1
|
den Uijl MJ, Driessen AJM. Phospholipid dependency of membrane protein insertion by the Sec translocon. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184232. [PMID: 37734458 DOI: 10.1016/j.bbamem.2023.184232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Membrane protein insertion into and translocation across the bacterial cytoplasmic membrane are essential processes facilitated by the Sec translocon. Membrane insertion occurs co-translationally whereby the ribosome nascent chain is targeted to the translocon via signal recognition particle and its receptor FtsY. The phospholipid dependence of membrane protein insertion has remained mostly unknown. Here we assessed in vitro the dependence of the SecA independent insertion of the mannitol permease MtlA into the membrane on the main phospholipid species present in Escherichia coli. We observed that insertion depends on the presence of phosphatidylglycerol and is due to the anionic nature of the polar headgroup, while insertion is stimulated by the zwitterionic phosphatidylethanolamine. We found an optimal insertion efficiency at about 30 mol% DOPG and 50 mol% DOPE which approaches the bulk membrane phospholipid composition of E. coli.
Collapse
Affiliation(s)
- Max J den Uijl
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, the Netherlands
| | - Arnold J M Driessen
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
2
|
Bogdanov M. Preparation of Uniformly Oriented Inverted Inner (Cytoplasmic) Membrane Vesicles from Gram-Negative Bacterial Cells. Methods Mol Biol 2024; 2715:159-180. [PMID: 37930527 PMCID: PMC10724710 DOI: 10.1007/978-1-0716-3445-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The complex double-membrane organization of the envelope in Gram-negative bacteria places unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on cytoplasm facing leaflet of cytoplasmic (inner) membrane (IM), across IM and between IM and outer membrane (OM). Uniformly oriented inside-out (ISO) vesicles became functional requisite for many biochemical reconstitution functional assays, vectorial proteomics, and vectorial lipidomics. Due to these demands, it is necessary to develop simple and reliable approaches for preparation of uniformly oriented IM membrane vesicles and validation of their sidedness. The uniformly ISO oriented membrane vesicles which have the cytoplasmic face of the membrane on the outside and the periplasmic side facing the sealed lumen can be obtained following intact cell disruption by a single passage through a French pressure cell (French press) at desired total pressure. Although high-pressure lysis leads to the formation of mostly inverted membrane vesicles (designated and abbreviated usually as ISO vesicles, everted or inverted membrane vesicles (IMVs)), inconclusive results are quite common. This uncertainty is due mainly by applying a different pressures, using either intact cells or spheroplasts and presence or absence of sucrose during rupture procedure. Many E. coli envelope fractionation techniques result in heterogeneity among isolated IM membrane vesicles. In part, this is due to difficulties in simple validation of sidedness of oriented membrane preparations of unknown sidedness. The sidedness of various preparations of membrane vesicles can be inferred from the orientation of residing uniformly oriented transmembrane protein. We outline the method in which the orientation of membrane vesicles can be verified by mapping of uniform or mixed topologies of essential protein E. coli protein leader peptidase (LepB) by advanced SCAM™. Although the protocol discussed in this chapter has been developed using Escherichia coli and Yersinia pseudotuberculosis, it can be directly adapted to other Gram-negative bacteria including pathogens.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
3
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Allen WJ, Collinson I. A unifying mechanism for protein transport through the core bacterial Sec machinery. Open Biol 2023; 13:230166. [PMID: 37643640 PMCID: PMC10465204 DOI: 10.1098/rsob.230166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Encapsulation and compartmentalization are fundamental to the evolution of cellular life, but they also pose a challenge: how to partition the molecules that perform biological functions-the proteins-across impermeable barriers into sub-cellular organelles, and to the outside. The solution lies in the evolution of specialized machines, translocons, found in every biological membrane, which act both as gate and gatekeeper across and into membrane bilayers. Understanding how these translocons operate at the molecular level has been a long-standing ambition of cell biology, and one that is approaching its denouement; particularly in the case of the ubiquitous Sec system. In this review, we highlight the fruits of recent game-changing technical innovations in structural biology, biophysics and biochemistry to present a largely complete mechanism for the bacterial version of the core Sec machinery. We discuss the merits of our model over alternative proposals and identify the remaining open questions. The template laid out by the study of the Sec system will be of immense value for probing the many other translocons found in diverse biological membranes, towards the ultimate goal of altering or impeding their functions for pharmaceutical or biotechnological purposes.
Collapse
Affiliation(s)
- William J. Allen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
6
|
Atomic Force Microscopy Reveals Complexity Underlying General Secretory System Activity. Int J Mol Sci 2022; 24:ijms24010055. [PMID: 36613499 PMCID: PMC9820662 DOI: 10.3390/ijms24010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of E. coli include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances polypeptide secretion by coupling translocation to proton motive force. Atomic force microscopy (AFM), a single-molecule imaging technique, is well suited to unmask complex, asynchronous molecular activities of membrane-associated proteins including those comprising the Sec apparatus. Using AFM, the dynamic structure of membrane-external protein topography of Sec system components can be directly visualized with high spatial-temporal precision. This mini-review is focused on AFM imaging of the Sec system in near-native fluid conditions where activity can be maintained and biochemically verified. Angstrom-scale conformational changes of SecYEG are reported on 100 ms timescales in fluid lipid bilayers. The association of SecA with SecYEG, forming membrane-bound SecYEG/SecA translocases, is directly visualized. Recent work showing topographical aspects of the translocation process that vary with precursor species is also discussed. The data suggests that the Sec system does not employ a single translocation mechanism. We posit that differences in the spatial frequency distribution of hydrophobic content within precursor sequences may be a determining factor in mechanism selection. Precise AFM investigations of active translocases are poised to advance our currently vague understanding of the complicated macromolecular movements underlying protein export across membranes.
Collapse
|
7
|
Frantsuzova E, Bogun A, Vetrova A, Delegan Y. Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens 2022; 11:pathogens11121496. [PMID: 36558832 PMCID: PMC9786905 DOI: 10.3390/pathogens11121496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gordonia spp. are members of the family Gordoniacea in the suborder Corynebacteriales; their habitat, in most cases, is soil. Many representatives of this genus are human or veterinary pathogens. The main cause of the lack of a standardized approach to dealing with infections caused by Gordonia is their erroneous identification and little information regarding their susceptibility to antimicrobial drugs. This review presents the most common methods for identifying Gordonia strains, including modern approaches for identifying a species. The main prospects and future directions of this field of knowledge are briefly presented.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- Correspondence:
| |
Collapse
|
8
|
An Unprecedented Tolerance to Deletion of the Periplasmic Chaperones SurA, Skp, and DegP in the Nosocomial Pathogen Acinetobacter baumannii. J Bacteriol 2022; 204:e0005422. [PMID: 36106853 PMCID: PMC9578438 DOI: 10.1128/jb.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria efficiently protects from harmful environmental stresses such as antibiotics, disinfectants, or dryness. The main constituents of the OM are integral OM β-barrel proteins (OMPs). In Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica, and Pseudomonas aeruginosa, the insertion of OMPs depends on a sophisticated biogenesis pathway. This comprises the SecYEG translocon, which enables inner membrane (IM) passage; the chaperones SurA, Skp, and DegP, which facilitate the passage of β-barrel OMPs through the periplasm; and the β-barrel assembly machinery (BAM), which facilitates insertion into the OM. In E. coli, Y. enterocolitica, and P. aeruginosa, the deletion of SurA is particularly detrimental and leads to a loss of OM integrity, sensitization to antibiotic treatment, and reduced virulence. In search of targets that could be exploited to develop compounds that interfere with OM integrity in Acinetobacter baumannii, we employed the multidrug-resistant strain AB5075 to generate single gene knockout strains lacking individual periplasmic chaperones. In contrast to E. coli, Y. enterocolitica, and P. aeruginosa, AB5075 tolerates the lack of SurA, Skp, or DegP with only weak mutant phenotypes. While the double knockout strains ΔsurAΔskp and ΔsurAΔdegP are conditionally lethal in E. coli, all double deletions were well tolerated by AB5075. Strikingly, even a triple-knockout strain of AB5075, lacking surA, skp, and degP, was viable. IMPORTANCEAcinetobacter baumannii is a major threat to human health due to its ability to persist in the hospital environment, resistance to antibiotic treatment, and ability to deploy multiple and redundant virulence factors. In a rising number of cases, infections with multidrug-resistant A. baumannii end up fatally, because all antibiotic treatment options fail. Thus, novel targets have to be identified and alternative therapeutics have to be developed. The knockout of periplasmic chaperones has previously proven to significantly reduce virulence and even break antibiotic resistance in other Gram-negative pathogens. Our study in A. baumannii demonstrates how variable the importance of the periplasmic chaperones SurA, Skp, and DegP can be and suggests the existence of mechanisms allowing A. baumannii to cope with the lack of the three periplasmic chaperones.
Collapse
|
9
|
Allen WJ, Corey RA, Watkins DW, Oliveira ASF, Hards K, Cook GM, Collinson I. Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion. eLife 2022; 11:e77586. [PMID: 35486093 PMCID: PMC9110029 DOI: 10.7554/elife.77586] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain - notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction.
Collapse
Affiliation(s)
- William J Allen
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Robin A Corey
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - A Sofia F Oliveira
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
- School of Chemistry, University of Bristol, University WalkBristolUnited Kingdom
| | - Kiel Hards
- Department of Microbiology and Immunology, University of OtagoDunedinNew Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of OtagoDunedinNew Zealand
| | - Ian Collinson
- School of Biochemistry, University of Bristol, University WalkBristolUnited Kingdom
| |
Collapse
|
10
|
Krishnamurthy S, Sardis MF, Eleftheriadis N, Chatzi KE, Smit JH, Karathanou K, Gouridis G, Portaliou AG, Bondar AN, Karamanou S, Economou A. Preproteins couple the intrinsic dynamics of SecA to its ATPase cycle to translocate via a catch and release mechanism. Cell Rep 2022; 38:110346. [PMID: 35139375 DOI: 10.1016/j.celrep.2022.110346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Protein machines undergo conformational motions to interact with and manipulate polymeric substrates. The Sec translocase promiscuously recognizes, becomes activated, and secretes >500 non-folded preprotein clients across bacterial cytoplasmic membranes. Here, we reveal that the intrinsic dynamics of the translocase ATPase, SecA, and of preproteins combine to achieve translocation. SecA possesses an intrinsically dynamic preprotein clamp attached to an equally dynamic ATPase motor. Alternating motor conformations are finely controlled by the γ-phosphate of ATP, while ADP causes motor stalling, independently of clamp motions. Functional preproteins physically bridge these independent dynamics. Their signal peptides promote clamp closing; their mature domain overcomes the rate-limiting ADP release. While repeated ATP cycles shift the motor between unique states, multiple conformationally frustrated prongs in the clamp repeatedly "catch and release" trapped preprotein segments until translocation completion. This universal mechanism allows any preprotein to promiscuously recognize the translocase, usurp its intrinsic dynamics, and become secreted.
Collapse
Affiliation(s)
- Srinath Krishnamurthy
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Marios-Frantzeskos Sardis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Nikolaos Eleftheriadis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Katerina E Chatzi
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Jochem H Smit
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Konstantina Karathanou
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, 14195 Berlin, Germany
| | - Giorgos Gouridis
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium; Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands; Structural Biology Division, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Nikolaou Plastira 100, Heraklion, Crete, Greece
| | - Athina G Portaliou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Arnimallee 14, 14195 Berlin, Germany; University of Bucharest, Faculty of Physics, Atomiștilor 405, 077125 Măgurele, Romania; Forschungszentrum Jülich, Institute of Computational Biomedicine, IAS-5/INM-9, Wilhelm-Johnen Straße, 5428 Jülich, Germany
| | - Spyridoula Karamanou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, University of Leuven, Rega Institute, Department of Microbiology and Immunology, 3000 Leuven, Belgium.
| |
Collapse
|
11
|
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 2021; 401:855-876. [PMID: 32229650 DOI: 10.1515/hsz-2020-0117] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Protein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032 Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043 Marburg, Germany
| |
Collapse
|
12
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
A nexus of intrinsic dynamics underlies translocase priming. Structure 2021; 29:846-858.e7. [PMID: 33852897 DOI: 10.1016/j.str.2021.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/06/2021] [Accepted: 03/25/2021] [Indexed: 11/22/2022]
Abstract
The cytoplasmic ATPase SecA and the membrane-embedded SecYEG channel assemble to form the Sec translocase. How this interaction primes and catalytically activates the translocase remains unclear. We show that priming exploits a nexus of intrinsic dynamics in SecA. Using atomistic simulations, smFRET, and HDX-MS, we reveal multiple dynamic islands that cross-talk with domain and quaternary motions. These dynamic elements are functionally important and conserved. Central to the nexus is a slender stem through which rotation of the preprotein clamp of SecA is biased by ATPase domain motions between open and closed clamping states. An H-bonded framework covering most of SecA enables multi-tier dynamics and conformational alterations with minimal energy input. As a result, cognate ligands select preexisting conformations and alter local dynamics to regulate catalytic activity and clamp motions. These events prime the translocase for high-affinity reception of non-folded preprotein clients. Dynamics nexuses are likely universal and essential in multi-liganded proteins.
Collapse
|
14
|
Dowhan W, Bogdanov M. Eugene P. Kennedy's Legacy: Defining Bacterial Phospholipid Pathways and Function. Front Mol Biosci 2021; 8:666203. [PMID: 33842554 PMCID: PMC8027125 DOI: 10.3389/fmolb.2021.666203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
In the 1950's and 1960's Eugene P. Kennedy laid out the blueprint for phospholipid biosynthesis in somatic cells and Escherichia coli, which have been coined the Kennedy Pathways for phospholipid biosynthesis. His research group continued to make seminal contributions in the area of phospholipids until his retirement in the early 1990's. During these years he mentored many young scientists that continued to build on his early discoveries and who also mentored additional scientists that continue to make important contributions in areas related to phospholipids and membrane biogenesis. This review will focus on the initial E. coli Kennedy Pathways and how his early contributions have laid the foundation for our current understanding of bacterial phospholipid genetics, biochemistry and function as carried on by his scientific progeny and others who have been inspired to study microbial phospholipids.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
15
|
Seinen AB, Spakman D, van Oijen AM, Driessen AJM. Cellular dynamics of the SecA ATPase at the single molecule level. Sci Rep 2021; 11:1433. [PMID: 33446830 PMCID: PMC7809386 DOI: 10.1038/s41598-021-81081-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/04/2021] [Indexed: 12/04/2022] Open
Abstract
In bacteria, the SecA ATPase provides the driving force for protein secretion via the SecYEG translocon. While the dynamic interplay between SecA and SecYEG in translocation is widely appreciated, it is not clear how SecA associates with the translocon in the crowded cellular environment. We use super-resolution microscopy to directly visualize the dynamics of SecA in Escherichia coli at the single-molecule level. We find that SecA is predominantly associated with and evenly distributed along the cytoplasmic membrane as a homodimer, with only a minor cytosolic fraction. SecA moves along the cell membrane as three distinct but interconvertible diffusional populations: (1) A state loosely associated with the membrane, (2) an integral membrane form, and (3) a temporarily immobile form. Disruption of the proton-motive-force, which is essential for protein secretion, re-localizes a significant portion of SecA to the cytoplasm and results in the transient location of SecA at specific locations at the membrane. The data support a model in which SecA diffuses along the membrane surface to gain access to the SecYEG translocon.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.,AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Dian Spakman
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Koch S, Seinen AB, Kamel M, Kuckla D, Monzel C, Kedrov A, Driessen AJM. Single-molecule analysis of dynamics and interactions of the SecYEG translocon. FEBS J 2020; 288:2203-2221. [PMID: 33058437 DOI: 10.1111/febs.15596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Protein translocation and insertion into the bacterial cytoplasmic membrane are the essential processes mediated by the Sec machinery. The core machinery is composed of the membrane-embedded translocon SecYEG that interacts with the secretion-dedicated ATPase SecA and translating ribosomes. Despite the simplicity and the available structural insights on the system, diverse molecular mechanisms and functional dynamics have been proposed. Here, we employ total internal reflection fluorescence microscopy to study the oligomeric state and diffusion of SecYEG translocons in supported lipid bilayers at the single-molecule level. Silane-based coating ensured the mobility of lipids and reconstituted translocons within the bilayer. Brightness analysis suggested that approx. 70% of the translocons were monomeric. The translocons remained in a monomeric form upon ribosome binding, but partial oligomerization occurred in the presence of nucleotide-free SecA. Individual trajectories of SecYEG in the lipid bilayer revealed dynamic heterogeneity of diffusion, as translocons commonly switched between slow and fast mobility modes with corresponding diffusion coefficients of 0.03 and 0.7 µm2 ·s-1 . Interactions with SecA ATPase had a minor effect on the lateral mobility, while bound ribosome:nascent chain complexes substantially hindered the diffusion of single translocons. Notably, the mobility of the translocon:ribosome complexes was not affected by the solvent viscosity or macromolecular crowding modulated by Ficoll PM 70, so it was largely determined by interactions within the lipid bilayer and at the interface. We suggest that the complex mobility of SecYEG arises from the conformational dynamics of the translocon and protein:lipid interactions.
Collapse
Affiliation(s)
- Sabrina Koch
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Anne-Bart Seinen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands.,Biophysics, AMOLF, Amsterdam, The Netherlands
| | - Michael Kamel
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Daniel Kuckla
- Experimental Medical Physics, Department of Physics, Heinrich Heine University Düsseldorf, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Department of Physics, Heinrich Heine University Düsseldorf, Germany
| | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
17
|
Elfageih R, Karyolaimos A, Kemp G, de Gier J, von Heijne G, Kudva R. Cotranslational folding of alkaline phosphatase in the periplasm of Escherichia coli. Protein Sci 2020; 29:2028-2037. [PMID: 32790204 PMCID: PMC7513700 DOI: 10.1002/pro.3927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023]
Abstract
Cotranslational protein folding studies using Force Profile Analysis, a method where the SecM translational arrest peptide is used to detect folding-induced forces acting on the nascent polypeptide, have so far been limited mainly to small domains of cytosolic proteins that fold in close proximity to the translating ribosome. In this study, we investigate the cotranslational folding of the periplasmic, disulfide bond-containing Escherichia coli protein alkaline phosphatase (PhoA) in a wild-type strain background and a strain background devoid of the periplasmic thiol: disulfide interchange protein DsbA. We find that folding-induced forces can be transmitted via the nascent chain from the periplasm to the polypeptide transferase center in the ribosome, a distance of ~160 Å, and that PhoA appears to fold cotranslationally via at least two disulfide-stabilized folding intermediates. Thus, Force Profile Analysis can be used to study cotranslational folding of proteins in an extra-cytosolic compartment, like the periplasm.
Collapse
Affiliation(s)
- Rageia Elfageih
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | | | - Grant Kemp
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Jan‐Willem de Gier
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Gunnar von Heijne
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Science for Life Laboratory Stockholm UniversitySolnaSweden
| | - Renuka Kudva
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| |
Collapse
|
18
|
Molecular movie of nucleotide binding to a motor protein. Biochim Biophys Acta Gen Subj 2020; 1864:129654. [PMID: 32512170 DOI: 10.1016/j.bbagen.2020.129654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND The SecA DEAD (Asp-Glu-Ala-Asp) motor protein uses binding and hydrolysis of adenosine triphosphate (ATP) to push secretory proteins across the plasma membrane of bacteria. The reaction coordinate of nucleotide exchange is unclear at the atomic level of detail. METHODS We performed multiple atomistic computations of the DEAD motor domain of SecA with different occupancies of the nucleotide and magnesium ion sites, for a total of ~1.7 μs simulation time. To characterize dynamics at the active site we analyzed hydrogen-bond networks. RESULTS ATP and ADP can bind spontaneously at the interface between the nucleotide binding domains, albeit at an intermediate binding site distinct from the native site. Binding of the nucleotide is facilitated by the presence of a magnesium ion close to the glutamic group of the conserved DEAD motif. In the absence of the magnesium ion, protein interactions of the ADP molecule are perturbed. CONCLUSIONS A protein hydrogen-bond network whose dynamics couples to the occupancy of the magnesium ion site helps guide the nucleotide along the nucleotide exchange path. In SecA, release of magnesium might be required to destabilize the ADP binding site prior to release of the nucleotide. GENERAL SIGNIFICANCE We identified dynamic hydrogen-bond networks that help control nucleotide exchange in SecA, and stabilize ADP at an intermediate site that could explain slow release. The reaction coordinate of the protein motor involves complex rearrangements of a hydrogen-bond network at the active site, with perturbation of the magnesium ion site likely occurring prior to the release of ADP.
Collapse
|
19
|
Cranford-Smith T, Jamshad M, Jeeves M, Chandler RA, Yule J, Robinson A, Alam F, Dunne KA, Aponte Angarita EH, Alanazi M, Carter C, Henderson IR, Lovett JE, Winn P, Knowles T, Huber D. Iron is a ligand of SecA-like metal-binding domains in vivo. J Biol Chem 2020; 295:7516-7528. [PMID: 32241912 PMCID: PMC7247292 DOI: 10.1074/jbc.ra120.012611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The ATPase SecA is an essential component of the bacterial Sec machinery, which transports proteins across the cytoplasmic membrane. Most SecA proteins contain a long C-terminal tail (CTT). In Escherichia coli, the CTT contains a structurally flexible linker domain and a small metal-binding domain (MBD). The MBD coordinates zinc via a conserved cysteine-containing motif and binds to SecB and ribosomes. In this study, we screened a high-density transposon library for mutants that affect the susceptibility of E. coli to sodium azide, which inhibits SecA-mediated translocation. Results from sequencing this library suggested that mutations removing the CTT make E. coli less susceptible to sodium azide at subinhibitory concentrations. Copurification experiments suggested that the MBD binds to iron and that azide disrupts iron binding. Azide also disrupted binding of SecA to membranes. Two other E. coli proteins that contain SecA-like MBDs, YecA and YchJ, also copurified with iron, and NMR spectroscopy experiments indicated that YecA binds iron via its MBD. Competition experiments and equilibrium binding measurements indicated that the SecA MBD binds preferentially to iron and that a conserved serine is required for this specificity. Finally, structural modeling suggested a plausible model for the octahedral coordination of iron. Taken together, our results suggest that SecA-like MBDs likely bind to iron in vivo.
Collapse
Affiliation(s)
- Tamar Cranford-Smith
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohammed Jamshad
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Rachael A Chandler
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jack Yule
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ashley Robinson
- Institute for Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Farhana Alam
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Karl A Dunne
- Institute for Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Edwin H Aponte Angarita
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mashael Alanazi
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Department of Biology, College of Science, Jouf University, Saudi Arabia
| | - Cailean Carter
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ian R Henderson
- Institute for Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Janet E Lovett
- SUPA, School of Physics and Astronomy and BSRC, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Peter Winn
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Timothy Knowles
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Damon Huber
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
20
|
Roussel G, White SH. The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183358. [PMID: 32416191 DOI: 10.1016/j.bbamem.2020.183358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
Abstract
The essential SecA motor ATPase acts in concert with the SecYEG translocon to secrete proteins into the periplasmic space of Escherichia coli. In aqueous solutions, SecA exists largely as dimers, but the oligomeric state on membranes is less certain. Crystallographic studies have suggested several possible solution dimeric states, but its oligomeric state when bound to membranes directly or indirectly via the translocon is controversial. We have shown using disulfide crosslinking that the principal solution dimer, corresponding to a crystallographic dimer (PDB 1M6N), binds only weakly to large unilamellar vesicles (LUV) formed from E. coli lipids. We report here that other soluble crosslinked crystallographic dimers also bind weakly, if at all, to LUV. Furthermore, using a simple glutaraldehyde crosslinking scheme, we show that SecA is always monomeric when bound to LUV formed from E. coli lipids.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, United States of America.
| |
Collapse
|
21
|
Del Val C, Bondar AN. Diversity and sequence motifs of the bacterial SecA protein motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183319. [PMID: 32335021 DOI: 10.1016/j.bbamem.2020.183319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 04/19/2020] [Indexed: 12/24/2022]
Abstract
SecA is an essential component of the Sec protein secretion pathway in bacteria. Secretory proteins targeted to the Sec pathway by their N-terminal signal peptide bind to SecA, which couples binding and hydrolysis of adenosine triphosphate with movement of the secretory protein across the membrane-embedded SecYEG protein translocon. The phylogenetic diversity of bacteria raises the important question as to whether the region of SecA where the pre-protein binds has conserved sequence features that might impact the reaction mechanism of SecA. To address this question we established a large data set of SecA protein sequences and implemented a protocol to cluster and analyze these sequences according to features of two of the SecA functional domains, the protein binding domain and the nucleotide-binding domain 1. We identify remarkable sequence diversity of the protein binding domain, but also conserved motifs with potential role in protein binding. The N-terminus of SecA has sequence motifs that could help anchor SecA to the membrane. The overall sequence length and net estimated charge of SecA sequences depend on the organism.
Collapse
Affiliation(s)
- Coral Del Val
- University of Granada, Departmrent of Computer Science and Artificial Intelligence, E-18071 Granada, Spain; University of Granada, Andalusian Research Institute in Data Science and Computational Intelligence, E-18071 Granada, Spain.
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics, D-14195 Berlin, Germany.
| |
Collapse
|
22
|
Cardiolipin is required in vivo for the stability of bacterial translocon and optimal membrane protein translocation and insertion. Sci Rep 2020; 10:6296. [PMID: 32286407 PMCID: PMC7156725 DOI: 10.1038/s41598-020-63280-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/25/2020] [Indexed: 01/05/2023] Open
Abstract
Translocation of preproteins across the Escherichia coli inner membrane requires anionic lipids by virtue of their negative head-group charge either in vivo or in situ. However, available results do not differentiate between the roles of monoanionic phosphatidylglycerol and dianionic cardiolipin (CL) in this essential membrane-related process. To define in vivo the molecular steps affected by the absence of CL in protein translocation and insertion, we analyzed translocon activity, SecYEG stability and its interaction with SecA in an E. coli mutant devoid of CL. Although no growth defects were observed, co- and post-translational translocation of α-helical proteins across inner membrane and the assembly of outer membrane β-barrel precursors were severely compromised in CL-lacking cells. Components of proton-motive force which could impair protein insertion into and translocation across the inner membrane, were unaffected. However, stability of the dimeric SecYEG complex and oligomerization properties of SecA were strongly compromised while the levels of individual SecYEG translocon components, SecA and insertase YidC were largely unaffected. These results demonstrate that CL is required in vivo for the stability of the bacterial translocon and its efficient function in co-translational insertion into and translocation across the inner membrane of E. coli.
Collapse
|
23
|
Torng T, Song H, Wickner W. Asymmetric Rab activation of vacuolar HOPS to catalyze SNARE complex assembly. Mol Biol Cell 2020; 31:1060-1068. [PMID: 32160129 PMCID: PMC7346727 DOI: 10.1091/mbc.e20-01-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intracellular membrane fusion requires Rab-family GTPases, their effector tethers, soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, and SNARE chaperones of the Sec1/Munc18 (SM), Sec17/α-SNAP, and Sec18/NSF families. We have developed an assay using fluorescence resonance energy transfer to measure SNARE complex formation in real time. We now show that yeast vacuolar SNAREs assemble spontaneously into RQaQbQc complexes when the R- and Qa-SNAREs are concentrated in the same micelles or in cis on the same membrane. When SNAREs are free in solution or are tethered to distinct membranes, assembly requires catalysis by HOPS, the vacuolar SM and tethering complex. The Rab Ypt7 and vacuole lipids together allosterically activate the bound HOPS for catalyzing SNARE assembly, even if none of the SNAREs are membrane bound. HOPS-dependent fusion between proteoliposomes bearing R- or Qa-SNAREs shows a strict requirement for Ypt7 on the R-SNARE proteoliposomes but not on the Qa-SNARE proteoliposomes. This asymmetry is reflected in the strikingly different capacity of Ypt7 in cis to either the R- or Qa-SNARE to stimulate SNARE complex assembly. Membrane-bound Ypt7 activates HOPS to catalyze 4-SNARE complex assembly when it is on the same membrane as the R-SNARE but not the Qa-SNARE, thus explaining the asymmetric need for Ypt7 for fusion.
Collapse
Affiliation(s)
- Thomas Torng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
24
|
Matin TR, Utjesanovic M, Sigdel KP, Smith VF, Kosztin I, King GM. Characterizing the Locus of a Peripheral Membrane Protein-Lipid Bilayer Interaction Underlying Protein Export Activity in E. coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2143-2152. [PMID: 32011890 DOI: 10.1021/acs.langmuir.9b03606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative characterization of the strength of peripheral membrane protein-lipid bilayer interactions is fundamental in the understanding of many protein targeting pathways. SecA is a peripheral membrane protein that plays a central role in translocating precursor proteins across the inner membrane of E. coli. The membrane binding activity of the extreme N-terminus of SecA is critical for translocase function. Yet, the mechanical strength of the interaction and the kinetic pathways that this segment of SecA experiences when in proximity of an E. coli polar lipid bilayer has not been characterized. We directly measured the N-terminal SecA-lipid bilayer interaction using precision single molecule atomic force microscope (AFM)-based dynamic force spectroscopy. To provide conformational data inaccessible to AFM, we also performed all-atom molecular dynamics simulations and circular dichroism measurements. The N-terminal 10 amino acids of SecA have little secondary structure when bound to zwitterionic lipid head groups, but secondary structure, which rigidifies the lipid-bound protein segment, emerges when negatively charged lipids are present. Analysis of the single molecule protein-lipid dissociation data converged to a well-defined lipid-bound-state lifetime in the absence of force, τ0lipid = 0.9 s, which is well separated from and longer than the fundamental time scale of the secretion process, defined as the time required to translocate a single amino acid residue (∼50 ms). This value of τ0lipid is likely to represent a lower limit of the in vivo membrane-bound lifetime due to factors including the minimal system employed here.
Collapse
Affiliation(s)
- Tina R Matin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Milica Utjesanovic
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Krishna P Sigdel
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Virginia F Smith
- Department of Chemistry, United States Naval Academy, Annapolis, Maryland 21402, United States
| | - Ioan Kosztin
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
25
|
Chattrakun K, Hoogerheide DP, Mao C, Randall LL, King GM. Protein Translocation Activity in Surface-Supported Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12246-12256. [PMID: 31448613 PMCID: PMC10906442 DOI: 10.1021/acs.langmuir.9b01928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-supported lipid bilayers are used widely throughout the nanoscience community as cellular membrane mimics. For example, they are frequently employed in single-molecule atomic force microscopy (AFM) studies to shed light on membrane protein conformational dynamics and folding. However, in AFM as well as in other surface-sensing techniques, the close proximity of the supporting surface raises questions about preservation of the biochemical activity. Employing the model translocase from the general secretory (Sec) system of Escherichia coli, here we quantify the activity via two biochemical assays in surface-supported bilayers. The first assesses ATP hydrolysis and the second assesses polypeptide translocation across the membrane via protection from added protease. Hydrolysis assays revealed distinct levels of activation ranging from medium (translocase-activated) to high (translocation-associated) that were similar to traditional solution experiments and further identified an adenosine triphosphatase population exhibiting characteristics of conformational hysteresis. Translocation assays revealed turn over numbers that were comparable to solution but with a 10-fold reduction in apparent rate constant. Despite differences in kinetics, the chemomechanical coupling (ATP hydrolyzed per residue translocated) only varied twofold on glass compared to solution. The activity changed with the topographic complexity of the underlying surface. Rough glass coverslips were favored over atomically flat mica, likely due to differences in frictional coupling between the translocating polypeptide and surface. Neutron reflectometry and AFM corroborated the biochemical measurements and provided structural characterization of the submembrane space and upper surface of the bilayer. Overall, the translocation activity was maintained for the surface-adsorbed Sec system, albeit with a slower rate-limiting step. More generally, polypeptide translocation activity measurements yield valuable quantitative metrics to assess the local environment about surface-supported lipid bilayers.
Collapse
Affiliation(s)
- Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
26
|
Steinberg R, Knüpffer L, Origi A, Asti R, Koch HG. Co-translational protein targeting in bacteria. FEMS Microbiol Lett 2019; 365:4966980. [PMID: 29790984 DOI: 10.1093/femsle/fny095] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and have to be transported into or across the cytoplasmic membrane. Bacteria use multiple protein transport systems in parallel, but the majority of proteins engage two distinct targeting systems. One is the co-translational targeting by two universally conserved GTPases, the signal recognition particle (SRP) and its receptor FtsY, which deliver inner membrane proteins to either the SecYEG translocon or the YidC insertase for membrane insertion. The other targeting system depends on the ATPase SecA, which targets secretory proteins, i.e. periplasmic and outer membrane proteins, to SecYEG for their subsequent ATP-dependent translocation. While SRP selects its substrates already very early during their synthesis, the recognition of secretory proteins by SecA is believed to occur primarily after translation termination, i.e. post-translationally. In this review we highlight recent progress on how SRP recognizes its substrates at the ribosome and how the fidelity of the targeting reaction to SecYEG is maintained. We furthermore discuss similarities and differences in the SRP-dependent targeting to either SecYEG or YidC and summarize recent results that suggest that some membrane proteins are co-translationally targeted by SecA.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Lara Knüpffer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, Freiburg D-79104, Germany
| | - Rossella Asti
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| |
Collapse
|
27
|
Sperandeo P, Polissi A, De Fabiani E. Fat Matters for Bugs: How Lipids and Lipid Modifications Make the Difference in Bacterial Life. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoVia Balzaretti 920133MilanoItaly
| |
Collapse
|
28
|
Abstract
Bacterial protein transport via the conserved SecYEG translocon is generally classified as either cotranslational, i.e., when transport is coupled to translation, or posttranslational, when translation and transport are separated. We show here that the ATPase SecA, which is considered to bind its substrates posttranslationally, already scans the ribosomal tunnel for potential substrates. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the ribosomal surface. This is remarkably similar to the ribosome-binding mode of the signal recognition particle, which mediates cotranslational transport. Our data reveal a striking plasticity of protein transport pathways, which likely enable bacteria to efficiently recognize and transport a large number of highly different substrates within their short generation time. Bacteria execute a variety of protein transport systems for maintaining the proper composition of their different cellular compartments. The SecYEG translocon serves as primary transport channel and is engaged in transporting two different substrate types. Inner membrane proteins are cotranslationally inserted into the membrane after their targeting by the signal recognition particle (SRP). In contrast, secretory proteins are posttranslationally translocated by the ATPase SecA. Recent data indicate that SecA can also bind to ribosomes close to the tunnel exit. We have mapped the interaction of SecA with translating and nontranslating ribosomes and demonstrate that the N terminus and the helical linker domain of SecA bind to an acidic patch on the surface of the ribosomal protein uL23. Intriguingly, both also insert deeply into the ribosomal tunnel to contact the intratunnel loop of uL23, which serves as a nascent chain sensor. This binding pattern is remarkably similar to that of SRP and indicates an identical interaction mode of the two targeting factors with ribosomes. In the presence of a nascent chain, SecA retracts from the tunnel but maintains contact with the surface of uL23. Our data further demonstrate that ribosome and membrane binding of SecA are mutually exclusive, as both events depend on the N terminus of SecA. Our study highlights the enormous plasticity of bacterial protein transport systems and reveals that the discrimination between SRP and SecA substrates is already initiated at the ribosome.
Collapse
|
29
|
Koch S, Exterkate M, López CA, Patro M, Marrink SJ, Driessen AJM. Two distinct anionic phospholipid-dependent events involved in SecA-mediated protein translocation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183035. [PMID: 31394098 DOI: 10.1016/j.bbamem.2019.183035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed by the Sec translocase, which in its minimal form consists of the protein-conducting channel SecYEG, and the motor ATPase SecA. SecA binds via its positively charged N-terminus to membranes containing anionic phospholipids, leading to a lipid-bound intermediate. This interaction induces a conformational change in SecA, resulting in a high-affinity association with SecYEG, which initiates protein translocation. Here, we examined the effect of anionic lipids on the SecA-SecYEG interaction in more detail, and discovered a second, yet unknown, anionic lipid-dependent event that stimulates protein translocation. Based on molecular dynamics simulations we identified an anionic lipid-enriched region in vicinity of the lateral gate of SecY. Here, the anionic lipid headgroup accesses the lateral gate, thereby stabilizing the pre-open state of the channel. The simulations suggest flip-flop movement of phospholipid along the lateral gate. Electrostatic contribution of the anionic phospholipids at the lateral gate may directly stabilize positively charged residues of the signal sequence of an incoming preprotein. Such a mechanism allows for the correct positioning of the entrant peptide, thereby providing a long-sought explanation for the role of anionic lipids in signal sequence folding during protein translocation.
Collapse
Affiliation(s)
- Sabrina Koch
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Marten Exterkate
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Cesar A López
- Department of Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, USA.
| | - Megha Patro
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Siewert J Marrink
- Department of Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
30
|
Komarudin AG, Driessen AJM. SecA-Mediated Protein Translocation through the SecYEG Channel. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0028-2019. [PMID: 31373268 PMCID: PMC10957188 DOI: 10.1128/microbiolspec.psib-0028-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
In bacteria, the Sec translocase mediates the translocation of proteins into and across the cytoplasmic membrane. It consists of a protein conducting channel SecYEG, the ATP-dependent motor SecA, and the accessory SecDF complex. Here we discuss the function and structure of the Sec translocase.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, and the Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
31
|
Sanganna Gari RR, Chattrakun K, Marsh BP, Mao C, Chada N, Randall LL, King GM. Direct visualization of the E. coli Sec translocase engaging precursor proteins in lipid bilayers. SCIENCE ADVANCES 2019; 5:eaav9404. [PMID: 31206019 PMCID: PMC6561738 DOI: 10.1126/sciadv.aav9404] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Escherichia coli exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM). Starting from nearly identical initial states, SecA more readily dissociated from SecYEG when engaged with the precursor of outer membrane protein A as compared to the precursor of galactose-binding protein. For the SecA that remained bound to the translocon, the quaternary structure varied with nucleotide, populating SecA2 primarily with adenosine diphosphate (ADP) and adenosine triphosphate, and the SecA monomer with the transition state analog ADP-AlF3. Conformations of translocases exhibited precursor-dependent differences on the AFM imaging time scale. The data, acquired under near-native conditions, suggest that the translocation process varies with precursor species.
Collapse
Affiliation(s)
| | - Kanokporn Chattrakun
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P. Marsh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Chunfeng Mao
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Nagaraju Chada
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Gavin M. King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
32
|
Abstract
Single-molecule studies provide unprecedented details about processes that are difficult to grasp by bulk biochemical assays that yield ensemble-averaged results. One of these processes is the translocation and insertion of proteins across and into the bacterial cytoplasmic membrane. This process is facilitated by the universally conserved secretion (Sec) system, a multi-subunit membrane protein complex that consists of dissociable cytoplasmic targeting components, a molecular motor, a protein-conducting membrane pore, and accessory membrane proteins. Here, we review recent insights into the mechanisms of protein translocation and membrane protein insertion from single-molecule studies.
Collapse
Affiliation(s)
- Anne-Bart Seinen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
- Current affiliation: Biophysics Group, AMOLF, 1098 XG Amsterdam, Netherlands
| | - Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; and the Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
33
|
Abstract
Membranes surrounding the biological cell and its internal compartments host proteins that catalyze chemical reactions essential for the functioning of the cell. Rather than being a passive structural matrix that holds membrane-embedded proteins in place, the membrane can largely shape the conformational energy landscape of membrane proteins and impact the energetics of their chemical reaction. Here, we highlight the challenges in understanding how lipids impact the conformational energy landscape of macromolecular membrane complexes whose functioning involves chemical reactions including proton transfer. We review here advances in our understanding of how chemical reactions occur at membrane interfaces gleaned with both theoretical and experimental advances using simple protein systems as guides. Our perspective is that of bridging experiments with theory to understand general physicochemical principles of membrane reactions, with a long term goal of furthering our understanding of the role of the lipids on the functioning of complex macromolecular assemblies at the membrane interface.
Collapse
Affiliation(s)
- Ana-Nicoleta Bondar
- Freie Universität Berlin , Department of Physics, Theoretical Molecular Biophysics Group , Arnimallee 14 , D-14195 Berlin , Germany
| | - M Joanne Lemieux
- University of Alberta , Department of Biochemistry, Membrane Protein Disease Research Group , Edmonton , Alberta T6G 2H7 , Canada
| |
Collapse
|
34
|
Exterkate M, Driessen AJM. Synthetic Minimal Cell: Self-Reproduction of the Boundary Layer. ACS OMEGA 2019; 4:5293-5303. [PMID: 30949617 PMCID: PMC6443216 DOI: 10.1021/acsomega.8b02955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 05/09/2023]
Abstract
A critical aspect in the bottom-up construction of a synthetic minimal cell is to develop an entity that is capable of self-reproduction. A key role in this process is the expansion and division of the boundary layer that surrounds the compartment, a process in which content loss has to be avoided and the barrier function maintained. Here, we describe the latest developments regarding self-reproduction of a boundary layer with a focus on the growth and division of phospholipid-based membranes in the context of a synthetic minimal cell.
Collapse
Affiliation(s)
- Marten Exterkate
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
35
|
Brouwer E, Ngo G, Yadav S, Ladig R, Schleiff E. Tic22 from
Anabaena
sp. PCC 7120 with holdase function involved in outer membrane protein biogenesis shuttles between plasma membrane and Omp85. Mol Microbiol 2019; 111:1302-1316. [DOI: 10.1111/mmi.14222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Eva‐Maria Brouwer
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Giang Ngo
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Shivam Yadav
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
- Centre of Advanced Studies in Botany, Institute of Science Banaras Hindu University Varanasi India
| | - Roman Ladig
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences Goethe University Frankfurt am Main Frankfurt am Main Germany
- Buchman Institute for Molecular Life Sciences Goethe University Frankfurt am Main Frankfurt am Main Germany
- Frankfurt Institute of Advanced Studies Frankfurt am Main Germany
| |
Collapse
|
36
|
Abstract
The inner membrane of Gram-negative bacteria is a ~6 nm thick phospholipid bilayer. It forms a semi-permeable barrier between the cytoplasm and periplasm allowing only regulated export and import of ions, sugar polymers, DNA and proteins. Inner membrane proteins, embedded via hydrophobic transmembrane α-helices, play an essential role in this regulated trafficking: they mediate insertion into the membrane (insertases) or complete crossing of the membrane (translocases) or both. The Gram-negative inner membrane is equipped with a variety of different insertases and translocases. Many of them are specialized, taking care of the export of only a few protein substrates, while others have more general roles. Here, we focus on the three general export/insertion pathways, the secretory (Sec) pathway, YidC and the twin-arginine translocation (TAT) pathway, focusing closely on the Escherichia coli (E. coli) paradigm. We only briefly mention dedicated export pathways found in different Gram-negative bacteria. The Sec system deals with the majority of exported proteins and functions both as a translocase for secretory proteins and an insertase for membrane proteins. The insertase YidC assists the Sec system or operates independently on membrane protein clients. Sec and YidC, in common with most export pathways, require their protein clients to be in soluble non-folded states to fit through the translocation channels and grooves. The TAT pathway is an exception, as it translocates folded proteins, some loaded with prosthetic groups.
Collapse
Affiliation(s)
- Jozefien De Geyter
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dries Smets
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
37
|
Substrate Proteins Take Shape at an Improved Bacterial Translocon. J Bacteriol 2018; 201:JB.00618-18. [PMID: 30322856 DOI: 10.1128/jb.00618-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022] Open
Abstract
Characterization of Sec-dependent bacterial protein transport has often relied on an in vitro protein translocation system comprised in part of Escherichia coli inverted inner membrane vesicles or, more recently, purified SecYEG translocons reconstituted into liposomes using mostly a single substrate (proOmpA). A paper published in this issue (P. Bariya and L. Randall, J Bacteriol 201:e00493-18, 2019, https://doi.org/10.1128/JB.00493-18) finds that inclusion of SecA protein during SecYEG proteoliposome reconstitution dramatically improves the number of active translocons. This experimentally useful and intriguing result that may arise from SecA membrane integration properties is discussed here. Furthermore, determination of the rate-limiting transport step for nine different substrates implicates the mature region distal to the signal peptide in the observed rate constant differences, indicating that more nuanced transport models that respond to differences in protein sequence and structure are needed.
Collapse
|
38
|
Coassembly of SecYEG and SecA Fully Restores the Properties of the Native Translocon. J Bacteriol 2018; 201:JB.00493-18. [PMID: 30275279 DOI: 10.1128/jb.00493-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023] Open
Abstract
In all cells, a highly conserved channel transports proteins across membranes. In Escherichia coli, that channel is SecYEG. Many investigations of this protein complex have used purified SecYEG reconstituted into proteoliposomes. How faithfully do activities of reconstituted systems reflect the properties of SecYEG in the native membrane environment? We investigated by comparing three in vitro systems: the native membrane environment of inner membrane vesicles and two methods of reconstitution. One method was the widely used reconstitution of SecYEG alone into lipid bilayers. The other was our method of coassembly of SecYEG with SecA, the ATPase of the translocase. For nine different precursor species we assessed parameters that characterize translocation: maximal amplitude of competent precursor translocated, coupling of energy to transfer, and apparent rate constant. In addition, we investigated translocation in the presence and absence of chaperone SecB. For all nine precursors, SecYEG coassembled with SecA was as active as SecYEG in native membrane for each of the parameters studied. Effects of SecB on transport of precursors faithfully mimicked observations made in vivo From investigation of the nine different precursors, we conclude that the apparent rate constant, which reflects the step that limits the rate of translocation, is dependent on interactions with the translocon of portions of the precursors other than the leader. In addition, in some cases the rate-limiting step is altered by the presence of SecB. Candidates for the rate-limiting step that are consistent with our data are discussed.IMPORTANCE This work presents a comprehensive quantification of the parameters of transport by the Sec general secretory system in the three in vitro systems. The standard reconstitution used by most investigators can be enhanced to yield six times as many active translocons simply by adding SecA to SecYEG during reconstitution. This robust system faithfully reflects the properties of translocation in native membrane vesicles. We have expanded the number of precursors studied to nine. This has allowed us to conclude that the rate constant for translocation varies with precursor species.
Collapse
|
39
|
Kruse K, Salzer R, Averhoff B. The traffic ATPase PilF interacts with the inner membrane platform of the DNA translocator and type IV pili from Thermus thermophilus. FEBS Open Bio 2018; 9:4-17. [PMID: 30652069 PMCID: PMC6325625 DOI: 10.1002/2211-5463.12548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
A major driving force for the adaptation of bacteria to changing environments is the uptake of naked DNA from the environment by natural transformation, which allows the acquisition of new capabilities. Uptake of the high molecular weight DNA is mediated by a complex transport machinery that spans the entire cell periphery. This DNA translocator catalyzes the binding and splitting of double‐stranded DNA and translocation of single‐stranded DNA into the cytoplasm, where it is recombined with the chromosome. The thermophilic bacterium Thermus thermophilus exhibits the highest transformation frequencies reported and is a model system to analyze the structure and function of this macromolecular transport machinery. Transport activity is powered by the traffic ATPase PilF, a soluble protein that forms hexameric complexes. Here, we demonstrate that PilF physically binds to an inner membrane assembly platform of the DNA translocator, comprising PilMNO, via the ATP‐binding protein PilM. Binding to PilMNO or PilMN stimulates the ATPase activity of PilF ~ 2‐fold, whereas there is no stimulation when binding to PilM or PilN alone. A PilMK26A variant defective in ATP binding still binds PilF and, together with PilN, stimulates PilF‐mediated ATPase activity. PilF is unique in having three conserved GSPII (general secretory pathway II) domains (A–C) at its N terminus. Deletion analyses revealed that none of the GSPII domains is essential for binding PilMN, but GSPIIC is essential for PilMN‐mediated stimulation of ATP hydrolysis by PilF. Our data suggest that PilM is a coupling protein that physically and functionally connects the soluble motor ATPase PilF to the DNA translocator via the PilMNO assembly platform.
Collapse
Affiliation(s)
- Kerstin Kruse
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany
| | - Ralf Salzer
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany.,Present address: Structural Studies Division Medical Research Council - Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave Cambridge CB2 OQH UK
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany
| |
Collapse
|
40
|
Jin J, Hsieh YH, Chaudhary AS, Cui J, Houghton JE, Sui SF, Wang B, Tai PC. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA-SecYEG protein-conducting channels. FEMS Microbiol Lett 2018; 365:5037921. [PMID: 30007321 PMCID: PMC7190897 DOI: 10.1093/femsle/fny145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Arpana S Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - John E Houghton
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| | - Sen-fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design and Georgia State University, P.O. Box 3965, Atlanta, GA 30303, USA
| | - Phang C Tai
- Department of Biology, Center for Biotechnology and Drug Design and Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
41
|
Specific cardiolipin-SecY interactions are required for proton-motive force stimulation of protein secretion. Proc Natl Acad Sci U S A 2018; 115:7967-7972. [PMID: 30012626 DOI: 10.1073/pnas.1721536115] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transport of proteins across or into membranes is a vital biological process, achieved in every cell by the conserved Sec machinery. In bacteria, SecYEG combines with the SecA motor protein for secretion of preproteins across the plasma membrane, powered by ATP hydrolysis and the transmembrane proton-motive force (PMF). The activities of SecYEG and SecA are modulated by membrane lipids, particularly cardiolipin (CL), a specialized phospholipid known to associate with a range of energy-transducing machines. Here, we identify two specific CL binding sites on the Thermotoga maritima SecA-SecYEG complex, through application of coarse-grained molecular dynamics simulations. We validate the computational data and demonstrate the conserved nature of the binding sites using in vitro mutagenesis, native mass spectrometry, biochemical analysis, and fluorescence spectroscopy of Escherichia coli SecYEG. The results show that the two sites account for the preponderance of functional CL binding to SecYEG, and mediate its roles in ATPase and protein transport activity. In addition, we demonstrate an important role for CL in the conferral of PMF stimulation of protein transport. The apparent transient nature of the CL interaction might facilitate proton exchange with the Sec machinery, and thereby stimulate protein transport, by a hitherto unexplored mechanism. This study demonstrates the power of coupling the high predictive ability of coarse-grained simulation with experimental analyses, toward investigation of both the nature and functional implications of protein-lipid interactions.
Collapse
|
42
|
Abstract
Bacillus anthracis, the anthrax agent, is a member of the Bacillus cereus sensu lato group, which includes invasive pathogens of mammals or insects as well as nonpathogenic environmental strains. The genes for anthrax pathogenesis are located on two large virulence plasmids. Similar virulence plasmids have been acquired by other B. cereus strains and enable the pathogenesis of anthrax-like diseases. Among the virulence factors of B. anthracis is the S-layer-associated protein BslA, which endows bacilli with invasive attributes for mammalian hosts. BslA surface display and function are dependent on the bacterial S-layer, whose constituents assemble by binding to the secondary cell wall polysaccharide (SCWP) via S-layer homology (SLH) domains. B. anthracis and other pathogenic B. cereus isolates harbor genes for the secretion of S-layer proteins, for S-layer assembly, and for synthesis of the SCWP. We review here recent insights into the assembly and function of the S-layer and the SCWP.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois 60649.,Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
43
|
Motions of the SecA protein motor bound to signal peptide: Insights from molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:416-427. [DOI: 10.1016/j.bbamem.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022]
|
44
|
Crane JM, Randall LL. The Sec System: Protein Export in Escherichia coli. EcoSal Plus 2017; 7:10.1128/ecosalplus.ESP-0002-2017. [PMID: 29165233 PMCID: PMC5807066 DOI: 10.1128/ecosalplus.esp-0002-2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, proteins found in the periplasm or the outer membrane are exported from the cytoplasm by the general secretory, Sec, system before they acquire stably folded structure. This dynamic process involves intricate interactions among cytoplasmic and membrane proteins, both peripheral and integral, as well as lipids. In vivo, both ATP hydrolysis and proton motive force are required. Here, we review the Sec system from the inception of the field through early 2016, including biochemical, genetic, and structural data.
Collapse
Affiliation(s)
- Jennine M. Crane
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Linda L. Randall
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
45
|
Anti-Salmonella Activity Modulation of Mastoparan V1-A Wasp Venom Toxin-Using Protease Inhibitors, and Its Efficient Production via an Escherichia coli Secretion System. Toxins (Basel) 2017; 9:toxins9100321. [PMID: 29027924 PMCID: PMC5666368 DOI: 10.3390/toxins9100321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022] Open
Abstract
A previous study highlighted that mastoparan V1 (MP-V1), a mastoparan from the venom of the social wasp Vespula vulgaris, is a potent antimicrobial peptide against Salmonella infection, which causes enteric diseases. However, there exist some limits for its practical application due to the loss of its activity in an increased bacterial density and the difficulty of its efficient production. In this study, we first modulated successfully the antimicrobial activity of synthetic MP-V1 against an increased Salmonella population using protease inhibitors, and developed an Escherichia coli secretion system efficiently producing active MP-V1. The protease inhibitors used, except pepstatin A, significantly increased the antimicrobial activity of the synthetic MP-V1 at minimum inhibitory concentrations (determined against 10⁶ cfu/mL of population) against an increased population (10⁸ cfu/mL) of three different Salmonella serotypes, Gallinarum, Typhimurium and Enteritidis. Meanwhile, the E. coli strain harboring OmpA SS::MP-V1 was identified to successfully secrete active MP-V1 into cell-free supernatant, whose antimicrobial activity disappeared in the increased population (10⁸ cfu/mL) of Salmonella Typhimurium recovered by adding a protease inhibitor cocktail. Therefore, it has been concluded that our challenge using the E. coli secretion system with the protease inhibitors is an attractive strategy for practical application of peptide toxins, such as MP-V1.
Collapse
|
46
|
Orfanoudaki G, Markaki M, Chatzi K, Tsamardinos I, Economou A. MatureP: prediction of secreted proteins with exclusive information from their mature regions. Sci Rep 2017; 7:3263. [PMID: 28607462 PMCID: PMC5468347 DOI: 10.1038/s41598-017-03557-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/28/2017] [Indexed: 11/09/2022] Open
Abstract
More than a third of the cellular proteome is non-cytoplasmic. Most secretory proteins use the Sec system for export and are targeted to membranes using signal peptides and mature domains. To specifically analyze bacterial mature domain features, we developed MatureP, a classifier that predicts secretory sequences through features exclusively computed from their mature domains. MatureP was trained using Just Add Data Bio, an automated machine learning tool. Mature domains are predicted efficiently with ~92% success, as measured by the Area Under the Receiver Operating Characteristic Curve (AUC). Predictions were validated using experimental datasets of mutated secretory proteins. The features selected by MatureP reveal prominent differences in amino acid content between secreted and cytoplasmic proteins. Amino-terminal mature domain sequences have enhanced disorder, more hydroxyl and polar residues and less hydrophobics. Cytoplasmic proteins have prominent amino-terminal hydrophobic stretches and charged regions downstream. Presumably, secretory mature domains comprise a distinct protein class. They balance properties that promote the necessary flexibility required for the maintenance of non-folded states during targeting and secretion with the ability of post-secretion folding. These findings provide novel insight in protein trafficking, sorting and folding mechanisms and may benefit protein secretion biotechnology.
Collapse
Affiliation(s)
- Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology-FORTH and Department of Biology-University of Crete, PO Box 1385, Heraklion, Crete, Greece
| | - Maria Markaki
- Computer Science Department, University of Crete, Heraklion, Greece
| | - Katerina Chatzi
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium
| | - Ioannis Tsamardinos
- Computer Science Department, University of Crete, Heraklion, Greece.,Gnosis Data Analysis PC, Heraklion, Greece
| | - Anastassios Economou
- Institute of Molecular Biology and Biotechnology-FORTH and Department of Biology-University of Crete, PO Box 1385, Heraklion, Crete, Greece. .,KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000, Leuven, Belgium.
| |
Collapse
|
47
|
Hsieh YH, Huang YJ, Zhang H, Liu Q, Lu Y, Yang H, Houghton J, Jiang C, Sui SF, Tai PC. Dissecting structures and functions of SecA-only protein-conducting channels: ATPase, pore structure, ion channel activity, protein translocation, and interaction with SecYEG/SecDF•YajC. PLoS One 2017; 12:e0178307. [PMID: 28575061 PMCID: PMC5456053 DOI: 10.1371/journal.pone.0178307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 11/30/2022] Open
Abstract
SecA is an essential protein in the major bacterial Sec-dependent translocation pathways. E. coli SecA has 901 aminoacyl residues which form multi-functional domains that interact with various ligands to impart function. In this study, we constructed and purified tethered C-terminal deletion fragments of SecA to determine the requirements for N-terminal domains interacting with lipids to provide ATPase activity, pore structure, ion channel activity, protein translocation and interactions with SecYEG-SecDF•YajC. We found that the N-terminal fragment SecAN493 (SecA1-493) has low, intrinsic ATPase activity. Larger fragments have greater activity, becoming highest around N619-N632. Lipids greatly stimulated the ATPase activities of the fragments N608-N798, reaching maximal activities around N619. Three helices in amino-acyl residues SecA619-831, which includes the "Helical Scaffold" Domain (SecA619-668) are critical for pore formation, ion channel activity, and for function with SecYEG-SecDF•YajC. In the presence of liposomes, N-terminal domain fragments of SecA form pore-ring structures at fragment-size N640, ion channel activity around N798, and protein translocation capability around N831. SecA domain fragments ranging in size between N643-N669 are critical for functional interactions with SecYEG-SecDF•YajC. In the presence of liposomes, inactive C-terminal fragments complement smaller non-functional N-terminal fragments to form SecA-only pore structures with ion channel activity and protein translocation ability. Thus, SecA domain fragment interactions with liposomes defined critical structures and functional aspects of SecA-only channels. These data provide the mechanistic basis for SecA to form primitive, low-efficiency, SecA-only protein-conducting channels, as well as the minimal parameters for SecA to interact functionally with SecYEG-SecDF•YajC to form high-efficiency channels.
Collapse
Affiliation(s)
- Ying-hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Ying-ju Huang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Qian Liu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Yang Lu
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - John Houghton
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing China
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, United States of America
| |
Collapse
|
48
|
Chatzi KE, Sardis MF, Tsirigotaki A, Koukaki M, Šoštarić N, Konijnenberg A, Sobott F, Kalodimos CG, Karamanou S, Economou A. Preprotein mature domains contain translocase targeting signals that are essential for secretion. J Cell Biol 2017; 216:1357-1369. [PMID: 28404644 PMCID: PMC5412566 DOI: 10.1083/jcb.201609022] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/07/2016] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion.
Collapse
Affiliation(s)
- Katerina E Chatzi
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marios Frantzeskos Sardis
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology FoRTH, Iraklio, 71110 Crete, Greece
| | - Nikolina Šoštarić
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Albert Konijnenberg
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2000 Antwerp, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, 2000 Antwerp, Belgium
| | - Charalampos G Kalodimos
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium .,Institute of Molecular Biology and Biotechnology FoRTH, Iraklio, 71110 Crete, Greece
| |
Collapse
|
49
|
Karner A, Nimmervoll B, Plochberger B, Klotzsch E, Horner A, Knyazev DG, Kuttner R, Winkler K, Winter L, Siligan C, Ollinger N, Pohl P, Preiner J. Tuning membrane protein mobility by confinement into nanodomains. NATURE NANOTECHNOLOGY 2017; 12:260-266. [PMID: 27842062 PMCID: PMC5734611 DOI: 10.1038/nnano.2016.236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/30/2016] [Indexed: 05/04/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.
Collapse
Affiliation(s)
- Andreas Karner
- Center for Advanced Bioanalysis GmbH, Gruberstr. 40-42, 4020 Linz, Austria
| | | | - Birgit Plochberger
- Upper Austria University of Applied Sciences, Campus Linz, Garnisonstrasse 21, 4020 Linz, Austria
| | - Enrico Klotzsch
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Roland Kuttner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Klemens Winkler
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Lukas Winter
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Nicole Ollinger
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, 4020 Linz, Austria
| | - Johannes Preiner
- Center for Advanced Bioanalysis GmbH, Gruberstr. 40-42, 4020 Linz, Austria
| |
Collapse
|
50
|
|