1
|
Taniguchi I. The SARS-CoV-2 ORF6 protein inhibits nuclear export of mRNA and spliceosomal U snRNA. PLoS One 2024; 19:e0312098. [PMID: 39480836 PMCID: PMC11527279 DOI: 10.1371/journal.pone.0312098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19). SARS-CoV-2 infection suppresses host innate immunity and impairs cell viability. Among the viral proteins, ORF6 exhibits potent interferon (IFN) antagonistic activity and cellular toxicity. It also interacts with the RNA export factor RAE1, which bridges the nuclear pore complex and nuclear export receptors, suggesting an effect on RNA export. Using the Xenopus oocyte microinjection system, I found that ORF6 blocked the export of not only mRNA but also spliceosomal U snRNA. I further demonstrated that ORF6 affects the interaction between RAE1 and nuclear export receptors and inhibits the RNA binding of RAE1. These effects of ORF6 may cumulatively block the export of several classes of RNA. I also found that ORF6 binds RNA and forms oligomers. These findings provide insights into the suppression of innate immune responses and the reduction in cell viability caused by SARS-CoV-2 infection, contributing to the development of antiviral drugs targeting ORF6.
Collapse
Affiliation(s)
- Ichiro Taniguchi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Nikitchina N, Ulashchik E, Shmanai V, Heckel AM, Tarassov I, Mazunin I, Entelis N. Targeting of CRISPR-Cas12a crRNAs into human mitochondria. Biochimie 2024; 217:74-85. [PMID: 37690471 DOI: 10.1016/j.biochi.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Mitochondrial gene editing holds great promise as a therapeutic approach for mitochondrial diseases caused by mutations in the mitochondrial DNA (mtDNA). Current strategies focus on reducing mutant mtDNA heteroplasmy levels through targeted cleavage or base editing. However, the delivery of editing components into mitochondria remains a challenge. Here we investigate the import of CRISPR-Cas12a system guide RNAs (crRNAs) into human mitochondria and study the structural requirements for this process by northern blot analysis of RNA isolated from nucleases-treated mitoplasts. To investigate whether the fusion of crRNA with known RNA import determinants (MLS) improve its mitochondrial targeting, we added MLS hairpin structures at 3'-end of crRNA and demonstrated that this did not impact crRNA ability to program specific cleavage of DNA in lysate of human cells expressing AsCas12a nuclease. Surprisingly, mitochondrial localization of the fused crRNA molecules was not improved compared to non-modified version, indicating that structured scaffold domain of crRNA can probably function as MLS, assuring crRNA mitochondrial import. Then, we designed a series of crRNAs targeting different regions of mtDNA and demonstrated their ability to program specific cleavage of mtDNA fragments in cell lysate and their partial localization in mitochondrial matrix in human cells transfected with these RNA molecules. We hypothesize that mitochondrial import of crRNAs may depend on their secondary structure/sequence. We presume that imported crRNA allow reconstituting the active crRNA/Cas12a system in human mitochondria, which can contribute to the development of effective strategies for mitochondrial gene editing and potential future treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Natalia Nikitchina
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Anne-Marie Heckel
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France.
| |
Collapse
|
3
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
4
|
Dantsuji S, Ohno M, Taniguchi I. The hnRNP C tetramer binds to CBC on mRNA and impedes PHAX recruitment for the classification of RNA polymerase II transcripts. Nucleic Acids Res 2023; 51:1393-1408. [PMID: 36620872 PMCID: PMC9943658 DOI: 10.1093/nar/gkac1250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
In eukaryotic cells, various classes of RNAs are exported to the cytoplasm by class-specific factors. Accumulating evidence has shown that export factors affect the fate of RNA, demonstrating the importance of proper RNA classification upon export. We previously reported that RNA polymerase II transcripts were classified after synthesis depending on their length, and identified heterogeneous nuclear ribonucleoprotein (hnRNP) C as the key classification factor. HnRNP C inhibits the recruitment of PHAX, an adapter protein for spliceosomal U snRNA export, to long transcripts, navigating these RNAs to the mRNA export pathway. However, the mechanisms by which hnRNP C inhibits PHAX recruitment to mRNA remain unknown. We showed that the cap-binding complex, a bridging factor between m7G-capped RNA and PHAX, directly interacted with hnRNP C on mRNA. Additionally, we revealed that the tetramer-forming activity of hnRNP C and its strong RNA-binding activity were crucial for the inhibition of PHAX binding to longer RNAs. These results suggest that mRNA is wrapped around the hnRNP C tetramer without a gap from the cap, thereby impeding the recruitment of PHAX. The results obtained on the mode of length-specific RNA classification by the hnRNP C tetramer will provide mechanistic insights into hnRNP C-mediated RNA biogenesis.
Collapse
Affiliation(s)
- Sayaka Dantsuji
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Mutsuhito Ohno
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | | |
Collapse
|
5
|
Mabin JW, Lewis PW, Brow DA, Dvinge H. Human spliceosomal snRNA sequence variants generate variant spliceosomes. RNA (NEW YORK, N.Y.) 2021; 27:1186-1203. [PMID: 34234030 PMCID: PMC8457000 DOI: 10.1261/rna.078768.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/29/2021] [Indexed: 06/02/2023]
Abstract
Human pre-mRNA splicing is primarily catalyzed by the major spliceosome, comprising five small nuclear ribonucleoprotein complexes, U1, U2, U4, U5, and U6 snRNPs, each of which contains the corresponding U-rich snRNA. These snRNAs are encoded by large gene families exhibiting significant sequence variation, but it remains unknown if most human snRNA genes are untranscribed pseudogenes or produce variant snRNAs with the potential to differentially influence splicing. Since gene duplication and variation are powerful mechanisms of evolutionary adaptation, we sought to address this knowledge gap by systematically profiling human U1, U2, U4, and U5 snRNA variant gene transcripts. We identified 55 transcripts that are detectably expressed in human cells, 38 of which incorporate into snRNPs and spliceosomes in 293T cells. All U1 snRNA variants are more than 1000-fold less abundant in spliceosomes than the canonical U1, whereas at least 1% of spliceosomes contain a variant of U2 or U4. In contrast, eight U5 snRNA sequence variants occupy spliceosomes at levels of 1% to 46%. Furthermore, snRNA variants display distinct expression patterns across five human cell lines and adult and fetal tissues. Different RNA degradation rates contribute to the diverse steady state levels of snRNA variants. Our findings suggest that variant spliceosomes containing noncanonical snRNAs may contribute to different tissue- and cell-type-specific alternative splicing patterns.
Collapse
Affiliation(s)
- Justin W Mabin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Heidi Dvinge
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Alok A, Chauhan H, Upadhyay SK, Pandey A, Kumar J, Singh K. Compendium of Plant-Specific CRISPR Vectors and Their Technical Advantages. Life (Basel) 2021; 11:1021. [PMID: 34685392 PMCID: PMC8540340 DOI: 10.3390/life11101021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
CRISPR/Cas mediated genome editing is a revolutionary approach for manipulating the plant genome. However, the success of this technology is highly dependent on selection of a specific vector and the other components. A plant-specific CRISPR/Cas vector usually consists of a Cas gene, target-specific gRNA, leader sequence, selectable marker gene, precise promoters, and other accessories. It has always been challenging to select the specific vector for each study due to a lack of comprehensive information on CRISPR vectors in one place. Herein, we have discussed every technical aspect of various important elements that will be highly useful in vector selection and efficient editing of the desired plant genome. Various factors such as the promoter regulating the expression of Cas and gRNA, gRNA size, Cas variants, multicistronic gRNA, and vector backbone, etc. influence transformation and editing frequency. For example, the use of polycistronic tRNA-gRNA, and Csy4-gRNA has been documented to enhance the editing efficiency. Similarly, the selection of an efficient selectable marker is also a very important factor. Information on the availability of numerous variants of Cas endonucleases, such as Cas9, Cas12a, Cas12b, Casɸ, and CasMINI, etc., with diverse recognition specificities further broadens the scope of editing. The development of chimeric proteins such as Cas fused to cytosine or adenosine deaminase domain and modified reverse transcriptase using protein engineering enabled base and prime editing, respectively. In addition, the newly discovered Casɸ and CasMINI would increase the scope of genetic engineering in plants by being smaller Cas variants. All advancements would contribute to the development of various tools required for gene editing, targeted gene insertion, transcriptional activation/suppression, multiplexing, prime editing, base editing, and gene tagging. This review will serve as an encyclopedia for plant-specific CRISPR vectors and will be useful for researchers.
Collapse
Affiliation(s)
- Anshu Alok
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Hanny Chauhan
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research, New Delhi 110067, India;
| | - Jitendra Kumar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; (A.A.); (H.C.)
| |
Collapse
|
7
|
Maturation and shuttling of the yeast telomerase RNP: assembling something new using recycled parts. Curr Genet 2021; 68:3-14. [PMID: 34476547 PMCID: PMC8801399 DOI: 10.1007/s00294-021-01210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
As the limiting component of the budding yeast telomerase, the Tlc1 RNA must undergo multiple consecutive modifications and rigorous quality checks throughout its lifecycle. These steps will ensure that only correctly processed and matured molecules are assembled into telomerase complexes that subsequently act at telomeres. The complex pathway of Tlc1 RNA maturation, involving 5'- and 3'-end processing, stabilisation and assembly with the protein subunits, requires at least one nucleo-cytoplasmic passage. Furthermore, it appears that the pathway is tightly coordinated with the association of various and changing proteins, including the export factor Xpo1, the Mex67/Mtr2 complex, the Kap122 importin, the Sm7 ring and possibly the CBC and TREX-1 complexes. Although many of these maturation processes also affect other RNA species, the Tlc1 RNA exploits them in a new combination and, therefore, ultimately follows its own and unique pathway. In this review, we highlight recent new insights in maturation and subcellular shuttling of the budding yeast telomerase RNA and discuss how these events may be fine-tuned by the biochemical characteristics of the varying processing and transport factors as well as the final telomerase components. Finally, we indicate outstanding questions that we feel are important to be addressed for a complete understanding of the telomerase RNA lifecycle and that could have implications for the human telomerase as well.
Collapse
|
8
|
Veepaschit J, Viswanathan A, Bordonné R, Grimm C, Fischer U. Identification and structural analysis of the Schizosaccharomyces pombe SMN complex. Nucleic Acids Res 2021; 49:7207-7223. [PMID: 33754639 PMCID: PMC8287938 DOI: 10.1093/nar/gkab158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 01/20/2023] Open
Abstract
The macromolecular SMN complex facilitates the formation of Sm-class ribonucleoproteins involved in mRNA processing (UsnRNPs). While biochemical studies have revealed key activities of the SMN complex, its structural investigation is lagging behind. Here we report on the identification and structural determination of the SMN complex from the lower eukaryote Schizosaccharomyces pombe, consisting of SMN, Gemin2, 6, 7, 8 and Sm proteins. The core of the SMN complex is formed by several copies of SMN tethered through its C-terminal alpha-helices arranged with alternating polarity. This creates a central platform onto which Gemin8 binds and recruits Gemins 6 and 7. The N-terminal parts of the SMN molecules extrude via flexible linkers from the core and enable binding of Gemin2 and Sm proteins. Our data identify the SMN complex as a multivalent hub where Sm proteins are collected in its periphery to allow their joining with UsnRNA.
Collapse
Affiliation(s)
- Jyotishman Veepaschit
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Aravindan Viswanathan
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier 34293, France
| | - Clemens Grimm
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Utz Fischer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
9
|
Kawamoto T, Yoshimoto R, Taniguchi I, Kitabatake M, Ohno M. ISG20 and nuclear exosome promote destabilization of nascent transcripts for spliceosomal U snRNAs and U1 variants. Genes Cells 2020; 26:18-30. [PMID: 33147372 DOI: 10.1111/gtc.12817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
Primary RNA transcripts are processed in a plethora of ways to become mature functional forms. In one example, human spliceosomal U snRNAs are matured at their 3'-end by an exonuclease termed TOE1. This process is important because mutations in TOE1 gene can cause a human genetic disease, pontocerebellar hypoplasia (PCH). Nevertheless, TOE1 may not be the only maturation exonuclease for U snRNAs in the cell. Here, we biochemically identify two exonucleolytic factors, Interferon-stimulated gene 20-kDa protein (ISG20) and the nuclear exosome as such candidates, using a newly developed in vitro system that recapitulates 3'-end maturation of U1 snRNA. However, extensive 3'-end sequencing of endogenous U1 snRNA of the knockdown (KD) cells revealed that these factors are not the maturation factors per se. Instead, the nascent transcripts of the spliceosomal U snRNAs as well as of unstable U1 variants were found to increase in quantity upon KD of the factors. These results indicated that ISG20 and the nuclear exosome promote the degradation of nascent spliceosomal U snRNAs and U1 variants, and therefore implied their role in the quality control of newly synthesized U snRNAs.
Collapse
Affiliation(s)
- Takahito Kawamoto
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | - Ichiro Taniguchi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makoto Kitabatake
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mutsuhito Ohno
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Machitani M, Taniguchi I, McCloskey A, Suzuki T, Ohno M. The RNA transport factor PHAX is required for proper histone H2AX expression and DNA damage response. RNA (NEW YORK, N.Y.) 2020; 26:1716-1725. [PMID: 32759388 PMCID: PMC7566570 DOI: 10.1261/rna.074625.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
PHAX (phosphorylated adaptor for RNA export) promotes nuclear export of short transcripts of RNA polymerase II such as spliceosomal U snRNA precursors, as well as intranuclear transport of small nucleolar RNAs (snoRNAs). However, it remains unknown whether PHAX has other critical functions. Here we show that PHAX is required for efficient DNA damage response (DDR) via regulation of phosphorylated histone variant H2AX (γH2AX), a key factor for DDR. Knockdown of PHAX led to a significant reduction of H2AX mRNA levels, through inhibition of both transcription of the H2AX gene and nuclear export of H2AX mRNA, one of the shortest mRNAs in the cell. As a result, PHAX-knockdown cells become more sensitive to DNA damage due to a shortage of γH2AX. These results reveal a novel function of PHAX, which secures efficient DDR and hence genome stability.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Division of Cancer Stem Cell, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ichiro Taniguchi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Asako McCloskey
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Suzuki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mutsuhito Ohno
- Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
11
|
Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and Challenges in the Delivery of mRNA-based Vaccines. Pharmaceutics 2020; 12:E102. [PMID: 32013049 PMCID: PMC7076378 DOI: 10.3390/pharmaceutics12020102] [Citation(s) in RCA: 297] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
In the past few years, there has been increasing focus on the use of messenger RNA (mRNA) as a new therapeutic modality. Current clinical efforts encompassing mRNA-based drugs are directed toward infectious disease vaccines, cancer immunotherapies, therapeutic protein replacement therapies, and treatment of genetic diseases. However, challenges that impede the successful translation of these molecules into drugs are that (i) mRNA is a very large molecule, (ii) it is intrinsically unstable and prone to degradation by nucleases, and (iii) it activates the immune system. Although some of these challenges have been partially solved by means of chemical modification of the mRNA, intracellular delivery of mRNA still represents a major hurdle. The clinical translation of mRNA-based therapeutics requires delivery technologies that can ensure stabilization of mRNA under physiological conditions. Here, we (i) review opportunities and challenges in the delivery of mRNA-based therapeutics with a focus on non-viral delivery systems, (ii) present the clinical status of mRNA vaccines, and (iii) highlight perspectives on the future of this promising new type of medicine.
Collapse
Affiliation(s)
| | | | | | | | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
12
|
Sjölander JJ, Sunnerhagen P. The fission yeast FHIT homolog affects checkpoint control of proliferation and is regulated by mitochondrial electron transport. Cell Biol Int 2019; 44:412-423. [PMID: 31538680 PMCID: PMC7003880 DOI: 10.1002/cbin.11241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/15/2019] [Indexed: 11/08/2022]
Abstract
Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early‐stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+, the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9‐1‐1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9‐1‐1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9‐1‐1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation.
Collapse
Affiliation(s)
- Johanna J Sjölander
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, Göteborg, SE-405 30, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, Göteborg, SE-405 30, Sweden
| |
Collapse
|
13
|
Distinct Functions of the Cap-Binding Complex in Stimulation of Nuclear mRNA Export. Mol Cell Biol 2019; 39:MCB.00540-18. [PMID: 30745412 DOI: 10.1128/mcb.00540-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cap-binding complex (CBC) associates cotranscriptionally with the cap structure at the 5' end of nascent mRNA to protect it from exonucleolytic degradation. Here, we show that CBC promotes the targeting of an mRNA export adaptor, Yra1 (forming transcription export [TREX] complex with THO and Sub2), to the active genes and enhances mRNA export in Saccharomyces cerevisiae Likewise, recruitment of Npl3 (an hnRNP involved in mRNA export via formation of export-competent ribonuclear protein complex [RNP]) to the active genes is facilitated by CBC. Thus, CBC enhances targeting of the export factors and promotes mRNA export. Such function of CBC is not mediated via THO and Sub2 of TREX, cleavage and polyadenylation factors, or Sus1 (that regulates mRNA export via transcription export 2 [TREX-2]). However, CBC promotes splicing of SUS1 mRNA and, consequently, Sus1 protein level and mRNA export via TREX-2. Collectively, our results support the hypothesis that CBC promotes recruitment of Yra1 and Npl3 to the active genes, independently of THO, Sub2, or cleavage and polyadenylation factors, and enhances mRNA export via TREX and RNP, respectively, in addition to its role in facilitating SUS1 mRNA splicing to increase mRNA export through TREX-2, revealing distinct stimulatory functions of CBC in mRNA export.
Collapse
|
14
|
Kramer S, McLennan AG. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1511. [PMID: 30345629 DOI: 10.1002/wrna.1511] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The 5' ends of most RNAs are chemically modified to enable protection from nucleases. In bacteria, this is often achieved by keeping the triphosphate terminus originating from transcriptional initiation, while most eukaryotic mRNAs and small nuclear RNAs have a 5'→5' linked N7 -methyl guanosine (m7 G) cap added. Several other chemical modifications have been described at RNA 5' ends. Common to all modifications is the presence of at least one pyrophosphate bond. To enable RNA turnover, these chemical modifications at the RNA 5' end need to be reversible. Dependent on the direction of the RNA decay pathway (5'→3' or 3'→5'), some enzymes cleave the 5'→5' cap linkage of intact RNAs to initiate decay, while others act as scavengers and hydrolyse the cap element of the remnants of the 3'→5' decay pathway. In eukaryotes, there is also a cap quality control pathway. Most enzymes involved in the cleavage of the RNA 5' ends are pyrophosphohydrolases, with only a few having (additional) 5' triphosphonucleotide hydrolase activities. Despite the identity of their enzyme activities, the enzymes belong to four different enzyme classes. Nudix hydrolases decap intact RNAs as part of the 5'→3' decay pathway, DXO family members mainly degrade faulty RNAs, members of the histidine triad (HIT) family are scavenger proteins, while an ApaH-like phosphatase is the major mRNA decay enzyme of trypanosomes, whose RNAs have a unique cap structure. Many novel cap structures and decapping enzymes have only recently been discovered, indicating that we are only beginning to understand the mechanisms of RNA decapping. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Susanne Kramer
- Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander G McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Kiledjian M. Eukaryotic RNA 5'-End NAD + Capping and DeNADding. Trends Cell Biol 2018; 28:454-464. [PMID: 29544676 PMCID: PMC5962413 DOI: 10.1016/j.tcb.2018.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 12/28/2022]
Abstract
A hallmark of eukaryotic mRNAs has long been the 5'-end m7G cap. This paradigm was recently amended by recent reports that Saccharomyces cerevisiae and mammalian cells also contain mRNAs carrying a novel nicotinamide adenine dinucleotide (NAD+) cap at their 5'-end. The presence of an NAD+ cap on mRNA uncovers a previously unknown mechanism for controlling gene expression through nucleotide metabolite-directed mRNA turnover. In contrast to the m7G cap that stabilizes mRNA, the NAD+ cap targets RNA for rapid decay in mammalian cells through the DXO non-canonical decapping enzyme which removes intact NAD+ from RNA in a process termed 'deNADding'. This review highlights the identification of NAD+ caps, their mode of addition, and their functional significance in cells.
Collapse
Affiliation(s)
- Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
16
|
Xie C, Chen YL, Wang DF, Wang YL, Zhang TP, Li H, Liang F, Zhao Y, Zhang GY. SgRNA Expression of CRIPSR-Cas9 System Based on MiRNA Polycistrons as a Versatile Tool to Manipulate Multiple and Tissue-Specific Genome Editing. Sci Rep 2017; 7:5795. [PMID: 28724960 PMCID: PMC5517485 DOI: 10.1038/s41598-017-06216-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/08/2017] [Indexed: 11/09/2022] Open
Abstract
CRISPR/Cas9-mediated genome editing is a next-generation strategy for genetic modifications. Typically, sgRNA is constitutively expressed relying on RNA polymerase III promoters. Polymerase II promoters initiate transcription in a flexible manner, but sgRNAs generated by RNA polymerase II promoter lost their nuclease activity. To express sgRNAs in a tissue-specific fashion and endow CRISPR with more versatile function, a novel system was established in a polycistron, where miRNAs (or shRNAs) and sgRNAs alternately emerged and co-expressed under the control of a single polymerase II promoter. Effective expression and further processing of functional miRNAs and sgRNAs were achieved. The redundant nucleotides adjacent to sgRNA were degraded, and 5'- cap structure was responsible for the compromised nuclease capacity of sgRNA: Cas9 complex. Furthermore, this strategy fulfilled conducting multiplex genome editing, as well as executing neural- specific genome editing and enhancing the proportion of homologous recombination via inhibiting NHEJ pathway by shRNA. In summary, we designed a new construction for efficient expression of sgRNAs with miRNAs (shRNAs) by virtue of RNA polymerase II promoters, which will spur the development of safer, more controllable/regulable and powerful CRISPR/Cas9 system-mediated genome editing in a wide variety of further biomedical applications.
Collapse
Affiliation(s)
- Chen Xie
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen, 518107, Guangdong, China
| | - Yan-Lian Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Dong-Fang Wang
- Department of Spine Surgery, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, Guangdong, China
| | - Yi-Lin Wang
- Biochip Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Tian-Peng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hui Li
- Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen, 518107, Guangdong, China
| | - Fu Liang
- Shenzhen Weiguang Biological Products Co., Ltd, Shenzhen, 518107, Guangdong, China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, Cooperative Innovation Center for High Performance Computing, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| | - Guang-Ya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
17
|
Nowak CM, Lawson S, Zerez M, Bleris L. Guide RNA engineering for versatile Cas9 functionality. Nucleic Acids Res 2016; 44:9555-9564. [PMID: 27733506 PMCID: PMC5175371 DOI: 10.1093/nar/gkw908] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats system allows a single guide RNA (sgRNA) to direct a protein with combined helicase and nuclease activity to the DNA. Streptococcus pyogenes Cas9 (SpCas9), a CRISPR-associated protein, has revolutionized our ability to probe and edit the human genome in vitro and in vivo Arguably, the true modularity of the Cas9 platform is conferred through the ease of sgRNA programmability as well as the degree of modifications the sgRNA can tolerate without compromising its association with SpCas9 and function. In this review, we focus on the properties and recent engineering advances of the sgRNA component in Cas9-mediated genome targeting.
Collapse
Affiliation(s)
- Chance M Nowak
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Seth Lawson
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Megan Zerez
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Leonidas Bleris
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
- Bioengineering Department, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
18
|
Fuchs AL, Neu A, Sprangers R. A general method for rapid and cost-efficient large-scale production of 5' capped RNA. RNA (NEW YORK, N.Y.) 2016; 22:1454-66. [PMID: 27368341 PMCID: PMC4986899 DOI: 10.1261/rna.056614.116] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 05/03/2023]
Abstract
The eukaryotic mRNA 5' cap structure is indispensible for pre-mRNA processing, mRNA export, translation initiation, and mRNA stability. Despite this importance, structural and biophysical studies that involve capped RNA are challenging and rare due to the lack of a general method to prepare mRNA in sufficient quantities. Here, we show that the vaccinia capping enzyme can be used to produce capped RNA in the amounts that are required for large-scale structural studies. We have therefore designed an efficient expression and purification protocol for the vaccinia capping enzyme. Using this approach, the reaction scale can be increased in a cost-efficient manner, where the yields of the capped RNA solely depend on the amount of available uncapped RNA target. Using a large number of RNA substrates, we show that the efficiency of the capping reaction is largely independent of the sequence, length, and secondary structure of the RNA, which makes our approach generally applicable. We demonstrate that the capped RNA can be directly used for quantitative biophysical studies, including fluorescence anisotropy and high-resolution NMR spectroscopy. In combination with (13)C-methyl-labeled S-adenosyl methionine, the methyl groups in the RNA can be labeled for methyl TROSY NMR spectroscopy. Finally, we show that our approach can produce both cap-0 and cap-1 RNA in high amounts. In summary, we here introduce a general and straightforward method that opens new means for structural and functional studies of proteins and enzymes in complex with capped RNA.
Collapse
Affiliation(s)
- Anna-Lisa Fuchs
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ancilla Neu
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Abstract
Nuclear pore proteins interact dynamically with chromatin to regulate gene activities. A key question is how nucleoporin interactions mechanistically alter a gene's intranuclear position and transcriptional output. We reported recently on a direct interaction between the nuclear pore-associated TREX-2 complex and promoter-bound Mediator. This highlights how nuclear-pore associated adaptors gain regulatory access to the core transcription machinery. In this Extra View, we discuss an additional implication that arises from our work and the recent literature: how promoter elements may regulate mRNA metabolism beyond transcription initiation.
Collapse
Affiliation(s)
- Tobias Schubert
- a Max F. Perutz Laboratories , Medical University of Vienna , Vienna Biocenter Campus (VBC) , Vienna, Austria
| | - Alwin Köhler
- a Max F. Perutz Laboratories , Medical University of Vienna , Vienna Biocenter Campus (VBC) , Vienna, Austria
| |
Collapse
|
20
|
Ajiro M, Zheng ZM. Vemurafenib-resistant BRAF selects alternative branch points different from its wild-type BRAF in intron 8 for RNA splicing. Cell Biosci 2015; 5:70. [PMID: 26697165 PMCID: PMC4687071 DOI: 10.1186/s13578-015-0061-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022] Open
Abstract
One mechanism of resistance of the melanoma-associated BRAF kinase to its small molecule inhibitor vemurafenib is by point mutations in its intron 8 resulting in exons 4–8 skipping. In this report, we carried out in vitro BRAF RNA splicing assays and lariat RT-PCR to map the intron 8 branch points in wild-type and BRAF mutants. We identify multiple branch points (BP) in intron 8 of both wild-type (wt) and vemurafenib-resistant BRAF RNA. In wt BRAF, BPs are located at -29A, -28A and -26A, whereas in a vemurafenib-resistant BRAF splicing mutant, BPs map to -22A, -18A and -15A, proximal to the intron 8 3′ splice site. This finding of a distal-to-proximal shift of the branch point sequence in BRAF splicing in response to point-mutations in intron 8 provides insight into the regulation of BRAF alternative splicing upon vemurafenib resistance.
Collapse
Affiliation(s)
- Masahiko Ajiro
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 USA
| |
Collapse
|
21
|
Sudo R, Sato F, Azechi T, Wachi H. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells. Genes Cells 2015; 20:1077-87. [DOI: 10.1111/gtc.12311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Sudo
- Department of Tissue Regeneration; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Fumiaki Sato
- Department of Analytical Pathophysiology; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Takuya Azechi
- Department of Tissue Regeneration; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| | - Hiroshi Wachi
- Department of Tissue Regeneration; Hoshi University School of Pharmacy and Pharmaceutical Sciences; 2-4-41 Ebara Shinagawa-ku Tokyo 142-8501 Japan
| |
Collapse
|
22
|
Hardin JW, Warnasooriya C, Kondo Y, Nagai K, Rueda D. Assembly and dynamics of the U4/U6 di-snRNP by single-molecule FRET. Nucleic Acids Res 2015; 43:10963-74. [PMID: 26503251 PMCID: PMC4678811 DOI: 10.1093/nar/gkv1011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
In large ribonucleoprotein machines, such as ribosomes and spliceosomes, RNA functions as an assembly scaffold as well as a critical catalytic component. Protein binding to the RNA scaffold can induce structural changes, which in turn modulate subsequent binding of other components. The spliceosomal U4/U6 di-snRNP contains extensively base paired U4 and U6 snRNAs, Snu13, Prp31, Prp3 and Prp4, seven Sm and seven LSm proteins. We have studied successive binding of all protein components to the snRNA duplex during di-snRNP assembly by electrophoretic mobility shift assay and accompanying conformational changes in the U4/U6 RNA 3-way junction by single-molecule FRET. Stems I and II of the duplex were found to co-axially stack in free RNA and function as a rigid scaffold during the entire assembly, but the U4 snRNA 5' stem-loop adopts alternative orientations each stabilized by Prp31 and Prp3/4 binding accounting for altered Prp3/4 binding affinities in presence of Prp31.
Collapse
Affiliation(s)
- John W Hardin
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Chandani Warnasooriya
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| | - Yasushi Kondo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Rueda
- Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK
| |
Collapse
|
23
|
Koppstein D, Ashour J, Bartel DP. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res 2015; 43:5052-64. [PMID: 25901029 PMCID: PMC4446424 DOI: 10.1093/nar/gkv333] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
The influenza polymerase cleaves host RNAs ∼10–13 nucleotides downstream of their 5′ ends and uses this capped fragment to prime viral mRNA synthesis. To better understand this process of cap snatching, we used high-throughput sequencing to determine the 5′ ends of A/WSN/33 (H1N1) influenza mRNAs. The sequences provided clear evidence for nascent-chain realignment during transcription initiation and revealed a strong influence of the viral template on the frequency of realignment. After accounting for the extra nucleotides inserted through realignment, analysis of the capped fragments indicated that the different viral mRNAs were each prepended with a common set of sequences and that the polymerase often cleaved host RNAs after a purine and often primed transcription on a single base pair to either the terminal or penultimate residue of the viral template. We also developed a bioinformatic approach to identify the targeted host transcripts despite limited information content within snatched fragments and found that small nuclear RNAs and small nucleolar RNAs contributed the most abundant capped leaders. These results provide insight into the mechanism of viral transcription initiation and reveal the diversity of the cap-snatched repertoire, showing that noncoding transcripts as well as mRNAs are used to make influenza mRNAs.
Collapse
Affiliation(s)
- David Koppstein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA
| | - Joseph Ashour
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David P Bartel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Taverniti V, Séraphin B. Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Res 2014; 43:482-92. [PMID: 25432955 PMCID: PMC4288156 DOI: 10.1093/nar/gku1251] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic 5' mRNA cap structures participate to the post-transcriptional control of gene expression before being released by the two main mRNA decay pathways. In the 3'-5' pathway, the exosome generates free cap dinucleotides (m7GpppN) or capped oligoribonucleotides that are hydrolyzed by the Scavenger Decapping Enzyme (DcpS) forming m7GMP. In the 5'-3' pathway, the decapping enzyme Dcp2 generates m7GDP. We investigated the fate of m7GDP and m7GpppN produced by RNA decay in extracts and cells. This defined a pathway involving DcpS, NTPs and the nucleoside diphosphate kinase for m7GDP elimination. Interestingly, we identified and characterized in vitro and in vivo a new scavenger decapping enzyme involved in m7GpppN degradation. We show that activities mediating cap elimination identified in yeast are essentially conserved in human. Their alteration may contribute to pathologies, possibly through the interference of cap (di)nucleotide with cellular function.
Collapse
Affiliation(s)
- Valerio Taverniti
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104/Institut National de Santé et de Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France
| | - Bertrand Séraphin
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104/Institut National de Santé et de Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
25
|
Wickramasinghe VO, Andrews R, Ellis P, Langford C, Gurdon JB, Stewart M, Venkitaraman AR, Laskey RA. Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP. Nucleic Acids Res 2014; 42:5059-71. [PMID: 24510098 PMCID: PMC4005691 DOI: 10.1093/nar/gku095] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 01/21/2023] Open
Abstract
The nuclear phase of the gene expression pathway culminates in the export of mature messenger RNAs (mRNAs) to the cytoplasm through nuclear pore complexes. GANP (germinal- centre associated nuclear protein) promotes the transfer of mRNAs bound to the transport factor NXF1 to nuclear pore complexes. Here, we demonstrate that GANP, subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression.
Collapse
Affiliation(s)
- Vihandha O. Wickramasinghe
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Robert Andrews
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Peter Ellis
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Cordelia Langford
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - John B. Gurdon
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Murray Stewart
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Ashok R. Venkitaraman
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Ronald A. Laskey
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Biomedical Campus, Cambridge CB2 0XZ, UK, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK, Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK and Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
26
|
Izumi H, McCloskey A, Shinmyozu K, Ohno M. p54nrb/NonO and PSF promote U snRNA nuclear export by accelerating its export complex assembly. Nucleic Acids Res 2014; 42:3998-4007. [PMID: 24413662 PMCID: PMC3973303 DOI: 10.1093/nar/gkt1365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 11/18/2022] Open
Abstract
The assembly of spliceosomal U snRNPs in metazoans requires nuclear export of U snRNA precursors. Four factors, nuclear cap-binding complex (CBC), phosphorylated adaptor for RNA export (PHAX), the export receptor CRM1 and RanGTP, gather at the m(7)G-cap-proximal region and form the U snRNA export complex. Here we show that the multifunctional RNA-binding proteins p54nrb/NonO and PSF are U snRNA export stimulatory factors. These proteins, likely as a heterodimer, accelerate the recruitment of PHAX, and subsequently CRM1 and Ran onto the RNA substrates in vitro, which mediates efficient U snRNA export in vivo. Our results reveal a new layer of regulation for U snRNA export and, hence, spliceosomal U snRNP biogenesis.
Collapse
Affiliation(s)
- Hiroto Izumi
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan and RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Asako McCloskey
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan and RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Kaori Shinmyozu
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan and RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan and RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
27
|
Abstract
The 7mG (7-methylguanosine cap) formed on mRNA is fundamental to eukaryotic gene expression. Protein complexes recruited to 7mG mediate key processing events throughout the lifetime of the transcript. One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation. Gene expression can be regulated by signalling pathways which influence CBC function. The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events.
Collapse
|
28
|
|
29
|
McDowell SC, Akmakjian G, Sladek C, Mendoza-Cozatl D, Morrissey JB, Saini N, Mittler R, Baxter I, Salt DE, Ward JM, Schroeder JI, Guerinot ML, Harper JF. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions. PLoS One 2013; 8:e63014. [PMID: 23671651 PMCID: PMC3646034 DOI: 10.1371/journal.pone.0063014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds). To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes supports an estimate that as much as 11% of the A. thaliana genome encodes proteins of functional relevance to ion homeostasis in seeds. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280 and CNGC2. In a comparison of nine different accessions to a Col-0 reference, eight accessions were observed to have reproducible differences in elemental concentrations, seven of which were dependent on specific soil conditions. These results indicate that the A. thaliana seed ionome is distinct from the vegetative ionome, and that elemental analysis is a sensitive approach to identify genes controlling ion homeostasis, including those that regulate gene expression, phospho-regulation, and ion transport.
Collapse
Affiliation(s)
- Stephen C McDowell
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Swift RV, Ong CD, Amaro RE. Magnesium-induced nucleophile activation in the guanylyltransferase mRNA capping enzyme. Biochemistry 2012. [PMID: 23205906 DOI: 10.1021/bi301224b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mRNA guanylyltransferase, or mRNA capping enzyme, cotranscriptionally caps the 5'-end of nascent mRNA with GMP during the second reaction in a set of three enzymatic reactions that result in the formation of an N7-methylguanosine cap during mRNA maturation. The mRNA capping enzyme is characterized, in part, by a conserved lysine nucleophile that attacks the α-phosphorus atom of GTP, forming a lysine-GMP intermediate. Experiments have firmly established that magnesium is required for efficient intermediate formation but have provided little insight into the requirement's molecular origins. Using empirical and thermodynamic integration pK(a) estimates, along with conventional molecular dynamics simulations, we show that magnesium binding likely activates the lysine nucleophile by increasing its acidity and by biasing the deprotonated nucleophile into conformations conducive to intermediate formation. These results provide additional functional understanding of an important enzyme in the mRNA transcript life cycle and allow functional analogies to be drawn that affect our understanding of the metal dependence of related superfamily members.
Collapse
Affiliation(s)
- Robert V Swift
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
31
|
Abstract
In eukaryotic cells, many RNA species are exported from the nucleus to the cytoplasms. Different RNA species form distinct ribonucleoprotein (RNP) complexes for export, indicating specific RNA recognition by export proteins. Specific RNA recognition is usually achieved by specific RNA sequences or structures, but we have recently reported a molecular mechanism by which the formation of export RNP complexes is specified by RNA length. ( 1) RNA polymerase II (Pol II) synthesizes not only mRNAs but also shorter RNAs, including spliceosomal U snRNAs. Although the key U snRNA export factor, PHAX, can bind to mRNA in vitro, PHAX is excluded from mRNA in vivo. The heterotetramer of the heterogeneous nuclear RNP (hnRNP) C1/C2 specifically binds Pol II transcripts longer than 200-300 nt, and funnels them into the mRNA export pathway by inhibiting their binding by PHAX, whereas shorter transcripts not bound by the heterotetramer are committed to the U snRNA export pathway. Although this finding reveals a novel function of the C1/C2 heterotetramer and highlights the biological importance of RNA recognition by length, it has raised a number of new questions, some of which will be discussed in this article, together with some historical background of this finding.
Collapse
Affiliation(s)
- Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Kyoto, Japan.
| |
Collapse
|
32
|
Stachelska-Wierzchowska A, Wieczorek ZJ. Hydrolysis of 5',5'-tri- or tetraphosphate-mRNA 5'-cap analogs promoted by Cu2+ or Zn2+ metal ions. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:135-48. [PMID: 21360411 DOI: 10.1080/15257770.2010.551722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Kinetics of the hydrolysis of a P(1)-(7-methylguanosinyl-5') P(3)-(guanosinyl-5') triphosphate (m(7)GpppG), P(1)-(7-methylguanosinyl-5') P(4)- (guanosinyl-5') tetraphosphate (m(7)GppppG), diadenosine-5',5'''-P(1),P(3)-triphosphate (ApppA), and diadenosine-5',5'''-P(1),P(4)-tetraphosphate (AppppA) promoted by Cu(2+) or Zn(2+) has been investigated. Time-dependent products distributions at various metal ion concentrations have been determined by CZE and HPLC-RP. The results show that in acidic conditions, in the presence of metal ion, the predominant hydrolytic reaction is the cleavage of 5',5'-oligophosphate bridge. The 5',5'-oligophosphate bridge of the dinucleotides studied is hydrolyzed by Cu(2+) more efficiently than by Zn(2+). At the catalyst concentration of 2 mM the cleavage of the 5',5'-triphosphate bridge of m(7)GpppG was ∼3.6 times faster, and that of the tetraphosphate bridge of m(7)GppppG ∼2.3-fold faster in the presence of Cu(2+) compared to the Zn(2+) ion, applied as catalysts. Dependence of the rates of hydrolysis on the catalyst concentration was in some instances not linear, interpreted as evidence for participation of more than one metal ion in the transition complex.
Collapse
|
33
|
Fischer U, Englbrecht C, Chari A. Biogenesis of spliceosomal small nuclear ribonucleoproteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:718-31. [PMID: 21823231 DOI: 10.1002/wrna.87] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Virtually, all eukaryotic mRNAs are synthesized as precursor molecules that need to be extensively processed in order to serve as a blueprint for proteins. The three most prevalent processing steps are the capping reaction at the 5'-end, the removal of intervening sequences by splicing, and the formation of poly (A)-tails at the 3'-end of the message by polyadenylation. A large number of proteins and small nuclear ribonucleoprotein complexes (snRNPs) interact with the mRNA and enable the different maturation steps. This chapter focuses on the biogenesis of snRNPs, the major components of the pre-mRNA splicing machinery (spliceosome). A large body of evidence has revealed an intricate and segmented pathway for the formation of snRNPs that involves nucleo-cytoplasmic transport events and elaborates assembly strategies. We summarize the knowledge about the different steps with an emphasis on trans-acting factors of snRNP maturation of higher eukaryotes. WIREs RNA 2011 2 718-731 DOI: 10.1002/wrna.87 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, University of Wuerzburg, Germany.
| | | | | |
Collapse
|
34
|
Coady TH, Lorson CL. SMN in spinal muscular atrophy and snRNP biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:546-64. [PMID: 21957043 DOI: 10.1002/wrna.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribonucleoprotein (RNP) complexes function in nearly every facet of cellular activity. The spliceosome is an essential RNP that accurately identifies introns and catalytically removes the intervening sequences, providing exquisite control of spatial, temporal, and developmental gene expressions. U-snRNPs are the building blocks for the spliceosome. A significant amount of insight into the molecular assembly of these essential particles has recently come from a seemingly unexpected area of research: neurodegeneration. Survival motor neuron (SMN) performs an essential role in the maturation of snRNPs, while the homozygous loss of SMN1 results in the development of spinal muscular atrophy (SMA), a devastating neurodegenerative disease. In this review, the function of SMN is examined within the context of snRNP biogenesis and evidence is examined which suggests that the SMN functional defects in snRNP biogenesis may account for the motor neuron pathology observed in SMA.
Collapse
Affiliation(s)
- Tristan H Coady
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
35
|
Temporal and tissue specific regulation of RP-associated splicing factor genes PRPF3, PRPF31 and PRPC8--implications in the pathogenesis of RP. PLoS One 2011; 6:e15860. [PMID: 21283520 PMCID: PMC3023711 DOI: 10.1371/journal.pone.0015860] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells. CONCLUSIONS/SIGNIFICANCE Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein.
Collapse
|
36
|
Lahudkar S, Shukla A, Bajwa P, Durairaj G, Stanojevic N, Bhaumik SR. The mRNA cap-binding complex stimulates the formation of pre-initiation complex at the promoter via its interaction with Mot1p in vivo. Nucleic Acids Res 2010; 39:2188-209. [PMID: 21075799 PMCID: PMC3064766 DOI: 10.1093/nar/gkq1029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cap-binding complex (CBC) binds to the cap structure of mRNA to protect it from exonucleases as well as to regulate downstream post-transcriptional events, translational initiation and nonsense-mediated mRNA decay. However, its role in regulation of the upstream transcriptional events such as initiation or elongation remains unknown. Here, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation assay in conjunction with transcriptional, mutational and co-immunoprecipitational analyses, we show that CBC is recruited to the body of yeast gene, and then stimulates the formation of pre-initiation complex (PIC) at several yeast promoters through its interaction with Mot1p (modifier of transcription). Mot1p is recruited to these promoters, and enhances the PIC formation. We find that CBC promotes the recruitment of Mot1p which subsequently stimulates PIC formation at these promoters. Furthermore, the formation of PIC is essential for recruitment of CBC. Thus, our study presents an interesting observation that an mRNA binding factor exhibits a reciprocal synergistic effect on formation of PIC (and hence transcriptional initiation) at the promoter, revealing a new pathway of eukaryotic gene regulation in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Sukesh R. Bhaumik
- *To whom correspondence should be addressed. Tel: +1 618 453 6479; Fax: +1 618 453 6440;
| |
Collapse
|
37
|
Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:277-98. [PMID: 21957010 DOI: 10.1002/wrna.52] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
38
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
39
|
Chari A, Fischer U. Cellular strategies for the assembly of molecular machines. Trends Biochem Sci 2010; 35:676-83. [PMID: 20727772 DOI: 10.1016/j.tibs.2010.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 01/13/2023]
Abstract
Molecular machines are supramolecular assemblies of biomolecules (proteins, RNA and/or DNA) that facilitate a diversity of biological tasks in the cells of all organisms. How these complex structures are built within the crowded cellular environment is, therefore, a central question in the biological sciences. Recent studies on spliceosomal uridine-rich small nuclear ribonucleoproteins (snRNPs) have unveiled cellular assembly strategies for RNA-protein complexes. snRNPs form in vivo by the coordinated action of an elaborate assembly line consisting of assembly chaperones, scaffolding proteins and catalysts. These newly discovered strategies exhibit similarities to those employed by protein complexes such as ribulose-1,5-bisphosphate-carboxylase (Rubisco) and allow the elucidation of general rules for how molecular machines are formed in vivo.
Collapse
Affiliation(s)
- Ashwin Chari
- Department of Biochemistry, Theodor-Boveri Institute, University of Wurzburg, Am Hubland, D-97074 Wurzburg, Germany.
| | | |
Collapse
|
40
|
Risk JM, Laurie RE, Macknight RC, Day CL. FRIGIDA and related proteins have a conserved central domain and family specific N- and C- terminal regions that are functionally important. PLANT MOLECULAR BIOLOGY 2010; 73:493-505. [PMID: 20405310 DOI: 10.1007/s11103-010-9635-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 04/05/2010] [Indexed: 05/08/2023]
Abstract
Arabidopsis accessions are either winter-annuals, which require cold winter temperatures for spring flowering, or rapid-cycling summer annuals. Typically, winter annual accessions have functional FRIGIDA (FRI) and FRIGIDA-LIKE 1 (FRL1) proteins that promote high expression of FLOWERING LOCUS C (FLC), which prevents flowering until after winter. In contrast, many rapid-cycling accessions have low FLC levels because FRI is inactive. Using biochemical, functional and bioinformatic approaches, we show that FRI and FRL1 contain a stable, central domain that is conserved across the FRI superfamily. This core domain is monomeric in solution and primarily alpha-helical. We analysed the ability of several FRI deletion constructs to function in Arabidopsis plants. Our findings suggest that the C-terminus, which is predicted to be disordered, is required for FRI to promote FLC expression and may mediate protein:protein interactions. The contribution of the FRI N-terminus appears to be limited, as constructs missing these residues retained significant activity when expressed at high levels. The important N- and C-terminal regions differ between members of the FRI superfamily and sequence analysis identified five FRI families with distinct expression patterns in Arabidopsis, suggesting the families have separate biological roles.
Collapse
Affiliation(s)
- Joanna M Risk
- Biochemistry Department, University of Otago, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
41
|
Castanotto D, Lingeman R, Riggs AD, Rossi JJ. CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci U S A 2009; 106:21655-9. [PMID: 19955415 PMCID: PMC2787469 DOI: 10.1073/pnas.0912384106] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Indexed: 12/21/2022] Open
Abstract
Drosha-processed microRNAs (miRNAs) have been shown to be exported from the nucleus to the cytoplasm by Exportin 5, where they are processed a second time to generate mature miRNAs. In this work we show that miRNAs also use CRM1 for nuclear-cytoplasmic shuttling. Inhibition of CRM1 by Leptomycin B results in nuclear accumulation of miRNA guide sequences. Nuclear to cytoplasmic transport can be actively competed by synthetic small interfering RNAs, indicating that this pathway is shared by different classes of processed small RNAs. We also find that CRM1 coimmunoprecipitates with Ago-1, Ago-2, Topo2alpha, EzH2, and Mta, consistent with a role of Argonautes and small RNAs in chromatin remodeling.
Collapse
Affiliation(s)
| | - Robert Lingeman
- Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010
| | - Arthur D. Riggs
- Biology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010
| | | |
Collapse
|
42
|
Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, Szweykowska-Kulinska Z, Brown JWS, Jarmolowski A. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2009; 38:265-78. [PMID: 19864257 PMCID: PMC2800227 DOI: 10.1093/nar/gkp869] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The nuclear cap-binding protein complex (CBC) participates in 5′ splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT–PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5′ and 3′ splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5′ splice site.
Collapse
|
43
|
Kierzkowski D, Kmieciak M, Piontek P, Wojtaszek P, Szweykowska-Kulinska Z, Jarmolowski A. The Arabidopsis CBP20 targets the cap-binding complex to the nucleus, and is stabilized by CBP80. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:814-25. [PMID: 19453442 DOI: 10.1111/j.1365-313x.2009.03915.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cap-binding protein complex (CBC) binds to the caps of all RNA polymerase II transcripts, and plays an important role in RNA metabolism. We characterized interactions, localization and nuclear-cytoplasmic transport of two subunits of the Arabidopsis thaliana cap-binding protein complex (AtCBC): AtCBP20 and AtCBP80. Using CFP/YFP-tagged proteins, we show that transport of AtCBC from the cytoplasm to the nucleus in the plant cell is different from that described in other eukaryotic cells. We show that the smaller subunit of the complex, AtCBP20, plays a crucial role in the nuclear import of AtCBC. The C-terminal part of AtCBP20 contains two functionally independent nuclear localization signals (NLSs). At least one of these two NLSs is required for the import of CBC into the plant nucleus. The interaction between the A. thaliana CBP20 and CBP80 was also analyzed in detail, using the yeast two-hybrid system and fluorescence resonance energy transfer (FRET) assays. The N-terminal part of AtCBP20 is essential for interaction with AtCBP80. Furthermore, AtCBP80 is important for the protein stability of the smaller subunit of CBC. Based on these data, we propose a model for the nuclear-cytoplasmic trafficking of the CBC complex in plants.
Collapse
Affiliation(s)
- Daniel Kierzkowski
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Swift RV, McCammon JA. Substrate induced population shifts and stochastic gating in the PBCV-1 mRNA capping enzyme. J Am Chem Soc 2009; 131:5126-33. [PMID: 19301911 PMCID: PMC2837470 DOI: 10.1021/ja808064g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 317 residue PBCV-1 mRNA capping enzyme catalyzes the second enzymatic reaction in the formation of an N-7-methyl-GMP cap on the 5'-end of the nascent mRNA. It is composed of two globular domains bound by a short flexible peptide linker, which have been shown to undergo opening and closing events. The small size and experimentally demonstrated domain mobility make the PBCV-1 capping enzyme an ideally suited model system to explore domain mobility in context of substrate binding. Here, we specifically address the following four questions: (1) How does substrate binding affect relative domain mobility: is the system better described by an induced fit or population shift mechanism? (2) What are the gross characteristics of a conformation capable of binding substrate? (3) Does "domain gating" of the active site affect the rate of substrate binding? (4) Does the magnitude of receptor conformational fluctuations confer substrate specificity by sterically occluding molecules of a particular size or geometry? We answer these questions using a combination of theory, Brownian dynamics, and molecular dynamics. Our results show that binding efficiency is a function of conformation but that isomerization between efficient and inefficient binding conformations does not impact the substrate association rate. Additionally, we show that conformational flexibility alone is insufficient to explain single stranded mRNA specificity. While our results are specific to the PBCV-1 mRNA capping enzyme, they provide a useful context within which the substrate binding behavior of similarly structured enzymes or proteins may be considered.
Collapse
Affiliation(s)
- Robert V Swift
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California, 92039-0365, USA.
| | | |
Collapse
|
45
|
Abstract
Export of mRNA from the nucleus is a central process in eukaryotic gene expression that has been implicated in several human diseases. Much of our understanding of how an mRNA is transported to the cytoplasm is derived from studies using yeast and fly models. We present here different mechanisms by which aberrant nuclear retention of mRNA can cause human disease. Emerging evidence that implicates the mRNA export factor GLE1 in two lethal motor neuron disorders is discussed and we highlight surprising links to regulatory mechanisms that were first observed many years ago in yeast. These examples illustrate how model organisms have aided in our elucidation of complex human disorders through analysis of basic cellular processes.
Collapse
Affiliation(s)
- Jessica A Hurt
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Worch R, Jankowska-Anyszka M, Niedzwiecka A, Stepinski J, Mazza C, Darzynkiewicz E, Cusack S, Stolarski R. Diverse role of three tyrosines in binding of the RNA 5' cap to the human nuclear cap binding complex. J Mol Biol 2008; 385:618-27. [PMID: 19026660 DOI: 10.1016/j.jmb.2008.10.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/16/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
The heterodimeric nuclear cap-binding complex (CBC) specifically recognizes the monomethylguanosine 5' cap structure of the eukaryotic RNA polymerase II transcripts such as mRNA and U snRNA. The binding is essential for nuclear maturation of mRNA, for nuclear export of U snRNA in metazoans, and for nonsense-mediated decay of mRNA and the pioneer round of translation. We analysed the recognition of the cap by native human CBC and mutants in which each tyrosine that stacks with the 7-methylguanosine moiety was replaced by phenylalanine or alanine and both tyrosines were replaced by phenylalanines. The equilibrium association constants (K(as)) for two selected cap analogues, P(1)-7-methylguanosine-5' P(3)-guanosine-5' triphosphate and 7-methylguanosine triphosphate, were determined by two independent methods, fluorescence titration and surface plasmon resonance. We could distinguish two tyrosines, Y43 and Y20, in stabilization of the cap inside the CBC-binding pocket. In particular, lack of Y20 in CBC leads to a greater affinity of the mono- than the dinucleotide cap analogue, in contrast to the wild-type protein. A crucial role of cation-pi stacking in the mechanism of the specific cap recognition by CBC was postulated from the comparison of the experimentally derived Gibbs free binding energy (DeltaG degrees) with the stacking energy (DeltaE) of the 7-methylguanosine/Y binary and ternary complexes calculated by the Møller-Plesset second-order perturbation method. The resulting kinetic model of the association between the capped RNA and CBC, based on the experimental data and quantum calculations, is discussed with respect to the "CBC-to-eukaryotic initiation factor 4E handoff" of mRNA.
Collapse
Affiliation(s)
- Remigiusz Worch
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Zwirki and Wigury St., 02-089 Warszawa, Poland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Joining the dots: Production, processing and targeting of U snRNP to nuclear bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2137-44. [DOI: 10.1016/j.bbamcr.2008.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/20/2022]
|
48
|
Apoptosis and autophagy induction in mammalian cells by small interfering RNA knockdown of mRNA capping enzymes. Mol Cell Biol 2008; 28:5829-36. [PMID: 18678651 DOI: 10.1128/mcb.00021-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of a 5' cap to RNA polymerase II transcripts, the first step of pre-mRNA processing in eukaryotes from yeasts to mammals, is catalyzed by the sequential action of RNA triphosphatase, guanylyltransferase, and (guanine-N-7)methyltransferase. The effects of knockdown of these capping enzymes in mammalian cells were investigated using T7 RNA polymerase-synthesized small interfering RNA and also a lentivirus-based inducible, short hairpin RNA system. Decreasing either guanylyltransferase or methyltransferase resulted in caspase-3 activation and elevated terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining characteristic of apoptosis. Induction of apoptosis was independent of p53 tumor suppressor but dependent on BAK or BAX. In addition, levels of the BH3 family member Bim increased, while Mcl-1 and Bik levels remained unchanged during apoptosis. In contrast to capping enzyme knockdown, apoptosis induced by cycloheximide inhibition of protein synthesis required BAK but not BAX. Both Bim and Mcl-1 levels decreased in cycloheximide-induced apoptosis while Bik levels were unchanged, suggesting that apoptosis in siRNA-treated cells is not a direct consequence of loss of mRNA translation. siRNA-treated BAK(-/-) BAX(-/-) double-knockout mouse embryonic fibroblasts failed to activate capase-3 or increase TUNEL staining but instead exhibited autophagy, as demonstrated by proteolytic processing of microtubule-associated protein 1 light chain 3 (LC3) and translocation of transfected green fluorescent protein-LC3 from the nucleus to punctate cytoplasmic structures.
Collapse
|
49
|
Shen V, Liu H, Liu SW, Jiao X, Kiledjian M. DcpS scavenger decapping enzyme can modulate pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2008; 14:1132-42. [PMID: 18426921 PMCID: PMC2390800 DOI: 10.1261/rna.1008208] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The human scavenger decapping enzyme, DcpS, functions to hydrolyze the resulting cap structure following cytoplasmic mRNA decay yet is, surprisingly, a nuclear protein by immunofluorescence. Here, we show that DcpS is a nucleocytoplasmic shuttling protein that contains separable nuclear import and Crm-1-dependent export signals. We postulated that the presence of DcpS in both cellular compartments and its ability to hydrolyze cap structure may impact other cellular events dependent on cap-binding proteins. An shRNA-engineered cell line with markedly diminished DcpS levels led to a corresponding reduction in cap-proximal intron splicing of a reporter minigene and endogenous genes. The impaired cap catabolism and resultant imbalanced cap concentrations were postulated to sequester the cap-binding complex (CBC) from its normal splicing function. In support of this explanation, DcpS efficiently displaced the nuclear cap-binding protein Cbp20 from cap structure, and complementation with Cbp20 reversed the reduced splicing, indicating that modulation of splicing by DcpS is mediated through Cbp20. Our studies demonstrate that the significance of DcpS extends beyond its well-characterized role in mRNA decay and involves a broader range of functions in RNA processing including nuclear pre-mRNA splicing.
Collapse
Affiliation(s)
- Vincent Shen
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, USA
| | | | | | | | | |
Collapse
|
50
|
Hattori N, Kitagawa K, Nakayama Y, Inagaki C. [Neurotoxicity of amyloid beta proteins]. Nihon Yakurigaku Zasshi 2008; 131:326-32. [PMID: 18480560 DOI: 10.1254/fpj.131.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|