1
|
Dragoi CM, Kaur E, Barr AR, Tyson JJ, Novák B. The oscillation of mitotic kinase governs cell cycle latches in mammalian cells. J Cell Sci 2024; 137:jcs261364. [PMID: 38206091 PMCID: PMC10911285 DOI: 10.1242/jcs.261364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The mammalian cell cycle alternates between two phases - S-G2-M with high levels of A- and B-type cyclins (CycA and CycB, respectively) bound to cyclin-dependent kinases (CDKs), and G1 with persistent degradation of CycA and CycB by an activated anaphase promoting complex/cyclosome (APC/C) bound to Cdh1 (also known as FZR1 in mammals; denoted APC/C:Cdh1). Because CDKs phosphorylate and inactivate Cdh1, these two phases are mutually exclusive. This 'toggle switch' is flipped from G1 to S by cyclin-E bound to a CDK (CycE:CDK), which is not degraded by APC/C:Cdh1, and from M to G1 by Cdc20-bound APC/C (APC/C:Cdc20), which is not inactivated by CycA:CDK or CycB:CDK. After flipping the switch, cyclin E is degraded and APC/C:Cdc20 is inactivated. Combining mathematical modelling with single-cell timelapse imaging, we show that dysregulation of CycB:CDK disrupts strict alternation of the G1-S and M-G1 switches. Inhibition of CycB:CDK results in Cdc20-independent Cdh1 'endocycles', and sustained activity of CycB:CDK drives Cdh1-independent Cdc20 endocycles. Our model provides a mechanistic explanation for how whole-genome doubling can arise, a common event in tumorigenesis that can drive tumour evolution.
Collapse
Affiliation(s)
- Calin-Mihai Dragoi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ekjot Kaur
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alexis R. Barr
- MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Aze A, Hutchins JRA, Maiorano D. Studying Translesion DNA Synthesis Using Xenopus In Vitro Systems. Methods Mol Biol 2024; 2740:21-36. [PMID: 38393467 DOI: 10.1007/978-1-0716-3557-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Cell-free extracts derived from Xenopus eggs have been widely used to decipher molecular pathways involved in several cellular processes including DNA synthesis, the DNA damage response, and genome integrity maintenance. We set out assays using Xenopus cell-free extracts to study translesion DNA synthesis (TLS), a branch of the DNA damage tolerance pathway that allows replication of damaged DNA. Using this system, we were able to recapitulate TLS activities that occur naturally in vivo during early embryogenesis. This chapter describes protocols to detect chromatin-bound TLS factors by western blotting and immunofluorescence microscopy upon induction of DNA damage by UV irradiation, monitor TLS-dependent mutagenesis, and perform proteomic screening.
Collapse
Affiliation(s)
- Antoine Aze
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - James R A Hutchins
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, Institute of Human Genetics, UMR9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
3
|
Jessberger G, Várnai C, Stocsits RR, Tang W, Stary G, Peters JM. Cohesin and CTCF do not assemble TADs in Xenopus sperm and male pronuclei. Genome Res 2023; 33:2094-2107. [PMID: 38129077 PMCID: PMC10760524 DOI: 10.1101/gr.277865.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Paternal genomes are compacted during spermiogenesis and decompacted following fertilization. These processes are fundamental for inheritance but incompletely understood. We analyzed these processes in the frog Xenopus laevis, whose sperm can be assembled into functional pronuclei in egg extracts in vitro. In such extracts, cohesin extrudes DNA into loops, but in vivo cohesin only assembles topologically associating domains (TADs) at the mid-blastula transition (MBT). Why cohesin assembles TADs only at this stage is unknown. We first analyzed genome architecture in frog sperm and compared it to human and mouse. Our results indicate that sperm genome organization is conserved between frogs and humans and occurs without formation of TADs. TADs can be detected in mouse sperm samples, as reported, but these structures might originate from somatic chromatin contaminations. We therefore discuss the possibility that the absence of TADs might be a general feature of vertebrate sperm. To analyze sperm genome remodeling upon fertilization, we reconstituted male pronuclei in Xenopus egg extracts. In pronuclei, chromatin compartmentalization increases, but cohesin does not accumulate at CTCF sites and assemble TADs. However, if pronuclei are formed in the presence of exogenous CTCF, CTCF binds to its consensus sites, and cohesin accumulates at these and forms short-range chromatin loops, which are preferentially anchored at CTCF's N terminus. These results indicate that TADs are only assembled at MBT because before this stage CTCF sites are not occupied and cohesin only forms short-range chromatin loops.
Collapse
Affiliation(s)
- Gregor Jessberger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Csilla Várnai
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, United Kingdom
| | - Roman R Stocsits
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
4
|
Lo Furno E, Recolin B, van der Laan S, Aze A, Maiorano D. Studying the DNA damage response in embryonic systems. Methods Enzymol 2021; 661:95-120. [PMID: 34776225 DOI: 10.1016/bs.mie.2021.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Maintenance and surveillance of genome integrity is crucial during the very early steps of embryonic development, since de novo mutations generated during this stage can be propagated in differentiated adult cells and may lead to predisposition to diseases including cancer. Surprisingly, early embryos are characterized by a relaxed control of genome integrity, reminiscent of that observed in cancer cells. How embryos manage to produce healthy adult individuals in such conditions remains still unclear. Here, we describe protocols and methods to study and analyze the DNA damage response and genome integrity in two embryonic experimental systems, early Xenopus laevis embryos and mouse embryonic stem cells. We describe methods to study gene functions in the DNA damage response by mRNA microinjection in Xenopus embryos generated by in vitro fertilization, mutagenesis and developmental regulation of the DNA damage response. We also describe methods to analyze the DNA damage response in mESCs, including synchronization experiments that allow studying the DNA damage response at different cell cycle stages. Analysis of genome integrity in these systems may also help to shed light on the molecular mechanisms that preserve genome integrity and become dysregulated in cancer cells.
Collapse
Affiliation(s)
- Elena Lo Furno
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France
| | - Bénédicte Recolin
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France.
| | - Siem van der Laan
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France
| | - Antoine Aze
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France
| | - Domenico Maiorano
- Institut de Génétique Humaine, Université de Montpellier, Genome Surveillance and Stability, CNRS-UMR9002, Montpellier, France.
| |
Collapse
|
5
|
El Dika M. Use of Xenopus laevis cell-free extracts to study BRCA2 role in chromosome alignment. DNA Repair (Amst) 2021; 100:103053. [PMID: 33550028 DOI: 10.1016/j.dnarep.2021.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Mohammed El Dika
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA; Institut Curie, PSL Research University, CNRS, UMR3348, Orsay, France; Paris Sud University, Paris-Saclay University, CNRS, UMR3348, Orsay, France.
| |
Collapse
|
6
|
Nolet FE, Vandervelde A, Vanderbeke A, Piñeros L, Chang JB, Gelens L. Nuclei determine the spatial origin of mitotic waves. eLife 2020; 9:e52868. [PMID: 32452767 PMCID: PMC7314552 DOI: 10.7554/elife.52868] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Traveling waves play an essential role in coordinating mitosis over large distances, but what determines the spatial origin of mitotic waves remains unclear. Here, we show that such waves initiate at pacemakers, regions that oscillate faster than their surroundings. In cell-free extracts of Xenopus laevis eggs, we find that nuclei define such pacemakers by concentrating cell cycle regulators. In computational models of diffusively coupled oscillators that account for nuclear import, nuclear positioning determines the pacemaker location. Furthermore, we find that the spatial dimensions of the oscillatory medium change the nuclear positioning and strongly influence whether a pacemaker is more likely to be at a boundary or an internal region. Finally, we confirm experimentally that increasing the system width increases the proportion of pacemakers at the boundary. Our work provides insight into how nuclei and spatial system dimensions can control local concentrations of regulators and influence the emergent behavior of mitotic waves.
Collapse
Affiliation(s)
- Felix E Nolet
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Arno Vanderbeke
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
- MeBioS - Biosensors Group, Department of Biosystems, KU LeuvenLeuvenBelgium
| | - Liliana Piñeros
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Jeremy B Chang
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoUnited States
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| |
Collapse
|
7
|
Response of the Green Alga Chlamydomonas reinhardtii to the DNA Damaging Agent Zeocin. Cells 2019; 8:cells8070735. [PMID: 31319624 PMCID: PMC6678277 DOI: 10.3390/cells8070735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
DNA damage is a ubiquitous threat endangering DNA integrity in all living organisms. Responses to DNA damage include, among others, induction of DNA repair and blocking of cell cycle progression in order to prevent transmission of damaged DNA to daughter cells. Here, we tested the effect of the antibiotic zeocin, inducing double stranded DNA breaks, on the cell cycle of synchronized cultures of the green alga Chlamydomonas reinhardtii. After zeocin application, DNA replication partially occurred but nuclear and cellular divisions were completely blocked. Application of zeocin combined with caffeine, known to alleviate DNA checkpoints, decreased cell viability significantly. This was probably caused by a partial overcoming of the cell cycle progression block in such cells, leading to aberrant cell divisions. The cell cycle block was accompanied by high steady state levels of mitotic cyclin-dependent kinase activity. The data indicate that DNA damage response in C. reinhardtii is connected to the cell cycle block, accompanied by increased and stabilized mitotic cyclin-dependent kinase activity.
Collapse
|
8
|
Kelly CL, Harris AWK, Steel H, Hancock EJ, Heap JT, Papachristodoulou A. Synthetic negative feedback circuits using engineered small RNAs. Nucleic Acids Res 2019; 46:9875-9889. [PMID: 30212900 PMCID: PMC6182179 DOI: 10.1093/nar/gky828] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Negative feedback is known to enable biological and man-made systems to perform reliably in the face of uncertainties and disturbances. To date, synthetic biological feedback circuits have primarily relied upon protein-based, transcriptional regulation to control circuit output. Small RNAs (sRNAs) are non-coding RNA molecules that can inhibit translation of target messenger RNAs (mRNAs). In this work, we modelled, built and validated two synthetic negative feedback circuits that use rationally-designed sRNAs for the first time. The first circuit builds upon the well characterised tet-based autorepressor, incorporating an externally-inducible sRNA to tune the effective feedback strength. This allows more precise fine-tuning of the circuit output in contrast to the sigmoidal, steep input–output response of the autorepressor alone. In the second circuit, the output is a transcription factor that induces expression of an sRNA, which inhibits translation of the mRNA encoding the output, creating direct, closed-loop, negative feedback. Analysis of the noise profiles of both circuits showed that the use of sRNAs did not result in large increases in noise. Stochastic and deterministic modelling of both circuits agreed well with experimental data. Finally, simulations using fitted parameters allowed dynamic attributes of each circuit such as response time and disturbance rejection to be investigated.
Collapse
Affiliation(s)
- Ciarán L Kelly
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.,Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Andreas W K Harris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Edward J Hancock
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
9
|
Kermi C, Aze A, Maiorano D. Preserving Genome Integrity During the Early Embryonic DNA Replication Cycles. Genes (Basel) 2019; 10:genes10050398. [PMID: 31137726 PMCID: PMC6563053 DOI: 10.3390/genes10050398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
During the very early stages of embryonic development chromosome replication occurs under rather challenging conditions, including a very short cell cycle, absence of transcription, a relaxed DNA damage response and, in certain animal species, a highly contracted S-phase. This raises the puzzling question of how the genome can be faithfully replicated in such a peculiar metabolic context. Recent studies have provided new insights into this issue, and unveiled that embryos are prone to accumulate genetic and genomic alterations, most likely due to restricted cellular functions, in particular reduced DNA synthesis quality control. These findings may explain the low rate of successful development in mammals and the occurrence of diseases, such as abnormal developmental features and cancer. In this review, we will discuss recent findings in this field and put forward perspectives to further study this fascinating question.
Collapse
Affiliation(s)
- Chames Kermi
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA.
| | - Antoine Aze
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| | - Domenico Maiorano
- Laboratoire Surveillance et Stabilité du Génome, Institut de Génétique Humaine, UMR9002, CNRS, Université de Montpellier, 34090 Montpellier, France.
| |
Collapse
|
10
|
Abstract
Besides TopBP1, ETAA1 has been identified more recently as an activator of the ATR-ATRIP complex in human cells. We have examined the role of ETAA1 in the Xenopus egg-extract system, which has been instrumental in the study of ATR-ATRIP. Depletion of ETAA1 from egg extracts did not noticeably reduce the activation of ATR-ATRIP in response to replication stress, as monitored by the ATR-dependent phosphorylation of Chk1 and RPA. Moreover, lack of ETAA1 did not appear to affect DNA replication during an unperturbed S-phase. Significantly, we find that TopBP1 is considerably more abundant than ETAA1 in egg extracts. We proceeded to show that ETAA1 could support the activation of ATR-ATRIP in response to replication stress if we increased its concentration in egg extracts by adding extra full-length recombinant ETAA1. Thus, TopBP1 appears to be the predominant activator of ATR-ATRIP in response to replication stress in this system. We have also explored the biochemical mechanism by which ETAA1 activates ATR-ATRIP. We have developed an in vitro system in which full-length recombinant ETAA1 supports activation of ATR-ATRIP in the presence of defined components. We find that binding of ETAA1 to RPA associated with single-stranded DNA (ssDNA) greatly stimulates its ability to activate ATR-ATRIP. Thus, RPA-coated ssDNA serves as a direct positive effector in the ETAA1-mediated activation of ATR-ATRIP.
Collapse
Affiliation(s)
- Ke Lyu
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - Akiko Kumagai
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - William G Dunphy
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| |
Collapse
|
11
|
Ogura Y, Sasakura Y. Emerging mechanisms regulating mitotic synchrony during animal embryogenesis. Dev Growth Differ 2017; 59:565-579. [DOI: 10.1111/dgd.12391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Yosuke Ogura
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shizuoka Japan
| |
Collapse
|
12
|
Hoogenboom WS, Klein Douwel D, Knipscheer P. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms. Dev Biol 2017; 428:300-309. [PMID: 28427716 DOI: 10.1016/j.ydbio.2017.03.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023]
Abstract
DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways.
Collapse
Affiliation(s)
- Wouter S Hoogenboom
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands
| | - Daisy Klein Douwel
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands
| | - Puck Knipscheer
- Hubrecht Institute - KNAW, University Medical Center Utrecht & Cancer GenomiCs Netherlands, The Netherlands.
| |
Collapse
|
13
|
Regulation of DNA Replication in Early Embryonic Cleavages. Genes (Basel) 2017; 8:genes8010042. [PMID: 28106858 PMCID: PMC5295036 DOI: 10.3390/genes8010042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
Early embryonic cleavages are characterized by short and highly synchronous cell cycles made of alternating S- and M-phases with virtually absent gap phases. In this contracted cell cycle, the duration of DNA synthesis can be extraordinarily short. Depending on the organism, the whole genome of an embryo is replicated at a speed that is between 20 to 60 times faster than that of a somatic cell. Because transcription in the early embryo is repressed, DNA synthesis relies on a large stockpile of maternally supplied proteins stored in the egg representing most, if not all, cellular genes. In addition, in early embryonic cell cycles, both replication and DNA damage checkpoints are inefficient. In this article, we will review current knowledge on how DNA synthesis is regulated in early embryos and discuss possible consequences of replicating chromosomes with little or no quality control.
Collapse
|
14
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Siefert JC, Clowdus EA, Sansam CL. Cell cycle control in the early embryonic development of aquatic animal species. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:8-15. [PMID: 26475527 PMCID: PMC4755307 DOI: 10.1016/j.cbpc.2015.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023]
Abstract
The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease.
Collapse
Affiliation(s)
- Joseph C Siefert
- Oklahoma Medical Research Foundation, Cell Cycle and Cancer Biology Research Program, Oklahoma City, OK, USA; University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, USA
| | - Emily A Clowdus
- Oklahoma Medical Research Foundation, Cell Cycle and Cancer Biology Research Program, Oklahoma City, OK, USA; University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, USA
| | - Christopher L Sansam
- Oklahoma Medical Research Foundation, Cell Cycle and Cancer Biology Research Program, Oklahoma City, OK, USA; University of Oklahoma Health Sciences Center, Department of Cell Biology, Oklahoma City, OK, USA.
| |
Collapse
|
16
|
Kermi C, Prieto S, van der Laan S, Tsanov N, Recolin B, Uro-Coste E, Delisle MB, Maiorano D. RAD18 Is a Maternal Limiting Factor Silencing the UV-Dependent DNA Damage Checkpoint in Xenopus Embryos. Dev Cell 2015. [PMID: 26212134 DOI: 10.1016/j.devcel.2015.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In early embryos, the DNA damage checkpoint is silent until the midblastula transition (MBT) because of maternal limiting factors of unknown identity. Here we identify the RAD18 ubiquitin ligase as one such factor in Xenopus. We show, in vitro and in vivo, that inactivation of RAD18 function leads to DNA damage-dependent checkpoint activation, monitored by CHK1 phosphorylation. Moreover, we show that the abundance of both RAD18 and PCNA monoubiquitylated (mUb) are developmentally regulated. Increased DNA abundance limits the availability of RAD18 close to the MBT, thereby reducing PCNA(mUb) and inducing checkpoint derepression. Furthermore, we show that this embryonic-like regulation can be reactivated in somatic mammalian cells by ectopic RAD18 expression, therefore conferring resistance to DNA damage. Finally, we find high RAD18 expression in cancer stem cells highly resistant to DNA damage. Together, these data propose RAD18 as a critical embryonic checkpoint-inhibiting factor and suggest that RAD18 deregulation may have unexpected oncogenic potential.
Collapse
Affiliation(s)
- Chames Kermi
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Susana Prieto
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Siem van der Laan
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Nikolay Tsanov
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Bénédicte Recolin
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Emmanuelle Uro-Coste
- Laboratoire Universitaire d'Anatomie Pathologique, Faculté de Médecine Rangueil, Université Toulouse III, CHU, INSERM, 1 Avenue Jean Poulhès, CS 53717 Toulouse, France
| | - Marie-Bernadette Delisle
- Laboratoire Universitaire d'Anatomie Pathologique, Faculté de Médecine Rangueil, Université Toulouse III, CHU, INSERM, 1 Avenue Jean Poulhès, CS 53717 Toulouse, France
| | - Domenico Maiorano
- Genome Surveillance and Stability Laboratory, CNRS-UPR1142, Institute of Human Genetics, 141 Rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
17
|
Tyson JJ, Novak B. Bistability, oscillations, and traveling waves in frog egg extracts. Bull Math Biol 2015; 77:796-816. [PMID: 25185750 PMCID: PMC4362858 DOI: 10.1007/s11538-014-0009-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 08/13/2014] [Indexed: 12/20/2022]
Abstract
Mathematical modeling is a powerful tool for unraveling the complexities of the molecular regulatory networks underlying all aspects of cell physiology. To support this claim, we review our experiences modeling the cyclin-dependent kinase (CDK) network that controls events of the eukaryotic cell cycle. The model was derived from classic experiments on the biochemistry and molecular genetics of CDKs and their partner proteins. Because the dynamical properties of CDK activity depend in large part on positive and negative feedback loops in the regulatory network, it is difficult to predict its behavior by intuitive reasoning alone. Mathematical modeling is the correct tool for reliably determining the properties of the network in comparison with observed properties of dividing cells and for predicting the behavior of the control system under novel conditions. In this review, we describe six unexpected predictions of our 1993 model of the CDK control system in frog egg extracts and the remarkable experiments, performed much later, that verified all six predictions. The dynamical properties of the CDK network are consequences of feedback signals and ultrasensitive responses of regulatory proteins to CDK activity, and we describe the experimental evidence for the predicted ultrasensitivity. This case study illustrates the novel insights that mathematical modeling, analysis, and simulation can provide cell physiologists, and it points the way to a new "dynamical perspective" on molecular cell biology.
Collapse
Affiliation(s)
- John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA,
| | | |
Collapse
|
18
|
Amodeo AA, Jukam D, Straight AF, Skotheim JM. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. Proc Natl Acad Sci U S A 2015; 112:E1086-95. [PMID: 25713373 PMCID: PMC4364222 DOI: 10.1073/pnas.1413990112] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During early development, animal embryos depend on maternally deposited RNA until zygotic genes become transcriptionally active. Before this maternal-to-zygotic transition, many species execute rapid and synchronous cell divisions without growth phases or cell cycle checkpoints. The coordinated onset of transcription, cell cycle lengthening, and cell cycle checkpoints comprise the midblastula transition (MBT). A long-standing model in the frog, Xenopus laevis, posits that MBT timing is controlled by a maternally loaded inhibitory factor that is titrated against the exponentially increasing amount of DNA. To identify MBT regulators, we developed an assay using Xenopus egg extract that recapitulates the activation of transcription only above the DNA-to-cytoplasm ratio found in embryos at the MBT. We used this system to biochemically purify factors responsible for inhibiting transcription below the threshold DNA-to-cytoplasm ratio. This unbiased approach identified histones H3 and H4 as concentration-dependent inhibitory factors. Addition or depletion of H3/H4 from the extract quantitatively shifted the amount of DNA required for transcriptional activation in vitro. Moreover, reduction of H3 protein in embryos induced premature transcriptional activation and cell cycle lengthening, and the addition of H3/H4 shortened post-MBT cell cycles. Our observations support a model for MBT regulation by DNA-based titration and suggest that depletion of free histones regulates the MBT. More broadly, our work shows how a constant concentration DNA binding molecule can effectively measure the amount of cytoplasm per genome to coordinate division, growth, and development.
Collapse
|
19
|
Blythe SA, Wieschaus EF. Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition. Cell 2015; 160:1169-81. [PMID: 25748651 DOI: 10.1016/j.cell.2015.01.050] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/03/2014] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
A conserved feature of the midblastula transition (MBT) is a requirement for a functional DNA replication checkpoint to coordinate cell-cycle remodeling and zygotic genome activation (ZGA). We have investigated what triggers this checkpoint during Drosophila embryogenesis. We find that the magnitude of the checkpoint scales with the quantity of transcriptionally engaged DNA. Measuring RNA polymerase II (Pol II) binding at 20 min intervals over the course of ZGA reveals that the checkpoint coincides with widespread de novo recruitment of Pol II that precedes and does not require a functional checkpoint. This recruitment drives slowing or stalling of DNA replication at transcriptionally engaged loci. Reducing Pol II recruitment in zelda mutants both reduces replication stalling and bypasses the requirement for a functional checkpoint. This suggests a model where the checkpoint functions as a feedback mechanism to remodel the cell cycle in response to nascent ZGA.
Collapse
Affiliation(s)
- Shelby A Blythe
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Eric F Wieschaus
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
20
|
Coordinating Cell Cycle Remodeling with Transcriptional Activation at the Drosophila MBT. Curr Top Dev Biol 2015; 113:113-48. [DOI: 10.1016/bs.ctdb.2015.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Slenn TJ, Morris B, Havens CG, Freeman RM, Takahashi TS, Walter JC. Thymine DNA glycosylase is a CRL4Cdt2 substrate. J Biol Chem 2014; 289:23043-23055. [PMID: 24947512 DOI: 10.1074/jbc.m114.574194] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The E3 ubiquitin ligase CRL4(Cdt2) targets proteins for destruction in S phase and after DNA damage by coupling ubiquitylation to DNA-bound proliferating cell nuclear antigen (PCNA). Coupling to PCNA involves a PCNA-interacting peptide (PIP) degron motif in the substrate that recruits CRL4(Cdt2) while binding to PCNA. In vertebrates, CRL4(Cdt2) promotes degradation of proteins whose presence in S phase is deleterious, including Cdt1, Set8, and p21. Here, we show that CRL4(Cdt2) targets thymine DNA glycosylase (TDG), a base excision repair enzyme that is involved in DNA demethylation. TDG contains a conserved and nearly perfect match to the PIP degron consensus. TDG is ubiquitylated and destroyed in a PCNA-, Cdt2-, and PIP degron-dependent manner during DNA repair in Xenopus egg extract. The protein can also be destroyed during DNA replication in this system. During Xenopus development, TDG first accumulates during gastrulation, and its expression is down-regulated by CRL4(Cdt2). Our results expand the group of vertebrate CRL4(Cdt2) substrates to include a bona fide DNA repair enzyme.
Collapse
Affiliation(s)
- Tamara J Slenn
- Departments of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, Massachusetts 02115
| | - Benjamin Morris
- Departments of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, Massachusetts 02115
| | - Courtney G Havens
- Departments of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, Massachusetts 02115
| | - Robert M Freeman
- Departments of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Johannes C Walter
- Departments of Biological Chemistry and Molecular Pharmacology and Harvard Medical School, Boston, Massachusetts 02115; Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts 02115.
| |
Collapse
|
22
|
Bernis C, Forbes DJ. Analysis of nuclear reconstitution, nuclear envelope assembly, and nuclear pore assembly using Xenopus in vitro assays. Methods Cell Biol 2014; 122:165-91. [PMID: 24857730 DOI: 10.1016/b978-0-12-417160-2.00008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The large and complex eukaryotic nucleus is the arbiter of DNA replication, RNA transcription, splicing, and ribosome assembly. With the advent of in vitro nuclear reconstitution extracts derived from Xenopus eggs in the 1980s, it became possible to assemble multiple nuclei in vitro around added DNA or chromatin substrates. Such reconstituted nuclei contain a nuclear lamina, double nuclear membranes, nuclear pores, and are competent for DNA replication and nuclear import. In vitro nuclear reconstitution has allowed the assembly of "wild-type" and "biochemically mutant" nuclei in which the impact of individual components can be assessed. Here, we describe protocols for preparation of the nuclear reconstitution extract, nuclear reconstitution in vitro, assessment of nuclear membrane integrity, and a more specialized assay for nuclear pore assembly into preformed pore-free nuclear intermediates.
Collapse
Affiliation(s)
- Cyril Bernis
- Cell and Developmental Biology, University of California, San Diego, California, USA
| | - Douglass J Forbes
- Cell and Developmental Biology, University of California, San Diego, California, USA
| |
Collapse
|
23
|
Bembenek JN, Verbrugghe KJC, Khanikar J, Csankovszki G, Chan RC. Condensin and the spindle midzone prevent cytokinesis failure induced by chromatin bridges in C. elegans embryos. Curr Biol 2013; 23:937-46. [PMID: 23684975 DOI: 10.1016/j.cub.2013.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/12/2013] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND During cell division, chromosomes must clear the path of the cleavage furrow before the onset of cytokinesis. The abscission checkpoint in mammalian cells stabilizes the cleavage furrow in the presence of a chromatin obstruction. This provides time to resolve the obstruction before the cleavage furrow regresses or breaks the chromosomes, preventing aneuploidy or DNA damage. Two unanswered questions in the proposed mechanistic pathway of the abscission checkpoint concern factors involved in (1) resolving the obstructions and (2) coordinating obstruction resolution with the delay in cytokinesis. RESULTS We found that the one-cell and two-cell C. elegans embryos suppress furrow regression following depletion of essential chromosome-segregation factors: topoisomerase II(TOP-2), CENP-A(HCP-3), cohesin, and to a lesser degree, condensin. Chromatin obstructions activated Aurora B(AIR-2) at the spindle midzone, which is needed for the abscission checkpoint in other systems. Condensin I, but not condensin II, localizes to the spindle midzone in anaphase and to the midbody during normal cytokinesis. Interestingly, condensin I is enriched on chromatin bridges and near the midzone/midbody in an AIR-2-dependent manner. Disruption of AIR-2, the spindle midzone, or condensin leads to cytokinesis failure in a chromatin-obstruction-dependent manner. Examination of the condensin-deficient embryos uncovered defects in both the resolution of the chromatin obstructions and the maintenance of the stable cleavage furrow. CONCLUSIONS We postulate that condensin I is recruited by Aurora B(AIR-2) to aid in the resolution of chromatin obstructions and also helps generate a signal to maintain the delay in cytokinesis.
Collapse
Affiliation(s)
- Joshua N Bembenek
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
24
|
Yasutis KM, Kozminski KG. Cell cycle checkpoint regulators reach a zillion. Cell Cycle 2013; 12:1501-9. [PMID: 23598718 DOI: 10.4161/cc.24637] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.
Collapse
|
25
|
Lee J, Dunphy WG. The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Mol Biol Cell 2013; 24:1343-53. [PMID: 23468519 PMCID: PMC3639046 DOI: 10.1091/mbc.e13-01-0025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The activation of Chk1 in response to stalled replication forks involves a pathway containing ATR, TopBP1, Rad17, and Claspin. We show that the Mre11-Rad50-Nbs1 (MRN) complex also has an important role in this pathway that is distinct from its role in response to double-stranded DNA breaks. These studies reveal a novel insight into the functions of the MRN complex. The activation of Chk1 in response to stalled replication forks in Xenopus egg extracts involves a complex pathway containing ATM and Rad3-related (ATR), topoisomerase IIβ-binding protein 1 (TopBP1), Rad17, the Rad9-Hus1-Rad1 (9-1-1) complex, and Claspin. We have observed that egg extracts lacking the Mre11-Rad50-Nbs1 (MRN) complex show greatly, although not completely, reduced activation of Chk1 in response to replication blockages. Depletion of both Rad17 and MRN leads to a further, essentially complete, reduction in the activation of Chk1. Thus, Rad17 and MRN act in at least a partially additive manner in promoting activation of Chk1. There was not an obvious change in the binding of RPA, ATR, Rad17, or the 9-1-1 complex to chromatin in aphidicolin (APH)-treated, MRN-depleted extracts. However, there was a substantial reduction in the binding of TopBP1. In structure–function studies of the MRN complex, we found that the Mre11 subunit is necessary for the APH-induced activation of Chk1. Moreover, a nuclease-deficient mutant of Mre11 cannot substitute for wild-type Mre11 in this process. These results indicate that the MRN complex, in particular the nuclease activity of Mre11, plays an important role in the activation of Chk1 in response to stalled replication forks. These studies reveal a previously unknown property of the MRN complex in genomic stability.
Collapse
Affiliation(s)
- Joon Lee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
26
|
Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, Rossignol M, Novák B, Fisher D. Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. Mol Cell 2011; 44:437-50. [PMID: 22055189 DOI: 10.1016/j.molcel.2011.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/01/2011] [Accepted: 08/12/2011] [Indexed: 11/24/2022]
Abstract
Bistability of the Cdk1-Wee1-Cdc25 mitotic control network underlies the switch-like transitions between interphase and mitosis. Here, we show by mathematical modeling and experiments in Xenopus egg extracts that protein phosphatase 2A (PP2A), which can dephosphorylate Cdk1 substrates, is essential for this bistability. PP2A inhibition in early interphase abolishes the switch-like response of the system to Cdk1 activity, promoting mitotic onset even with very low levels of Cyclin, Cdk1, and Cdc25, while simultaneously inhibiting DNA replication. Furthermore, even if replication has already initiated, it cannot continue in mitosis. Exclusivity of S and M phases does not depend on bistability only, since partial PP2A inhibition prevents replication without inducing mitotic onset. In these conditions, interphase-level mitotic kinases inhibit Cyclin E-Cdk2 chromatin loading, blocking initiation complex formation. Therefore, by counteracting both Cdk1 activation and activity of mitotic kinases, PP2A ensures robust separation of S phase and mitosis and dynamic transitions between the two states.
Collapse
Affiliation(s)
- Liliana Krasinska
- Institute of Molecular Genetics, CNRS, UMR5535, University of Montpellier I and II, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Ferrell JE, Tsai TYC, Yang Q. Modeling the cell cycle: why do certain circuits oscillate? Cell 2011; 144:874-85. [PMID: 21414480 DOI: 10.1016/j.cell.2011.03.006] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 12/13/2022]
Abstract
Computational modeling and the theory of nonlinear dynamical systems allow one to not simply describe the events of the cell cycle, but also to understand why these events occur, just as the theory of gravitation allows one to understand why cannonballs fly in parabolic arcs. The simplest examples of the eukaryotic cell cycle operate like autonomous oscillators. Here, we present the basic theory of oscillatory biochemical circuits in the context of the Xenopus embryonic cell cycle. We examine Boolean models, delay differential equation models, and especially ordinary differential equation (ODE) models. For ODE models, we explore what it takes to get oscillations out of two simple types of circuits (negative feedback loops and coupled positive and negative feedback loops). Finally, we review the procedures of linear stability analysis, which allow one to determine whether a given ODE model and a particular set of kinetic parameters will produce oscillations.
Collapse
Affiliation(s)
- James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA.
| | | | | |
Collapse
|
29
|
Hlavová M, Čížková M, Vítová M, Bišová K, Zachleder V. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda. PLoS One 2011; 6:e19626. [PMID: 21603605 PMCID: PMC3095609 DOI: 10.1371/journal.pone.0019626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.
Collapse
Affiliation(s)
- Monika Hlavová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
- * E-mail:
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| |
Collapse
|
30
|
Muraki K, Nabetani A, Nishiyama A, Ishikawa F. Essential roles of Xenopus TRF2 in telomere end protection and replication. Genes Cells 2011; 16:728-39. [DOI: 10.1111/j.1365-2443.2011.01520.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Gotoh T, Kishimoto T, Sible JC. Phosphorylation of Claspin is triggered by the nucleocytoplasmic ratio at the Xenopus laevis midblastula transition. Dev Biol 2011; 353:302-8. [PMID: 21396931 DOI: 10.1016/j.ydbio.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 02/22/2011] [Accepted: 03/02/2011] [Indexed: 11/17/2022]
Abstract
At the Xenopus midblastula transition (MBT), cell cycles lengthen, and checkpoints that respond to damaged or unreplicated DNA are established. The MBT is triggered by a critical nucleocytoplasmic (N/C) ratio; however, the molecular basis for its initiation remains unknown. In egg extracts, activation of Chk1 checkpoint kinase requires the adaptor protein Claspin, which recruits Chk1 for phosphorylation by ATR. At the MBT in embryos, Chk1 is transiently activated to lengthen the cell cycle. We show that Xenopus Claspin is phosphorylated at the MBT at both DNA replication checkpoint-dependent and -independent sites. Further, in egg extracts, Claspin phosphorylation depends on a threshold N/C ratio, but occurs even when ATR is inhibited. Not all phosphorylation that occurs at the MBT is reproduced in egg extracts. Our results identify Claspin as the most upstream molecule in the signaling pathway that responds to the N/C ratio and indicate that Claspin may also respond to an independent timer to trigger the MBT and activation of cell cycle checkpoints.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Department of Biological Sciences, 2119 Derring Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA.
| | | | | |
Collapse
|
32
|
Yasutis K, Vignali M, Ryder M, Tameire F, Dighe SA, Fields S, Kozminski KG. Zds2p regulates Swe1p-dependent polarized cell growth in Saccharomyces cerevisiae via a novel Cdc55p interaction domain. Mol Biol Cell 2010; 21:4373-86. [PMID: 20980617 PMCID: PMC3002390 DOI: 10.1091/mbc.e10-04-0326] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/20/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022] Open
Abstract
Deletion of the paralogs ZDS1 and ZDS2 in the budding yeast Saccharomyces cerevisiae causes a mis-regulation of polarized cell growth. Here we show a function for these genes as regulators of the Swe1p (Wee1p) kinase-dependent G2/M checkpoint. We identified a conserved domain in the C-terminus of Zds2p consisting of amino acids 813-912 (hereafter referred to as ZH4 for Zds homology 4) that is required for regulation of Swe1p-dependent polarized bud growth. ZH4 is shown by protein affinity assays to be necessary and sufficient for interaction with Cdc55p, a regulatory subunit of protein phosphatase 2A (PP2A). We hypothesized that the Zds proteins are in a pathway that negatively regulates the Swe1p-dependent G2/M checkpoint via Cdc55p. Supporting this model, deletion of CDC55 rescues the aberrant bud morphology of a zds1Δzds2Δ strain. We also show that expression of ZDS1 or ZDS2 from a strong galactose-inducible promoter can induce mitosis even when the Swe1p-dependent G2/M checkpoint is activated by mis-organization of the actin cytoskeleton. This negative regulation requires the CDC55 gene. Together these data indicate that the Cdc55p/Zds2p module has a function in the regulation of the Swe1p-dependent G2/M checkpoint.
Collapse
Affiliation(s)
- Kimberly Yasutis
- *Departments of Biology and
- Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22904; and
| | | | | | | | | | - Stanley Fields
- Departments of Genome Sciences and Medicine and
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - Keith G. Kozminski
- *Departments of Biology and
- Cell Biology and
- Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22904; and
| |
Collapse
|
33
|
Abstract
This paper presents evidence that chromatin condensation, like nuclear envelope breakdown, is brought about through the combined effects of cyclins A2 and B1, and that cyclins B1 and B2 are largely responsible for maintenance of a spindle assembly checkpoint arrest. Here we have used siRNAs and time-lapse epifluorescence microscopy to examine the roles of various candidate mitotic cyclins in chromatin condensation in HeLa cells. Knocking down cyclin A2 resulted in a substantial (∼7 h) delay in chromatin condensation and histone H3 phosphorylation, and expressing an siRNA-resistant form of cyclin A2 partially rescued chromatin condensation. There was no detectable delay in DNA replication in the cyclin A2 knockdowns, arguing that the delay in chromatin condensation is not secondary to a delay in S-phase completion. Cyclin A2 is required for the activation and nuclear accumulation of cyclin B1-Cdk1, raising the possibility that cyclin B1-Cdk1 mediates the effects of cyclin A2. Consistent with this possibility, we found that chromatin condensation was tightly associated temporally with the redistribution of cyclin B1 to the nucleus. Moreover, a constitutively nuclear cyclin B1 rescued chromatin condensation in cyclin A2 knockdown cells. On the other hand, knocking down cyclin B1 delayed chromatin condensation by only about one hour. Our working hypothesis is that active, nuclear cyclin B1-Cdk1 normally cooperates with cyclin A2 to bring about early mitotic events. Because cyclin A2 is present only during the early stages of mitosis, we asked whether cyclin B knockdown might have more dramatic defects on late mitotic events. Consistent with this possibility, we found that cyclin B1- and cyclin B1/B2-knockdown cells had difficulty in maintaining a mitotic arrest in the presence of nocodazole. Taken together, these data suggest that cyclin A2 helps initiate mitosis, in part through its effects on cyclin B1, and that cyclins B1 and B2 are particularly critical for the maintenance of the mitotic state.
Collapse
Affiliation(s)
- Delquin Gong
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
34
|
The unpredictable caspase-2: what can it do? Trends Cell Biol 2010; 20:150-9. [DOI: 10.1016/j.tcb.2009.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 11/26/2009] [Accepted: 12/14/2009] [Indexed: 11/20/2022]
|
35
|
Goley ED, Toro E, McAdams HH, Shapiro L. Dynamic chromosome organization and protein localization coordinate the regulatory circuitry that drives the bacterial cell cycle. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2009; 74:55-64. [PMID: 19687139 DOI: 10.1101/sqb.2009.74.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterial cell has less internal structure and genetic complexity than cells of eukaryotic organisms, yet it is a highly organized system that uses both temporal and spatial cues to drive its cell cycle. Key insights into bacterial regulatory programs that orchestrate cell cycle progression have come from studies of Caulobacter crescentus, a bacterium that divides asymmetrically. Three global regulatory proteins cycle out of phase with one another and drive cell cycle progression by directly controlling the expression of 200 cell-cycle-regulated genes. Exploration of this system provided insights into the evolution of regulatory circuits and the plasticity of circuit structure. The temporal expression of the modular subsystems that implement the cell cycle and asymmetric cell division is also coordinated by differential DNA methylation, regulated proteolysis, and phosphorylation signaling cascades. This control system structure has parallels to eukaryotic cell cycle control architecture. Remarkably, the transcriptional circuitry is dependent on three-dimensional dynamic deployment of key regulatory and signaling proteins. In addition, dynamically localized DNA-binding proteins ensure that DNA segregation is coupled to the timing and cellular position of the cytokinetic ring. Comparison to other organisms reveals conservation of cell cycle regulatory logic, even if regulatory proteins, themselves, are not conserved.
Collapse
Affiliation(s)
- E D Goley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
36
|
Jung T, Streffer C. Effects of Caffeine on Protein Phosphorylation and Cell Cycle Progression in X-irradiated Two-cell Mouse Embryos. Int J Radiat Biol 2009; 62:161-8. [PMID: 1355509 DOI: 10.1080/09553009214551971] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The G2 phase/mitosis transition in cleavage-stage mouse embryos is correlated with an increased phosphorylation of a defined set of proteins at 46, 35, 30, and 29 kDa. Cell cleavage and the associated changes in protein phosphorylation are delayed after X-irradiation. To understand the mechanism of the caffeine-induced uncoupling of mitosis and the cellular reactions to DNA-damaging agents, we have studied the effects of caffeine treatment on cell cycle progression and protein phosphorylation in two-cell mouse embryos after X-irradiation. Caffeine alone had no effect on timing of and changes in phosphorylation associated with the embryonic cell cycle. In combination with X-rays, however, caffeine was able to override the radiation induced G2 block and restored the normal timing of these phosphorylation changes after X-irradiation. However, new additional changes in protein phosphorylation appeared after the combined treatment. Isobutylmethylxanthine (IBMX), a substance chemically related to caffeine but a more specific inhibitor of the phosphodiesterase that breaks down cyclic AMP, reduced the radiation induced G2 block from 4 to 5 h to about 1 h and restored the cell cycle associated changes in protein phosphorylation. However, the same new changes which appeared after the combined treatment of caffeine and X-rays were observed after the combination of IBMX and X-irradiation. IBMX specific changes in protein phosphorylation were detected in both the single and the combined treatment. These results indicate a similar action of caffeine and IBMX in overriding the radiation induced G2 block in two-cell mouse embryos.
Collapse
Affiliation(s)
- T Jung
- Department of Molecular Embryology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, UK
| | | |
Collapse
|
37
|
Downes CS, Ryan A, Johnson RT. Radiomimetic Cell Cycle Delay Induced by Tetranodecanoyl Phorbol Acetate is Enhanced by Caffeine and by the Protein Kinase Inhibitor 2-aminopurine. Int J Radiat Biol 2009; 61:63-8. [PMID: 1345933 DOI: 10.1080/09553009214550631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The tumour promoter and protein kinase C agonist, 12-O-tetranodecanoyl-phorbol-13-acetate (TPA), has been reported to show a radiomimetic action because it transiently delays the passage of HeLa cells through the G2 phase, as do ionizing radiation and other DNA damaging agents. Caffeine is known to override the G2 delay imposed by DNA damage; it is shown here that caffeine does not override the radiomimetic delay imposed by TPA in HeLa, but instead enhances it, without affecting G2 progression in control cells. Most of the other agents which more specifically affect some of the diverse range of caffeine targets either do not affect G2 progression after TPA, or delay G2 progression in control cells and exert a further delay in the presence of TPA. The exception is 2-aminopurine, a protein kinase inhibitor which has been shown to have an action similar to that of caffeine is allowing progression of the cell cycle to mitosis after the inhibition of DNA synthesis, without affecting normal cycle progression through G2. This agent, like caffeine, also has the contrary action of retarding cycle progression after TPA. It is concluded that the G2 delays induced by ionizing radiation and by TPA operate by different mechanisms, which are modulated in opposite senses by mechanisms involving protein kinase inhibition.
Collapse
Affiliation(s)
- C S Downes
- Department of Zoology, University of Cambridge, UK
| | | | | |
Collapse
|
38
|
Ueno H, Nakajo N, Watanabe M, Isoda M, Sagata N. FoxM1-driven cell division is required for neuronal differentiation in early Xenopus embryos. Development 2008; 135:2023-30. [DOI: 10.1242/dev.019893] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate embryogenesis, neural induction is the earliest step through which the fate of embryonic ectoderm to neuroectoderm becomes determined. Cells in the neuroectoderm or neural precursors actively proliferate before they exit from the cell cycle and differentiate into neural cells. However,little is known about the relationship between cell division and neural differentiation, although, in Xenopus, cell division after the onset of gastrulation has been suggested to be nonessential for neural differentiation. Here, we show that the Forkhead transcription factor FoxM1 is required for both proliferation and differentiation of neuronal precursors in early Xenopus embryos. FoxM1 is expressed in the neuroectoderm and is required for cell proliferation in this region. Specifically, inhibition of BMP signaling, an important step for neural induction, induces the expression of FoxM1 and its target G2-M cell-cycle regulators, such as Cdc25B and cyclin B3, thereby promoting cell division in the neuroectoderm. Furthermore, G2-M cell-cycle progression or cell division mediated by FoxM1 or its target G2-M regulators is essential for neuronal differentiation but not for specification of the neuroectoderm. These results suggest that FoxM1 functions to link cell division and neuronal differentiation in early Xenopus embryos.
Collapse
Affiliation(s)
- Hiroyuki Ueno
- Department of Biology, Graduate School of Sciences, Kyushu University,Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Nobushige Nakajo
- Department of Biology, Graduate School of Sciences, Kyushu University,Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Minoru Watanabe
- Faculty of Integrated Arts and Sciences, The University of Tokushima,Minamijyousanjima-cho 1-1, Tokushima 770-8502, Japan
| | - Michitaka Isoda
- Department of Biology, Graduate School of Sciences, Kyushu University,Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Noriyuki Sagata
- Department of Biology, Graduate School of Sciences, Kyushu University,Hakozaki 6-10-1, Fukuoka 812-8581, Japan
- CREST, Japan Science and Technology Agency, Nihonbashi, Tokyo 103-0027,Japan
| |
Collapse
|
39
|
Philpott A, Yew PR. The Xenopus cell cycle: an overview. Mol Biotechnol 2008; 39:9-19. [PMID: 18266114 DOI: 10.1007/s12033-008-9033-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 12/28/2007] [Indexed: 01/03/2023]
Abstract
Oocytes, eggs and embryos from the frog Xenopus laevis have been an important model system for studying cell-cycle regulation for several decades. First, progression through meiosis in the oocyte has been extensively investigated. Oocyte maturation has been shown to involve complex networks of signal transduction pathways, culminating in the cyclic activation and inactivation of Maturation Promoting Factor (MPF), composed of cyclin B and cdc2. After fertilisation, the early embryo undergoes rapid simplified cell cycles which have been recapitulated in cell-free extracts of Xenopus eggs. Experimental manipulation of these extracts has given a wealth of biochemical information about the cell cycle, particularly concerning DNA replication and mitosis. Finally, cells of older embryos adopt a more somatic-type cell cycle and have been used to study the balance between cell cycle and differentiation during development.
Collapse
Affiliation(s)
- Anna Philpott
- Department of Oncology, Hutchison/MRC Research Centre, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, England.
| | | |
Collapse
|
40
|
Dulev S, Aragon L, Strunnikov A. Unreplicated DNA in mitosis precludes condensin binding and chromosome condensation in S. cerevisiae. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:5838-46. [PMID: 18508626 PMCID: PMC2670094 DOI: 10.2741/3120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Condensin is the core activity responsible for chromosome condensation in mitosis. In the yeast S. cerevisiae, condensin binding is enriched at the regions where DNA replication terminates. Therefore, we investigated whether DNA replication completion determines the condensin-binding proficiency of chromatin. In order to fulfill putative mitotic requirements for condensin activity we analyzed chromosome condensation and condensin binding to unreplicated chromosomes in mitosis. For this purpose we used pGAL:CDC6 cdc15-ts cells that are known to enter mitosis without DNA replication if CDC6 transcription is repressed prior to S-phase. Both the condensation of nucleolar chromatin and proper condensin targeting to rDNA sites failed when unreplicated chromosomes were driven in mitosis. We propose that the DNA replication results in structural and/or biochemical changes to replicated chromatin, which are required for two-phase condensin binding and proper chromosome condensation.
Collapse
Affiliation(s)
- Stanimir Dulev
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Kornbluth S, Yang J, Powers M. Analysis of the cell cycle using Xenopus egg extracts. ACTA ACUST UNITED AC 2008; Chapter 11:Unit 11.11. [PMID: 18228475 DOI: 10.1002/0471143030.cb1111s29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this unit, Xenopus eggs are isolated from hormonally primed female frogs, and then the extract is treated with cyclohexamide so it remains in interphase of the cell cycle. In the presence of sperm chromatin and ATP, membrane vesicles in the extract fuse to assemble nuclei, making the extract suitable for studies of DNA replication and nuclear transport.
Collapse
|
42
|
Langdon YG, Goetz SC, Berg AE, Swanik JT, Conlon FL. SHP-2 is required for the maintenance of cardiac progenitors. Development 2007; 134:4119-30. [PMID: 17928416 PMCID: PMC2807747 DOI: 10.1242/dev.009290] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The isolation and culturing of cardiac progenitor cells has demonstrated that growth factor signaling is required to maintain cardiac cell survival and proliferation. In this study, we demonstrate in Xenopus that SHP-2 activity is required for the maintenance of cardiac precursors in vivo. In the absence of SHP-2 signaling, cardiac progenitor cells downregulate genes associated with early heart development and fail to initiate cardiac differentiation. We further show that this requirement for SHP-2 is restricted to cardiac precursor cells undergoing active proliferation. By demonstrating that SHP-2 is phosphorylated on Y542/Y580 and that it binds to FRS-2, we place SHP-2 in the FGF pathway during early embryonic heart development. Furthermore, we demonstrate that inhibition of FGF signaling mimics the cellular and biochemical effects of SHP-2 inhibition and that these effects can be rescued by constitutively active/Noonan-syndrome-associated forms of SHP-2. Collectively, these results show that SHP-2 functions within the FGF/MAPK pathway to maintain survival of proliferating populations of cardiac progenitor cells.
Collapse
Affiliation(s)
- Yvette G. Langdon
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah C. Goetz
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anna E. Berg
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jackie Thomas Swanik
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, Fordham Hall, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, Fordham Hall, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
43
|
Kim SH, Holway AH, Wolff S, Dillin A, Michael WM. SMK-1/PPH-4.1-mediated silencing of the CHK-1 response to DNA damage in early C. elegans embryos. ACTA ACUST UNITED AC 2007; 179:41-52. [PMID: 17908915 PMCID: PMC2064732 DOI: 10.1083/jcb.200705182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During early embryogenesis in Caenorhabditis elegans, the ATL-1-CHK-1 (ataxia telangiectasia mutated and Rad3 related-Chk1) checkpoint controls the timing of cell division in the future germ line, or P lineage, of the animal. Activation of the CHK-1 pathway by its canonical stimulus DNA damage is actively suppressed in early embryos so that P lineage cell divisions may occur on schedule. We recently found that the rad-2 mutation alleviates this checkpoint silent DNA damage response and, by doing so, causes damage-dependent delays in early embryonic cell cycle progression and subsequent lethality. In this study, we report that mutations in the smk-1 gene cause the rad-2 phenotype. SMK-1 is a regulatory subunit of the PPH-4.1 (protein phosphatase 4) protein phosphatase, and we show that SMK-1 recruits PPH-4.1 to replicating chromatin, where it silences the CHK-1 response to DNA damage. These results identify the SMK-1-PPH-4.1 complex as a critical regulator of the CHK-1 pathway in a developmentally relevant context.
Collapse
Affiliation(s)
- Seung-Hwan Kim
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Antonia H. Holway
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Suzanne Wolff
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Andrew Dillin
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - W. Matthew Michael
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
44
|
Dasso M, Smythe C, Milarski K, Kornbluth S, Newport JW. DNA replication and progression through the cell cycle. CIBA FOUNDATION SYMPOSIUM 2007; 170:161-80; discussion 180-6. [PMID: 1483344 DOI: 10.1002/9780470514320.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Somatic cells possess control mechanisms which monitor DNA replication and assure that it is complete before mitosis is initiated. We have been investigating these mechanisms in Xenopus egg extracts. Using in vitro cycling extracts, which spontaneously alternate between interphase and mitosis, we found that the onset of mitosis is inhibited by the presence of unreplicated DNA, demonstrating that the completion of DNA replication and the initiation of mitosis are coupled in these extracts. As in somatic cells, this coupling is sensitive to caffeine and to okadaic acid. In Xenopus extracts unreplicated DNA increases the tyrosine phosphorylation of p34cdc2, thereby maintaining MPF (mitosis-promoting factor) in an inactive state and preventing the onset of mitosis. The block to mitosis in the presence of unreplicated DNA can be reversed by the addition of bacterially expressed cdc25 protein. The extent of MPF activation by cdc25 protein under these conditions depends on the number of nuclei present. We have developed an assay to examine the rate of tyrosine phosphorylation on p34cdc2. It is increased by unreplicated DNA, in a manner consistent with unreplicated DNA up-regulating the kinase that phosphorylates p34cdc2. We have begun to examine how unreplicated DNA generates the signal that inhibits MPF activation by testing the ability of naked single- and double-stranded DNA templates to inhibit mitosis, and by investigating the role of RCC1, a chromatin-associated protein required for the coupling of DNA replication and mitosis.
Collapse
Affiliation(s)
- M Dasso
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | | | |
Collapse
|
45
|
Yellajoshyula D, Patterson ES, Kroll KL. Maternal cyclin B levels "Chk" the onset of DNA replication checkpoint control in Drosophila. Bioessays 2007; 29:949-52. [PMID: 17876773 DOI: 10.1002/bies.20646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In many animals, early development of the embryo is characterized by synchronous, biphasic cell divisions. These cell divisions are controlled by maternally inherited proteins and RNAs. A critical question in developmental biology is how the embryo transitions to a later pattern of asynchronous cell divisions and transfers the prior maternal control of development to the zygotic genome. The most-common model regarding how this transition from maternal to zygotic control is regulated posits that this is a consequence of the limitation of maternal gene products, due to their titration during early cell divisions. Here we discuss a recent article by Crest et al.1 that instead proposes that the balance of Cyclin-dependent Kinase 1 and Cyclin B (Cdk1-CycB) activity relative to that of the Drosophila checkpoint kinase Chk1 determines when asynchronous divisions begin.
Collapse
Affiliation(s)
- Dhananjay Yellajoshyula
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
46
|
Dominko T, First NL. Relationship between the maturational state of oocytes at the time of insemination and sex ratio of subsequent early bovine embryos. Theriogenology 2007; 47:1041-50. [PMID: 16728054 DOI: 10.1016/s0093-691x(97)00061-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1996] [Accepted: 06/16/1996] [Indexed: 11/20/2022]
Abstract
The effect of maturational state of bovine oocytes at the time of insemination on early embryo development and the sex ratio of developing embryos was evaluated. Early maturing oocytes were inseminated either immediately after the first polar body extrusion or insemination was delayed for 8 h. Most of the zygotes completed the first embryonic cell cycle and reached the 2-cell stage by 35 h after insemination regardless of the time of insemination. Delaying insemination enhanced the proportion of cleaving zygotes and significantly improved their development to the 8-cell stage. At the same time delaying insemination produced significantly higher proportions of male embryos. Cleavage and development to 8-cell stage was significantly impaired when oocytes were inseminated immediately after polar body formation. Sex ratio in these embryos did not differ from 1. These results suggest that oocytes developmental ability as well as capability to process X and Y-bearing spermatozoa may be acquired at specific times during maturation.
Collapse
Affiliation(s)
- T Dominko
- Department of Meat and Animal Science, University of Wisconsin--Madison Madison, Wisconsin 53706, USA
| | | |
Collapse
|
47
|
Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Ataxia-telangiectasia Mutated (ATM)-dependent Activation of ATR Occurs through Phosphorylation of TopBP1 by ATM. J Biol Chem 2007; 282:17501-6. [PMID: 17446169 DOI: 10.1074/jbc.m701770200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) is necessary for activation of Chk1 by ATR (ATM and Rad3-related) in response to double-stranded DNA breaks (DSBs) but not to DNA replication stress. TopBP1 has been identified as a direct activator of ATR. We show that ATM regulates Xenopus TopBP1 by phosphorylating Ser-1131 and thereby strongly enhancing association of TopBP1 with ATR. Xenopus egg extracts containing a mutant of TopBP1 that cannot be phosphorylated on Ser-1131 are defective in the ATR-dependent phosphorylation of Chk1 in response to DSBs but not to DNA replication stress. Thus, TopBP1 is critical for the ATM-dependent activation of ATR following production of DSBs in the genome.
Collapse
Affiliation(s)
- Hae Yong Yoo
- Division of Biology 216-76, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
48
|
Brown KS, Blower MD, Maresca TJ, Grammer TC, Harland RM, Heald R. Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. ACTA ACUST UNITED AC 2007; 176:765-70. [PMID: 17339377 PMCID: PMC2064050 DOI: 10.1083/jcb.200610043] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The African clawed frog Xenopus laevis has been instrumental to investigations of both development and cell biology, but the utility of this model organism for genetic and proteomic studies is limited by its long generation time and unsequenced pseudotetraploid genome. Xenopus tropicalis, which is a small, faster-breeding relative of X. laevis, has recently been adopted for research in developmental genetics and functional genomics, and has been chosen for genome sequencing. We show that X. tropicalis egg extracts reconstitute the fundamental cell cycle events of nuclear formation and bipolar spindle assembly around exogenously added sperm nuclei. Interestingly, X. tropicalis spindles were approximately 30% shorter than X. laevis spindles, and mixing experiments revealed a dynamic, dose-dependent regulation of spindle size by cytoplasmic factors. Measurements of microtubule dynamics revealed that microtubules polymerized slower in X. tropicalis extracts compared to X. laevis, but that this difference is unlikely to account for differences in spindle size. Thus, in addition to expanding the range of developmental and cell biological experiments, the use of X. tropicalis provides novel insight into the complex mechanisms that govern spindle morphogenesis.
Collapse
Affiliation(s)
- Katherine S Brown
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
49
|
Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, Walter JC, Livingston DM. The BRCA1/BARD1 heterodimer modulates ran-dependent mitotic spindle assembly. Cell 2006; 127:539-52. [PMID: 17081976 DOI: 10.1016/j.cell.2006.08.053] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/23/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
The heterodimeric tumor-suppressor complex BRCA1/BARD1 exhibits E3 ubiquitin ligase activity and participates in cell proliferation and chromosome stability control by incompletely defined mechanisms. Here we show that, in both mammalian cells and Xenopus egg extracts, BRCA1/BARD1 is required for mitotic spindle-pole assembly and for accumulation of TPX2, a major spindle organizer and Ran target, on spindle poles. This function is centrosome independent, operates downstream of Ran GTPase, and depends upon BRCA1/BARD1 E3 ubiquitin ligase activity. Xenopus BRCA1/BARD1 forms endogenous complexes with three spindle-pole proteins, TPX2, NuMA, and XRHAMM--a known TPX2 partner--and specifically attenuates XRHAMM function. These observations reveal a previously unrecognized function of BRCA1/BARD1 in mitotic spindle assembly that likely contributes to its role in chromosome stability control and tumor suppression.
Collapse
Affiliation(s)
- Vladimir Joukov
- Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yang L, Han Z, MacLellan WR, Weiss JN, Qu Z. Linking cell division to cell growth in a spatiotemporal model of the cell cycle. J Theor Biol 2006; 241:120-33. [PMID: 16387327 PMCID: PMC2750880 DOI: 10.1016/j.jtbi.2005.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 11/08/2005] [Accepted: 11/09/2005] [Indexed: 12/14/2022]
Abstract
Cell division must be tightly coupled to cell growth in order to maintain cell size, yet the mechanisms linking these two processes are unclear. It is known that almost all proteins involved in cell division shuttle between cytoplasm and nucleus during the cell cycle; however, the implications of this process for cell cycle dynamics and its coupling to cell growth remains to be elucidated. We developed mathematical models of the cell cycle which incorporate protein translocation between cytoplasm and nucleus. We show that protein translocation between cytoplasm and nucleus not only modulates temporal cell cycle dynamics, but also provides a natural mechanism coupling cell division to cell growth. This coupling is mediated by the effect of cytoplasmic-to-nuclear size ratio on the activation threshold of critical cell cycle proteins, leading to the size-sensing checkpoint (sizer) and the size-independent clock (timer) observed in many cell cycle experiments.
Collapse
Affiliation(s)
- Ling Yang
- Cardiovascular Research Laboratory, Department of Medicine (Cardiology), University of California, Los Angeles, CA 90095
| | - Zhangang Han
- Cardiovascular Research Laboratory, Department of Medicine (Cardiology), University of California, Los Angeles, CA 90095
| | - W. Robb MacLellan
- Cardiovascular Research Laboratory, Department of Medicine (Cardiology), University of California, Los Angeles, CA 90095
- Cardiovascular Research Laboratory, Department of Physiology, University of California, Los Angeles, CA 90095
| | - James N. Weiss
- Cardiovascular Research Laboratory, Department of Medicine (Cardiology), University of California, Los Angeles, CA 90095
- Cardiovascular Research Laboratory, Department of Physiology, University of California, Los Angeles, CA 90095
| | - Zhilin Qu
- Cardiovascular Research Laboratory, Department of Medicine (Cardiology), University of California, Los Angeles, CA 90095
| |
Collapse
|