopoietic defects were linked to microenvironmental effects, suggesting that underexpression of survival factors or overexpression of death-inducing factors accounted for the phenotypes observed. Tumor necrosis factor (TNF) levels were elevated in several tissues, especially thymus, suggesting that TNF may be a target gene for cux/CDP-mediated repression. These data suggest that cux/CDP regulates normal hematopoiesis, in part, by modulating the levels of survival and/or apoptosis factors expressed by the microenvironment.
Collapse
Affiliation(s)
- A M Sinclair
- Department of Pathology and Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, 75390-9072, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Santaguida M, Ding Q, Bérubé G, Truscott M, Whyte P, Nepveu A. Phosphorylation of the CCAAT displacement protein (CDP)/Cux transcription factor by cyclin A-Cdk1 modulates its DNA binding activity in G(2). J Biol Chem 2001; 276:45780-90. [PMID: 11584018 DOI: 10.1074/jbc.m107978200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stable DNA binding by the mammalian CCAAT displacement protein (CDP)/Cux transcription factor was previously found to be up-regulated at the G(1)/S transition as the result of two events, dephosphorylation by the Cdc25A phosphatase and proteolytic processing, to generate an amino-truncated isoform of 110 kDa. In S phase, CDP/Cux was shown to interact with and repress the core promoter of the p21(WAF1) gene. Here we demonstrate that DNA binding by p110 CDP/Cux is down-modulated as cells progress into G(2). Accordingly, cyclin A-Cdk1 was found to bind to CDP/Cux and modulate its DNA binding activity in vitro and in vivo. Interaction with CDP/Cux required the presence of both cyclin A and a cyclin-dependent kinase (Cdk)-activating kinase-activated Cdk1 and involved the Cut homeodomain and a downstream Cy motif. Phosphorylation of serines 1237 and 1270 caused inhibition of DNA binding in vitro. In cotransfection studies, cyclin A-Cdk1 inhibited CDP/Cux stable DNA binding and prevented repression of the p21(WAF1) reporter. In contrast, mutant CDP/Cux proteins in which serines 1237 and 1270 were replaced with alanines were not affected by cyclin A-Cdk1. In summary, our results suggest that the phosphorylation of CDP/Cux by cyclin A-Cdk1 contributes to down-modulate CDP/Cux activity as cells progress into the G(2) phase of the cell cycle.
Collapse
Affiliation(s)
- M Santaguida
- Molecular Oncology Group, McGill University Health Center, Department of Biochemistry, McGill University Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Qin JZ, Zhang CL, Kamarashev J, Dummer R, Burg G, Döbbeling U. Interleukin-7 and interleukin-15 regulate the expression of the bcl-2 and c-myb genes in cutaneous T-cell lymphoma cells. Blood 2001; 98:2778-83. [PMID: 11675351 DOI: 10.1182/blood.v98.9.2778] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-7 (IL-7) and IL-15 have been recently identified as growth factors for cutaneous T-cell lymphoma (CTCL) cells, and they protect these cells from cell death. Using the CTCL cell line SeAx as a test system now shows that IL-7 and IL-15 are indeed necessary to maintain high levels of bcl-2. The up-regulation of bcl-2 was paralleled by increased DNA-binding activities of the transcription factors STAT2, STAT5, STAT6, and c-Myb to bcl-2 gene promoter-enhancer elements. Because STAT5 and c-Myb positively regulate bcl-2, IL-7 and IL-15 may mediate some of their effects on cell death survival gene expression through these 2 factors. Constitutive activities of the 3 STAT factors and c-Myb were found in the IL-7- and IL-15-independent CTCL cell lines HUT78 and MyLa 2059. The c-Myb protein was also present in CTCL cells of the skin lesions of all investigated patients. These results indicate that IL-7 and IL-15 may increase bcl-2 expression in CTCL cells by the activation of c-myb and STAT factors.
Collapse
Affiliation(s)
- J Z Qin
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Jethanandani P, Goldberg E. ldhc expression in non-germ cell nuclei is repressed by NF-I binding. J Biol Chem 2001; 276:35414-21. [PMID: 11447215 DOI: 10.1074/jbc.m101269200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developmental and testis-specific expression of the mouse lactate dehydrogenase C (mldhc) gene requires mechanisms for activation in germ cells and repression in somatic cells. Promoter activity restricted to the testis has been demonstrated using in vitro transcription assays with a 60-base pair promoter sequence upstream of the transcription initiation site. This promoter fragment has a TATA box and an overlapping 31-base pair palindromic sequence. Here we have explored the role of the palindrome as a silencer of the ldhc gene in somatic tissues. A gel retardation assay detected two sites within the palindrome that were important for protein binding. A member of the NF-I/CTF family was identified as the protein binding to one of the sites. In transiently transfected mouse L cells, a promoter fragment in which the NF-I site was mutated showed a 4-fold greater activity as compared with the wild-type sequence. Overexpression of the four NF-I proteins, NF-IA, -B, -C, or -X, in mouse L cells transiently transfected with an ldhc promoter-reporter construct resulted in a 20-50% decrease in activity of the wild-type promoter but had no effect when the NF-I binding element in the palindrome was mutated. These results indicate a role for the NF-I proteins in regulation of the mldhc gene.
Collapse
Affiliation(s)
- P Jethanandani
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
49
|
Ellis T, Gambardella L, Horcher M, Tschanz S, Capol J, Bertram P, Jochum W, Barrandon Y, Busslinger M. The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle. Genes Dev 2001; 15:2307-19. [PMID: 11544187 PMCID: PMC312776 DOI: 10.1101/gad.200101] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mammalian Cutl1 gene codes for the CCAAT displacement protein (CDP), which has been implicated as a transcriptional repressor in diverse processes such as terminal differentiation, cell cycle progression, and the control of nuclear matrix attachment regions. To investigate the in vivo function of Cutl1, we have replaced the C-terminal Cut repeat 3 and homeodomain exons with an in-frame lacZ gene by targeted mutagenesis in the mouse. The CDP-lacZ fusion protein is retained in the cytoplasm and fails to repress gene transcription, indicating that the Cutl1(lacZ) allele corresponds to a null mutation. Cutl1 mutant mice on inbred genetic backgrounds are born at Mendelian frequency, but die shortly after birth because of retarded differentiation of the lung epithelia, which indicates an essential role of CDP in lung maturation. A less pronounced delay in lung development allows Cutl1 mutant mice on an outbred background to survive beyond birth. These mice are growth-retarded and develop an abnormal pelage because of disrupted hair follicle morphogenesis. The inner root sheath (IRS) is reduced, and the transcription of Sonic hedgehog and IRS-specific genes is deregulated in Cutl1 mutant hair follicles, consistent with the specific expression of Cutl1 in the progenitors and cell lineages of the IRS. These data implicate CDP in cell-lineage specification during hair follicle morphogenesis, which resembles the role of the related Cut protein in specifying cell fates during Drosophila development.
Collapse
Affiliation(s)
- T Ellis
- Research Institute of Molecular Pathology, Vienna Biocenter, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Qin JZ, Kamarashev J, Zhang CL, Dummer R, Burg G, Döbbeling U. Constitutive and interleukin-7- and interleukin-15-stimulated DNA binding of STAT and novel factors in cutaneous T cell lymphoma cells. J Invest Dermatol 2001; 117:583-9. [PMID: 11564163 DOI: 10.1046/j.0022-202x.2001.01436.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
On testing cutaneous T cell lymphoma cell lines and skin lesions, we found that the transcription factors STAT2, STAT3, STAT5, and STAT6 (STAT, signal transducer and activator of transcription) were present in the nuclei of these cells and that the binding to their specific DNA binding sites was stimulated by interleukin-7 and interleukin-15. DNA binding studies also revealed the presence of three additional DNA factors in cutaneous T cell lymphoma cells that bound to the same sequences and could also be stimulated by interleukin-7 and interleukin-15. One of these novel factors was also present in the adult T cell leukemia cell line Jurkat and malignant T cells from the blood of Sézary syndrome patients, but not in normal peripheral blood lymphocytes. It may therefore be a marker of T cell leukemia. It seems to interfere with the binding of STAT1 to the sis inducible element, suggesting that the DNA binding activity of STAT1 in cutaneous T cell lymphoma cells is disturbed.
Collapse
Affiliation(s)
- J Z Qin
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|