1
|
Avalos D, Rey G, Ribeiro DM, Ramisch A, Dermitzakis ET, Delaneau O. Genetic variation in cis-regulatory domains suggests cell type-specific regulatory mechanisms in immunity. Commun Biol 2023; 6:335. [PMID: 36977773 PMCID: PMC10050075 DOI: 10.1038/s42003-023-04688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
Studying the interplay between genetic variation, epigenetic changes, and regulation of gene expression is crucial to understand the modification of cellular states in various conditions, including immune diseases. In this study, we characterize the cell-specificity in three key cells of the human immune system by building cis maps of regulatory regions with coordinated activity (CRDs) from ChIP-seq peaks and methylation data. We find that only 33% of CRD-gene associations are shared between cell types, revealing how similarly located regulatory regions provide cell-specific modulation of gene activity. We emphasize important biological mechanisms, as most of our associations are enriched in cell-specific transcription factor binding sites, blood-traits, and immune disease-associated loci. Notably, we show that CRD-QTLs aid in interpreting GWAS findings and help prioritize variants for testing functional hypotheses within human complex diseases. Additionally, we map trans CRD regulatory associations, and among 207 trans-eQTLs discovered, 46 overlap with the QTLGen Consortium meta-analysis in whole blood, showing that mapping functional regulatory units using population genomics allows discovering important mechanisms in the regulation of gene expression in immune cells. Finally, we constitute a comprehensive resource describing multi-omics changes to gain a greater understanding of cell-type specific regulatory mechanisms of immunity.
Collapse
Affiliation(s)
- Diana Avalos
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics (SIB), University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Rey
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics (SIB), University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Diogo M Ribeiro
- Swiss Institute of Bioinformatics (SIB), University of Geneva, Geneva, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Anna Ramisch
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics (SIB), University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Swiss Institute of Bioinformatics (SIB), University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Olivier Delaneau
- Swiss Institute of Bioinformatics (SIB), University of Geneva, Geneva, Switzerland.
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Zhang Y, Kishi H, Morita T, Kobayashi S. Paxillin controls actin stress fiber formation and migration of vascular smooth muscle cells by directly binding to the active Fyn. FASEB J 2021; 35:e22012. [PMID: 34724245 DOI: 10.1096/fj.202101035rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
Rho-kinase (ROK)-mediated migration of vascular smooth muscle cells plays a crucial role in cardiovascular diseases. Previously we demonstrated Fyn tyrosine kinase as an upstream molecule of ROK to mediate actin stress fiber formation that plays an important role in cell migration, but the molecular mechanism between the two kinases was unclear. To discover a novel signaling molecule that exists between Fyn and ROK, we identified paxillin acting downstream of the active Fyn by combined use of pulldown assay and mass spectrometry. Immunofluorescence staining confirmed co-localization of Fyn and paxillin at the ends of actin stress fibers in human coronary artery smooth muscle cells (CASMCs). Surface plasmon resonance assay demonstrated direct binding between constitutively active Fyn (CA-Fyn) and N-terminus of paxillin (N-pax). The sphingosylphosphorylcholine (SPC)-induced ROK activation, actin stress fiber formation and cell migration were inhibited by paxillin knockdown, which were rescued by full-length paxillin (FL-pax) but not N-pax. N-pax co-localized with CA-Fyn at the cytosol and overexpression of N-pax inhibited the SPC-induced actin stress fiber formation and cell migration, indicating that the direct binding of FL-pax and CA-Fyn at the ends of actin stress fibers is essential for the ROK-mediated actin stress fiber formation and cell migration. Paxillin, as a novel signalling molecule, mediates the SPC-induced actin stress fiber formation and migration in human CASMCs via the Fyn/paxillin/ROK signalling pathway by direct binding of active Fyn.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroko Kishi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Tomoka Morita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Sei Kobayashi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Yamaguchi University, Ube, Japan.,Department of Advanced Preventive Medicine, Medical School, Yamaguchi University, Ube, Japan
| |
Collapse
|
3
|
Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar HI, Wang Q, Council A, Berg A, Freeman GJ, Boussiotis VA. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol 2020; 3:128. [PMID: 32184441 PMCID: PMC7078208 DOI: 10.1038/s42003-020-0845-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death-1 (PD-1) inhibits T cell responses. This function relies on interaction with SHP-2. PD-1 has one immunoreceptor tyrosine-based inhibitory motif (ITIM) at Y223 and one immunoreceptor tyrosine-based switch motif (ITSM) at Y248. Only ITSM-Y248 is indispensable for PD-1-mediated inhibitory function but how SHP-2 enzymatic activation is mechanistically regulated by one PD-1 phosphotyrosine remains a puzzle. We found that after PD-1 phosphorylation, SHP-2 can bridge phosphorylated ITSM-Y248 residues on two PD-1 molecules via its amino terminal (N)-SH2 and carboxyterminal (C)-SH2 domains forming a PD-1: PD-1 dimer in live cells. The biophysical ability of SHP-2 to interact with two ITSM-pY248 residues was documented by isothermal titration calorimetry. SHP-2 interaction with two ITSM-pY248 phosphopeptides induced robust enzymatic activation. Our results unravel a mechanism of PD-1: SHP-2 interaction that depends only on ITSM-Y248 and explain how a single docking site within the PD-1 cytoplasmic tail can activate SHP-2 and PD-1-mediated inhibitory function.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Halil-Ibrahim Aksoylar
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qi Wang
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Asia Council
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Anders Berg
- Department of Pathology Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, 02215, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Liu K, Chyr J, Zhao W, Zhou X. Immune signaling-based Cascade Propagation approach re-stratifies HNSCC patients. Methods 2016; 111:72-79. [PMID: 27339942 DOI: 10.1016/j.ymeth.2016.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2016] [Accepted: 06/19/2016] [Indexed: 11/17/2022] Open
Abstract
The availability of high-throughput genomic assays and rich electronic medical records allows us to identify cancer subtypes with greater accuracy and resolution. The integration of multiplatform, heterogenous, and high dimensional data remains an enormous challenge in using big data in bioinformatics research. Previous methods have been developed for patient stratification, however, these approaches did not incorporate prior knowledge and offer limited biology insight. New computational methods are needed to better utilize multiple types of information to identify clinically meaningful subtypes. Recent studies have shown that many immune functional genes are associated with cancer progression, recurrence and prognosis in head and neck squamous cell carcinoma (HNSCC). Therefore, we developed a novel immune signaling based Cascade Propagation (CasP) subtyping approach to stratify HNSCC patients. Unlike previous stratification methods that use only patient genomic data, our approach makes use of prior biological information such as immune signaling and protein-protein interactions, as well as patient survival information. CasP is a multi-step stratification procedure, composed of a dynamic network tree cutting step followed by a mutational stratification step. Using this approach, HNSCC patients were first stratified into clinically relative subgroups with different survival outcomes and distinct immunogenic features. We found that the good outcome of a subgroup of HNSCC patients was due to an enhanced immune response. The gene sets were characterized by a significant activation of T cell receptor signaling pathways, in addition to other important cancer related pathways such as PI3K and JAK/STAT signaling pathways. Further stratification of patients based on somatic mutation profiles detected three survival-distinct subnetworks. Our newly developed CasP subtyping approach allowed us to integrate multiple data types and identify clinically relevant subtypes of HNSCC patients.
Collapse
Affiliation(s)
- Keqin Liu
- Center for Bioinformatics and Systems Biology, Department of Radiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Jacqueline Chyr
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| | - Weiling Zhao
- Center for Bioinformatics and Systems Biology, Department of Radiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Xiaobo Zhou
- Center for Bioinformatics and Systems Biology, Department of Radiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA.
| |
Collapse
|
5
|
Zhang Q, Song X, Su P, Li R, Liu C, Gou M, Wang H, Liu X, Li Q. A novel homolog of protein tyrosine kinase Fyn identified in Lampetra japonica with roles in the immune response. Gene 2016; 579:193-200. [DOI: 10.1016/j.gene.2015.12.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2015] [Revised: 12/10/2015] [Accepted: 12/27/2015] [Indexed: 11/27/2022]
|
6
|
Lee C, Low CYB, Francis PT, Attems J, Wong PTH, Lai MK, Tan MG. An isoform-specific role of FynT tyrosine kinase in Alzheimer's disease. J Neurochem 2015; 136:637-50. [DOI: 10.1111/jnc.13429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Chingli Lee
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| | - Clara Y. B. Low
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| | - Paul T. Francis
- Wolfson Centre for Age-Related Diseases; King's College London; London UK
| | - Johannes Attems
- Institute of Neuroscience; Newcastle University; Campus for Aging and Vitality; Newcastle upon Tyne UK
| | - Peter T.-H. Wong
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
| | - Mitchell K.P. Lai
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Wolfson Centre for Age-Related Diseases; King's College London; London UK
| | - Michelle G.K. Tan
- Department of Pharmacology; Yong Loo Lin School of Medicine; National University of Singapore; Kent Ridge Singapore
- Department of Clinical Research; Singapore General Hospital; Outram Singapore
| |
Collapse
|
7
|
Lopes F, Wang A, Smyth D, Reyes JL, Doering A, Schenck LP, Beck P, Waterhouse C, McKay DM. The Src kinase Fyn is protective in acute chemical-induced colitis and promotes recovery from disease. J Leukoc Biol 2015; 97:1089-99. [PMID: 25877924 DOI: 10.1189/jlb.3a0814-405rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2014] [Accepted: 03/07/2015] [Indexed: 01/08/2023] Open
Abstract
Despite progress in understanding enteric inflammation, current therapies, although effective in many patients with inflammatory bowel disease (IBD), have significant side-effects, and, in many patients, it is refractory to treatment. The Src kinase Fyn mediated IFN-γ-induced increased permeability in model epithelia, and so we hypothesized that inhibition of Fyn kinase would be anti-colitic. Mice [B6.129SF2/J wild-type (WT), Fyn KO, or chimeras] received 2.5% dextran sodium sulfate (DSS) or normal water for 10 d and were necropsied immediately or 3 d later. Gut permeability was assessed by FITC-dextran flux, colitis by macroscopic and histologic parameters, and immune cell status by cytokine production and CD4(+) T cell Foxp3 expression. Fyn KO mice consistently displayed significantly worse DSS-induced disease than WT, correlating with decreased IL-10 and increased IL-17 in splenocytes and the gut; Fyn KO mice failed to thrive after removal of the DSS water. Analysis of chimeric mice indicated that the increased sensitivity to DSS was due to the lack of Fyn kinase in hematopoietic, but not stromal, cells, in accordance with Fyn(+) T cell increases in WT mice exposed to DSS and Fyn KO mice having a reduced number of CD4(+)Foxp3(+) cells in baseline or colitic conditions and a reduced capacity to induce Foxp3 expression in vitro. Other experiments suggest that the colonic microbiota in Fyn KO mice is not preferentially colitogenic. Contrary to our expectation, the absence of Fyn kinase resulted in greater DSS-induced disease, and analysis of chimeric mice indicated that leukocyte Fyn kinase is beneficial in limiting colitis.
Collapse
Affiliation(s)
- Fernando Lopes
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arthur Wang
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - David Smyth
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jose-Luis Reyes
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Axinia Doering
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - L Patrick Schenck
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Paul Beck
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Christopher Waterhouse
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Derek M McKay
- *Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Department of Medicine, Department of Paediatrics, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
8
|
Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. ADVANCES IN PHYSIOLOGY EDUCATION 2013; 37:273-83. [PMID: 24292902 PMCID: PMC4089090 DOI: 10.1152/advan.00066.2013] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/19/2013] [Accepted: 08/31/2013] [Indexed: 05/08/2023]
Affiliation(s)
- Nathan D Pennock
- Integrated Department of Immunology, University of Colorado Denver, Denver, Colorado
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Fyn is a tyrosine kinase with multiple roles in a variety of cellular processes. Here we report that Fyn is a new kinase involved in adipocyte differentiation. Elevated Fyn protein is detected specifically in the adipocytes of obese mice. Moreover, Fyn expression increases progressively in 3T3-L1 cells during in vitro adipogenesis, which correlates with its kinase activity. Inhibition of Fyn by either genetic or pharmacological manipulation restrains the 3T3-L1 preadipocytes from fully differentiating into mature adipocytes. Mechanistically, Fyn regulates the activity of the adipogenic transcription factor signal transducer and activator of transcription 5a (STAT5a) through enhancing its interaction with the GTPase phosphoinositide 3-kinase enhancer A (PIKE-A). The STAT5a activity is therefore reduced in Fyn- or PIKE-ablated adipose tissues, leading to diminished expression of adipogenic markers and adipocyte differentiation. Our data thus demonstrate a novel functional interaction between Fyn, PIKE-A, and STAT5a in mediating adipogenesis.
Collapse
|
10
|
Tebrophen--an old polyphenol drug with anticancer potential. Molecules 2012; 17:7864-86. [PMID: 22743590 PMCID: PMC6268439 DOI: 10.3390/molecules17077864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2012] [Revised: 06/08/2012] [Accepted: 06/14/2012] [Indexed: 11/16/2022] Open
Abstract
In vitro high-throughput screening was carried out in order to detect new activities for old drugs and to select compounds for the drug development process comprising new indications. Tebrophen, a known antiviral drug, was found to inhibit activities on inflammation and cancer related targets. In primary screening this semisynthetic halogenated polyphenol was identified to inhibit the activities of kinases ZAP-70 and Lck (IC50 0.34 µM and 16 µM, respectively), as well as hydrolase DPPIV (at 80 µM 41% inhibition). Next, it showed no cytotoxic effects on standard cell lines within 24 h. However, tebrophen slowed propagation of breast cancer (MDA-MB-231), osteosarcoma (U2OS) and cervical carcinoma (HeLa), through at least 35 population doublings in a dose-dependent manner. It completely stopped the division of the prostate cancer (PC3) cell line at 50 µM concentration and the cells entered massive cell death in less than 20 days. On the other hand, tebrophen did not influence the growth of normal fibroblasts. According to the measured oxidative burst and estimated in silico parameters its direct antioxidative ability is limited. The obtained results indicate that tebrophen can be considered a promising lead molecule for generating more soluble derivatives with specific anticancer efficacy.
Collapse
|
11
|
Jelić D, Tatić I, Trzun M, Hrvačić B, Brajša K, Verbanac D, Tomašković M, Čulić O, Antolović R, Glojnarić I, Weygand-Đurašević I, Vladimir-Knežević S, Mildner B. Porphyrins as new endogenous anti-inflammatory agents. Eur J Pharmacol 2012; 691:251-60. [PMID: 22687816 DOI: 10.1016/j.ejphar.2012.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2012] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
A series of porphyrins, tetrapyrrole natural organic compounds, are evaluated here as endogenous anti-inflammatory agents. They directly inhibit the activity of Fyn, a non-receptor Src-family tyrosine kinase, triggering anti-inflammatory events associated with down-regulation of T-cell receptor signal transduction, leading to inhibition of tumor necrosis factor alpha (TNF-α) production. This is one of the major pro-inflammatory cytokines, associated with diseases such as diabetes, tumorigenesis, rheumatoid arthritis, and inflammatory bowel disease. Porphyrins, as a chemical class, inhibited Fyn kinase activity in a non-competitive, linear-mixed fashion. In cell-based in vitro experiments on polymorphonuclear cells, porphyrins inhibited TNF-α cytokine production, T-cell proliferation, and the generation of free radicals in the oxidative burst, in a concentration-related manner. In vivo, lipopolysaccharide-induced TNF-α production in mice was inhibited by several of the porphyrins. These findings may be very important for the overall understanding of the role(s) of porphyrins in inflammation and their possible application as new anti-inflammatory agents.
Collapse
Affiliation(s)
- Dubravko Jelić
- GlaxoSmithKline Research Centre Zagreb, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The development of T cell in the thymus and the activation of mature T cells in the secondary lymphoid tissues require T cell to make adaptive responses to signaling molecules of environment. The activation of T cell receptor (TCR) signaling pathway could be induced by the interaction of the TCR and its co-receptor CD4 and CD8 with MHC/peptide complex. This process involves co-stimulatory molecules and signals mediated by cytokine receptors, which eventually leads to the occurrence of T cell immune response. The Src-family kinases lymphocyte-specific protein tyrosine kinase (Lck) and proto-oncogene tyrosine-protein kinase (Fyn) are expressed in T cells and serve as the signaling molecules that are activated downstream of TCR. These signaling molecules play key roles in development, positive selection, and peripheral maintenance of naive T cells and lymphopenia-induced proliferation of peripheral T cells. Both Lck and Fyn are required for each of these TCR-based signaling pathways, and Lck seems to be the major contributor, while Fyn can only supplement some functions of Lck. In this review, we discussed the mechanisms by which these two proteins perform functions in T cell development based on our current understanding.
Collapse
|
13
|
Comparison of the Genetic Organization, Expression Strategies and Oncogenic Potential of HTLV-1 and HTLV-2. LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:876153. [PMID: 23213551 PMCID: PMC3504254 DOI: 10.1155/2012/876153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/09/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as the causative agent of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In contrast, HTLV-2 has not been causally linked to human malignancy, although it may increase the risk of developing inflammatory neuropathies and infectious diseases. The present paper is focused on the studies aimed at defining the viral genetic determinants of the pathobiology of HTLV-1 and HTLV-2 through a comparison of the expression strategies and functional properties of the different gene products of the two viruses.
Collapse
|
14
|
Levi M, Shalgi R. The role of Fyn kinase in the release from metaphase in mammalian oocytes. Mol Cell Endocrinol 2010; 314:228-33. [PMID: 19733625 DOI: 10.1016/j.mce.2009.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/21/2009] [Accepted: 08/30/2009] [Indexed: 01/06/2023]
Abstract
Meiosis in mammalian oocytes starts during embryonic life and arrests for the first time before birth, at prophase of the first meiotic division. The second meiotic arrest occurs after spindle formation at metaphase of the second meiotic division (MII) in selected oocytes designated for ovulation. The fertilizing spermatozoon induces the release from MII arrest only after the oocyte's spindle assembly checkpoint (SAC) was deactivated. Src family kinases (SFKs) are nine non-receptor protein tyrosine kinases that regulate many key cellular functions. Fyn is an SFK expressed in many cell types, including oocytes. Recent studies, including ours, imply a role for Fyn in exit from meiotic and mitotic metaphases. Other studies demonstrate that SFKs, particularly Fyn, are required for regulation of microtubules polymerization and spindle stabilization. Altogether, Fyn is suggested to play an essential role in signaling events that implicate SAC pathway and hence in regulating the exit from metaphase in oocytes and zygote.
Collapse
Affiliation(s)
- M Levi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | |
Collapse
|
15
|
Wang X, Fredericksen ZS, Vierkant RA, Kosel ML, Pankratz VS, Cerhan JR, Justenhoven C, Brauch H, Olson JE, Couch FJ. Association of genetic variation in mitotic kinases with breast cancer risk. Breast Cancer Res Treat 2009; 119:453-62. [PMID: 19404734 DOI: 10.1007/s10549-009-0404-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/26/2022]
Abstract
An RNAi-based functional screening of mitotic kinases in Drosophila recently identified a number of members of the kinome that are required for normal cell division. Depletion of these kinases resulted in a number of different mitotic abnormalities including spindle malformation, chromosome mis-segregation, centrosome amplification and failure of cytokinesis (Bettencourt-Dias et al. in Nature 432:980-987, 2004). Since mitotic defects are commonly observed in cancer cells, these kinases may contribute to tumor development and/or progression. To investigate whether common genetic variation in the mitotic kinases are associated with breast cancer risk, we genotyped 386 single nucleotide polymorphisms (SNPs) from 44 mitotic kinase genes, in 798 breast cancer cases and 843 unaffected controls from a clinic-based study. A total of 22 SNPs from 13 kinase genes displayed significant associations with breast cancer risk (P(trend) < or = 0.05), including two SNPs from FYN (rs6914091 and rs1465061) that remained of interest after accounting for multiple testing (q = 0.06). These associations were stronger when evaluating cases with estrogen and progesterone receptor positive tumors. In addition, haplotype-based tests identified significant associations with risk for common haplotypes of the MAST2 (P = 0.04) and MAP2K4 (P = 0.006) genes. Although requiring replication, these findings suggest that genetic polymorphisms in mitotic kinases that have been implicated in chromosome instability and aneuploidy may contribute to the development of breast cancer.
Collapse
Affiliation(s)
- Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gil D, Schrum AG, Daniels MA, Palmer E. A role for CD8 in the developmental tuning of antigen recognition and CD3 conformational change. THE JOURNAL OF IMMUNOLOGY 2008; 180:3900-9. [PMID: 18322198 DOI: 10.4049/jimmunol.180.6.3900] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
TCR engagement by peptide-MHC class I (pMHC) ligands induces a conformational change (Deltac) in CD3 (CD3Deltac) that contributes to T cell signaling. We found that when this interaction took place between primary T lineage cells and APCs, the CD8 coreceptor was required to generate CD3Deltac. Interestingly, neither enhancement of Ag binding strength nor Src kinase signaling explained this coreceptor activity. Furthermore, Ag-induced CD3Deltac was developmentally attenuated by the increase in sialylation that accompanies T cell maturation and limits CD8 activity. Thus, both weak and strong ligands induced CD3Deltac in preselection thymocytes, but only strong ligands were effective in mature T cells. We propose that CD8 participation in the TCR/pMHC interaction can physically regulate CD3Deltac induction by "translating" productive Ag encounter from the TCR to the CD3 complex. This suggests one mechanism by which the developmentally regulated variation in CD8 sialylation may contribute to the developmental tuning of T cell sensitivity.
Collapse
Affiliation(s)
- Diana Gil
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
17
|
Hager E, Hawwari A, Matsuda JL, Krangel MS, Gapin L. Multiple constraints at the level of TCRalpha rearrangement impact Valpha14i NKT cell development. THE JOURNAL OF IMMUNOLOGY 2007; 179:2228-34. [PMID: 17675483 DOI: 10.4049/jimmunol.179.4.2228] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
CD1d-restricted NKT cells that express an invariant Valpha14 TCR represent a subset of T cells implicated in the regulation of several immune responses, including autoimmunity, infectious disease, and cancer. Proper rearrangement of Valpha14 with the Jalpha18 gene segment in immature thymocytes is a prerequisite to the production of a TCR that can be subsequently positively selected by CD1d/self-ligand complexes in the thymus and gives rise to the NKT cell population. We show here that Valpha14 to Jalpha rearrangements are temporally regulated during ontogeny providing a molecular explanation to their late appearance in the thymus. Using mice deficient for the transcription factor RORgamma and the germline promoters T early-alpha and Jalpha49, we show that developmental constraints on both Valpha and Jalpha usage impact NKT cell development. Finally, we demonstrate that rearrangements using Valpha14 and Jalpha18 occur normally in the absence of FynT, arguing that the effect of FynT on NKT cell development occurs subsequent to alpha-chain rearrangement. Altogether, this study provides evidence that there is no directed rearrangement of Valpha14 to Jalpha18 segments and supports the instructive selection model for NKT cell selection.
Collapse
MESH Headings
- Animals
- Antigens, CD1/immunology
- Antigens, CD1d
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor/immunology
- Killer Cells, Natural/immunology
- Mice
- Mice, Knockout
- Models, Immunological
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Proto-Oncogene Proteins c-fyn/genetics
- Proto-Oncogene Proteins c-fyn/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/immunology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/immunology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Elizabeth Hager
- Integrated Department of Immunology, National Jewish Medical and Research Center, University of Colorado Health Science Center, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
18
|
Choi S, Schwartz RH. Molecular mechanisms for adaptive tolerance and other T cell anergy models. Semin Immunol 2007; 19:140-52. [PMID: 17400472 PMCID: PMC2045643 DOI: 10.1016/j.smim.2007.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/16/2007] [Accepted: 02/16/2007] [Indexed: 01/09/2023]
Abstract
Since the original description of T cell anergy in CD4 clones from mice and humans, a number of different unresponsive states have been described, both in vivo and in vitro, that have been called anergic. While initial attempts were made to understand the similarities between the different models, it has now become clear from biochemical experiments that many of them have different molecular mechanisms underlying their unresponsiveness. In this review we will detail our own work on the in vivo model referred to as adaptive tolerance and then attempt to compare this biochemical state to the multitude of other states that have been described in the literature.
Collapse
Affiliation(s)
- Seeyoung Choi
- National Institutes of Health, LCMI, NIAID, Bethesda, MD 20892-0420, USA
| | | |
Collapse
|
19
|
Smida M, Posevitz-Fejfar A, Horejsi V, Schraven B, Lindquist JA. A novel negative regulatory function of the phosphoprotein associated with glycosphingolipid-enriched microdomains: blocking Ras activation. Blood 2007; 110:596-615. [PMID: 17389760 DOI: 10.1182/blood-2006-07-038752] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
In primary human T cells, anergy induction results in enhanced p59Fyn activity. Because Fyn is the kinase primarily responsible for the phosphorylation of PAG (the phosphoprotein associated with glycosphingolipid-enriched microdomains), which negatively regulates Src-kinase activity by recruiting Csk (the C-terminal Src kinase) to the membrane, we investigated whether anergy induction also affects PAG. Analysis of anergic T cells revealed that PAG is hyperphosphorylated at the Csk binding site, leading to enhanced Csk recruitment and inhibitory tyrosine phosphorylation within Fyn. This together with enhanced phosphorylation of a tyrosine within the SH2 domain of Fyn leads to the formation of a hyperactive conformation, thus explaining the enhanced Fyn kinase activity. In addition, we have also identified the formation of a multiprotein complex containing PAG, Fyn, Sam68, and RasGAP in stimulated T cells. We demonstrate that PAG-Fyn overexpression is sufficient to suppress Ras activation in Jurkat T cells and show that this activity is independent of Csk binding. Thus, in addition to negatively regulating Src family kinases by recruiting Csk, PAG also negatively regulates Ras by recruiting RasGAP to the membrane. Finally, by knocking down PAG, we demonstrate both enhanced Src kinase activity and Ras activation, thereby establishing PAG as an important negative regulator of T-cell activation.
Collapse
Affiliation(s)
- Michal Smida
- Institute of Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Jelić D, Mildner B, Kostrun S, Nujić K, Verbanac D, Culić O, Antolović R, Brandt W. Homology modeling of human Fyn kinase structure: discovery of rosmarinic acid as a new Fyn kinase inhibitor and in silico study of its possible binding modes. J Med Chem 2007; 50:1090-100. [PMID: 17315853 DOI: 10.1021/jm0607202] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Tyrosine phosphorylation represents a unique signaling process that controls metabolic pathways, cell activation, growth and differentiation, membrane transport, apoptosis, neural, and other functions. We present here the three-dimensional structure of Fyn tyrosine kinase, a Src-family enzyme involved in T-cell receptor signal transduction. The structure of Fyn was modeled for homology using the Sybyl-Composer suite of programs for modeling. Procheck and Prosa II programs showed the high quality of the obtained three-dimensional model. Rosmarinic acid, a secondary metabolite of herbal plants, was discovered as a new Fyn kinase inhibitor using immunochemical and in silico methods. Two possible binding modes of rosmarinic acid were evaluated here, i.e., near to or in the ATP-binding site of kinase domain of Fyn. Enzyme kinetic experiments revealed that Fyn is inhibited by a linear-mixed noncompetitive mechanism of inhibition by rosmarinic acid. This indicates that rosmarinic acid binds to the second "non-ATP" binding site of the Fyn tyrosine kinase.
Collapse
Affiliation(s)
- Dubravko Jelić
- GlaxoSmithKline Research Centre Zagreb, Prilaz baruna Filipovića 29, 10000 Zagreb,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chiodetti L, Choi S, Barber DL, Schwartz RH. Adaptive tolerance and clonal anergy are distinct biochemical states. THE JOURNAL OF IMMUNOLOGY 2006; 176:2279-91. [PMID: 16455984 DOI: 10.4049/jimmunol.176.4.2279] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Adaptive tolerance is a process by which T cells become desensitized when Ag stimulation persists following an initial immune response in vivo. To examine the biochemical changes in TCR signaling present in this state, we used a mouse model in which Rag2(-/-) TCR-transgenic CD4(+) T cells were transferred into CD3epsilon(-/-) recipients expressing their cognate Ag. Compared with naive T cells, adaptively tolerant T cells had normal levels of TCR and slightly increased levels of CD4. Following activation with anti-TCR and anti-CD4 mAbs, the predominant signaling block in the tolerant cells was at the level of Zap70 kinase activity, which was decreased 75% in vitro. Phosphorylations of the Zap70 substrates (linker of activated T cells and phospholipase Cgamma1 were also profoundly diminished. This proximal defect impacted mostly on the calcium/NFAT and NF-kappaB pathways, with only a modest decrease in ERK1/2 phosphorylation. This state was contrasted with T cell clonal anergy in which the RAS/MAPK pathway was preferentially impaired and there was much less inhibition of Zap70 kinase activity. Both hyporesponsive states manifested a block in IkappaB degradation. These results demonstrate that T cell adaptive tolerance and clonal anergy are distinct biochemical states, possibly providing T cells with two molecular mechanisms to curtail responsiveness in different biological circumstances.
Collapse
Affiliation(s)
- Lynda Chiodetti
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
22
|
Dobenecker MW, Schmedt C, Okada M, Tarakhovsky A. The ubiquitously expressed Csk adaptor protein Cbp is dispensable for embryogenesis and T-cell development and function. Mol Cell Biol 2005; 25:10533-42. [PMID: 16287865 PMCID: PMC1291250 DOI: 10.1128/mcb.25.23.10533-10542.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
Regulation of Src family kinase (SFK) activity is indispensable for a functional immune system and embryogenesis. The activity of SFKs is inhibited by the presence of the carboxy-terminal Src kinase (Csk) at the cell membrane. Thus, recruitment of cytosolic Csk to the membrane-associated SFKs is crucial for its regulatory function. Previous studies utilizing in vitro and transgenic models suggested that the Csk-binding protein (Cbp), also known as phosphoprotein associated with glycosphingolipid microdomains (PAG), is the membrane adaptor for Csk. However, loss-of-function genetic evidence to support this notion was lacking. Herein, we demonstrate that the targeted disruption of the cbp gene in mice has no effect on embryogenesis, thymic development, or T-cell functions in vivo. Moreover, recruitment of Csk to the specialized membrane compartment of "lipid rafts" is not impaired by Cbp deficiency. Our results indicate that Cbp is dispensable for the recruitment of Csk to the membrane and that another Csk adaptor, yet to be discovered, compensates for the loss of Cbp.
Collapse
Affiliation(s)
- Marc-Werner Dobenecker
- Laboratory of Lymphocyte Signaling, The Rockefeller University, 1230 York Avenue, Box 301, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
23
|
McRae BL, Wallace C, Dixon KF, Roux A, Mohan S, Jia Y, Presky DH, Tracey DE, Hirst GC. Suppression of CD4+ T cell activation by a novel inhibitor of Src family kinases. Int Immunopharmacol 2005; 5:667-77. [PMID: 15710336 DOI: 10.1016/j.intimp.2004.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2004] [Revised: 11/01/2004] [Accepted: 11/22/2004] [Indexed: 11/17/2022]
Abstract
The Src family kinases Lck and Fyn play an important role in T cell development and function. We have synthesized a novel small molecule, A-420983, which inhibits Lck and Fyn, as well as other Src family kinases, but has selectivity with respect to non-Src family kinases. A-420983 completely inhibited antigen-stimulated production of IFN-gamma and IL-4 by mouse Th1 and Th2 cells, respectively. Antigen-induced T cell proliferation was also blocked by treatment with A-420983. In contrast, IL-15-induced proliferation was unaffected by A-420983, suggesting that TCR-independent pathways of T cell activation were not impaired. When mice were dosed orally, A-420983 inhibited TCR-mediated c-jun and ZAP-70 phosphorylation in CD4+ T cells and suppressed the disease course of established EAE. Treatment with A-420983 for 7 days resulted in a block in thymocyte development at the CD4- CD8- stage, consistent with inhibition of Lck and Fyn in vivo. These results demonstrate that a small molecule inhibitor of Lck and Fyn can block TCR-induced T cell activation in vitro and in vivo. Furthermore, CNS demyelination mediated by activated encephalitogenic CD4+ T cells is dependent upon the kinase activity of these Src family members. We conclude that inhibition of Src family kinases may represent a promising strategy for the treatment of T cell-mediated disorders.
Collapse
Affiliation(s)
- Bradford L McRae
- Department of Pharmacology, Abbott Bioresearch Center, 100 Research Drive, Worcester, MA 01605-4314, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The prion diseases result from the generation and propagation of an abnormal conformer of the prion protein. It is unclear how this molecular event disrupts neuronal function and viability. Current evidence argues it is not due to loss of normal prion protein activity or direct toxic effects of the abnormal conformer. Both the normal and abnormal prion proteins are glycosylphosphatidylinositol-linked membrane proteins. Conversion to the abnormal isoform results in the formation and accumulation of prion protein aggregates. Because aggregation of glycosylphosphatidylinositol-linked proteins activates Src-family kinases, the activation status and levels of the Src-family kinases in prion disease were investigated. Elevations of Src-family kinases were found in a cell culture model and two separate animal models of prion disease. The elevations in Src kinases preceded the onset of symptoms and occurred concurrently with the appearance of detergent-insoluble prion protein. In addition, the total level of kinases phosphorylated at tyrosine residues associated with activation was increased. Similar alterations were not present in brain homogenates from presymptomatic animals early in the disease course, prion protein-ablated animals, or end-stage Tg2576 mice overexpressing mutant amyloid precursor protein. Identification of similar elevations in cell culture and animal model systems suggests the elevations are a specific response to the presence of the disease-associated conformer. Abnormal regulation of these signal transduction cascades may be a key element in the cellular pathology of the prion diseases.
Collapse
Affiliation(s)
- Randal R Nixon
- Department of Pathology, Oregon Health & Sciences University, Portland, Oregon 97201, USA
| |
Collapse
|
25
|
Abstract
The function of the Src-family kinases (SFKs) Lck and Fyn in T cells has been intensively studied over the past 15 years. Animal models and cell line studies both indicate a critical role for Lck and Fyn in proximal T-cell antigen receptor (TCR) signal transduction. Recruited SFKs phosphorylate TCR ITAMs (immunoreceptor tyrosine-based activation motifs) in the CD3 and zeta chains, which then serve as docking sites for Syk-family kinases. SFKs then phosphorylate and activate the recruited Syk-family kinase. Lck and Fyn are spatially segregated in cell membranes due to differential lipid raft localization, and may undergo sequential activation. In addition to the CD4 and CD8 coreceptors, a recently described adaptor, Unc119, may link SFKs to the TCR. CD45 and Csk provide positive and negative regulatory control of SFK functions, respectively, and Csk is constitutively bound to the transmembrane adapter protein, PAG/Cbp. TCR-based signaling is required at several stages of T-cell development, including at least pre-TCR signaling, positive selection, peripheral maintenance of naive T cells, and lymphopenia-induced proliferation. SFKs are required for each of these TCR-based signals, and Lck seems to be the major contributor.
Collapse
Affiliation(s)
- Emil H Palacios
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine and The Howard Hughes Medical Institute, University of California, San Francisco 94143-0795, USA
| | | |
Collapse
|
26
|
Chun JT, Crispino M, Tocco G. The dual response of protein kinase Fyn to neural trauma: early induction in neurons and delayed induction in reactive astrocytes. Exp Neurol 2004; 185:109-19. [PMID: 14697322 DOI: 10.1016/j.expneurol.2003.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
In the developing central nervous system, a src-related protein-tyrosine kinase fyn participates in the myelination process, neuronal growth, and cytoskeletal organization. In adults, fyn has been implicated in learning and memory formation. To test if fyn expression is modulated by neuronal activity, we performed quantitative in situ hybridization (ISH) using brain sections of the adult rats that had undergone either kainic acid (KA)-induced seizures or neuronal deafferentation (entorhinal cortex lesion, ECL). In the KA model, a few hours after seizure activities, fyn mRNA was elevated in the dentate gyrus (DG) (+45%), cerebral cortex layer III (+35%), and piriform cortex (+25%). Conversely, fyn mRNA consistently decreased in the hippocampal neurons after transection of the major axonal inputs from the entorhinal cortex. Although fyn expression in the brain has been allegedly limited to neurons and oligodendrocytes, we provide in this study the first evidence that fyn mRNA is highly expressed in the astrocytes involved in reactive gliosis. In the KA model, the occurrence of fyn-overexpressing astrocytes increased with the progress of neuronal damage in the CA1 and CA3 regions of the hippocampus. In contrast, fyn-overexpressing astrocytes were not observed in the granular cell layer of dentate gyrus (DG), where neurons were not damaged. Likewise, in the ECL model, the most drastic change in fyn mRNA expression took place at the reactive astrocytes near the stab wound sites, where fyn mRNA levels were doubled 4-10 d after the lesion. Collectively, our data suggest that (i) an early induction of fyn mRNA in neurons is linked to neuronal activity, and (ii) the delayed induction of fyn mRNA in reactive astrocytes near the damaged cells may play novel signaling roles during glial response.
Collapse
Affiliation(s)
- Jong T Chun
- Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
27
|
Iwata A, Stevenson VM, Minard A, Tasch M, Tupper J, Lagasse E, Weissman I, Harlan JM, Winn RK. Over-expression of Bcl-2 provides protection in septic mice by a trans effect. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3136-41. [PMID: 12960340 DOI: 10.4049/jimmunol.171.6.3136] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Abstract
Transgenic mice that over-express B cell leukemia/lymphomas (Bcl)-2 in myeloid cells under control of the human MRP8 promoter (hMRP8-Bcl-2) or in T lymphocytes under the E micro promoter (E micro -Bcl-2) were compared with C57BL/6 control mice following cecal ligation and puncture (CLP). There was a significant difference in outcome between the hMRP8-Bcl-2 and control mice with 100% survival in the hMRP8-Bcl-2 mice vs 25% survival in the control mice. In separate experiments there was a significant difference between E micro -Bcl-2 and control mice with 87.5 and 22.2% survival, respectively. Adoptive transfer of CD11b-positive bone marrow cells from hMRP8-Bcl-2 or C57BL/6 mice to C57BL/6 mice subjected to CLP resulted in 100 and 0% survival, respectively. Adoptive transfer of CD11b-positive cells from either hMRP8-Bcl-2 or C57BL/6 mice to Rag-1(-/-) mice (no mature T or B cells) subjected to CLP resulted in survival of 87.5 and 12.5%, respectively. The hMRP8-Bcl-2 mice had significantly more neutrophils and fewer bacteria in the peritoneum compared with C57BL/6 mice 24 h after CLP. These experiments show that Bcl-2 over-expression is protective in CLP and that protection is independent of lymphocytes. We propose that over-expression of Bcl-2 in T cells or myeloid cells induce release of a molecule(s) that protects against death following CLP.
Collapse
Affiliation(s)
- Akiko Iwata
- Department of Surgery and Medicine, University of Washington, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Denzel A, Hare KJ, Zhang C, Shokat K, Jenkinson EJ, Anderson G, Hayday A. Cutting edge: a chemical genetic system for the analysis of kinases regulating T cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:519-23. [PMID: 12847211 DOI: 10.4049/jimmunol.171.2.519] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
To understand the regulatory activities of kinases in vivo requires their study across a biologically relevant window of activity. To this end, ATP analog-sensitive kinase alleles (ASKAs) specifically sensitive to a competitive inhibitor have been developed. This article tests whether ASKA technology can be applied to complex immunological systems, such as lymphoid development. The results show that when applied to reaggregate thymic organ culture, novel p56(Lck) ASKAs readily expose a dose-dependent correlation of thymocyte development with a range of p56(Lck) activity. By regulating kinase activity, rather than amounts of RNA or protein, ASKA technology offers a general means for assessing the quantitative contributions to immunology of numerous kinases emerging from genomics analyses. It can obviate the generation of multiple lines of mice expressing different levels of kinase transgenes and should permit specific biological effects to be associated with defined biochemical activities.
Collapse
Affiliation(s)
- Angela Denzel
- Department of Immunobiology, New Guy's House, Guy's, King's and St. Thomas's School of Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Davidson D, Bakinowski M, Thomas ML, Horejsi V, Veillette A. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol 2003; 23:2017-28. [PMID: 12612075 PMCID: PMC149484 DOI: 10.1128/mcb.23.6.2017-2028.2003] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
PAG/Cbp (hereafter named PAG) is a transmembrane adaptor molecule found in lipid rafts. In resting human T cells, PAG is tyrosine phosphorylated and associated with Csk, an inhibitor of Src-related protein tyrosine kinases. These modifications are rapidly lost in response to T-cell receptor (TCR) stimulation. Overexpression of PAG was reported to inhibit TCR-mediated responses in Jurkat T cells. Herein, we have examined the physiological relevance and the mechanism of PAG-mediated inhibition in T cells. Our studies showed that PAG tyrosine phosphorylation and association with Csk are suppressed in response to activation of normal mouse T cells. By expressing wild-type and phosphorylation-defective (dominant-negative) PAG polypeptides in these cells, we found that the inhibitory effect of PAG is dependent on its capacity to be tyrosine phosphorylated and to associate with Csk. PAG-mediated inhibition was accompanied by a repression of proximal TCR signaling and was rescued by expression of a constitutively activated Src-related kinase, implying that it is due to an inactivation of Src kinases by PAG-associated Csk. We also attempted to identify the protein tyrosine phosphatases (PTPs) responsible for dephosphorylating PAG in T cells. Through cell fractionation studies and analyses of genetically modified mice, we established that PTPs such as PEP and SHP-1 are unlikely to be involved in the dephosphorylation of PAG in T cells. However, the transmembrane PTP CD45 seems to play an important role in this process. Taken together, these data provide firm evidence that PAG is a bona fide negative regulator of T-cell activation as a result of its capacity to recruit Csk. They also suggest that the inhibitory function of PAG in T cells is suppressed by CD45. Lastly, they support the idea that dephosphorylation of proteins on tyrosine residues is critical for the initiation of T-cell activation.
Collapse
Affiliation(s)
- Dominique Davidson
- Laboratory of Molecular Oncology, IRCM, 110 Pine Avenue West, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
30
|
Zamoyska R, Basson A, Filby A, Legname G, Lovatt M, Seddon B. The influence of the src-family kinases, Lck and Fyn, on T cell differentiation, survival and activation. Immunol Rev 2003; 191:107-18. [PMID: 12614355 DOI: 10.1034/j.1600-065x.2003.00015.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
The src-family kinases p56lck (Lck) and p59fyn (Fyn) are expressed in T cells and are among the first signaling molecules to be activated downstream of the T cell receptor (TCR). Evidence is emerging that although closely related, these signaling molecules have discrete functions during development, maintenance and activation of peripheral T cells. For example, during thymopoiesis Lck is uniquely able to provide all the signals required for pre-TCRbeta selection, although Fyn can substitute for a subset of these. Positive selection of CD4 single-positive (SP) cells is also critically dependent on the expression of Lck but not Fyn, while differentiation of CD8 SP cells proceeds relatively efficiently in the absence of Lck. In naïve peripheral T cells either Lck or Fyn can transmit TCR-mediated survival signals, and yet only Lck is able to trigger TCR-mediated expansion signals under conditions of lymphopenia. Stimulation of naïve T cells by antigenic stimuli is also severely compromised in the absence of Lck, but more subtly impaired by the absence of Fyn. We discuss recent experiments addressing how these two src-kinase family members interface with downstream signaling pathways to regulate these diverse aspects of T cell behavior.
Collapse
Affiliation(s)
- Rose Zamoyska
- Division of Molecular Immunology, National Institute for Medical Research, London, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Donlin LT, Roman CA, Adlam M, Regelmann AG, Alexandropoulos K. Defective thymocyte maturation by transgenic expression of a truncated form of the T lymphocyte adapter molecule and Fyn substrate, Sin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6900-9. [PMID: 12471123 DOI: 10.4049/jimmunol.169.12.6900] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Adapter molecules that promote protein-protein interactions play a central role in T lymphocyte differentiation and activation. In this study, we examined the role of the T lymphocyte-expressed adapter protein and Src kinase substrate, Sin, on thymocyte function using transgenic mice expressing an activated, truncated allele of Sin (SinDeltaC). We found that SinDeltaC expression led to reduced numbers of CD4(+) and CD8(+) single-positive cells and reduced thymic cellularity due to increased thymocyte apoptosis. Because the adapter properties of Sin are mediated by tyrosine-based motifs and given that Sin is a substrate for Src tyrosine kinases, we examined the involvement of these kinases in the inhibitory effects of SinDeltaC. We found that in transgenic thymocytes, SinDeltaC was constitutively phosphorylated by the Src kinase Fyn, but not by the related kinase Lck. Using SinDeltaC and fyn(-/-) animals, we also found that the expression of Fyn was required for the inhibitory effect of SinDeltaC on thymocyte apoptosis but not for SinDeltaC-mediated inhibition of T cell maturation. The inhibitory effect of SinDeltaC on thymocyte maturation correlated with defective activation of the mitogen-activated protein kinase extracellular signal-regulated kinase. Our results suggest that the Sin mutant inhibits thymocyte differentiation through Fyn-dependent and -independent mechanisms and that endogenous Sin may be an important regulator of thymocyte development.
Collapse
Affiliation(s)
- Laura T Donlin
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
32
|
Rapecki S, Allen R. Inhibition of human T cell activation by novel Src kinase inhibitors is dependent upon the complexity of the signal delivered to the cell. J Pharmacol Exp Ther 2002; 303:1325-33. [PMID: 12438558 DOI: 10.1124/jpet.102.038380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The activity of a novel series of protein tyrosine kinase inhibitors that are selective for the Src family has been assessed. The activity of these compounds [named CT-SKI (Celltech Src kinase inhibitors)] was investigated by assessing their potential to modulate T cell receptor activation, an event thought to involve the Src kinases Lck and Fyn. This series of compounds contained low-nanomolar inhibitors of Src kinases with selectivity over Csk, epidermal growth factor receptor kinase, protein kinase C, and zeta-associated 70-kDa protein. These compounds were shown to attenuate anti-CD3-induced T cell proliferation and block interleukin (IL)-2, IL-4, and interferon-gamma production, and CD25 expression in anti-CD3-activated T cells. In addition, inhibition of anti-CD3-induced, but not phorbol ester and calcium ionophore-induced IL-2 production, correlated with inhibition of in vitro Lck kinase activity. When more complex stimuli were used to activate T cells, as in the mixed lymphocyte reaction (MLR), these inhibitors proved to be less effective and inhibition of the MLR did not correlate with inhibition of isolated Lck enzyme. Interestingly, inhibition of anti-CD3-induced proliferation could be reversed by the addition of exogenous IL-2, indicating that signaling through the IL-2 receptor may not be critically dependent on any functional Src enzymes.
Collapse
Affiliation(s)
- Stephen Rapecki
- Department of Lead Discovery, Celltech, Slough, Berkshire, United Kingdom.
| | | |
Collapse
|
33
|
Koike K, Kogawa K, Takayama T, Yoshizaki N, Muramatsu H, Nakamura K, Sakamaki S, Niitsu Y. Enhanced expression of type IV collagen-binding protein (p29) in Fyn-transfected murine fibrosarcoma cells. Jpn J Cancer Res 2002; 93:1090-9. [PMID: 12417038 PMCID: PMC5926876 DOI: 10.1111/j.1349-7006.2002.tb01210.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
Abstract
We investigated the mechanism of the enhancement of metastatic potential induced by transfection of the fyn gene, a member of the src family. We employed two murine fyn cDNA-transfected clones, ML-SN1 and ML-SN2, which were previously established from an ML-01 low-metastatic clone of Meth A sarcoma of BALB / c mice and were proven to have higher metastatic ability than ML-01 and the mock-transfected clone ML-MT-neo (Takayama et al., 1993). Our present investigation revealed that the two transfectants showed higher metastatic ability and higher rates of adherence to type IV collagen than ML-MT-neo. However, no difference was found in in vitro or in vivo growth rates, attachment to laminin or endothelial cells or cell motility through a reconstituted basement membrane. Analysis of surface membrane proteins labeled with (125)I on SDS-PAGE showed that a 29 kD band specifically bound to type IV collagen-coupled beads was more intense in ML-SN2 than in ML-MT-neo. Genistein, a protein tyrosine kinase inhibitor, dramatically reduced protein tyrosine kinase (PTK) activity of ML-SN2 in a dose-dependent fashion, corresponding to the reduction of adhesiveness to type IV collagen. The expression of the type IV collagen-binding protein (p29) of ML-SN2 was also reduced significantly by genistein treatment. These results suggested that the fyn product in Meth A cells augments the expression of a type IV collagen-binding protein through elevation of the PTK activity of the membrane fraction and thus facilitates the metastasis of Meth A.
Collapse
Affiliation(s)
- Kazuhiko Koike
- The Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The novel protein kinase C (PKC) isoform, PKC theta, is selectively expressed in T lymphocytes and is a sine qua non for T cell antigen receptor (TCR)-triggered activation of mature T cells. Productive engagement of T cells by antigen-presenting cells (APCs) results in recruitment of PKC theta to the T cell-APC contact area--the immunological synapse--where it interacts with several signaling molecules to induce activation signals essential for productive T cell activation and IL-2 production. The transcription factors NF-kappa B and AP-1 are the primary physiological targets of PKC theta, and efficient activation of these transcription factors by PKC theta requires integration of TCR and CD28 costimulatory signals. PKC theta cooperates with the protein Ser/Thr phosphatase, calcineurin, in transducing signals leading to activation of JNK, NFAT, and the IL-2 gene. PKC theta also promotes T cell cycle progression and regulates programmed T cell death. The exact mode of regulation and immediate downstream substrates of PKC theta are still largely unknown. Identification of these molecules and determination of their mode of operation with respect to the function of PKC theta will provide essential information on the mechanism of T cell activation. The selective expression of PKC theta in T cells and its essential role in mature T cell activation establish it as an attractive drug target for immunosuppression in transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Noah Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | |
Collapse
|
35
|
Tucker SN, Jessup HK, Fujii H, Wilson CB. Enforced expression of the Ikaros isoform IK5 decreases the numbers of extrathymic intraepithelial lymphocytes and natural killer 1.1+ T cells. Blood 2002; 99:513-9. [PMID: 11781232 DOI: 10.1182/blood.v99.2.513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The zinc-finger protein Ikaros plays an important role in lymphoid homeostasis, and loss of Ikaros expression through germline disruption impairs lymphoid development. However, the role played by Ikaros after commitment to the T-cell lineage is unclear. To address this question, this study used the lck proximal promoter to drive the expression in T-cell progenitors of a naturally occurring short Ikaros isoform (IK5), which lacks the DNA-binding domain, reasoning that IK5 will form heterodimers with long isoforms and perturb their function. The IK5 transgene led to a selective and dramatic decrease in extrathymic intestinal intraepithelial lymphocytes (IELs) and natural killer 1.1+ T (NK T) cells with little effect on conventional alphabeta T cells, which resembles the T-cell phenotype of interleukin-15 receptor alpha chain (IL-15Ralpha) and IL-2/IL-15 receptor beta chain (IL-2Rbeta) knockout mice. The expression of IL-2Rbeta on double-negative T-cell progenitors of bi-5 was reduced, but enforced expression of IL-2Rbeta did not rescue IELs or NK T cells in bi-5 transgenic mice, suggesting that Ikaros or Ikaros family members regulate the expression of additional genes that are essential for the development of IELs and NK T cells. The study concludes that modest changes in the ratio of short to long Ikaros isoforms can substantially perturb T-cell development, and the development of IELs and NK T cells is particularly sensitive to such changes.
Collapse
Affiliation(s)
- Sean N Tucker
- Department of Immunology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
36
|
Seitzer U, Kayser K, Höhn H, Entzian P, Wacker HH, Ploetz S, Flad HD, Gerdes J, Maeurer MJ. Reduced T-cell receptor CD3zeta-chain protein and sustained CD3epsilon expression at the site of mycobacterial infection. Immunology 2001; 104:269-77. [PMID: 11722641 PMCID: PMC1783312 DOI: 10.1046/j.1365-2567.2001.01323.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Control of mycobacterial infection by the cellular immune system relies both on antigen-presenting cells and on T lymphocytes. The quality of an effective cellular immune response is dependent on functional signal transduction residing in the cytoplasmic tails of the T-cell receptor CD3 components. In order to investigate potential effects of mycobacteria on T-cell receptor signalling, we examined the protein expression of T-cell signal transduction molecules (CD3zeta, ZAP-70, p59fyn, p56lck). In Western blots of peripheral blood mononuclear cells of Mycobacterium tuberculosis infected patients, only the CD3zeta-chain showed a marked reduction in protein expression. To investigate the situation in situ, immunoenzymatic and immunofluorescence stainings for CD3epsilon and CD3zeta expression were performed on sections of normal lymphoid tissue, M. leprae infected and sarcoid tissue. CD3epsilon and CD3zeta expression were similar with respect to intensity, localization and the number of cells stained in normal lymphoid tissue and in sarcoid granulomas. In contrast, the granulomas of M. leprae infected tissues showed a significantly reduced expression of CD3zeta compared to CD3epsilon. Using double immunofluorescence analysis, virtually no CD3zeta expression could be detected in comparison to the CD3epsilon expression in the lesions. Apparently, mycobacteria are capable of significantly reducing CD3zeta-chain expression, which may be restored by cytokines. IL-2-enhanced zeta-chain expression and T-cell effector functions, defined by interferon-gamma release, in M. tuberculosis-specific and human leucocyte antigen-DR restricted CD4+ T cells isolated from granuloma lesions from patients with pulmonary tuberculosis. Because CD3zeta is essential for CD3 signalling and for eliciting T-cell effector functions, reduced CD3zeta protein expression could result in altered signal transduction and inefficient T-cell effector functions. Alternatively, reduced CD3zeta-chain expression may protect T cells from repetitive TCR stimulation associated with anergy or apoptosis.
Collapse
Affiliation(s)
- U Seitzer
- Division of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Almeida CA, Leite MF, Goes AM. Signal transduction events in human peripheral blood mononuclear cells stimulated by Schistosoma mansoni antigens. Hum Immunol 2001; 62:1159-66. [PMID: 11600225 DOI: 10.1016/s0198-8859(01)00302-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Activation of protein tyrosine kinases (PTKs) is a common step of T cell stimulation. However, the relationship between PTKs and activation of peripheral blood mononuclear cells (PBMC) from intestinal chronic schistosomiasis patients has not been explored yet. In this study, we investigated the participation of Lck and ZAP-70 protein tyrosine kinases (PTKs), as well as PLC-gamma1 and Shc proteins in PBMC activation by Schistosoma mansoni antigens. PBMC were stimulated with SEA (soluble egg antigen) or SWAP (soluble worm preparation), lysed, precipitated with specific antibodies and the level of tyrosine phosphorylation evaluated. Our results show that Lck and Shc were phosphorylated upon stimulation of the cells with SWAP, as well as with SEA. However, the phosphorylation level was more pronounced in SWAP than in SEA-stimulated cells. Phosphorylation of ZAP-70 was observed only in SWAP stimulated cells. Additionally, PLC-gamma1 phosphorylation was not observed in PBMC stimulated with SEA. Together, these results indicate that SEA and SWAP induce PBMC proliferation through distinct intracellular signaling pathways. Moreover, the weaker response of PBMC to SEA compared to SWAP stimulation suggests down-regulation of cells from intestinal chronic schistosomiasis patients to SEA, which may occur during immunomodulation to S. mansoni response.
Collapse
MESH Headings
- Animals
- Antigens, Helminth/pharmacology
- Cytokines/biosynthesis
- Enzyme Activation/immunology
- Humans
- Intestinal Diseases, Parasitic/enzymology
- Intestinal Diseases, Parasitic/immunology
- Intestinal Diseases, Parasitic/metabolism
- Isoenzymes/metabolism
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/parasitology
- Lymphocyte Activation/immunology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Phospholipase C gamma
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Schistosoma mansoni/immunology
- Schistosomiasis mansoni/enzymology
- Schistosomiasis mansoni/immunology
- Schistosomiasis mansoni/metabolism
- Signal Transduction/immunology
- Type C Phospholipases/metabolism
- Tyrosine/metabolism
- ZAP-70 Protein-Tyrosine Kinase
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- C A Almeida
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, ICB, MG, Belo Horizonte, Brazil
| | | | | |
Collapse
|
38
|
Nakamura H, Zarycki J, Sullivan JL, Jung JU. Abnormal T cell receptor signal transduction of CD4 Th cells in X-linked lymphoproliferative syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2657-65. [PMID: 11509608 DOI: 10.4049/jimmunol.167.5.2657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
The molecular basis of X-linked lymphoproliferative (XLP) disease has been attributed to mutations in the signaling lymphocytic activation molecule-associated protein (SAP), an src homology 2 domain-containing intracellular signaling molecule known to interact with the lymphocyte-activating surface receptors signaling lymphocytic activation molecule and 2B4. To investigate the effect of SAP defects on TCR signal transduction, herpesvirus saimiri-immortalized CD4 Th cells from XLP patients and normal healthy individuals were examined for their response to TCR stimulation. CD4 T cells of XLP patients displayed elevated levels of tyrosine phosphorylation compared with CD4 T cells from healthy individuals. In addition, downstream serine/threonine kinases are constitutively active in CD4 T cells of XLP patients. In contrast, TCR-mediated activation of Akt, c-Jun-NH(2)-terminal kinases, and extracellular signal-regulated kinases in XLP CD4 T cells was transient and rapidly diminished when compared with that in control CD4 T cells. Consequently, XLP CD4 T cells exhibited severe defects in up-regulation of IL-2 and IFN-gamma cytokine production upon TCR stimulation and in MLRs. Finally, SAP specifically interacted with a 75-kDa tyrosine-phosphorylated protein upon TCR stimulation. These results demonstrate that CD4 T cells from XLP patients exhibit aberrant TCR signal transduction and that the defect in SAP function is likely responsible for this phenotype.
Collapse
Affiliation(s)
- H Nakamura
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA
| | | | | | | |
Collapse
|
39
|
Ulivieri C, Peter A, Orsini E, Palmer E, Baldari CT. Defective signaling to Fyn by a T cell antigen receptor lacking the alpha -chain connecting peptide motif. J Biol Chem 2001; 276:3574-80. [PMID: 11058601 DOI: 10.1074/jbc.m008588200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
A key role in the communication between the alphabetaTCR and the CD3/zeta complex is played by a specific motif within the connecting peptide domain of the TCR alpha chain (alpha-CPM). T cell hybridomas expressing an alpha-CPM-mutated TCR show a dramatic impairment in antigen-driven interleukin-2 production. This defect can be complemented by a calcium ionophore, indicating that activation of the calcium pathway is impaired. Several lines of evidence implicate Fyn in the regulation of calcium mobilization, at least in part through the activation of phospholipase Cgamma. Here we have investigated the potential involvement of Fyn in the TCR alpha-CPM signaling defect. Using T cell hybridomas expressing either a wild-type TCR or an alpha-CPM mutant, we show that Fyn fails to be activated by the mutant receptor following SEB binding and fails to generate tyrosine-phosphorylated Pyk2, a member of the focal adhesion kinase family. This defect correlated with an impairment in phospholipase Cgamma phosphorylation. Production of interlukin-2 and activation of the transcription factor NF-AT in response to triggering of the TCR alpha-CPM mutant with SEB were fully restored in the presence of constitutively active Fyn. Hence the signaling defect generated by the TCR alpha-CPM mutation results at least in part from an impaired coupling of the TCR.CD3 complex to Fyn activation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Carrier Proteins/physiology
- Enterotoxins/pharmacology
- Focal Adhesion Kinase 2
- Humans
- Hybridomas
- In Vitro Techniques
- Isoenzymes/metabolism
- Phospholipase C gamma
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/physiology
- T-Lymphocytes/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- C Ulivieri
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
40
|
Carey KD, Dillon TJ, Schmitt JM, Baird AM, Holdorf AD, Straus DB, Shaw AS, Stork PJ. CD28 and the tyrosine kinase lck stimulate mitogen-activated protein kinase activity in T cells via inhibition of the small G protein Rap1. Mol Cell Biol 2000; 20:8409-19. [PMID: 11046138 PMCID: PMC102148 DOI: 10.1128/mcb.20.22.8409-8419.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023] Open
Abstract
Proliferation of T cells via activation of the T-cell receptor (TCR) requires concurrent engagement of accessory costimulatory molecules to achieve full activation. The best-studied costimulatory molecule, CD28, achieves these effects, in part, by augmenting signals from the TCR to the mitogen-activated protein (MAP) kinase cascade. We show here that TCR-mediated stimulation of MAP kinase extracellular-signal-regulated kinases (ERKs) is limited by activation of the Ras antagonist Rap1. CD28 increases ERK signaling by blocking Rap1 action. CD28 inhibits Rap1 activation because it selectively stimulates an extrinsic Rap1 GTPase activity. The ability of CD28 to stimulate Rap1 GTPase activity was dependent on the tyrosine kinase Lck. Our results suggest that CD28-mediated Rap1 GTPase-activating protein activation can help explain the augmentation of ERKs during CD28 costimulation.
Collapse
Affiliation(s)
- K D Carey
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Colucci F, Guy-Grand D, Wilson A, Turner M, Schweighoffer E, Tybulewicz VL, Di Santo JP. A new look at Syk in alpha beta and gamma delta T cell development using chimeric mice with a low competitive hematopoietic environment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5140-5. [PMID: 10799872 DOI: 10.4049/jimmunol.164.10.5140] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
The Syk protein tyrosine kinase (PTK) is essential for B, but not T or NK, cell development, although certain T cell subsets (i.e., gamma delta T cells of intestine and skin) appear to be dependent on Syk. In this report, we have re-evaluated the role of Syk in T cell development in hematopoietic chimeras generated by using Syk-deficient fetal liver hematopoietic stem cells (FL-HSC). We found that Syk-/- FL-HSC were vastly inferior to wild-type FL-HSC in reconstituting T cell development in recombinant-activating gene 2 (RAG2)-deficient mice, identifying an unexpected and nonredundant role for Syk in this process. This novel function of Syk in T cell development was mapped to the CD44-CD25+ stage. According to previous reports, development of intestinal gamma delta T cells was arrested in Syk-/- -->RAG2-/- chimeras. In striking contrast, when hosts were the newly established alymphoid RAG2 x common cytokine receptor gamma-chain (RAG2/gamma c) mice, Syk-/- chimeras developed intestinal gamma delta T cells as well as other T cell subsets (including alpha beta T cells, NK1.1+ alpha beta T cells, and splenic and thymic gamma delta T cells). However, all Syk-deficient T cell subsets were reduced in number, reaching about 25-50% of controls. These results attest to the utility of chimeric mice generated in a low competitive hematopoietic environment to evaluate more accurately the impact of lethal mutations on lymphoid development. Furthermore, they suggest that Syk intervenes in early T cell development independently of ZAP-70, and demonstrate that Syk is not essential for the intestinal gamma delta T cell lineage to develop.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Enzyme Precursors/deficiency
- Enzyme Precursors/genetics
- Fetal Tissue Transplantation/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/enzymology
- Hematopoietic Stem Cells/immunology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intracellular Signaling Peptides and Proteins
- Liver Transplantation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Radiation Chimera/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Cytokine/deficiency
- Receptors, Cytokine/genetics
- Syk Kinase
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- F Colucci
- Institut National de la Santé et de la Recherche Médicale U429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Lin K, Longo NS, Wang X, Hewitt JA, Abraham KM. Lck domains differentially contribute to pre-T cell receptor (TCR)- and TCR-alpha/beta-regulated developmental transitions. J Exp Med 2000; 191:703-16. [PMID: 10684862 PMCID: PMC2195836 DOI: 10.1084/jem.191.4.703] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2022] Open
Abstract
Maturational changes at the CD4(-)CD8(-) double negative (DN) to CD4(+)CD8(+) double positive (DP) transition are dependent on signals generated via the pre-T cell receptor (TCR) and the nonreceptor protein tyrosine kinase p56(lck) (Lck). How Lck activities are stimulated or relayed after pre-TCR formation remains obscure. Our structure-function mapping of Lck thymopoietic properties reveals that the noncatalytic domains of Lck are specialized to signal efficient cellular expansion at DN to DP transition. Moreover, although substitution of the Lck catalytic domain with FynT sequences minimally impacts DP development, single positive thymocytes are most efficiently produced in the presence of kinases containing both the NH(2)-terminal and catalytic regions of Lck. These findings demonstrate that the Lck structure is uniquely adapted to mediate signals at both major transitions in thymopoiesis.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Catalytic Domain
- Cell Differentiation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/deficiency
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombinant Fusion Proteins/immunology
- Signal Transduction
- Thymus Gland/cytology
- Thymus Gland/immunology
- Transfection
Collapse
Affiliation(s)
- Kui Lin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Nancy S. Longo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Xin Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Judy A. Hewitt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kristin M. Abraham
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
43
|
Denny MF, Patai B, Straus DB. Differential T-cell antigen receptor signaling mediated by the Src family kinases Lck and Fyn. Mol Cell Biol 2000; 20:1426-35. [PMID: 10648627 PMCID: PMC85301 DOI: 10.1128/mcb.20.4.1426-1435.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Src family tyrosine kinases play a key role in T-cell antigen receptor (TCR) signaling. They are responsible for the initial tyrosine phosphorylation of the receptor, leading to the recruitment of the ZAP-70 tyrosine kinase, as well as the subsequent phosphorylation and activation of ZAP-70. Molecular and genetic evidence indicates that both the Fyn and Lck members of the Src family can participate in TCR signal transduction; however, it is unclear to what extent they utilize the same signal transduction pathways and activate the same downstream events. We have addressed this issue by examining the ability of Fyn to mediate TCR signal transduction in an Lck-deficient T-cell line (JCaM1). Fyn was able to induce tyrosine phosphorylation of the TCR and recruitment of the ZAP-70 kinase, but the pattern of TCR phosphorylation was altered and activation of ZAP-70 was defective. Despite this, the SLP-76 adapter protein was inducibly tyrosine phosphorylated, and both the Ras-mitogen-activated protein kinase and the phosphatidylinositol 4, 5-biphosphate signaling pathways were activated. TCR stimulation of JCaM1/Fyn cells induced the expression of the CD69 activation marker and inhibited cell growth, but NFAT activation and the production of interleukin-2 were markedly reduced. These results indicate that Fyn mediates an alternative form of TCR signaling which is independent of ZAP-70 activation and generates a distinct cellular phenotype. Furthermore, these findings imply that the outcome of TCR signal transduction may be determined by which Src family kinase is used to initiate signaling.
Collapse
Affiliation(s)
- M F Denny
- Departments of Medicine and Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
44
|
Abstract
Thymic development is strictly controlled by Src and Syk family protein tyrosine kinases. The major players in this process are Lck and ZAP-70, which regulate critical differentiation steps of thymopoiesis. Notwithstanding the critical role of Lck and ZAP-70 in thymocyte development as compared to the related kinases Fyn and Syk, a partial functional redundancy between members of the same family of protein tyrosine kinases has emerged from studies on genetically manipulated mouse models. Furthermore, a close functional interplay between Lck and ZAP-70 in intracellular signaling has been shown to occur in thymocytes. Here we present the characterization of a thymoma from an Lck(-/-) mouse, where the block in thymocyte development is overcome and the transition between the CD4(-)CD8(-) and CD4(+)CD8(+) stages is fully restored. Determination of the expression levels of Fyn, ZAP-70 and Syk in thymocytes form the Lck(-/-) thymoma revealed high levels of ZAP-70 overexpression and recovery of a specific subset of phosphoproteins as compared to Lck(-/-) thymocytes. Hence ZAP-70 overexpression in thymocytes is associated with recovery from the developmental arrest caused by the absence of Lck, suggesting a role for ZAP-70 downstream of Lck in the maturation of CD4(+)CD8(+) thymocytes.
Collapse
Affiliation(s)
- C Ulivieri
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | | | | |
Collapse
|
45
|
Anunciado RV, Imamura T, Ohno T, Horio F, Namikawa T. Developing a new model for non-insulin dependent diabetes mellitus (NIDDM) by using the Philippine wild mouse, Mus musculus castaneus. Exp Anim 2000; 49:1-8. [PMID: 10803355 DOI: 10.1538/expanim.49.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2022] Open
Abstract
The Philippine wild-caught castaneus mouse (Mus musculus castaneus) and laboratory mouse (C57BL/6J: B6) were used to develop a new non-insulin dependent diabetes mellitus (NIDDM) model. Offspring from the cross between a wild male and B6 female were backcrossed to the sire. One male which exhibited highest fasting hyperglycemia (190 mg/dl) among eighty-seven backcross offspring was selected at 10 weeks of age, and crossed with a B6 female to comprise the fundamental stock (F0). Thereafter, full-sib mating was performed to develop a new inbred strain named CBD (Castaneus-B6 diabetic) mouse. Mice with relatively higher fasting hyperglycemia among F0 and F1 generations were selected for breeding. From the F2 generation, mice were defined as diabetic when blood glucose levels exceeded 200 mg/dl at 120 min in intraperitoneal glucose tolerance test (IPGTT) at 10 weeks of age, and have been selectively bred. The incidence of diabetic males from the F3-F6 generation fluctuated 45-75% at 10 weeks of age and 59-72% at 20 weeks of age. Diabetic males had about two-fold higher fasting glucose and insulin levels than B6 males. Glucose-stimulated insulin secretion was impaired in diabetic CBD mice compared to B6 males at 20 weeks. Moreover, diabetic mice had slight obesity compared to B6 mice. These facts indicated that diabetic features of CBD mice resemble NIDDM in humans. The CBD strain, characterized by high incidence and early onset of diabetes with mild obesity would be of value as a new NIDDM model. The method, utilizing wild castaneus mouse of different origin from laboratory mice, maybe useful in the development of other animal models.
Collapse
Affiliation(s)
- R V Anunciado
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Japan
| | | | | | | | | |
Collapse
|
46
|
Whisler RL, Chen M, Liu B, Newhouse YG. Age-related impairments in TCR/CD3 activation of ZAP-70 are associated with reduced tyrosine phosphorylations of zeta-chains and p59fyn/p56lck in human T cells. Mech Ageing Dev 1999; 111:49-66. [PMID: 10576607 DOI: 10.1016/s0047-6374(99)00074-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
The expression and catalytic activity of the protein tyrosine kinase (PTK) ZAP-70 are needed for normal intracellular signaling through the T-cell receptor (TCR)/CD3 complex. However, the possible effect of aging on the catalytic activity of ZAP-70 in human peripheral blood T cells stimulated via the TCR/CD3 complex is unknown. The current studies show that T cells from a substantial proportion of elderly humans (12) exhibit significant reductions in the catalytic activity, but not expression of ZAP-70 when stimulated by ligation of the TCR/CD3 with cross-linked anti-CD3epsilon monoclonal antibody OKT3. In addition, the reduced catalytic activity of ZAP-70 in T cells from elderly subjects was not restored to the normal levels in response to ligation of CD4 receptors, suggesting defects in PTKs linked to both CD3 and CD4 receptors. Other experiments demonstrated that the age-related impairments of ZAP-70 activation in anti-CD3-stimulated T cells were accompanied by decreased tyrosine phosphorylations of zeta-chains and autophosphorylations of the PTKs p561ck/p59fyn. Moreover, the age-related defects in these early TCR/CD3-mediated phosphorylation events were readily detectable in both CD45RO+ memory and CD45RA+ naive T cells. Thus, these results suggest that defects in early TCR/CD3-mediated phosphorylation events among CD45RO+ memory and CD45RA+ naive T cells from certain elderly humans may con tribute to impaired induction of ZAP-70 catalytic activity.
Collapse
Affiliation(s)
- R L Whisler
- Department of Internal Medicine, The William H. Davis Medical Research Center, The Ohio State University, Columbus 43210-1228, USA.
| | | | | | | |
Collapse
|
47
|
Longo NS, Wang X, Wildin RS, Abraham KM. Regulation of Src-family protein tyrosine kinase transcription during lymphocyte ontogeny. Mol Immunol 1999; 36:979-92. [PMID: 10698302 DOI: 10.1016/s0161-5890(99)00134-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The distribution and quantity of cellular signaling elements influence response patterns to a variety of stimuli. As protein tyrosine phosphorylation is a requisite event induced by a majority of surface receptors, and protein tyrosine kinases of the src-family (src-PTKs) act as proximal transducers for many hematopoietic receptors, we have designed a quantitative RT-PCR assay to measure src-family PTK expression during critical stages of lymphocyte ontogeny. With this assay we demonstrate that the distal promoter element regulating expression of lck, a src-PTK essential for T-cell development and activation, is similarly regulated during ontogeny of T and B cells. However, lck transcript abundance is drastically reduced in B lineage cells, suggesting that transcriptional elements influencing lck promoter activity are modulated in these cells. Moreover, although transcripts encoding the src-PTK fyn accumulate at 0.1% of lck mRNA levels in thymocytes, diminished activity of the lck distal promoter in the B-cell background brings lck and fyn transcript levels to near equivalence in this population. Importantly, transcripts arising from the lck distal promoter element and the fyn locus are similarly upregulated during developmental transitions associated with antigen-receptor expression in both B and T cells. These findings suggest that although the magnitude of lck and fyn expression is differentially regulated in B and T cells, expression at these loci is similarly developmentally programmed during ontogeny of both lymphocyte lineages.
Collapse
Affiliation(s)
- N S Longo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore 21201-1559, USA
| | | | | | | |
Collapse
|
48
|
Liu Y, Bishop A, Witucki L, Kraybill B, Shimizu E, Tsien J, Ubersax J, Blethrow J, Morgan DO, Shokat KM. Structural basis for selective inhibition of Src family kinases by PP1. CHEMISTRY & BIOLOGY 1999; 6:671-8. [PMID: 10467133 DOI: 10.1016/s1074-5521(99)80118-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Small-molecule inhibitors that can target individual kinases are powerful tools for use in signal transduction research. It is difficult to find such compounds because of the enormous number of protein kinases and the highly conserved nature of their catalytic domains. Recently, a novel, potent, Src family selective tyrosine kinase inhibitor was reported (PP1). Here, we study the structural basis for this inhibitor's specificity for Src family kinases. RESULTS A single residue corresponding to Ile338 (v-Src numbering; Thr338 in c-Src) in Src family tyrosine kinases largely controls PP1's ability to inhibit protein kinases. Mutation of Ile338 to a larger residue such as methionine or phenylalanine in v-Src makes this inhibitor less potent. Conversely, mutation of Ile338 to alanine or glycine increases PP1's potency. PP1 can inhibit Ser/Thr kinases if the residue corresponding to Ile338 in v-Src is mutated to glycine. We have accurately predicted several non-Src family kinases that are moderately (IC(50) approximately 1 microM) inhibited by PP1, including c-Abl and the MAP kinase p38. CONCLUSIONS Our mutagenesis studies of the ATP-binding site in both tyrosine kinases and Ser/Thr kinases explain why PP1 is a specific inhibitor of Src family tyrosine kinases. Determination of the structural basis of inhibitor specificity will aid in the design of more potent and more selective protein kinase inhibitors. The ability to desensitize a particular kinase to PP1 inhibition of residue 338 or conversely to sensitize a kinase to PP1 inhibition by mutation should provide a useful basis for chemical genetic studies of kinase signal transduction.
Collapse
Affiliation(s)
- Y Liu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Brundula V, Rivas LJ, Blasini AM, París M, Salazar S, Stekman IL, Rodríguez MA. Diminished levels of T cell receptor zeta chains in peripheral blood T lymphocytes from patients with systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 1999; 42:1908-16. [PMID: 10513807 DOI: 10.1002/1529-0131(199909)42:9<1908::aid-anr17>3.0.co;2-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine the expression of molecules known to participate in early T cell receptor (TCR)/CD3 signaling in peripheral blood (PB) T lymphocytes from patients with systemic lupus erythematosus (SLE). METHODS Signaling molecules were analyzed by immunoprecipitation and Western blotting of unstimulated PB T lymphocyte cell lysates from SLE patients, non-SLE disease controls, and healthy controls. Flow cytometry was used for analysis of the expression of membrane markers in intact cells. RESULTS PB T lymphocytes from SLE patients showed diminished levels of TCRzeta chains. This was not due to trapping of these molecules in the cytoskeleton, nor was it dependent on the presence of monocyte/macrophages. There was normal expression of CD3epsilon chains and normal assembly of TCR/CD3 complexes in membranes. We observed a lack of expression of TCRzeta chains in in vitro cultures of SLE T cells, and reversal of the defective expression in some patients by culturing T cells in the presence of NH4Cl. CONCLUSION Blood lymphocytes from SLE patients have a diminished expression of TCRzeta chains that may be related to enhanced degradation in the lysosomal compartment. The defective expression of these molecules may alter signal transduction via the CD3 pathway and contribute to abnormal T cell responses in T lymphocytes from SLE patients.
Collapse
Affiliation(s)
- V Brundula
- Centro Nacional de Enfermedades Reumáticas, Hospital Universitario de Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
50
|
Wiest DL, Berger MA, Carleton M. Control of early thymocyte development by the pre-T cell receptor complex: A receptor without a ligand? Semin Immunol 1999; 11:251-62. [PMID: 10441211 DOI: 10.1006/smim.1999.0181] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
Beta-selection refers to a developmental checkpoint linking thymocyte survival to the outcome of antigen receptor gene rearrangement. Immature thymocytes that productively rear-range the gene segments of the TCRbeta locus undergo proliferative expansion and mature to the CD4(+)CD8(+)stage; those failing to do so die by apoptosis. How are these precursor cells alerted that TCRbeta rearrangement has been productive? While it is clear that this process involves signals transduced by a surrogate form of the TCR termed the pre-TCR, it remains unclear how pre-TCR signals are triggered. In this review, we will discuss the implications of recent experimental attempts to address this issue, as well as how pre-TCR activation is linked to the changes in gene expression that underlie thymocyte development.
Collapse
Affiliation(s)
- D L Wiest
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111, USA
| | | | | |
Collapse
|