1
|
Butera F, Sero JE, Dent LG, Bakal C. Actin networks modulate heterogeneous NF-κB dynamics in response to TNFα. eLife 2024; 13:e86042. [PMID: 39110005 PMCID: PMC11524587 DOI: 10.7554/elife.86042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 08/05/2024] [Indexed: 11/01/2024] Open
Abstract
The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in pancreatic ductal adenocardinoma (PDAC) tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single-cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single-cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.
Collapse
Affiliation(s)
- Francesca Butera
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Julia E Sero
- Department of Life Sciences, University of BathBathUnited Kingdom
| | - Lucas G Dent
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| |
Collapse
|
2
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
3
|
Leffers D, Penxova Z, Kempin T, Därr M, Fleckner J, Hollfelder D, Ryan AF, Bruchhage KL, Kurabi A, Leichtle A. Immunomodulatory Response of the Middle Ear Epithelial Cells in Otitis Media. Otol Neurotol 2024; 45:e248-e255. [PMID: 38238924 PMCID: PMC10922874 DOI: 10.1097/mao.0000000000004096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
HYPOTHESIS The middle ear (ME) epithelium transforms because of changed immunomodulation during infection. INTRODUCTION The epithelial cells of the tympanic cavity represent the first line of defense in the context of otitis media. They can convert from a typical mucosal site into a respiratory epithelium and vice versa. Our goal is to depict the specific immune response of epithelial cells after infection at the molecular level. METHODS The investigations were carried out on healthy and inflamed ME tissue, removed during surgical interventions in mouse and human models, and in a human in-vitro cell model in human ME epithelial cell line. We determined the epithelial localization of the protein expression of Toll- and NOD-like immune receptors and their associated signaling molecules using immunohistochemistry. In addition, we examined growth behavior and gene expression due to direct stimulation and inhibition. RESULTS We found clinically and immunobiologically confirmed transformation of the inflamed ME epithelium depending on their origin, as well as differences in the distribution of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors in the epithelial cell lining. Dysregulated gene and protein expression of the inflammatory and apoptotic genes could be modulated by stimulation and inhibition in the epithelial cells. CONCLUSIONS The local ME mucosal tissue is believed to modulate downstream immune activity after pathogen invasion via intrinsic cellular mechanism. Using translation approaches to target these molecular pathways may offer more reliable clinical resolution of otitis media in the future.
Collapse
Affiliation(s)
- David Leffers
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Zuzana Penxova
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Thorge Kempin
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Markus Därr
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jonas Fleckner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Daniela Hollfelder
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Allen F Ryan
- University of California, San Diego, Department of Surgery/ Otolaryngology, San Diego, USA
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Arwa Kurabi
- University of California, San Diego, Department of Surgery/ Otolaryngology, San Diego, USA
| | - Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
4
|
van Muilekom DR, Collet B, Rebl H, Zlatina K, Sarais F, Goldammer T, Rebl A. Lost and Found: The Family of NF-κB Inhibitors Is Larger than Assumed in Salmonid Fish. Int J Mol Sci 2023; 24:10229. [PMID: 37373375 DOI: 10.3390/ijms241210229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
NF-κB signalling is largely controlled by the family of 'inhibitors of NF-κB' (IκB). The relevant databases indicate that the genome of rainbow trout contains multiple gene copies coding for iκbα (nfkbia), iκbε (nfkbie), iκbδ (nkfbid), iκbζ (nfkbiz), and bcl3, but it lacks iκbβ (nfkbib) and iκbη (ankrd42). Strikingly, three nfkbia paralogs are apparently present in salmonid fish, two of which share a high sequence identity, while the third putative nfkbia gene is significantly less like its two paralogs. This particular nfkbia gene product, iκbα, clusters with the human IκBβ in a phylogenetic analysis, while the other two iκbα proteins from trout associate with their human IκBα counterpart. The transcript concentrations were significantly higher for the structurally more closely related nfkbia paralogs than for the structurally less similar paralog, suggesting that iκbβ probably has not been lost from the salmonid genomes but has been incorrectly designated as iκbα. In the present study, two gene variants coding for iκbα (nfkbia) and iκbε (nfkbie) were prominently expressed in the immune tissues and, particularly, in a cell fraction enriched with granulocytes, monocytes/macrophages, and dendritic cells from the head kidney of rainbow trout. Stimulation of salmonid CHSE-214 cells with zymosan significantly upregulated the iκbα-encoding gene while elevating the copy numbers of the inflammatory markers interleukin-1-beta and interleukin-8. Overexpression of iκbα and iκbε in CHSE-214 cells dose-dependently quenched both the basal and stimulated activity of an NF-κB promoter suggesting their involvement in immune-regulatory processes. This study provides the first functional data on iκbε-versus the well-researched iκbα factor-in a non-mammalian model species.
Collapse
Affiliation(s)
- Doret R van Muilekom
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Bertrand Collet
- VIM, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Fabio Sarais
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
5
|
Hövelmeyer N, Schmidt-Supprian M, Ohnmacht C. NF-κB in control of regulatory T cell development, identity, and function. J Mol Med (Berl) 2022; 100:985-995. [PMID: 35672519 PMCID: PMC9213371 DOI: 10.1007/s00109-022-02215-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Treg cells) act as a major rheostat regulating the strength of immune responses, enabling tolerance of harmless foreign antigens, and preventing the development of pathogenic immune responses in various disease settings such as cancer and autoimmunity. Treg cells are present in all lymphoid and non-lymphoid tissues, and the latter often fulfill important tasks required for the physiology of their host organ. The activation of NF-κB transcription factors is a central pathway for the reprogramming of gene expression in response to inflammatory but also homeostatic cues. Genetic mouse models have revealed essential functions for NF-κB transcription factors in modulating Treg development and function, with some of these mechanistic insights confirmed by recent studies analyzing Treg cells from patients harboring point mutations in the genes encoding NF-κB proteins. Molecular insights into the NF-κB pathway in Treg cells hold substantial promise for novel therapeutic strategies to manipulate dysfunctional or inadequate cell numbers of immunosuppressive Treg cells in autoimmunity or cancer. Here, we provide an overview of the manifold roles that NF-κB factors exert in Treg cells.
Collapse
Affiliation(s)
- Nadine Hövelmeyer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Germany Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Marc Schmidt-Supprian
- Institute for Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, Munich, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Caspar Ohnmacht
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
6
|
Leichtle A, Kurabi A, Leffers D, Därr M, Draf CS, Ryan AF, Bruchhage KL. Immunomodulation as a Protective Strategy in Chronic Otitis Media. Front Cell Infect Microbiol 2022; 12:826192. [PMID: 35433505 PMCID: PMC9005906 DOI: 10.3389/fcimb.2022.826192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Introduction Major features of the pathogenesis in otitis media, the most common disease in childhood, include hyperplasia of the middle ear mucosa and infiltration by leukocytes, both of which typically resolve upon bacterial clearance via apoptosis. Activation of innate immune receptors during the inflammatory process leads to the activation of intracellular transcription factors (such as NF-κB, AP-1), which regulate both the inflammatory response and tissue growth. We investigated these leading signaling pathways in otitis media using mouse models, human samples, and human middle ear epithelial cell (HMEEC) lines for therapeutic immunomodulation. Methods A stable otitis media model in wild-type mice and immunodeficient KO-mice, as well as human tissue samples from chronic otitis media, skin from the external auditory canal and middle ear mucosa removed from patients undergoing ear surgery, were studied. Gene and protein expression of innate immune signaling molecules were evaluated using microarray, qPCR and IHC. In situ apoptosis detection determined the apoptotic rate. The influence of bacterial infection on immunomodulating molecules (TNFα, MDP, Tri-DAP, SB203580, Cycloheximide) in HMEEC was evaluated. HMEEC cells were examined after bacterial stimulation/inhibition for gene expression and cellular growth. Results Persistent mucosal hyperplasia of the middle ear mucosa in chronic otitis media resulted from gene and protein expression of inflammatory and apoptotic genes, including NODs, TNFα, Casp3 and cleaved Casp3. In clinical chronic middle ear samples, these molecules were modulated after a specific stimulation. They also induced a hyposensitive response after bacterial/NOD-/TLR-pathway double stimulation of HMEEC cells in vitro. Hence, they might be suitable targets for immunological therapeutic approaches. Conclusion Uncontrolled middle ear mucosal hyperplasia is triggered by TLRs/NLRs immunoreceptor activation of downstream inflammatory and apoptotic molecules.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
- *Correspondence: Anke Leichtle,
| | - Arwa Kurabi
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - David Leffers
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Markus Därr
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| | - Clara Sophia Draf
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Allen Frederic Ryan
- Department of Otolaryngology, University of California, San Diego, San Diego, CA, United States
- Research Section, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, CA, United States
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
8
|
Abstract
The diversified NF-κB transcription factor family has been extensively characterized in organisms ranging from flies to humans. However, homologs of NF-κB and many upstream signaling components have recently been characterized in basal phyla, including Cnidaria (sea anemones, corals, hydras, and jellyfish), Porifera (sponges), and single-celled protists, including Capsaspora owczarzaki and some choanoflagellates. Herein, we review what is known about basal NF-κBs and how that knowledge informs on the evolution and conservation of key sequences and domains in NF-κB, as well as the regulation of NF-κB activity. The structures and DNA-binding activities of basal NF-κB proteins resemble those of mammalian NF-κB p100 proteins, and their posttranslational activation appears to have aspects of both canonical and noncanonical pathways in mammals. Several studies suggest that the single NF-κB proteins found in some basal organisms have dual roles in development and immunity. Further research on NF-κB in invertebrates will reveal information about the evolutionary roots of this major signaling pathway, will shed light on the origins of regulated innate immunity, and may have relevance to our understanding of the responses of ecologically important organisms to changing environmental conditions and emerging pathogen-based diseases.
Collapse
Affiliation(s)
- Leah M Williams
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Schloop AE, Bandodkar PU, Reeves GT. Formation, interpretation, and regulation of the Drosophila Dorsal/NF-κB gradient. Curr Top Dev Biol 2019; 137:143-191. [PMID: 32143742 DOI: 10.1016/bs.ctdb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morphogen gradient of the transcription factor Dorsal in the early Drosophila embryo has become one of the most widely studied tissue patterning systems. Dorsal is a Drosophila homolog of mammalian NF-κB and patterns the dorsal-ventral axis of the blastoderm embryo into several tissue types by spatially regulating upwards of 100 zygotic genes. Recent studies using fluorescence microscopy and live imaging have quantified the Dorsal gradient and its target genes, which has paved the way for mechanistic modeling of the gradient. In this review, we describe the mechanisms behind the initiation of the Dorsal gradient and its regulation of target genes. The main focus of the review is a discussion of quantitative and computational studies of the Dl gradient system, including regulation of the Dl gradient. We conclude with a discussion of potential future directions.
Collapse
Affiliation(s)
- Allison E Schloop
- Genetics Program, North Carolina State University, Raleigh, NC, United States
| | - Prasad U Bandodkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
10
|
Kabacaoglu D, Ruess DA, Ai J, Algül H. NF-κB/Rel Transcription Factors in Pancreatic Cancer: Focusing on RelA, c-Rel, and RelB. Cancers (Basel) 2019; 11:E937. [PMID: 31277415 PMCID: PMC6679104 DOI: 10.3390/cancers11070937] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.
Collapse
Affiliation(s)
- Derya Kabacaoglu
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of Surgery, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jiaoyu Ai
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Hana Algül
- Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
11
|
Dioxonaphthoimidazoliums AB1 and YM155 disrupt phosphorylation of p50 in the NF-κB pathway. Oncotarget 2017; 7:11625-36. [PMID: 26872379 PMCID: PMC4905498 DOI: 10.18632/oncotarget.7299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
The NF-κB pathway is overexpressed in non-small cell lung cancers (NSCLC) and contributes to the poor prognosis and high mortality characterizing this malignancy. Silencing the p50 and p65 NF-κB subunits in the NSCLC H1299 cell line led to profound loss in cell viability and downregulated anti-apoptotic proteins survivin and Mcl1. We also showed that a survivin suppressant, the dioxonaphthoimidazolium YM155, and its structural analog AB1 arrested the growth of H1299 cells at nanomolar concentrations. Both compounds were apoptogenic and suppressed survivin and other anti-apoptotic proteins (Mcl1, Bcl-2, Bcl-xl) in a dose- and/or time-dependent manner. YM155 and AB1 did not affect the expression of key proteins (IκBα, p65, p50) involved in NF-κB signaling. Stable IκBα levels suggest that the NF-κB/IκB complex and proteins upstream of IκBα, were not targeted. Neither did the compounds intercept the nuclear translocation of the p50 and p65 subunits. On the other hand, YM155 and AB1 suppressed the phosphorylation of the p50 subunit at Ser337 which is critical in promoting the binding of NF-κB dimers to DNA. Both compounds duly impeded the binding of NF-κB dimers to DNA and attenuated transcriptional activity of luciferase-transfected HEK293 cells controlled by NF-κB response elements. We propose that the “silencing” the NF-κB pathway effected by these compounds contributed to their potent apoptogenic effects on H1299. Notwithstanding, the mechanism(s) involved in their ability to abolish phosphorylation of p50 remains to be elucidated. Taken together, these results disclose a novel facet of functionalized dioxonaphthoimidazoliums that could account for their potent cell killing property.
Collapse
|
12
|
Merchant M, Morkotinis V, Hale A, White M, Moran C. Crocodylian nuclear factor kappa B. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:28-34. [PMID: 28760718 DOI: 10.1016/j.cbpb.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 02/04/2023]
Abstract
We deduced the amino acid (aa) sequence of the nuclear factor kappa B (NFκB) protein from genomic data for the American alligator (Alligator mississippiensis), the estuarine crocodile (Crocodylus porosus), and the Indian gharial (Gavialis gangeticus). A 105kDa protein, NFκB1 exhibits complex post-translational processing, multiple mechanisms of activation, and acts as precursor for a p50, a Rel homology transcription factor which influences the expression of key genes for developmental processes, apoptosis, and immune function. The aa sequences of the crocodylian proteins share very high identity with each other (97.2±0.7%), birds (81.0±1.1%, n=6), mammals (75.3±1.6%, n=4), reptiles (80.3±5.1%, n=2), and less identity with fish (55.5±5.5%, n=4) and one amphibian (66.1±0.8%). The crocodylian protein has a well-conserved Rel homology domain, a nuclear localization signal, and a glycine-rich region which facilitates proteasome-mediated generation of p50. The Rel homology domain contains sequences responsible for dimerization, DNA-binding, and nuclear translocation. In addition, seven ankyrin repeats were located, which putatively allow for inhibition of transcriptional regulation by mediating interaction with Inhibitor kappa B. Other features include a death domain, and conserved serine residues, near the C-terminal end, which act as potential phosphorylation sites for activation of the proteolytic generation of p50. Western blot analysis showed both the 105kDa precursor and the 50kDa mature NFκB were expressed in the alligator liver. Nuclear factor κB exhibited diffuse cytoplasmic distribution in alligator hepatocytes, and almost no cytoplasmic localization in infected animals. In addition, nuclear NFκB exhibited specific binding to the consensus NFκB promoter element.
Collapse
Affiliation(s)
- Mark Merchant
- Department of Chemistry, McNeese State University, Lake Charles, LA, USA.
| | | | - Amber Hale
- Department of Biology, McNeese State University, Lake Charles, LA, USA
| | - Mary White
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Chris Moran
- School of Veterinary Science, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Genes directly regulated by NF-κB in human hepatocellular carcinoma HepG2. Int J Biochem Cell Biol 2017; 89:157-170. [PMID: 28579529 DOI: 10.1016/j.biocel.2017.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
It has been well-known that over activation of NF-κB has close relationship with hepatitis and hepatocellular carcinoma (HCC). However, the complete and exact underlying molecular pathways and mechanisms still remain not fully understood. By manipulating NF-κB activity with its recognized activator TNFα and using ChIP-seq and RNA-seq techniques, this study identified 699 NF-κB direct target genes (DTGs) in a widely used HCC cell line, HepG2, including 399 activated and 300 repressed genes. In these NF-κB DTGs, 216 genes (126 activated and 90 repressed genes) are among the current HCC gene signature. In comparison with NF-κB target genes identified in LPS-induced THP-1 and TNFα-induced HeLa cells, only limited numbers (24-46) of genes were shared by the two cell lines, indicating the HCC specificity of identified genes. Functional annotation revealed that NF-κB DTGs in HepG2 cell are mainly related with many typical NF-κB-related biological processes including immune system process, response to stress, response to stimulus, defense response, and cell death, and signaling pathways of MAPK, TNF, TGF-beta, Chemokine, NF-kappa B, and Toll-like receptor. Some NF-κB DTGs are also involved in Hepatitis C and B pathways. It was found that 82 NF-κB DTGs code secretory proteins, which include CCL2 and DKK1 that have already been used as HCC markers. Finally, the NF-κB DTGs were further confirmed by detecting the NF-κB binding and expression of 14 genes with ChIP-PCR and RT-PCR. This study thus provides a useful NF-κB DTG list for future studies of NF-κB-related molecular mechanisms and theranostic biomarkers of HCC.
Collapse
|
14
|
van den Berg RA, Coccia M, Ballou WR, Kester KE, Ockenhouse CF, Vekemans J, Jongert E, Didierlaurent AM, van der Most RG. Predicting RTS,S Vaccine-Mediated Protection from Transcriptomes in a Malaria-Challenge Clinical Trial. Front Immunol 2017; 8:557. [PMID: 28588574 PMCID: PMC5440508 DOI: 10.3389/fimmu.2017.00557] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
The RTS,S candidate malaria vaccine can protect against controlled human malaria infection (CHMI), but how protection is achieved remains unclear. Here, we have analyzed longitudinal peripheral blood transcriptome and immunogenicity data from a clinical efficacy trial in which healthy adults received three RTS,S doses 4 weeks apart followed by CHMI 2 weeks later. Multiway partial least squares discriminant analysis (N-PLS-DA) of transcriptome data identified 110 genes that could be used in predictive models of protection. Among the 110 genes, 42 had known immune-related functions, including 29 that were related to the NF-κB-signaling pathway and 14 to the IFN-γ-signaling pathway. Post-dose 3 serum IFN-γ concentrations were also correlated with protection; and N-PLS-DA of IFN-γ-signaling pathway transcriptome data selected almost all (44/45) of the representative genes for predictive models of protection. Hence, the identification of the NF-κB and IFN-γ pathways provides further insight into how vaccine-mediated protection may be achieved.
Collapse
Affiliation(s)
| | | | | | - Kent E Kester
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | - Erik Jongert
- GSK Vaccines, Rue de l'Institut, Rixensart, Belgium
| | | | | |
Collapse
|
15
|
Yu L, Li L, Medeiros LJ, Young KH. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 2017; 31:77-92. [PMID: 27773462 PMCID: PMC5382109 DOI: 10.1016/j.blre.2016.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023]
Abstract
The NF-κB pathway, a critical regulator of apoptosis, plays a key role in many normal cellular functions. Genetic alterations and other mechanisms leading to constitutive activation of the NF-κB pathway contribute to cancer development, progression and therapy resistance by activation of downstream anti-apoptotic pathways, unfavorable microenvironment interactions, and gene dysregulation. Not surprisingly, given its importance to normal and cancer cell function, the NF-κB pathway has emerged as a target for therapy. In the review, we present the physiologic role of the NF-κB pathway and recent advances in better understanding of the pathologic roles of the NF-κB pathway in major types of lymphoid neoplasms. We also provide an update of clinical trials that use NF-κB pathway inhibitors. These trials are exploring the clinical efficiency of combining NF-κB pathway inhibitors with various agents that target diverse mechanisms of action with the goal being to optimize novel therapeutic opportunities for targeting oncogenic pathways to eradicate cancer cells.
Collapse
Affiliation(s)
- Li Yu
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
- Department of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD, Anderson Cancer Center, 6 Houston, TX, USA
- The University of Texas Graduate School of Biomedical Science, Houston, TX, USA
| |
Collapse
|
16
|
Durand JK, Baldwin AS. Targeting IKK and NF-κB for Therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 107:77-115. [PMID: 28215229 DOI: 10.1016/bs.apcsb.2016.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to regulating immune responses, the NF-κB family of transcription factors also promotes cellular proliferation and survival. NF-κB and its activating kinase, IKK, have become appealing therapeutic targets because of their critical roles in the progression of many diseases including chronic inflammation and cancer. Here, we discuss the conditions that lead to pathway activation, the effects of constitutive activation, and some of the strategies used to inhibit NF-κB signaling.
Collapse
Affiliation(s)
- J K Durand
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
| | - A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
17
|
Rinkenbaugh AL, Baldwin AS. The NF-κB Pathway and Cancer Stem Cells. Cells 2016; 5:cells5020016. [PMID: 27058560 PMCID: PMC4931665 DOI: 10.3390/cells5020016] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
The NF-κB transcription factor pathway is a crucial regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been identified in many types of cancer. Downstream of key oncogenic pathways, such as RAS, BCR-ABL, and Her2, NF-κB regulates transcription of target genes that promote cell survival and proliferation, inhibit apoptosis, and mediate invasion and metastasis. The cancer stem cell model posits that a subset of tumor cells (cancer stem cells) drive tumor initiation, exhibit resistance to treatment, and promote recurrence and metastasis. This review examines the evidence for a role for NF-κB signaling in cancer stem cell biology.
Collapse
Affiliation(s)
- Amanda L Rinkenbaugh
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Albert S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Roberts JL, Moreau R. Emerging role of alpha-lipoic acid in the prevention and treatment of bone loss. Nutr Rev 2016; 73:116-25. [PMID: 26024498 DOI: 10.1093/nutrit/nuu005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronic disease associated with decreased bone density that afflicts millions of people worldwide. Current pharmacological treatments are limited, costly, and linked to several negative side effects. These factors are driving current interest in the clinical use of naturally occurring bioactive compounds to mitigate bone loss. Alpha-lipoic acid, a potent antioxidant and essential member of mitochondrial dehydrogenases, has shown considerable promise as an antiosteoclastogenic agent due to its potent reactive oxygen species-scavenging capabilities along with a proven clinical safety record. Collectively, current data indicate that alpha-lipoic acid protects from bone loss via a 2-pronged mechanism involving inhibition of osteoclastogenic reactive oxygen species generation and upregulation of redox gene expression.
Collapse
Affiliation(s)
- Joseph L Roberts
- J.L. Roberts and R. Moreau are with the Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Régis Moreau
- J.L. Roberts and R. Moreau are with the Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
19
|
Macrophage polarization: the link between inflammation and related diseases. Inflamm Res 2015; 65:1-11. [DOI: 10.1007/s00011-015-0874-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/16/2015] [Accepted: 08/25/2015] [Indexed: 01/04/2023] Open
|
20
|
Eight SNVs in NF-κB pathway genes and their different performances between subclinical mastitis and mixed Chinese Holstein cows. Gene 2014; 555:242-9. [PMID: 25447913 DOI: 10.1016/j.gene.2014.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/21/2022]
Abstract
The nuclear factor-kappa B (NF-κB) pathway proteins are key players in controlling both innate and adaptive immunity. However, the information on NF-κB pathway genes is very limited in mastitis resistance and milk production of Chinese Holstein cows. In this study, we examine the association of the NF-κB pathway gene variants with milk quality traits and somatic cell score (SCS) in Chinese Holstein cows. Eight single nucleotide variants (SNVs) were identified within the bovine NF-κB pathway genes, using DNA pooled sequencing, PCR-RFLP, and forced PCR-RFLP methods. These SNVs include SNV1: g. 536 C>T (exon 10 of Rel), SNV2: g. 94 G>A (exon 20 of p100), SNV3: g. 43 T>C (intron 6 of p105), SNV4: g. 2397 T>G (intron 9 of p105), SNV5: g. 382 G>C (intron 1 of IκBδ), SNV6: g. 21 C>T (exon 5 of IκBζ), SNV7: g. 272 G>A (intron 6 of IκBζ), and SNV8: g. 18 C>T (intron 10 of IκBζ). The association analysis in mixed Chinese Holstein population showed that SNV1 was significantly or highly significantly associated (P<0.01 and P<0.05) with fat rate, protein rate and SCS. Furthermore, the SNV1-CC (wild genotype) determined serine showed the significantly lower SCS and higher milk production traits compared to TT and TC. SNV2 was significantly associated (P<0.05) with SCS; SNV3 was significantly associated (P<0.05) with fat rate; and SNV4 was significantly associated (P<0.05) with fat rate and SCS. In 199 subclinical mastitis Chinese Holstein cows, the statistical results absolutely differed from the mixed Chinese Holstein individuals. Splice-site prediction by SplicePort showed that single nucleotide difference at eight SNVs results in the acceptor score and donor score changing obviously that may lead to alternative splicing. In brief, SNV1, SNV2, SNV3 and SNV4 could be useful genetic markers for mastitis resistance selection and breeding in Chinese Holstein cows. Furthermore, whether these SNVs lead to alternative splicing need further research.
Collapse
|
21
|
Stein DS, Stevens LM. Maternal control of the Drosophila dorsal-ventral body axis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:301-30. [PMID: 25124754 DOI: 10.1002/wdev.138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
Abstract
UNLABELLED The pathway that generates the dorsal-ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- David S Stein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
22
|
Chen L, Liu X, Li Z, Wang H, Liu Y, He H, Yang J, Niu F, Wang L, Guo J. Expression differences of miRNAs and genes on NF-κB pathway between the healthy and the mastitis Chinese Holstein cows. Gene 2014; 545:117-25. [PMID: 24793582 DOI: 10.1016/j.gene.2014.04.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/20/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022]
Abstract
In order to discover the variation of microRNAs and genes associated with NF-κB signaling pathway between the healthy and the mastitis Chinese Holstein cows, Illumina Deep Sequencing and qRT-PCR are applied to detect 25 kinds of miRNAs (miR-16, miR-125b, miR-15, miR-29a, miR-23b, miR-146, miR-301a, miR-181b, let-7, miR-30b, miR-21, miR-223, miR-27b, miR-10a, miR-143, etc.) expression levels in blood samples and 14 genes (RelA, RelB, Rel, p105, p100, IκBα, IκBβ, IκBδ, IκBε, IκBζ, Bcl-3, IKKα, IKKβ, IKKγ/NEMO) relative expression levels in nine tissues. The total number of miRNAs is declining, and RelA, Rel, p105, p100, IκBα, IκBβ, IκBδ, IκBζ, Bcl-3, and IKKα expressions are rising in mastitis individuals. So, we suppose that NF-κB pathway is active in mastitis individuals as a result of the decrease inhibition of miRNAs. While in healthy ones, the NF-κB pathway is inactive, because of the miRNAs enhanced inhibition action. However, the specific regulatory mechanism of miRNAs on NF-κB pathway in mastitis Holstein cows needs further investigation. Moreover, due to obvious expression differences, some miRNAs, especially miR-16 and miR-223, may be used as new markers for the dairy mastitis prognosing.
Collapse
Affiliation(s)
- Ling Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| | - Zhixiong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Hongliang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yu Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Hua He
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jing Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Fubiao Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Lijun Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jiazhong Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| |
Collapse
|
23
|
Wu CS, Lan CCE, Kuo HY, Chai CY, Chen WT, Chen GS. Differential regulation of nuclear factor-kappa B subunits on epidermal keratinocytes by ultraviolet B and tacrolimus. Kaohsiung J Med Sci 2012; 28:577-85. [DOI: 10.1016/j.kjms.2012.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/09/2011] [Indexed: 10/28/2022] Open
|
24
|
Chen CH, Liu YK, Lin YL, Chuang HY, Hsu WT, Chiu YH, Cheng TL, Liao KW. A rapid and convenient method to enhance transgenic expression in target cells. Prep Biochem Biotechnol 2012; 42:448-61. [PMID: 22897767 DOI: 10.1080/10826068.2011.644013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Gene therapy provides a novel strategy and a new hope for patients with cancer. Unfortunately, the specifics of the delivery systems or the promoters have not achieved the specified efficacy so far, and the perfection of either system will be extremely difficult. In this study, we introduce a simple concept that a combination of a partially specific delivery system and a partially specific promoter activity may achieve a more specific effect on transgenic expression in target cells. The first section describes tumor-related transcription factors that were assayed in tumors or rapidly proliferating cells to determine their activities. The activities of nuclear factor (NF)-κB, CREB, and HIF-1 were higher, and three copies of each response element were used to construct a transcription factor-based synthetic promoter (TSP). The results showed that the expression of the TSP was active and partially specific to cell types. As described in the second section, the multifunctional peptide RGD-4C-HA was designed to absorb polyethyleneimine (PEI) molecules, and this complex was targeted to integrin αvβ3 on B16F10 cells. The results indicated that RGD-4C-HA could associate with PEI to mediate specific targeting in vitro. Finally, the combination of the PEI-peptide complex and TSP could enhance the specifically transgenic expression in B16F10 cells. This strategy has been proven to work in vitro and might potentially be used for specific gene therapy in vivo.
Collapse
Affiliation(s)
- Chia-Hung Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
26
|
Abstract
The vast majority of research on nuclear factor κB (NF-κB) signaling in the past 25 years has focused on its roles in normal and disease-related processes in vertebrates, especially mice and humans. Recent genome and transcriptome sequencing efforts have shown that homologs of NF-κB transcription factors, inhibitor of NF-κB (IκB) proteins, and IκB kinases are present in a variety of invertebrates, including several in phyla simpler than Arthropoda, the phylum containing insects such Drosophila. Moreover, many invertebrates also contain genes encoding homologs of upstream signaling proteins in the Toll-like receptor signaling pathway, which is well-known for its downstream activation of NF-κB for innate immunity. This review describes what we now know or can infer and speculate about the evolution of the core elements of NF-κB signaling as well as the biological processes controlled by NF-κB in invertebrates. Further research on NF-κB in invertebrates is likely to uncover information about the evolutionary origins of this key human signaling pathway and may have relevance to our management of the responses of ecologically and economically important organisms to environmental and adaptive pressures.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
27
|
Abstract
The nuclear factor-κB (NF-κB) transcription factor family has been considered the central mediator of the inflammatory process and a key participant in innate and adaptive immune responses. Coincident with the molecular cloning of NF-κB/RelA and identification of its kinship to the v-Rel oncogene, it was anticipated that NF-κB itself would be involved in cancer development. Oncogenic activating mutations in NF-κB genes are rare and have been identified only in some lymphoid malignancies, while most NF-κB activating mutations in lymphoid malignancies occur in upstream signaling components that feed into NF-κB. NF-κB activation is also prevalent in carcinomas, in which NF-κB activation is mainly driven by inflammatory cytokines within the tumor microenvironment. Importantly, however, in all malignancies, NF-κB acts in a cell type-specific manner: activating survival genes within cancer cells and inflammation-promoting genes in components of the tumor microenvironment. Yet, the complex biological functions of NF-κB have made its therapeutic targeting a challenge.
Collapse
Affiliation(s)
- Joseph A DiDonato
- Cleveland Clinic Foundation, Department of Cell Biology, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, USA
| | | | | |
Collapse
|
28
|
Lim KH, Yang Y, Staudt LM. Pathogenetic importance and therapeutic implications of NF-κB in lymphoid malignancies. Immunol Rev 2012; 246:359-78. [PMID: 22435566 DOI: 10.1111/j.1600-065x.2012.01105.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Derangement of the nuclear factor κB (NF-κB) pathway initiates and/or sustains many types of human cancer. B-cell malignancies are particularly affected by oncogenic mutations, translocations, and copy number alterations affecting key components the NF-κB pathway, most likely owing to the pervasive role of this pathway in normal B cells. These genetic aberrations cause tumors to be 'addicted' to NF-κB, which can be exploited therapeutically. Since each subtype of lymphoid cancer utilizes different mechanisms to activate NF-κB, several different therapeutic strategies are needed to address this pathogenetic heterogeneity. Fortunately, a number of drugs that block signaling cascades leading to NF-κB are in early phase clinical trials, several of which are already showing activity in lymphoid malignancies.
Collapse
Affiliation(s)
- Kian-Huat Lim
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
29
|
Southern SL, Collard TJ, Urban BC, Skeen VR, Smartt HJ, Hague A, Oakley F, Townsend PA, Perkins ND, Paraskeva C, Williams AC. BAG-1 interacts with the p50-p50 homodimeric NF-κB complex: implications for colorectal carcinogenesis. Oncogene 2012; 31:2761-72. [PMID: 21963853 PMCID: PMC3272420 DOI: 10.1038/onc.2011.452] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 07/28/2011] [Accepted: 08/18/2011] [Indexed: 02/06/2023]
Abstract
Understanding the mechanisms that promote aberrant tumour cell survival is critical for the determination of novel strategies to combat colorectal cancer (CRC). We have recently shown that the anti-apoptotic protein BAG-1, highly expressed in pre-malignant and CRC tissue, can potentiate cell survival through regulating NF-κB transcriptional activity. In this study, we identify a novel complex between BAG-1 and the p50-p50 NF-κB homodimers, implicating BAG-1 as a co-regulator of an atypical NF-κB pathway. Importantly, the BAG-1-p50 complex was detected at gene regulatory sequences including the epidermal growth factor receptor (EGFR) and COX-2 (PTGS2) genes. Suppression of BAG-1 expression using small interfering RNA was shown to increase EGFR and suppress COX-2 expression in CRC cells. Furthermore, mouse embryonic fibroblasts derived from the NF-κB1 (p105/p50) knock-out mouse were used to demonstrate that p50 expression was required for BAG-1 to suppress EGFR expression. This was shown to be functionally relevant as attenuation of BAG-1 expression increased ligand activated phosphorylation of EGFR in CRC cells. In summary, this paper identifies a novel role for BAG-1 in modulating gene expression through interaction with the p50-p50 NF-κB complexes. Data presented led us to propose that BAG-1 can act as a selective regulator of p50-p50 NF-κB responsive genes in colorectal tumour cells, potentially important for the promotion of cell survival in the context of the fluctuating tumour microenvironment. As BAG-1 expression is increased in the developing adenoma through to metastatic lesions, understanding the function of the BAG-1-p50 NF-κB complexes may aid in identifying strategies for both the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samantha L. Southern
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Tracey J. Collard
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Bettina C Urban
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Victoria R Skeen
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Helena J Smartt
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Angela Hague
- University of Bristol, School of Oral & Dental Sciences, Lower Maudlin Street, Bristol BS1 2LY UK
| | - Fiona Oakley
- Newcastle University Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Paul A Townsend
- University of Southampton, Cancer Sciences, School of Medicine, Southampton General Hospital, Southampton, SO16 6YDUK
| | - Neil D. Perkins
- Newcastle University Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Christos Paraskeva
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| | - Ann C. Williams
- University of Bristol, School of Cellular & Molecular Medicine, Medical Sciences Building, University Walk, Bristol BS8 1TD UK
| |
Collapse
|
30
|
Chan JK, Greene WC. Dynamic roles for NF-κB in HTLV-I and HIV-1 retroviral pathogenesis. Immunol Rev 2012; 246:286-310. [DOI: 10.1111/j.1600-065x.2012.01094.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Zhao X, Ross EJ, Wang Y, Horwitz BH. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms. PLoS One 2012; 7:e32811. [PMID: 22427889 PMCID: PMC3299705 DOI: 10.1371/journal.pone.0032811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/04/2012] [Indexed: 11/29/2022] Open
Abstract
Background Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb) and IL-12 p40 (Il12b) gene expression in macrophages following LPS stimulation have not been directly compared. Methodology/Principal Findings We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN) in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A) that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel. Conclusions These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.
Collapse
Affiliation(s)
- Xixing Zhao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Erik J. Ross
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Yanyan Wang
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Bruce H. Horwitz
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Emergency Medicine, Children's Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
32
|
Affiliation(s)
- Sankar Ghosh
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | |
Collapse
|
33
|
|
34
|
Fraser-Pitt DJ, Cameron P, McNeilly TN, Boyd A, Manson EDT, Smith DGE. Phosphorylation of the epidermal growth factor receptor (EGFR) is essential for interleukin-8 release from intestinal epithelial cells in response to challenge with Escherichia coli O157 : H7 flagellin. MICROBIOLOGY-SGM 2011; 157:2339-2347. [PMID: 21546588 DOI: 10.1099/mic.0.047670-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enterohaemorrhagic Escherichia coli O157 : H7 is a major foodborne and environmental pathogen responsible for both sporadic cases and outbreaks of food poisoning, which can lead to serious sequelae, such as haemolytic uraemic syndrome. The structural subunit of E. coli O157 : H7 flagella is flagellin, which is both the antigenic determinant of the H7 serotype, an important factor in colonization, and an immunomodulatory protein that has been determined to be a major pro-inflammatory component through the instigation of host cell signalling pathways. Flagellin has highly conserved N- and C-terminal regions that are recognized by the host cell pattern recognition receptor Toll-like receptor (TLR) 5. Activation of this receptor triggers cell signalling cascades, which are known to activate host cell kinases and transcription factors that respond with the production of inflammatory mediators such as the chemokine interleukin-8 (IL-8), although the exact components of this pathway are not yet fully characterized. We demonstrate that E. coli O157 : H7-derived flagellin induces rapid phosphorylation of the epidermal growth factor receptor (EGFR), as an early event in intestinal epithelial cell signalling, and that this is required for the release of the pro-inflammatory cytokine IL-8.
Collapse
Affiliation(s)
- Douglas J Fraser-Pitt
- Biomedical Sciences and Microbiology Group, School of Life, Sport and Social Sciences, Faculty of Health, Life and Social Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh EH11 4BN, UK
| | - Pamela Cameron
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Amanda Boyd
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Erin D T Manson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - David G E Smith
- Institute for Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
35
|
Abstract
NF-κBs are a family of transcription factors that control a number of essential cellular functions including immune responses, cell proliferation and antiapoptosis. NF-κB activities are tightly regulated through upstream signaling molecules and downstream feedback loops. In this review, structural discoveries in the NF-κB pathway are presented. With the structure information, the following questions may be addressed: (1) How do NF-κBs activate their target genes? (2) How do IκBs inhibit NF-κB activities in the steady state? (3) How do upstream signaling molecules activate the NF-κB pathway? and (4) How do the feedback loops shut down the NF-κB pathway to avoid constitutive NF-κB activation?
Collapse
Affiliation(s)
- Chao Zheng
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA
| | - Qian Yin
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA
| | - Hao Wu
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
36
|
Westwick JK, Schwamborn K, Mercurio F. NFκB. HANDBOOK OF CELL SIGNALING 2010:2069-2076. [DOI: 10.1016/b978-0-12-374145-5.00252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 2009; 9:915-30. [PMID: 20025601 PMCID: PMC3762688 DOI: 10.2174/156800909790192383] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45alpha, Gadd45beta, and Gadd45gamma) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-kappaB (NF-kappaB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-kappaB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-kappaB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-kappaB, and how they affect MAPK activation, are reviewed.
Collapse
Affiliation(s)
- Z. Yang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - L. Song
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - C. Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
38
|
Tsuboi Y, Kurimoto M, Nagai S, Hayakawa Y, Kamiyama H, Hayashi N, Kitajima I, Endo S. Induction of autophagic cell death and radiosensitization by the pharmacological inhibition of nuclear factor-kappa B activation in human glioma cell lines. J Neurosurg 2009; 110:594-604. [PMID: 19046042 DOI: 10.3171/2008.8.jns17648] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECT The intrinsic radioresistance of certain cancer cells may be closely associated with the constitutive activation of nuclear factor-kappa B (NF-kappaB) activity, which may lead to protection from apoptosis. Recently, nonapoptotic cell death, or autophagy, has been revealed as a novel response of cancer cells to ionizing radiation. In the present study, the authors analyzed the effect of pitavastatin as a potential inhibitor of NF-kappaB activation on the radiosensitivity of A172, U87, and U251 human glioma cell lines. METHODS The pharmacological inhibition of NF-kappaB activation was achieved using pitavastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Growth and radiosensitivity assays were performed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Hoechst 33258 staining, supravital acridine orange staining, and electron microscopy were performed utilizing 3 glioma cell lines with or without pitavastatin pretreatment to identify apoptosis or autophagy after irradiation. RESULTS The growth of these 3 glioma cell lines was not significantly inhibited by pitavastatin at a concentration of up to 1 microM. Treatment with 0.1 microM of pitavastatin enhanced radiation-induced cell death in all glioma cell lines, with different sensitivity. Apoptosis did not occur in any pretreated or untreated (no pitavastatin) cell line following irradiation. Instead, autophagic cell changes were observed regardless of the radiosensitivity of the cell line. An inhibitor of autophagy, 3-methyladenine suppressed the cytotoxic effect of irradiation with pitavastatin, indicating that autophagy is a result of an antitumor mechanism. Using the most radiosensitive A172 cell line, the intracellular localization of p50, a representative subunit of NF-kappaB, was evaluated through immunoblotting and immunofluorescence studies. The NF-kappaB of A172 cells was immediately activated and translocated from the cytosol to the nucleus in response to irradiation. Pitavastatin inhibited this activation and translocation of NF-kappaB. CONCLUSIONS Autophagic cell death rather than apoptosis is a possible mechanism of radiation-induced and pitavastatin-enhanced cell damage, and radiosensitization by the pharmacological inhibition of NF-kappaB activation may be a novel therapeutic strategy for malignant gliomas.
Collapse
Affiliation(s)
- Yoshifumi Tsuboi
- Departments of Neurosurgery, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pöntynen N, Strengell M, Sillanpää N, Saharinen J, Ulmanen I, Julkunen I, Peltonen L. Critical immunological pathways are downregulated in APECED patient dendritic cells. J Mol Med (Berl) 2008; 86:1139-52. [PMID: 18600308 PMCID: PMC2685494 DOI: 10.1007/s00109-008-0374-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/15/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a monogenic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene. AIRE functions as a transcriptional regulator, and it has a central role in the development of immunological tolerance. AIRE regulates the expression of ectopic antigens in epithelial cells of the thymic medulla and has been shown to participate in the development of peripheral tolerance. However, the mechanism of action of AIRE has remained elusive. To further investigate the role of AIRE in host immune functions, we studied the properties and transcript profiles in in vitro monocyte-differentiated dendritic cells (moDCs) obtained from APECED patients and healthy controls. AIRE-deficient monocytes showed typical DC morphology and expressed DC marker proteins cluster of differentiation 86 and human leukocyte antigen class II. APECED patient-derived moDCs were functionally impaired: the transcriptional response of cytokine genes to pathogens was drastically reduced. Interestingly, some changes were observable already at the immature DC stage. Pathway analyses of transcript profiles revealed that the expression of the components of the host cell signaling pathways involved in cell-cell signalling, innate immune responses, and cytokine activity were reduced in APECED moDCs. Our observations support a role for AIRE in peripheral tolerance and are the first ones to show that AIRE has a critical role in DC responses to microbial stimuli in humans.
Collapse
Affiliation(s)
- Nora Pöntynen
- National Public Health Institute and FIMM, Institute for Molecular Medicine Finland, Biomedicum, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
40
|
Li K, Ma Q, Shi L, Dang C, Hong Y, Wang Q, Li Y, Fan W, Zhang L, Cheng J. NS5ATP9 gene regulated by NF-kappaB signal pathway. Arch Biochem Biophys 2008; 479:15-9. [PMID: 18727915 DOI: 10.1016/j.abb.2008.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 07/29/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
NS5ATP9 was previously identified as p15 PAF [proliferating cell nuclear antigen (PCNA)-associated factor] to bind with PCNA. We earlier identified the promoter region of NS5ATP9 and found NS5ATP9 is a NS5A up-regulation gene. However little is known about how it is regulated. To investigate the gene regulation of NS5ATP9, we screened NS5ATP9 promoter binding proteins using phage display and verified by electrophoretic mobility shift assay (EMSA). We found that the nuclear protein rhNF-kappaB (p50) could bind to the NS5ATP9 promoter and the binding region contained within a 156 bp (nucleotides -5 to -161bp) immediately upstream of the transcription initiation site. Our results suggest that NF-kappaB could participate in the regulation of NS5ATP9 gene expression in carcinogenesis.
Collapse
Affiliation(s)
- Kang Li
- The First Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kolondra A, Grzybek M, Chorzalska A, Sikorski AF. The 22.5 kDa spectrin-binding domain of ankyrinR binds spectrin with high affinity and changes the spectrin distribution in cells in vivo. Protein Expr Purif 2008; 60:157-64. [PMID: 18495489 DOI: 10.1016/j.pep.2008.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/27/2008] [Accepted: 04/02/2008] [Indexed: 12/01/2022]
Abstract
It was previously shown that ankyrins play a crucial role in the membrane skeleton arrangement. Purifying ankyrinR obtained from erythrocytes is a time-consuming process. Therefore, cloned and bacterially expressed ankyrinR-spectrin-binding domain (AnkSBD) is a demanded tool for studying spectrin-ankyrin interactions. In this communication, we report on the cloning and purification of AnkSBD and describe the results of binding experiments, in which we showed high-affinity interactions between the AnkSBD construct and isolated erythrocyte or non-erythroid spectrins. pEGFP-AnkSBD-transfected cells co-localised with non-erythroid spectrin in HeLa cells. The functional interactions of the AnkSBD construct in vivo and in vitro open many possibilities to study the structure and function of this domain, which has not yet been as extensively studied when compared to the aminoterminal domain of this protein.
Collapse
Affiliation(s)
- Adam Kolondra
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wroclaw, ul Przybyszewskiego 63/77, 51148 Wroclaw, Poland
| | | | | | | |
Collapse
|
42
|
Ye D, Ma TY. Cellular and molecular mechanisms that mediate basal and tumour necrosis factor-alpha-induced regulation of myosin light chain kinase gene activity. J Cell Mol Med 2008; 12:1331-46. [PMID: 18363837 PMCID: PMC3865676 DOI: 10.1111/j.1582-4934.2008.00302.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The patients with Crohn's disease (CD) have a ‘leaky gut’ manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-α (TNF-α) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-α is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-α increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-α-induced increase in MLCK gene activity. By progressive 5′ deletion, minimal MLCK promoter was localized between −313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-α-induced increase in MLCK promoter activity was mediated by NF-κB activation. There were eight κB binding sites on MLCK promoter. The NF-κB1 site at +48 to +57 mediated TNF-α-induced increase in MLCK promoter activity. The NF-κB2 site at −325 to −316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-κB dimer type binding to the κB sites. p50/p65 dimer preferentially binds to the NF-κB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-κB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-α-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate basal and TNF-α-induced modulation of MLCK gene activity.
Collapse
Affiliation(s)
- Dongmei Ye
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
43
|
Ozaki A, Arima N, Matsushita K, Uozumi K, Akimoto M, Hamada H, Kawada H, Horai S, Tanaka Y, Tei C. Cyclosporin A inhibits HTLV-I tax expression and shows anti-tumor effects in combination with VP-16. J Med Virol 2007; 79:1906-13. [PMID: 17935163 DOI: 10.1002/jmv.21028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adult T cell leukemia (ATL) is one of the most refractory malignant hematological diseases. Our previous studies demonstrated HTLV-1Tax protein involvement in clinical manifestation of the aggressive type of ATL and suggested the potential application of agents to inhibit Tax expression for ATL treatment. In the present study, we first examined Tax involvement in the resistance to VP-16-induced apoptosis using four HTLV-1 infected T cell clones and cTax DNA-transfected cells. Next, we examined whether cyclosporin A reduced expression of Tax and its related transfer factors on Western blot and CAT assay. We further investigated whether cyclosporin A in combination with VP-16 can induce apoptosis in HTLV-1 infected T cells. Tax-producing T cells, K3T and F6T, were resistant to VP-16 induced growth inhibition compared with that of the nonproducing cells, S1T and Su9T01. Experiments using S1T and Tax-expressing cDNA-transfected S1T demonstrated Tax-induced resistance to VP-16 induction of apoptosis by DNA ladder formation. Cyclosporin A reduced Tax expression in K3T by Western blot analysis and on CAT assay, showing maximal reduction of 61% and 60% compared to control culture using LTR CAT transfected Jurkat cells and K3T cells, respectively. Cyclosporin A also reduced the nuclear expression of two Tax-related transfer factors, ATF-1 and ATF-2 on Western blot. Cyclosporin A alone did not show any cytotoxicity by itself, but sensitized cells to VP-16 when combined with VP-16. Cyclosporin A may be a useful anti-ATL agent when combined with other anti-cancer agents possibly related to Tax inhibition.
Collapse
Affiliation(s)
- Atsuo Ozaki
- Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Nuclear factor-kappaBeta (NF-kappaB) binds specifically to NF-kappaB-binding sites (kappaB sites, 5'-GGGRNNYYCC-3'; R, purine; Y, pyrimidine; N, any nucleotide) present in enhancer regions of various genes. Binding of various cytokines, growth factors and pathogen-associated molecular patterns to specific receptors activates NF-kappaB and expression of genes that play critical roles in inflammation, innate and acquired immunity, bone remodeling and generation of skin appendices. Activation of NF-kappaB is also involved in cancer development and progression. NF-kappaB is activated in cells that become malignant tumors and in cells that are recruited to and constitute the tumor microenvironment. In the latter scenario, the TLR-TRAF6-NF-kB pathways seem to play major roles, and NF-kappaB activation results in production of cytokines, which in turn induce NF-kappaB activation in premalignant cells, leading to expression of genes involved abnormal growth and malignancy. Furthermore, NF-kappaB activation is involved in bone metastasis. Osteoclasts, whose generation requires the RANK-TRAF6-NF-kappaB pathways, release various growth factors stored in bone, which results in creation of microenvironment suitable for proliferation and colonization of cancer cells. Therefore, NF-kappaB and molecules involved its activation, such as TRAF6, are attractive targets for therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | |
Collapse
|
45
|
Qi X, Koya Y, Saitoh T, Saitoh Y, Shimizu S, Ohba K, Yamamoto N, Yamaoka S, Yamamoto N. Efficient induction of HIV-1 replication in latently infected cells through contact with CD4+ T cells: involvement of NF-kappaB activation. Virology 2007; 361:325-34. [PMID: 17222438 DOI: 10.1016/j.virol.2006.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/08/2006] [Accepted: 11/14/2006] [Indexed: 11/29/2022]
Abstract
Reservoir cells latently infected with HIV-1 pose one of the major obstacles that hamper ultimate eradication of HIV-1 from infected patients. In this report, we showed that direct contact with MOLT-4 T cells induced HIV-1 replication in J(22)-HL-60 latently infected cells without any additional stimulus. Neutralization experiments revealed that pro-inflammatory cytokines, whose production was increased following cell-cell contact, were unlikely to be primarily involved in the induced HIV-1 replication. Cell-cell contact, but not soluble components in the culture supernatant, caused a rapid phosphorylation and degradation of IkappaBalpha, which led to elevated NF-kappaB DNA binding activity in J(22)-HL-60 cells. Furthermore, forced expression of a super-repressor form of IkappaBalpha or pretreatment with ritonavir efficiently blocked the activation of NF-kappaB and HIV-1 replication in J(22)-HL-60 cells co-cultured with MOLT-4 T cells. Moreover, either resting or PHA stimulated primary CD4(+) T cells induced HIV-1 replication in J(22)-HL-60 cells in a similar way with that of MOLT-4 cells. These results indicated that direct contact with CD4(+) T cells induced HIV-1 replication in latently infected cells and provide insight into the molecular mechanism of virus release from myeloid progenitor cells latently infected with HIV-1.
Collapse
Affiliation(s)
- Xiaohua Qi
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
This article serves as an introduction to the collection of reviews on nuclear factor-kappaB (NF-kappaB). It provides an overview of the discovery and current status of NF-kappaB as a research topic. Described are the structures, activities and regulation of the proteins in the NF-kappaB family of transcription factors. NF-kappaB signaling is primarily regulated by inhibitor kappaB (IkappaB) proteins and the IkappaB kinase complex through two major pathways: the canonical and non-canonical NF-kappaB pathways. The organization and focus of articles included in the following reviews are described, as well as likely future areas of research interest on NF-kappaB.
Collapse
Affiliation(s)
- T D Gilmore
- Biology Department, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
47
|
|
48
|
Horiuchi S, Yamamoto N, Dewan MZ, Takahashi Y, Yamashita A, Yoshida T, Nowell MA, Richards PJ, Jones SA, Yamamoto N. Human T-cell leukemia virus type-I Tax induces expression of interleukin-6 receptor (IL-6R): Shedding of soluble IL-6R and activation of STAT3 signaling. Int J Cancer 2006; 119:823-30. [PMID: 16557588 DOI: 10.1002/ijc.21918] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human T-cell leukemia virus type-I (HTLV-I) encodes for the viral protein Tax, which is known to significantly disrupt transcriptional control of cytokines, cytokine receptors and other immuno-modulatory proteins in T cells. Specific dysregulation of these factors can alter the course and pathogenesis of infection. Soluble interleukin-6 receptor (sIL-6R) was shown to circulate at elevated levels in HTLV-I-infected patients, and high expressions of IL-6R and sIL-6R by HTLV-I-infected T cells were clinically and experimentally associated with Tax activity. To examine roles of Tax in expression of the IL-6R gene, the JPX-9 cell line was used, which is derived from Jurkat cell line expressing Tax cDNA. Over-expression of Tax enhanced IL-6R expression but not in Tax mutant JPX-9/M cell line. The clinical relevance of these observations was further demonstrated by ELISA using sera obtained from HTLV-I-infected patients. Our results revealed that sIL-6R levels were apparently elevated in HAM/TSP patients who were expressing Tax in their cells, while ATL patients' cells barely expressed Tax. HTLV-I-infected T-cell lines stimulated by IL-6/sIL-6R showed gp130-mediated STAT3 activity. IL-6/sIL-6R enhanced proliferation of HTLV-I-infected T cells in association with activation of STAT3. Consequently, Tax-mediated regulations of IL-6R and sIL-6R observed in HTLV-I-associated disorders may contribute to proliferation of HTLV-I-infected T cells through activation of inducible STAT3, and ultimately affect malignant growth and transformation of T cells by HTLV-I.
Collapse
Affiliation(s)
- Sankichi Horiuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Romanenkov AS, Ustyugov AA, Zatsepin TS, Nikulova AA, Kolesnikov IV, Metelev VG, Oretskaya TS, Kubareva EA. Analysis of DNA-protein interactions in complexes of transcription factor NF-kappaB with DNA. BIOCHEMISTRY (MOSCOW) 2006; 70:1212-22. [PMID: 16336179 DOI: 10.1007/s10541-005-0249-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have applied bioinformatic analysis of X-ray 3D structures of complexes of transcription factor NF-kappaB with DNAs. We determined the number of possible Van der Waals contacts and hydrogen bonds between amino acid residues and nucleotides. Conservative contacts in the NF-kappaB dimer-DNA complex composed of p50 and/or p65 NF-kappaB subunit and DNA sequences like 5 -GGGAMWTTCC-3 were revealed. Based on these results, we propose a novel scheme for interactions between NF-kappaB p50 homodimer and the kappaB region of the immunoglobulin light chain gene enhancer (Ig-kappaB). We applied a chemical cross-linking technique to study the proximity of some Lys and Cys residues of NF-kappaB p50 subunit with certain reactive nucleotides into its recognition site. In all cases, the experimentally determined protein-DNA contacts were in good agreement with the predicted ones.
Collapse
Affiliation(s)
- A S Romanenkov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Nuclear factor kappaB (NFkappaB) is a dynamically modulated transcription factor with an extensive literature pertaining to widespread actions across species, cell types and developmental stages. Analysis of NFkappaB in a complex environment such as neural tissue suffers from a difficulty in simultaneously establishing both activity and location. Much of the available data indicate a profound recalcitrance of NFkappaB activation in neurons, as compared with most other cell types. Few studies to date have sought to distinguish between the various combinatorial dimers of NFkappaB family members. Recent research has illuminated the importance of these problems, as well as opportunities to move past them to the nuances manifest through variable activation pathways, subunit complexity and target sequence preferences.
Collapse
Affiliation(s)
- Paul T Massa
- Department of Neurology, State University of New York-Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | |
Collapse
|