1
|
Zhu C, Liu Y, Xu H, Wang S, Zhou H, Cao J, Meng F, Zhang Y. Production of second-generation sheep clones via somatic cell nuclear transfer using amniotic cells as nuclear donors. Theriogenology 2025; 232:79-86. [PMID: 39515062 DOI: 10.1016/j.theriogenology.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/20/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Somatic Cell Nuclear Transfer (SCNT) has transformed animal genetic improvement, gene-editing in model production, xenotransplantation, and conservation efforts for endangered species. However, SCNT-derived embryos occasionally display developmental abnormalities, and following embryo transfer, the miscarriage rate is high. Gene-edited fetuses may experience birth defects, resulting in decreased survival rates. Correct selection of nuclear donor cells is essential for the success of somatic cell cloning. Fibroblasts are the most commonly used cells, but their rapid proliferation increases the risk of genetic mutation, impairing embryo development and production. Conversely, amniotic cells have slower proliferation rates, decreasing the mutation risk during cultivation. Amniotic cells are thus better SCNT candidates than fibroblasts because they offer genomic stability, low tumorigenic and teratogenic risks, reduced immunogenicity, high differentiation potential, ease of accessibility, and fewer ethical concerns. Cells derived from first-generation gene-edited animals exhibit stable genetic structures, reduced susceptibility to genetic alterations and artificial modifications, closely resembling natural cells, and enhanced compatibility with SCNT procedures. Amniotic cells derived from gene-edited sheep fetuses used as nuclear donor cells for SCNT successfully recloned three healthy second-generation gene-edited sheep. Using amniotic cells as nuclear donor cells for SCNT did not significantly alter embryo cleavage rates, blastocyst formation, or fetal birth compared to edited fibroblasts (p > 0.05). However, fetal survival rates were significantly higher than edited fibroblasts (p < 0.05). The results support the potential of amniotic cells as SCNT alternatives, suggesting a promising strategy to improve gene-edited fetus survival rates using first-generation gene-edited sheep-derived amniotic cells.
Collapse
Affiliation(s)
- Chunxiao Zhu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Department of Pediatrics, Xinqiao Hospital, Army Medical University, Chongqing, 400073, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China
| | - Yiyi Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China
| | - Hongyang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shenyuan Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China
| | - Huanmin Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China.
| | - Fanhuan Meng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China.
| | - Yanru Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China; College of Medicine, Hainan Vocational University of Science and Technology, Haikou, 571126, China; Inner Mongolia Key Laboratory of Biomanufacture, Hohhot, 010018, China.
| |
Collapse
|
2
|
Manabe N, Hoshino Y, Himaki T, Sakaguchi K, Matsumoto S, Yamamoto T, Murase T. Lysate of bovine adipose-derived stem cells accelerates in-vitro development and increases cryotolerance through reduced content of lipid in the in vitro fertilized embryos. Biochem Biophys Res Commun 2024; 735:150834. [PMID: 39427378 DOI: 10.1016/j.bbrc.2024.150834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Mesenchymal stem cells such as adipose-derived stem cells (ADSCs) are known to secrete factors that stimulate cell division and promote regeneration in neighboring cells. While conditioned medium from stem cells has been used in blastocyst production, no studies have examined the use of cell lysates. In this study we investigated the effects of adding ADSC lysate to in vitro culture (IVC) medium. ADSCs and fibroblasts were isolated from bovine adipose tissue and auricular tissue, respectively, and their lysates were prepared by freeze-thaw disruption. ADSC lysate was added to synthetic oviductal fluid medium. The effects on cleavage, blastocyst development rates, cell numbers, cryotolerance, gene expression (POU5F1, BAX, IGF1R, IGF2R, SOD2), lipid content, and membrane integrity were evaluated according to the experimental design. In Expt. 1, the comparison involved adding ADSC or fibroblast lysate alongside the control group. The total blastocyst rate increased when ADSC lysate was introduced (ADSCs: 40.1 %, fibroblasts: 33.1 %, control: 27.3 %). However, there were no significant differences in the number of trophoblast cells or in the inner cell mass. Experiment 2 confirmed that this increase in blastocyst development was not due to the solvent, PBS(-). In Expt. 3, addition of 10 % fetal calf serum (FCS) or ADSC lysate increased the total blastocyst rate compared to the control (control, 26.2 %; 10 % FCS, 43.4 %; 1 % ADSC lysate, 34.2 %; 10 % ADSC lysate, 48.1 %). After freezing and thawing, the survival and hatching rates of embryos with FCS were significantly lower than those of the control as well as those with added ADSC lysate. In Expt. 4, the addition of ADSC lysate or FCS had no significant effect on gene expression in blastocysts compared to control. However, the addition of FCS significantly increased the gray intensity, indicating higher lipid content compared to the control, with a significant increase in the number of dead cells in the blastocyst. These results indicate that the addition of ADSC lysate to the IVC medium accelerates bovine blastocyst development and that its 10 % addition, corresponding to 1 × 105 cells/mL, is as effective as 10 % FCS without a decrease in cryotolerance due to the increased lipid content.
Collapse
Affiliation(s)
- Noriyoshi Manabe
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Department of Dairy Research Center, Gifu Prefectural Livestock Research Institute, Ena, Gifu, 509-7601, Japan
| | - Yoichiro Hoshino
- Kyoto University Livestock Farm, Graduate School of Agriculture, Kyoto University, Funai, Kyoto, 622-0203, Japan
| | - Takehiro Himaki
- Laboratory of Animal Developmental Engineering, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kenichiro Sakaguchi
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan
| | - Seiji Matsumoto
- Headquarters for Research Promotion, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tokunori Yamamoto
- Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Tetsuma Murase
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
3
|
Abu El-Naga EM, Ali ME, Ali RH, Hozyen HF, Hussein HA. Cleavage and in vitro cultivation rates monitoring in culture media supplemented with energy sources, non-essential amino acids, and antioxidants in the buffalo embryos. BMC Vet Res 2024; 20:521. [PMID: 39558345 PMCID: PMC11571879 DOI: 10.1186/s12917-024-04118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/06/2024] [Indexed: 11/20/2024] Open
Abstract
The study was designed to monitor the cleavage rate (CR) and in-vitro cultivation rate (IVC) after addition of energy sources, non-essential amino acids, and antioxidants to the Synthetic oviductal fluid (SOF) and FertiCult. After in-vitro maturation and in-vitro fertilization, presumptive zygotes were cultured in one of two culture media: FertiCult media and SOF medium, supplemented with pyruvate, glucose, and sodium lactate as energy sources, as well as 10, 20, 250, 500, and 750 mg non-essential amino acids, and antioxidants. All stages of cleavage rate (CR), and in-vitro cultivation rate (IVC) of embryonic development including morula stage (MOR) and blastocyst (BLAS) have been assessed. The findings revealed that there were no significant differences in the CR between the control and other treated groups with sources of energy when added to SOF media (P > 0.05), while there were significant differences (P < 0.05) in the IVC of embryonic development between groups (The percentages of MOR stage in the control, pyruvate, glucose and mixture of source of energy (MIX) were at 50%, 62.5%, 60%, and 63.6%, respectively). The highest percentage of the BLAS was recorded after SOF supplementation with glucose (40%). Similarly, there were no significant differences (P > 0.05) in the CR between control and FertiCult supplemented with sources of energy, while the IVC stages increased significantly (P < 0.05) in the FertiCult media supplemented with glucose, pyruvate, sodium lactate, and MIX. The percentages of the MOR stage in the control, pyruvate, glucose and mix media were at 50%, 55.6%, 55.6%, 54.5%, 57.1% respectively. The lowest percentage of the BLAS was recorded after FertiCult supplementation with pyruvate (11.1%). Replenishing the SOF maturation media with 20 mg of non-essential amino acids significantly (P < 0.05) enhanced the MOR stage (100%). There was also an improvement in the development of BLAS stage, where it reached 31.2% and 47.4% in the SOF maturation media supplemented with 10, and 750 mg non-essential amino acids, respectively. There were no significant differences (P > 0.05) in neither CR nor IVC between control and FertiCult supplemented with antioxidants. There were significant differences (P < 0.05) in the MOR stages (control, 42.9% & treated, 57.9%) and BLAS stages (control, 21.4% & treated, 42.1%) in antioxidant supplemented SOF maturation media compared to control. In conclusion, supplementation of SOF cultivation medium with energy sources, 20 mg of non-essential amino acids and antioxidant addition may improve the cleavage rate (CR) and in vitro cultivation rate (IVC) of buffalos' embryonic development.
Collapse
Affiliation(s)
- Eman M Abu El-Naga
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Montaser E Ali
- Animal Production Department, Faculty of Agriculture, Assiut Branch, Al-Azhar University, Assiut, Egypt
| | - Rawda H Ali
- Department of Animal Production, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Heba F Hozyen
- Animal Reproduction and Artificial Insemination Department, Veterinary Research Institute, National Research Center, Giza, Egypt
- Physiology and Biochemistry Department, Faculty of Veterinary Medicine, Ain Shams University, Cairo Governorate, Egypt
| | - Hassan A Hussein
- Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Theriogenology, Faculty of Veterinary Medicine, Sphinx University, New Assiut, 71684, Egypt
| |
Collapse
|
4
|
Krisher RL, Herrick JR. Bovine embryo production in vitro: evolution of culture media and commercial perspectives. Anim Reprod 2024; 21:e20240051. [PMID: 39372256 PMCID: PMC11452098 DOI: 10.1590/1984-3143-ar2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/20/2024] [Indexed: 10/08/2024] Open
Abstract
In vitro produced embryos exhibit lower viability compared to their in vivo counterparts. Mammalian preimplantation embryos have the ability to reach the blastocyst stage in diverse culture media, showcasing considerable metabolic adaptability, which complicates the identification of optimal developmental conditions. Despite embryos successfully progressing to the blastocyst stage, adaptation to suboptimal culture environments may jeopardize blastocyst viability, cryotolerance, and implantation potential. Enhancing our capacity to support preimplantation embryonic development in vitro requires a deeper understanding of fundamental embryo physiology, including preferred metabolic substrates and pathways utilized by high-quality embryos. Armed with this knowledge, it becomes achievable to optimize culture conditions to support normal, in vivo-like embryo physiology, mitigate adaptive stress, and enhance viability. The objective of this review is to summarize the evolution of culture media for bovine embryos, highlighting significant milestones and remaining challenges.
Collapse
|
5
|
Itami N, Akagi S, Hirao Y. Excluding alanine from minimum essential medium (MEM) nonessential amino acid supplementation of the culture medium facilitates post-fertilization events and early cleavages of bovine oocytes fertilized in vitro. J Reprod Dev 2024; 70:223-228. [PMID: 38763744 PMCID: PMC11310387 DOI: 10.1262/jrd.2023-098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
Embryonic transfer of bovine blastocysts produced by in vitro fertilization is widely utilized-despite a compromised conception rate. It has been suggested that a set of four evaluation criteria for judging the quality of embryos, based on the timing of early cleavages and proper morphologies of embryos, can effectively predict pregnancy success. These blastocysts are hereafter referred to as four-criteria-compliant blastocysts. The same criteria should be used to modify the culture media to improve embryo quality. For example, culture media is often supplemented with nonessential amino acids (NEAA) at a uniform concentration despite the major variation in their concentration in the oviductal fluid. In the present study, the effects of the embryo culture medium, namely CR1, supplemented with all seven MEM NEAA or six of them, excluding one at a time, were examined. All media, except for the medium that did not contain proline and serine, tended to improve the efficiency of producing four-criteria-compliant blastocysts, and excluding alanine was particularly effective. The absence of alanine resulted in the rapid occurrence of the first cleavage and pronuclear formation of fertilized oocytes in the alanine-free medium compared to that in the medium containing alanine. These results suggested that alanine hinders certain events involved in the progression of early embryogenesis, which is necessary to achieve the four criteria that provide a benchmark for pregnancy. Therefore, a significantly higher percentage of embryos satisfied the recommended criteria and developed into four-criteria-compliant blastocysts when developed in alanine-free medium than in alanine-containing medium.
Collapse
Affiliation(s)
- Nobuhiko Itami
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ibaraki 305-0901, Japan
| | - Satoshi Akagi
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ibaraki 305-0901, Japan
| | - Yuji Hirao
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ibaraki 305-0901, Japan
| |
Collapse
|
6
|
Berling FP, Mendes CM, Goissis MD. Influence of glucose and oxygen tension on the trophectoderm and the inner cell mass of in vitro produced bovine embryos. Theriogenology 2024; 225:89-97. [PMID: 38796961 DOI: 10.1016/j.theriogenology.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The first cell differentiation event that occurs in the embryo determines the inner cell mass (ICM) and the trophectoderm (TE). In the mouse, glucose (GLC) is essential for this process, while oxygen tension (O2) also interferes with TE formation. The roles of GLC and O2 in this event in bovine embryos are not completely elucidated. We hypothesized that the absence of glucose and a higher O2 tension negatively impact ICM and TE cell allocation in the bovine embryo. The objective of this study was to evaluate the effect of GLC within different O2 levels on the formation of the TE. In vitro-produced embryos were cultured in serum-free KSOM medium and randomly submitted to treatments on the day of IVC, according to a 2x2 factorial model, in which GLC (present [+GLC] or absent [-GLC]) and O2 (low [5%O2] or high [20%O2]) were the independent variables. Cleavage and blastocyst rates were obtained at D4 and D8, respectively. Embryos at D8 were subjected to autofluorescence analysis to quantitate NADH and FAD + or fixed for GATA3 and YAP1 immunostaining using a laser scanning confocal microscope. Total, TE, and ICM cell counts were obtained. Embryos were also harvested for gene expression quantification of GATA3, YAP1, SOX2, CDX2, TFAP2C and OCT4. Results indicate that there was an effect of O2 (p = 0.018) on cleavage rates, although no differences were observed in blastocyst rates. NADH was higher in -GLC compared to + GLC (p = 0.014) and no differences in FAD+ were observed. Total cell count data were not different between variables. There was an increase in the ICM cell count in the +GLC 5%O2 condition compared to the other three conditions. No effects of GLC, O2, or their interactions were observed on TE cell count or the TE/total cell ratio. CDX2 (p = 0.007) and TFAP2C (p = 0.038) were increased in -GLC 20%O2 compared to + GLC 20%O2. SOX2 was decreased in +GLC 20%O2 compared to + GLC 5%O2 (p = 0.027) or compared to -GLC 20%O2 (p = 0.005). GATA3, YAP1, and OCT4 genes did not present differences among conditions. In conclusion, both GLC and high oxygen tension did not impair TE formation and TE cell number, although a +GLC-low oxygen environment led to a higher number of ICM cells. Interestingly, the expression of TE-related gene CDX2 was increased in the absence of glucose within higher O2 tension. Our results implicate that according to the oxygen tension used in IVC, glucose can exert different effects on blastocyst cell allocation or gene expression.
Collapse
Affiliation(s)
- Francieli Perroni Berling
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Orlando Marques de Paiva 87, Sao Paulo, SP, 05508-270, Brazil.
| | - Camilla Mota Mendes
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Orlando Marques de Paiva 87, Sao Paulo, SP, 05508-270, Brazil.
| | - Marcelo Demarchi Goissis
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science, University of São Paulo, Av. Orlando Marques de Paiva 87, Sao Paulo, SP, 05508-270, Brazil.
| |
Collapse
|
7
|
Stella SL, Guadagnin AR, Velasco-Acosta DA, Ferreira CR, Rubessa M, Wheeler MB, Luchini D, Cardoso FC. Rumen-protected methionine supplementation alters lipid profile of preimplantation embryo and endometrial tissue of Holstein cows. Front Vet Sci 2024; 10:1301986. [PMID: 38298457 PMCID: PMC10827937 DOI: 10.3389/fvets.2023.1301986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Our objective is to evaluate the effects of feeding rumen-protected Met (RPM) throughout the transition period and early lactation on the lipid profile of the preimplantation embryos and the endometrial tissue of Holstein cows. Treatments consisted of feeding a total mixed ration with top-dressed RPM (Smartamine® M, Adisseo, Alpharetta, GA, United States; MET; n = 11; RPM at a rate of 0.08% of DM: Lys:Met = 2.8:1) or not (CON; n = 9, Lys:Met = 3.5:1). Endometrial biopsies were performed at 15, 30, and 73 days in milk (DIM). Prior to the endometrial biopsy at 73 DIM, preimplantation embryos were harvested via flushing. Endometrial lipid profiles were analyzed using multiple reaction monitoring-profiling and lipid profiles of embryos were acquired using matrix assisted laser desorption/ionization mass spectrometry. Relative intensities levels were used for principal component analysis. Embryos from cows in MET had greater concentration of polyunsaturated lipids than embryos from cows in CON. The endometrial tissue samples from cows in MET had lesser concentrations of unsaturated and monounsaturated lipids at 15 DIM, and greater concentration of saturated, unsaturated (specifically diacylglycerol), and monounsaturated (primarily ceramides) lipids at 30 DIM than the endometrial tissue samples from cows in CON. In conclusion, feeding RPM during the transition period and early lactation altered specific lipid classes and lipid unsaturation level of preimplantation embryos and endometrial tissue.
Collapse
Affiliation(s)
- Stephanie L. Stella
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Anne R. Guadagnin
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Schothorst Feed Research, Lelystad, Netherlands
| | - Diego A. Velasco-Acosta
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- The Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Christina R. Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States
| | - Marcello Rubessa
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Matthew B. Wheeler
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | | | - Felipe C. Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
8
|
Chelenga M, Yanagawa Y, Katagiri S, Nagano M. Pre-maturational culture promotes the developmental competence of bovine oocytes derived from an 8-day in vitro growth culture system. J Reprod Dev 2023; 69:214-217. [PMID: 37197977 PMCID: PMC10435529 DOI: 10.1262/jrd.2023-022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
In this study, we evaluated the effects of pre-maturational culture (pre-IVM) on the developmental competence of bovine oocytes derived from an 8-day in vitro growth (IVG) culture system. IVG oocytes were subjected to 5 h pre-IVM before in vitro maturation, followed by in vitro fertilization (IVF). The proportion of oocytes that progressed to the germinal vesicle breakdown stage was similar between groups with and without pre-IVM. Although metaphase II oocytes and cleavage rates after IVF were similar regardless of pre-IVM culture, the blastocyst rate was significantly higher in the group with pre-IVM (22.5%) than without pre-IVM (11.0%, P < 0.05). In conclusion, pre-IVM culture improved the developmental competence of bovine oocytes derived from an 8-day IVG system.
Collapse
Affiliation(s)
- Madalitso Chelenga
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Department of Clinical Studies, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Malawi
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada 034-8628, Japan
| |
Collapse
|
9
|
Hu G, Song M, Wang Y, Hao K, Wang J, Zhang Y. Using a modified piggyBac transposon-combined Cre/loxP system to produce selectable reporter-free transgenic bovine mammary epithelial cells for somatic cell nuclear transfer. Genesis 2023:e23510. [PMID: 36748563 DOI: 10.1002/dvg.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Transposon systems are widely used for genetic engineering in various model organisms. PiggyBac (PB) has recently been confirmed to have highly efficient transposition in the mouse germ line and mammalian cell lines. In this study, we used a modified PB transposon system mediated by PB transposase (PBase) mRNA carrying the human lactoferrin gene driven by bovine β-casein promoter to transfect bovine mammary epithelial cells (BMECs), and the selectable reporter in two stable transgenic BMEC clones was removed using cell-permeant Cre recombinase. These reporter-free transgenic BMECs were used as donor cells for somatic cell nuclear transfer (SCNT) and exhibited a competence of SCNT embryos similar to stable transgenic BMECs and nontransgenic BMECs. The comprehensive information from this study provided a modified approach using an altered PB transposon system mediated by PBase mRNA in vitro and combined with the Cre/loxP system to produce transgenic and selectable reporter-free donor nuclei for SCNT. Consequently, the production of safe bovine mammary bioreactors can be promoted.
Collapse
Affiliation(s)
- Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Meijun Song
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yan Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Kexing Hao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Milazzotto MP, Ispada J, de Lima CB. Metabolism-epigenetic interactions on in vitro produced embryos. Reprod Fertil Dev 2022; 35:84-97. [PMID: 36592974 DOI: 10.1071/rd22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolism and epigenetics, which reciprocally regulate each other in different cell types, are fundamental aspects of cellular adaptation to the environment. Evidence in cancer and stem cells has shown that the metabolic status modifies the epigenome while epigenetic mechanisms regulate the expression of genes involved in metabolic processes, thereby altering the metabolome. This crosstalk occurs as many metabolites serve as substrates or cofactors of chromatin-modifying enzymes. If we consider the intense metabolic dynamic and the epigenetic remodelling of the embryo, the comprehension of these regulatory networks will be important not only for understanding early embryonic development, but also to determine in vitro culture conditions that support embryo development and may insert positive regulatory marks that may persist until adult life. In this review, we focus on how metabolism may affect epigenetic reprogramming of the early stages of development, in particular acetylation and methylation of histone and DNA. We also present other metabolic modifications in bovine embryos, such as lactylation, highlighting the promising epigenetic and metabolic targets to improve conditions for in vitro embryo development.
Collapse
Affiliation(s)
- Marcella Pecora Milazzotto
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Jessica Ispada
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Camila Bruna de Lima
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
11
|
Sánchez-Ajofrín I, Martín-Maestro A, Medina-Chávez DA, Laborda-Gomariz JÁ, Peris-Frau P, Garde JJ, Soler AJ. Melatonin rescues the development and quality of oocytes and cumulus cells after prolonged ovary preservation: An ovine in vitro model. Theriogenology 2022; 186:1-11. [DOI: 10.1016/j.theriogenology.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/27/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
|
12
|
Effect of heat exposure on the growth and developmental competence of bovine oocytes derived from early antral follicles. Sci Rep 2022; 12:8857. [PMID: 35614303 PMCID: PMC9132889 DOI: 10.1038/s41598-022-12785-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
In dairy cows, low fertility caused by summer heat stress continues into the cooler autumn season. This can be caused by impaired oocyte quality in small growing follicles during summer. Here, we subjected oocyte-cumulus-granulosa complexes (OCGCs) derived from early antral follicles (0.5-1 mm) to in vitro growth (IVG) culture under two different temperature settings (the control and heat shock groups), and evaluated effects of heat exposure on growth and developmental competence of oocytes, factors affecting the developmental competence of oocytes (steroidogenesis of granulosa cells, oxidative stress in oocytes, and cell-to-cell communication between oocytes and somatic cells). Oocyte diameters after culture were smaller in the heat shock group. Although nuclear maturation and cleavage rates were similar between the groups, blastocyst rates were lower in the heat shock group (0.0%) than in the control group (27.7%), and reduced glutathione (GSH) levels in oocytes were lower in the heat shock group. Supplementation of cysteine, which stimulates GSH synthesis, increased GSH level and improved blastocyst rate of heat shocked oocytes (27.9%). These results suggest that heat exposure impairs the growth and developmental competence of oocytes in early antral follicles through GSH depletion, which can induce low fertility during summer and the following autumn.
Collapse
|
13
|
Chelenga M, Sakaguchi K, Kawano K, Furukawa E, Yanagawa Y, Katagiri S, Nagano M. Low oxygen environment and astaxanthin supplementation promote the developmental competence of bovine oocytes derived from early antral follicles during 8 days of in vitro growth in a gas-permeable culture device. Theriogenology 2022; 177:116-126. [PMID: 34695665 DOI: 10.1016/j.theriogenology.2021.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
We evaluated the effects of a constant low (5-5%) and modulated (5-20%) oxygen environments on the in vitro development of bovine oocyte-cumulus-granulosa cell complexes (OCGCs) cultured in the presence or absence of an antioxidant (astaxanthin: Ax). OCGCs were cultured in a gas permeable culture device for 8 days in 5-5% O2 (±Ax) and 5-20% O2 (±Ax) culture conditions. In the oxygen modulated culture conditions, the oxygen concentration was switched from 5% to 20% on day 4 of culture. Ax promoted the viability of OCGCs (P < 0.05), but both oxygen and Ax had a significant effect on ROS production levels by OCGCs (P < 0.05). Specifically, ROS levels were significantly lower and higher under 5-5% O2 (+Ax) and 5-20% O2 (-Ax) conditions, respectively (P < 0.05), with intermediate levels observed in the 5-5% O2 (-Ax) and the 5-20% O2 (+Ax) culture conditions. The steroidogenic pattern was characterized by increasing estradiol-17β but with constant progesterone production levels regardless of culture conditions, suggesting the inhibition of luteinization-like changes in granulosa cells. OCGCs cultured in the 5-20% O2 (+Ax) had higher nuclear maturation rates (P < 0.05) that were similar to the oocytes grown in vivo. However, there was no clear difference in the subsequent cleavage rates among the 5-5% O2 (±Ax) and the 5-20% O2 (+Ax) culture conditions (P > 0.05). A constant low oxygen environment significantly promoted the blastocyst rates (P < 0.05); however, the presence of Ax in the 5-20% O2 (+Ax) condition also promoted development similar to the OCGCs cultured in the 5-5% O2 (-Ax) condition (P > 0.05). In conclusion, exposure of OCGCs to constant low oxygen or oxygen modulation in the presence of Ax promotes the healthy development of OCGCs during the 8-day IVG culture using the gas permeable culture device.
Collapse
Affiliation(s)
- Madalitso Chelenga
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Clinical Studies, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Malawi
| | - Kenichiro Sakaguchi
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kohei Kawano
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Eri Furukawa
- Laboratory of Theriogenology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Seiji Katagiri
- Laboratory of Theriogenology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, 034-8628, Japan.
| |
Collapse
|
14
|
Kussano NR, Leme LDO, Dode MAN. Protein source in maturation media affects gene expression in cumulus cells and embryo development in cattle. Anim Biotechnol 2021:1-14. [PMID: 34964703 DOI: 10.1080/10495398.2021.2019755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We aimed to evaluate if protein source (PS) alterations during IVM affect embryo sex/development and gene expression profile in cumulus cells (CCs). Bovine oocytes were matured and cultured in the presence of FBS or BSA. Then, the PS effect during IVM on gene expression (GPC4, VCAN, GHR, PTGS2, and ALCAM) was determined. CC biopsy was removed before and after IVM treatments. After fertilization and cultured, CCs were grouped according to their fate into CCs from immature COCs, CCs from COCs that did or did not result in embryos (according to PS). Results showed that when the culture was performed in FBS presence, blastocyst rate was higher (p < 0.05) than BSA. However, when embryos were cultured with BSA, no effect (p > 0.05) of PS during IVM was observed. PS used during IVM did not affect embryos sex (p > 0.05) but changed VCAN, GHR, PTGS2, and ALCAM genes expression. No differences (p > 0.05) were observed between immature and mature CCs groups in gene expression, regardless of their fate. Only the GHR gene was related to embryo production but just with FBS on IVM. In conclusion, PS can affect embryo development when using the serum on IVM and IVC, influences CCs gene expression, and has to be considered when studying oocyte quality markers.
Collapse
Affiliation(s)
| | | | - Margot Alves Nunes Dode
- Institute of Biology, University of Brasilia, Brasília, Brazil.,Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| |
Collapse
|
15
|
Effect of enzymatic pro-oxidant and antioxidant systems on bovine oocyte in vitro maturation. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The role of reactive oxygen species (ROS) during oocyte in vitro maturation (IVM) is still controversial. Although an increase in ROS production may cause deleterious effects in cells, these reactive species may also act as signaling molecules influencing different cell functions. The aim of this study was to examine the effect of varying endogenous ROS levels during IVM on the process of bovine oocyte maturation. To do so, different enzymatic antioxidant (catalase, or superoxide dismutase + catalase, or diphenyl iodonium) or pro-oxidant systems (xanthine + xanthine oxidase, or xanthine + xanthine oxidase + catalase) were added to the culture medium. ROS levels were determined by 2′,7′-dichlorodihydrofluorescein diacetate stain, nuclear maturation was evaluated by the presence of the metaphase II chromosome configuration at 22h of IVM and cleavage rate was recorded 48hs post- in vitro fertilization. ROS levels were only significantly increased (P<0.05) by the O2
.- generating system (xanthine + xanthine oxidase + catalase), but meiotic maturation rates were significantly lower (P<0.05) in all the evaluated systems compared with the control, except for the diphenyl iodonium group. However, this last group presented a significantly lower (P<0.05) cleavage rate in comparison to the control group. These results indicate that ROS would play an essential role during oocyte maturation, since its increase or decrease beyond a physiological level significantly reduced nuclear or cytoplasmic maturation rates in bovine oocytes.
Collapse
|
16
|
Impact of Cryopreservation on Motile Subpopulations and Tyrosine-Phosphorylated Regions of Ram Spermatozoa during Capacitating Conditions. BIOLOGY 2021; 10:biology10111213. [PMID: 34827206 PMCID: PMC8614982 DOI: 10.3390/biology10111213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Spermatozoa go through diverse changes to achieve their fertilizing potential (capacitation) and develop a specific motility pattern (hyperactivation). However, to ensure a greater reproductive success, not all the spermatozoa present in an ejaculate react equally or at the same time. Therefore, a comparative analysis was performed in the present study to improve our current understanding about how cryopreservation may affect the heterogeneous nature of fresh ejaculates during these two events. Among the four motile sperm subpopulations identified in fresh and frozen-thawed ram semen, one of them developed a hyperactivated-like movement and was the main group involve in those changes associated with sperm capacitation based on the marked increase and the positive correlation with mitochondrial activity and tyrosine phosphorylation, two relevant parameters that usually increase during capacitation. In addition, cryopreservation altered the distribution of the motile sperm subpopulations. Although the subpopulation with hyperactivated-like movement increased at the beginning of incubation in frozen-thawed samples, this subpopulation together with the subpopulation of rapid and progressive spermatozoa were replaced after a prolonged incubation by the subpopulation of slow spermatozoa with the lowest mitochondrial activity, which clearly indicate the reduction in sperm quality. These findings will aid to optimize the current cryopreservation and in vitro fertilization protocols. Abstract The heterogeneous nature of ejaculates highlights the relevance of studying the behavior of different sperm subpopulations. Changes in sperm motility and the increase in tyrosine phosphorylation are key events that usually occur during capacitation and can be modified by the cryopreservation process. However, the relationship between both events remains poorly defined throughout capacitation in the different sperm subpopulations. Fresh and frozen-thawed spermatozoa were incubated in capacitating (CAP) and non-capacitating (NC) media up to 240 min. Sperm kinematics, tyrosine phosphorylation and mitochondrial activity were measured by the CASA system and imaging flow cytometry. Four motile sperm subpopulations (SP) were identified in fresh and frozen-thawed ram semen after the cluster analysis. Incubation under CAP conditions over time led to greater changes in the percentage of spermatozoa included in each subpopulation compared to NC conditions, being different between fresh and frozen-thawed spermatozoa. The SP1, characterized by slow spermatozoa, progressively increased after 15 min in frozen-thawed samples incubated in both media but not in fresh ones. The SP4, characterized by fast and non-linear spermatozoa, showed a marked increase during CAP, but not under NC conditions, occurring more rapidly in frozen-thawed spermatozoa. This subpopulation (SP4) was also the only one positively and strongly correlated with mitochondrial activity and all phosphorylated sperm regions during capacitation, either in fresh or frozen-thawed samples. Our results indicated that in vitro capacitation induced significant changes in the distribution of motile sperm subpopulations, being affected by cryopreservation. Notwithstanding, the subpopulation which probably represents hyperactivated-like spermatozoa (SP4) also increased in frozen-thawed samples, occurring faster and simultaneously to the increment of mitochondrial activity and tyrosine phosphorylation of different sperm regions.
Collapse
|
17
|
Itahashi T, Oikawa T, Numabe T. Effects of glutathione treatments during sperm washing and in vitro fertilization on the in vitro early development of embryos of Japanese Black cattle. J Reprod Dev 2021; 68:74-78. [PMID: 34744095 PMCID: PMC8872747 DOI: 10.1262/jrd.2021-070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study was conducted to examine the effects of adding glutathione (1 mM) to media used for sperm washing and in vitro fertilization (IVF) on the improvement of early
development of embryos produced using cryopreserved spermatozoa of the less IVF-competent bull (the one considered unqualified as spermatozoa supplier for the production of bovine
blastocysts using IVF). The cryopreserved spermatozoa of this bull were characterized by normal motility and lower ATP content and blastocyst productivity than those of IVF-competent bulls.
The addition of glutathione to the sperm washing medium was more effective in improving the productivity of blastocysts and ATP content than the addition of glutathione to the IVF medium or
no glutathione addition at all (control). These results suggest that this simple method may be used to improve the potential of cryopreserved spermatozoa of less IVF-competent bulls to
fertilize oocytes in vitro and to induce normal embryonic development after fertilization.
Collapse
Affiliation(s)
- Tomoko Itahashi
- Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan.,Miyagi Prefectural Hokubu Livestock Hygiene Science Center, Miyagi 989-6117, Japan
| | - Toshinori Oikawa
- Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan
| | - Takashi Numabe
- Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan.,Miyagi Agricultural Development Corporation, Miyagi 981-0914, Japan
| |
Collapse
|
18
|
Schneider I, de Ruijter-Villani M, Hossain MJ, Stout TA, Ellenberg J. Dual spindles assemble in bovine zygotes despite the presence of paternal centrosomes. J Cell Biol 2021; 220:e202010106. [PMID: 34550316 PMCID: PMC8563290 DOI: 10.1083/jcb.202010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/05/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
The first mitosis of the mammalian embryo must partition the parental genomes contained in two pronuclei. In rodent zygotes, sperm centrosomes are degraded, and instead, acentriolar microtubule organizing centers and microtubule self-organization guide the assembly of two separate spindles around the genomes. In nonrodent mammals, including human or bovine, centrosomes are inherited from the sperm and have been widely assumed to be active. Whether nonrodent zygotes assemble a single centrosomal spindle around both genomes or follow the dual spindle self-assembly pathway is unclear. To address this, we investigated spindle assembly in bovine zygotes by systematic immunofluorescence and real-time light-sheet microscopy. We show that two independent spindles form despite the presence of centrosomes, which had little effect on spindle structure and were only loosely connected to the two spindles. We conclude that the dual spindle assembly pathway is conserved in nonrodent mammals. This could explain whole parental genome loss frequently observed in blastomeres of human IVF embryos.
Collapse
Affiliation(s)
- Isabell Schneider
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marta de Ruijter-Villani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Division of Woman and Baby, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - M. Julius Hossain
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tom A.E. Stout
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
19
|
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021; 10:cells10102770. [PMID: 34685749 PMCID: PMC8535139 DOI: 10.3390/cells10102770] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.
Collapse
Affiliation(s)
- Paula R. Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Karl C. Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
20
|
Yousefian I, Zare-Shahneh A, Goodarzi A, Baghshahi H, Fouladi-Nashta AA. The effect of Tempo and MitoTEMPO on oocyte maturation and subsequent embryo development in bovine model. Theriogenology 2021; 176:128-136. [PMID: 34607131 DOI: 10.1016/j.theriogenology.2021.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) are one of the factors which reduces oocyte quality and viability of the in vitro produced embryos. Oocyte mitochondria are the major source of ROS production, hence, and the addition of mitochondrion-specific antioxidants could be suggested to minimize the damage caused by ROS during culture. MitoTEMPO, a targeted mitochondrial antioxidant, is formed by conjugating TEMPO to triphenylphosphonium and has an activity like that of superoxide dismutase. It can pass through lipid bilayers easily and accumulate selectively in mitochondria. The goal of this study was to investigate the effects of MitoTEMPO and its non-targeted form, TEMPO, on the developmental competence of bovine oocytes. Accordingly, oocytes were cultured in maturation medium supplemented with either five mM TEMPO (T5) or one μM MitoTEMPO (M1), or T5 + M1 (MT15), or without the antioxidants (C). Nuclear maturation to metaphase II (MII) stage, intracellular glutathione (GSH) content and ROS levels in matured oocytes were analyzed. In addition, cleavage after in vitro fertilization, and blastocyst rates, total cell number in blastocysts as well as the relative abundance of apoptosis-related genes (BAX and BCL2) in blastocysts were determined. Results revealed that the proportion of oocytes at the MII stage, embryos at the blastocyst stage and total cell number in blastocysts increased significantly in the M1 group compared to the C and T5 groups. The levels of intracellular GSH and ROS in oocytes decreased in the M1 group than in the C group (P < 0.05). The expression level of the pro-apoptotic gene (BAX) reduced in blastocysts from the M1 group in comparison to the C and T5 groups (P < 0.05). On the other hand, the expression level of anti-apoptotic gene (BCL2) in obtained blastocysts was not affected by TEMPO and MitoTEMPO. However, the ratio of BAX/BCL2 in blastocysts from the M1 and MT15 groups decreased significantly compared to the C group. These findings suggest that MitoTEMPO can mitigate the adverse effects of oxidative stress on the developmental competence of bovine oocytes.
Collapse
Affiliation(s)
- I Yousefian
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - A Zare-Shahneh
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - A Goodarzi
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - H Baghshahi
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - A A Fouladi-Nashta
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Campus, UK
| |
Collapse
|
21
|
Nagata S, Tatematsu K, Yamaguchi H, Inoue Y, Tanaka K, Tasaki H, Shirasuna K, Iwata H. Effect of docosahexaenoic acid on in vitro growth of bovine oocytes. Reprod Med Biol 2021; 20:485-493. [PMID: 34646077 PMCID: PMC8499585 DOI: 10.1002/rmb2.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The present study investigated the effects of docosahexaenoic acid (DHA) on the growth of bovine oocytes. METHODS Oocytes and granulosa cell complexes (OGCs) were collected from early antral follicles (0.4-0.7 mm) on the surface of ovaries harvested from a slaughterhouse. The OGCs were cultured with 0, 1, and 10 μmol/L docosahexanoic acid (DHA) for 16 days. RESULTS Antrum formation of the OGCs and the number of granulosa cells (GCs) surrounding the oocytes were comparable among groups, whereas supplementation of 0.1 μmol/L of DHA significantly improved oocyte growth. Oocytes grown with DHA had a higher fertilization rate, acetylation levels of H4K12, and ATP contents, as well as a lower lipid content compared with those grown without DHA. In addition, GCs surrounding OGCs grown with DHA had low lipid content compared with vehicle counterparts. Furthermore, when GCs were cultured in vitro, DHA increased ATP production, mitochondrial membrane potential, and reduced lipid content and levels of reactive oxygen species. RNA-seq of GCs revealed that DHA increased CPT1A expression levels and affect genes associated with focal adhesion, oxidative phosphorylation, and PI3K-AKT etc. CONCLUSION The results suggest that DHA supplementation affects granulosa cell characteristics and supports oocyte growth in vitro.
Collapse
Affiliation(s)
- Shuta Nagata
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Kaoru Tatematsu
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Hitoki Yamaguchi
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Yuki Inoue
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Keisuke Tanaka
- NODAI Genome Research CenterTokyo University of AgricultureTokyoJapan
| | - Hidetaka Tasaki
- Assisted Reproductive Technology CenterOkayama UniversityOkayamaJapan
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Koumei Shirasuna
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| | - Hisataka Iwata
- Department of Animal ScienceTokyo University of AgricultureAtsugiJapan
| |
Collapse
|
22
|
Maside C, Sánchez-Ajofrín I, Medina-Chávez D, Alves B, Garde JJ, Soler AJ. Oocyte Morphometric Assessment and Gene Expression Profiling of Oocytes and Cumulus Cells as Biomarkers of Oocyte Competence in Sheep. Animals (Basel) 2021; 11:ani11102818. [PMID: 34679840 PMCID: PMC8532595 DOI: 10.3390/ani11102818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Oocyte quality is crucial for subsequent embryo development and so it is a major challenge in assisted reproductive technologies. The aim of the present work was to evaluate the morphometric parameters of oocytes (experiment 1) and the relative gene expression of oocytes and cumulus cells (CCs) (experiment 2) as biomarkers of oocyte quality after individually culturing them (one oocyte or embryo/drop). In experiment 1, individually matured oocytes were measured and classified into small, intermediate, and large oocytes after a cluster analysis, based on total diameter (with zona pellucida, ZP), oocyte diameter (without ZP), and ZP thickness. These oocytes were individually fertilized in vitro and cultured. The embryo development was evaluated up to the blastocyst stage. According to the total diameter, oocyte diameter, and ZP thickness, the blastocyst rate decreased in the small oocytes group (3.1 ± 3.1, 14.1 ± 9.4, and 26.7 ± 3.9, respectively) compared to the intermediate (29.4 ± 5.2, 30.5 ± 10.1, and 28.6 ± 9.6, respectively) and large oocytes groups (54.2 ± 13.5, 44.4 ± 3.9, and 67.6 ± 12.4, respectively). In addition, the probability of reaching the blastocyst stage was positively related to the total diameter (p < 0.001), oocyte diameter (p < 0.05), and ZP thickness (p < 0.001). Furthermore, the relative gene expression of BAX, BCL2, GDF9, and GJA1 was lower in oocytes classified as large. In experiment 2, the mRNA transcript relative abundance pattern of genes in CCs was evaluated according to oocyte total diameter and developmental stage reached. CCs from oocytes classified as large and oocytes capable of developing to the blastocyst stage had a lower relative expression of BAX, STAR, and PTGS2, while a higher expression of HAS2 and SDC2 transcript was observed for those oocytes. In conclusion, oocyte morphometric parameters and gene expression analysis in oocytes and CCs provide methods for the identification of the most competent oocytes for assisted reproductive technologies in sheep.
Collapse
Affiliation(s)
- Carolina Maside
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Correspondence:
| | - Irene Sánchez-Ajofrín
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
| | - Daniela Medina-Chávez
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
| | | | - José Julián Garde
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
| | - Ana Josefa Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, s/n, 02071 Albacete, Spain; (I.S.-A.); (D.M.-C.); (J.J.G.); (A.J.S.)
| |
Collapse
|
23
|
Leese HJ, McKeegan PJ, Sturmey RG. Amino Acids and the Early Mammalian Embryo: Origin, Fate, Function and Life-Long Legacy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9874. [PMID: 34574797 PMCID: PMC8467587 DOI: 10.3390/ijerph18189874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Amino acids are now recognised as having multiple cellular functions in addition to their traditional role as constituents of proteins. This is well-illustrated in the early mammalian embryo where amino acids are now known to be involved in intermediary metabolism, as energy substrates, in signal transduction, osmoregulation and as intermediaries in numerous pathways which involve nitrogen metabolism, e.g., the biosynthesis of purines, pyrimidines, creatine and glutathione. The amino acid derivative S-adenosylmethionine has emerged as a universal methylating agent with a fundamental role in epigenetic regulation. Amino acids are now added routinely to preimplantation embryo culture media. This review examines the routes by which amino acids are supplied to the early embryo, focusing on the role of the oviduct epithelium, followed by an outline of their general fate and function within the embryo. Functions specific to individual amino acids are then considered. The importance of amino acids during the preimplantation period for maternal health and that of the conceptus long term, which has come from the developmental origins of health and disease concept of David Barker, is discussed and the review concludes by considering the potential utility of amino acid profiles as diagnostic of embryo health.
Collapse
Affiliation(s)
- Henry J. Leese
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| | - Paul J. McKeegan
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| | - Roger G. Sturmey
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
- Division of Developmental Biology and Medicine, The University of Manchester, St Mary’s Hospital, Manchester M13 9WL, UK
| |
Collapse
|
24
|
Fertilization potential test of sperm from nano monoclonal antibody injected goats. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
cAMP Modulators before In Vitro Maturation Decrease DNA Damage and Boost Developmental Potential of Sheep Oocytes. Animals (Basel) 2021; 11:ani11092512. [PMID: 34573478 PMCID: PMC8467748 DOI: 10.3390/ani11092512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Oocyte in vitro maturation has massive potential for the generation of great numbers of embryos for research and for the application of assisted reproductive technologies, such as in vitro embryo production. However, the developmental ability of in vitro matured oocytes is lower than those matured in vivo. Here, incubating the oocytes with cAMP modulating agents for two hours before in vitro maturation decreased oocyte DNA damage and increased the number of embryos generated after in vitro fertilization. The present findings could help to develop new methods to improve the quality and developmental potential of in vitro matured oocytes. Abstract To date, the underlying mechanisms by which cAMP modulators act during in vitro maturation to improve oocyte developmental competence are poorly understood. Here, we sought to fill this knowledge gap by evaluating the use of phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and adenylyl cyclase activator forskolin during a culture period of 2 h before in vitro maturation (pre-IVM) on the nuclear and cytoplasmic maturation features in essential organelles, cumulus cells activity, and in vitro developmental potential of sheep oocytes. Results showed that pre-IVM treatment significantly decreased (p < 0.05) the DNA damage of mature oocytes (pre-IVM = 2.08% ± 3.51% vs. control = 20.58% ± 3.51%) and increased (p ≤ 0.05) expanded blastocyst rates compared to the control (from the total of oocytes: pre-IVM = 23.89% ± 1.47% vs. control = 18.22% ± 1.47%, and from the cleaved embryos: pre-IVM = 45.16% ± 1.73% vs. control = 32.88% ± 1.73%). Considering that oocytes are highly vulnerable to the accumulation of DNA damage because of exposure to in vitro culture conditions, our results suggest that the modulation of intra-oocyte cAMP levels with forskolin and IBMX before IVM might afford oocytes a more effective DNA repair mechanism to overcome damage obstacles and ultimately improve developmental competence. This previously unappreciated action of cAMP modulators could help to develop improved methods for assisted reproduction technologies in animal and clinical research.
Collapse
|
26
|
Sugimoto A, Inoue Y, Tanaka K, Sinozawa A, Shirasuna K, Iwata H. Effects of a gel culture system made of polysaccharides (xanthan gum and locust bean gum) on in vitro bovine oocyte development and gene expression of the granulosa cells. Mol Reprod Dev 2021; 88:516-524. [PMID: 34096128 DOI: 10.1002/mrd.23518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/11/2021] [Accepted: 05/22/2021] [Indexed: 11/10/2022]
Abstract
Xanthan gum (XG) and locust bean gum (LBG) are nontoxic polysaccharides that produce culture substrates. The present study examined the effect of XG-LBG gel on in vitro bovine oocyte growth and gene expression in granulosa cells. Oocytes and granulosa cell complexes (OGCs) were cultured in vitro on plastic culture plate (Plate) or XG-LBG gel for 16 days. OGCs formed a dome-like cavity surrounding the oocytes on plate but formed a spherical follicle structure on XG-LBG gel. The total granulosa cell numbers of the OGCs and their survival rate was greater for OGCs cultured on XG-LBG gel than for those cultured on plate. Oocytes grown on XG-LBG gels had higher lipid and mitochondrial content, as well as a larger diameter, than their plate counterparts. When oocytes grown in vitro were subjected to in vitro maturation and fertilization, the normal fertilization rate was significantly higher for oocytes developed on XG-LBG gel than that of oocytes cultured on the plate counterpart. RNAseq of the granulosa cells revealed that genes associated with focal adhesion, phosphatidylinositol 3'-kinase-Akt and Hippo signaling, and regulation of actin cytoskeleton were upregulated in granulosa cells of OGCs cultured on XG-LBG gel compared with those cultured on plate.
Collapse
Affiliation(s)
| | - Yuki Inoue
- Tokyo University of Agriculture, Kanagawa, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Akihisa Sinozawa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | | |
Collapse
|
27
|
Aoki S, Ito J, Hara S, Shirasuna K, Iwata H. Effect of maternal aging and vitrification on mitochondrial DNA copy number in embryos and spent culture medium. Reprod Biol 2021; 21:100506. [PMID: 33906097 DOI: 10.1016/j.repbio.2021.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Maternal aging and vitrification affect mitochondrial quality and quantity in embryos. The present study investigated the effects of maternal aging on mitochondrial DNA (mtDNA) copy number in embryos, and the amount of cell-free mtDNA (cf-mtDNA) in spent culture medium (SCM) of embryos. Moreover, we examined the effects of vitrification on mtDNA copy number in embryos of young and aged cows, and on cf-mtDNA abundance in SCM. Oocytes collected from ovaries of young (20-40 months old) and aged cows (> 140 months old) were used to produce early stage embryos (8-12 cell-stage, 48 h after insemination). These embryos were individually cultured for 5 days, and mtDNA copy number in blastocysts and cf-mtDNA content in SCM, were evaluated by real-time PCR. At 48 h post-insemination, mtDNA copy number in embryos was greater for young cows compared with that of aged cows, whereas no significant difference was observed in cf-mtDNA in the SCM. Next, we addressed whether zona pellucida (ZP) may mask the difference in cf-mtDNA content in SCM. Using ZP-free embryos, we found significantly greater cf-mtDNA content in the SCM of blastocysts derived from aged cows. Furthermore, when embryos were vitrified and warmed, mtDNA copy number in blastocysts derived from young cows was lower, whereas cf-mtDNA content in SCM was greater than in those derived from aged cows. In conclusion, maternal aging affects mitochondrial kinetics and copy number in embryos following vitrification.
Collapse
Affiliation(s)
- Sogo Aoki
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Shunsuke Hara
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Koumei Shirasuna
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
28
|
Cellular and Molecular Events that Occur in the Oocyte during Prolonged Ovarian Storage in Sheep. Animals (Basel) 2020; 10:ani10122414. [PMID: 33348585 PMCID: PMC7766589 DOI: 10.3390/ani10122414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Establishing efficient in vitro embryo production (IVP) protocols in sheep usually requires prolonged transportation of post-mortem ovaries since adult animals are often slaughtered in abattoirs far from laboratories. In this study, different analyses were carried out to investigate important cellular and molecular aspects of hypoxic injury on excised ovaries over time in order to understand the factors jeopardizing the development of competent oocytes during prolonged transport times. We observed that, when ovaries were stored for more than 7 h, the quality and developmental potential of oocytes and cumulus cells were greatly reduced. Moreover, the use of medium TCM199 over saline solution also had deleterious effects. Beyond transport time, strategies aimed at reducing these damages may improve oocyte quality and developmental competence. Abstract For the past two decades, there has been a growing interest in the application of in vitro embryo production (IVP) in small ruminants such as sheep. To improve efficiency, a large number abattoir-derived ovaries must be used, and long distances from the laboratory are usually inevitable when adult animals are used. In that scenario, prolonged sheep ovary transportation may negatively affect oocyte developmental competence. Here, we evaluated the effect of ovary storage time (3, 5, 7, 9, 11 and 13 h) and the medium in which they were transported (TCM199 and saline solution) on oocyte quality. Thus, live/dead status, early apoptosis, DNA fragmentation, reduced glutathione (GSH) and reactive oxygen species (ROS) content, caspase-3 activity, mitochondrial membrane potential and distribution, and relative abundance of mRNA transcript levels were assessed in oocytes. After in vitro maturation (IVM), cumulus cell viability and quality, meiotic and fertilization competence, embryo rates and blastocyst quality were also evaluated. The results revealed that, after 7 h of storage, oocyte quality and developmental potential were significantly impaired since higher rates of dead oocytes and DNA fragmentation and lower rates of viable, matured and fertilized oocytes were observed. The percentage of cleavage, blastocyst rates and cumulus cell parameters (viability, active mitochondria and GSH/ROS ratio) were also decreased. Moreover, the preservation of ovaries in medium TCM199 had a detrimental effect on cumulus cells and oocyte competence. In conclusion, ovary transport times up to 5 h in saline solution are the most adequate storage conditions to maintain oocyte quality as well as developmental capacity in sheep. A strategy to rescue the poor developmental potential of stored oocytes will be necessary for successful production of high-quality embryos when longer ovarian preservation times are necessary.
Collapse
|
29
|
Isaac E, Pfeffer PL. Growing cattle embryos beyond Day 8 - An investigation of media components. Theriogenology 2020; 161:273-284. [PMID: 33360161 DOI: 10.1016/j.theriogenology.2020.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
The growth of viable cattle embryos in culture to stages beyond the hatching blastocyst is of interest to developmental biologists wishing to understand developmental events beyond the first lineage decision, as well as for commercial applications, because a lengthening of the culturing time allows more time for diagnostic tests on biopsies, whereas extended survival can be used as a better assay system for monitoring developmental potential. We here report on a novel extended culture medium for embryo growth until embryonic day (Day) 12. We used a non-invasive morphological characterisation system that scored viability, inner cell mass (ICM) grade, hatching and embryo and ICM diameter. The basal medium was based on published uterine fluid concentrations of amino acids, carbohydrates and electrolytes. Addition of fetal bovine serum was necessary and the additive ITSX greatly improved culture success. We tested the inclusion of a seven-growth factor cocktail consisting of Activin A, Artemin, BMP4, EGF, FGF4, GM-CSF/CSF2 and LIF, as well as omission of individual components of the cocktail. In the context of the growth factor cocktail, Artemin and BMP4 provided the greatest benefit, while FGF omission had more positive than negative effects on embryo characteristics. Lastly, replacement of ITSX by B27-additive led to the most successful culture of embryos, in all media permutations.
Collapse
Affiliation(s)
- Ekaterina Isaac
- Victoria University of Wellington, School of Biological Sciences, Kelburn Campus, Wellington, 6012, New Zealand.
| | - Peter L Pfeffer
- Victoria University of Wellington, School of Biological Sciences, Kelburn Campus, Wellington, 6012, New Zealand.
| |
Collapse
|
30
|
Cao S, Huang S, Guo Y, Zhou L, Lu Y, Lai S. Proteomic-based identification of oocyte maturation-related proteins in mouse germinal vesicle oocytes. Reprod Domest Anim 2020; 55:1607-1618. [PMID: 32920902 DOI: 10.1111/rda.13819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022]
Abstract
Oocyte proteins play an important role in oocyte maturation, fertilization and embryonic development. However, the protein composition of mouse germinal vesicle (GV) oocytes is still unclear. Using one-dimensional Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (1D SDS-PAGE) and Reverse-phase liquid chromatography tandem mass spectrometry (RP-LC-MS/MS), we constructed a protein profile of mouse GV oocytes. First, our proteomics profile identified 1,405 different proteins from 11,000 mouse GV oocytes lacking zona pellucida. Second, with detailed bioinformatics analysis, a group of proteins that play an essential role in oocyte maturation was screened. In addition, the expression and localization of suppressor of G2 allele of skp1(SUGT1, also called SGT1), heterogeneous nuclear ribonucleoprotein K (Hnrpk), Seruin, Cullin1(Clu1) and nuclear distribution protein C (Nudc) in mouse ovaries and early embryos were also captured and investigated in this study. Moreover, the protein profile was submitted to the Proteomics Identifications Database (PRIDE) and is available via ProteomeXchange with the identifier PXD014314. Our research provides valuable resources for the study of oocyte proteins and oocyte maturation and helps to clarify the mechanisms of oocyte maturation.
Collapse
Affiliation(s)
- Senyang Cao
- Center of Reproductive Medicine, Huai'an Maternity and Child Health Care Center, Huai'an, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shaoping Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Ying Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
31
|
Peris-Frau P, Álvarez-Rodríguez M, Martín-Maestro A, Iniesta-Cuerda M, Sánchez-Ajofrín I, Medina-Chávez DA, Garde JJ, Villar M, Rodríguez-Martínez H, Soler AJ. Unravelling how in vitro capacitation alters ram sperm chromatin before and after cryopreservation. Andrology 2020; 9:414-425. [PMID: 32888251 DOI: 10.1111/andr.12900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/17/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sperm chromatin structure provides valuable information for the prediction of male fertility and can be altered during different procedures. Previous studies have shown that sperm chromatin condensation decreased during in vitro capacitation. Moreover, cryopreservation can affect sperm DNA integrity and chromatin compaction. OBJECTIVES This study aimed to investigate dynamic modifications produced in the chromatin structure of ram spermatozoa during in vitro capacitation before and after cryopreservation. MATERIALS AND METHODS Chromatin decondensation (AB+), DNA methylation, DNA fragmentation index (%DFI) and high DNA stainability (HDS) were evaluated in fresh and frozen-thawed ram spermatozoa incubated under capacitating (CAP) conditions at 1, 5, 15, 30, 60, 120, 180 and 240 minutes and under non-capacitating (NC) conditions at 0, 15 and 240 minutes. RESULTS Incubation in NC conditions did not induce significant changes in chromatin condensation (P > .05; AB + and HDS). However, incubation of fresh and cryopreserved ram spermatozoa under CAP conditions significantly increased chromatin decondensation (P < .05), reaching the highest percentage of AB + and HDS from 180 to 240 minutes in fresh samples and from 5 to 30 minutes in cryopreserved samples. Both variables (HDS and AB+) were positively correlated with tyrosine phosphorylation, total motility, progressive motility, curvilinear velocity and amplitude of lateral head displacement, as well as between them under CAP conditions in fresh and cryopreserved spermatozoa. DNA methylation significantly increased in cryopreserved spermatozoa (P < .05), but only after extended incubation under CAP conditions (60-240 minutes), while the %DFI, albeit higher in cryopreserved samples, remained constant under CAP and NC conditions in both types of sample (P > .05). DISCUSSION AND CONCLUSIONS Our results suggest that sperm chromatin condensation decreased progressively during in vitro capacitation of ram spermatozoa, while sperm DNA integrity remained intact. Such changes in chromatin condensation appeared faster after sperm cryopreservation.
Collapse
Affiliation(s)
- Patricia Peris-Frau
- SaBio IREC (CSIC - UCLM-JCCM), ETSIAM, Albacete, Spain.,Department of Biomedical and Clinical Sciences (BKV), BHK/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | - Manuel Álvarez-Rodríguez
- Department of Biomedical and Clinical Sciences (BKV), BHK/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | | | | | | | | | | | - Margarita Villar
- SaBio IREC (CSIC - UCLM-JCCM), ETSIAM, Albacete, Spain.,Biochemistry Section, Faculty of Science, Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), Albacete, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical and Clinical Sciences (BKV), BHK/Obstetrics & Gynaecology, Linköping University, Linköping, Sweden
| | | |
Collapse
|
32
|
Pan Y, Wang M, Wang L, Zhang Q, Baloch AR, He H, Xu G, Soomro J, Cui Y, Yu S. Estrogen improves the development of yak (Bos grunniens) oocytes by targeting cumulus expansion and levels of oocyte-secreted factors during in vitro maturation. PLoS One 2020; 15:e0239151. [PMID: 32941516 PMCID: PMC7498018 DOI: 10.1371/journal.pone.0239151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
The estrogen-signalling pathway is critical for normal follicular development; however, little is known about its importance during in vitro maturation (IVM) in large animals, particularly yaks (Bos grunniens). Through the present study, we aimed to determine the mechanisms underlying estrogen involvement in cumulus expansion and the subsequent development of cumulus-oocyte complexes (COCs). COCs were cultured in the maturation medium supplemented with different concentrations (10−6–10−3 mM) of 17β-estradiol (E2) or its receptor antagonist, fulvestrant, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blot were performed to determine the expression of cumulus-expansion related factors and oocyte-secreted factors (OSFs). The cumulus expansion of COCs was observed using an inverted microscope, and COCs developmental ability were judged by the evaluation of cleavage and blastulation rates per inseminated oocytes by IVF, and the number of cells in the blastocyst. Cumulus expansion increased with 10−6–10−3 mM E2, but decreased with fulvestrant. HAS2, PTGS2, PTX3 and OSFs expression increased in the 10−6–10−3 mM E2 groups. Significantly higher cleavage and blastocyst rates were observed in the 10−4 mM E2 group than in the fulvestrant and 0 mM E2 groups. Moreover, in the 10−4 mM group, blastocysts at 7 days had higher cell counts than the other groups. In conclusion, the increase in cumulus expansion and subsequent oocyte development after the addition of E2 to IVM medium may have resulted from increased cumulus-expansion-related factor expression and OSF levels.
Collapse
Affiliation(s)
- Yangyang Pan
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Meng Wang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Libin Wang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qian Zhang
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Abdul Rasheed Baloch
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Gengquan Xu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jamila Soomro
- Department of Veterinary Physiology and Biochemistry, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Yan Cui
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- * E-mail:
| |
Collapse
|
33
|
Beneficial Effects of Melatonin in the Ovarian Transport Medium on In Vitro Embryo Production of Iberian Red Deer ( Cervus elaphus hispanicus). Animals (Basel) 2020; 10:ani10050763. [PMID: 32349425 PMCID: PMC7278470 DOI: 10.3390/ani10050763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/25/2023] Open
Abstract
Simple Summary The development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, can become a daunting challenge since prolonged ovary transport times to the laboratory are often unavoidable. This may have detrimental effects on the quality and developmental capacity of oocytes. We evaluated the effect of supplementing the ovary transport medium with the antioxidant melatonin and observed an increased level of oocyte intracellular reduced glutathione content. Moreover, melatonin enhanced cleavage and blastocyst rates and had a positive effect on embryo quality in terms of the expression of essential embryo development-related genes. In conclusion, the addition of melatonin to the ovary storage medium could mitigate the negative impacts that long transport times may have on oocyte developmental competence and quality of the resulting blastocysts in Iberian red deer. Abstract A major limiting factor for the development of in vitro embryo production (IVP) in wild species, such as Iberian red deer, compared to livestock animals is the poor availability and limited access to biological material. Thus, the use of post-mortem ovaries from slaughtered animals represent a source of oocytes for the large scale production of embryos needed for research and to improve the efficiency of IVP. However, these oocytes are not as developmentally competent as their in vivo counterparts. Moreover, oocytes are usually obtained from ovaries that have been transported for long distances, which may also affect their quality. In order to overcome the issues associated with prolonged storage times of post-mortem material, in this study we examined the effect of melatonin supplementation to the ovary transport medium on oocyte quality, embryo yield, and blastocyst quality in Iberian red deer. When necessary, sheep was used as an experimental model due to the large number of samples required for analysis of oocyte quality parameters. Oocytes were in vitro matured and assessed for early apoptosis; DNA fragmentation; reactive oxygen species (ROS); reduced glutathione (GSH) content, mitochondrial membrane potential, and distribution; and relative abundance of mRNA transcript levels. After in vitro fertilization, embryo rates and blastocyst quality were also investigated. The results revealed that melatonin treatment significantly increased intracellular level of GSH in sheep oocytes. Moreover, the percentage of cleavage and blastocyst yield in red deer was greater compared to the Control group and there was lower abundance of oxidative stress- and apoptosis-related SHC1, TP53, and AKR1B1 mRNA transcripts in blastocysts for the Melatonin group. In conclusion, the supplementation of melatonin to the ovary storage medium had a positive effect on the developmental competence and quality of resulting blastocysts in Iberian red deer.
Collapse
|
34
|
Wooldridge LK, Nardi ME, Ealy AD. Zinc supplementation during in vitro embryo culture increases inner cell mass and total cell numbers in bovine blastocysts1. J Anim Sci 2020; 97:4946-4950. [PMID: 31712807 DOI: 10.1093/jas/skz351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023] Open
Abstract
Deficiencies in current embryo culture media likely contribute to the poor blastocyst development rates and pregnancy retention rates for in vitro produced (IVP) bovine embryos. Of special concern is the lack of micronutrients in these media formulations. One micronutrient of interest is zinc, an essential trace element involved with various enzyme and transcription factor activities. The objective of this work was to describe whether zinc sulfate supplementation during in vitro embryo culture affects bovine embryo development and blastomere numbers. Either 0, 2, 20, or 40 µM zinc sulfate was supplemented to presumptive zygotes cultured in synthetic oviductal fluid containing AAs and bovine serum albumin for 8 d. None of the treatments affected cleavage rates. Percentage of blastocysts on days 7 and 8 postfertilization was not affected by supplementing 2 or 20 µM zinc but were reduced (P < 0.05) with 40 µM zinc. In blastocysts harvested on day 8, inner cell mass (ICM) and total cell number were increased (P < 0.05) with 2 µM zinc supplementation but not with the other zinc concentrations. Numbers of trophectoderm cells were not affected by zinc treatment. In conclusion, supplementing zinc during bovine embryo culture did not impact blastocyst development but improved ICM cell numbers. This improvement in ICM cell number may have implications for improved pregnancy retention rates after IVP embryo transfer as smaller ICM sizes are associated with poor pregnancy success in cattle.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Madison E Nardi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
35
|
Zalazar L, Iniesta-Cuerda M, Sánchez-Ajofrín I, Garde JJ, Soler Valls AJ, Cesari A. Recombinant SPINK3 improves ram sperm quality and in vitro fertility after cryopreservation. Theriogenology 2020; 144:45-55. [DOI: 10.1016/j.theriogenology.2019.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022]
|
36
|
Peris-Frau P, Martín-Maestro A, Iniesta-Cuerda M, Sánchez-Ajofrín I, Cesari A, Garde JJ, Villar M, Soler AJ. Cryopreservation of ram sperm alters the dynamic changes associated with in vitro capacitation. Theriogenology 2020; 145:100-108. [DOI: 10.1016/j.theriogenology.2020.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/08/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
|
37
|
Fernández S, Morado S, Cetica P, Córdoba M. Hyaluronic acid capacitation induces intracellular signals modulated by membrane-associated adenylate cyclase and tyrosine kinase involved in bovine in vitro fertilization. Theriogenology 2020; 148:174-179. [PMID: 32182525 DOI: 10.1016/j.theriogenology.2020.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Heparin is the most commonly used in vitro capacitation inducer in the bovine. However, hyaluronic acid (HA) has been recently used for capacitation induction as well as for other reproductive biotechnologies, such as sperm selection and in vitro fertilization (IVF). Our aim was to induce sperm capacitation with heparin or HA in order to study mAC and TK intracellular signals and their relation with cleavage and blastocyst rates after IVF as well as with the oxidative status of the potential bovine embryos. 2,5-dideoxyadenosine and genistein were used as mAC and TK inhibitors, respectively. Sperm capacitation was analyzed using CTC technique, sperm plasma membrane and acrosome integrity were determined using trypan blue stain and differential interference contrast, and mitochondrial activity was evaluated using fluorochrome JC-1. Cleavage rate was analyzed 48h and blastocyst production 7-8 days after IVF, while cytosolic oxidative activity was determined using RedoxSensor Red CC-1 fluorochrome 7h after IVF. When mAC and TK inhibitors were added to sperm samples, only capacitation decreased significantly both in HA and heparin treated samples (P < 0.05), but plasma membrane and acrosome integrity percentages were not affected in any of these groups (P > 0.05). Sperm mitochondrial membrane potential only decreased in heparin treated samples in the presence of both inhibitors (P < 0.05). Oocytes activated with HA sperm treated samples with the addition of 2,5-dideoxyadenosine and genistein presented a lower cytosolic oxidative status than those activated with sperm treated with HA alone (P < 0.05). On the other hand, oocytes activated with heparin treated sperm samples presented a lower cytosolic oxidative status only in the presence of 2,5-dideoxyadenosine (P < 0.05). Therefore, mAC and TK present a differential participation in heparin and HA sperm induced capacitation and mitochondrial function as well as in IVF.
Collapse
Affiliation(s)
- S Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - S Morado
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - P Cetica
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - M Córdoba
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Química Biológica, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina.
| |
Collapse
|
38
|
Sánchez-Ajofrín I, Iniesta-Cuerda M, Sánchez-Calabuig MJ, Peris-Frau P, Martín-Maestro A, Ortiz JA, Del Rocío Fernández-Santos M, Garde JJ, Gutiérrez-Adán A, Soler AJ. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim Reprod Sci 2020; 213:106279. [PMID: 31987329 DOI: 10.1016/j.anireprosci.2020.106279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
Incubation gas atmosphere affects the development of in vitro produced embryos. In this study, there was examination of effects of two different oxygen (O2) tensions (5 % and 21 %) during in vitro maturation (M5 and M21) and/or fertilization (F5 and F21) on embryo production and quality in deer and sheep. There was assessment of the percentage of embryos with cell cleavage occurring, percentage that developed to the blastocyst stage, and analysis of the relative abundance of mRNA transcript for genes important for development to the blastocyst stage. The O2 tension treatment did not affect (P > 0.05) percentage cleavage or blastocyst development in either species. In sheep, there was a greater abundance of SHC1, GPX1, TP53, BAX and NRF1 mRNA transcript (P < 0.05) in M21 F5-derived embryos. In deer, there was a greater abundance of SOD2 mRNA transcript (P < 0.05) when oocytes had been matured under relatively lesser O2, regardless of the tension used during fertilization. There was a lesser abundance of SOX2 mRNA transcript (P < 0.05) in the M5F21 compared to the other three treatment groups. The AKR1B1 mRNA transcript was in greater abundance (P < 0.05) in M21 F21 as compared to M21 F5 and M5F21 group, and there was a greater abundance PLAC8 mRNA transcript (P < 0.05) in M21 F21, as compared to all other treatment groups. In conclusion, while O2 tension had no effect on developmental rates it did affect the relative abundance of mRNA transcript of multiple genes related to important cell functions during development.
Collapse
|
39
|
Gutnisky C, Morado S, Gadze T, Donato A, Alvarez G, Dalvit G, Cetica P. Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology 2019; 143:18-26. [PMID: 31830686 DOI: 10.1016/j.theriogenology.2019.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to evaluate the effect of vitrification on morphological, biochemical and functional parameters of matured bovine oocytes at different recovery times. To this end, matured bovine oocytes were vitrified using the Cryotech® kit (a minimum-volume system) and then incubated in maturation medium for different post-warming durations (0 h, 3 h or 21 h). Morphology, viability and biochemical parameters were assessed at each time point mentioned above and the recovery of the metaphase plate was analyzed at 2 h, 3 h and 4 h post-warming. The vitrification-warming process did not affect the viability or morphology of oocytes at any time point. However, the recovery of the metaphase plate occurred mostly between 3 and 4 h rather than at 2 h after warming (P < 0.05). Both control and vitrified-warmed oocytes showed changes in cytosolic oxidative activity, quantification of active mitochondria, reactive oxygen species (ROS) levels and redox status at the different time points studied (P < 0.05). However, differences between control and vitrified-warmed oocytes were found only in the quantification of active mitochondria and ROS production (P < 0.05). Finally, in vitro fertilization and embryo culture were carried out as functional studies to establish whether vitrification-warming affected oocyte competence, and a significant decrease was found both in the cleavage rate and embryo development (P < 0.05). We concluded that major improvements in oocyte vitrification, at list with Cryotech® kit, are still needed to avoid variations in oocyte metabolism which could contribute to the reduction in the developmental competence of bovine oocytes.
Collapse
Affiliation(s)
- C Gutnisky
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina; Unidad Ejecutora de Investigaciones en Producción Animal (INPA, UBA-CONICET), Buenos Aires, Argentina.
| | - S Morado
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - T Gadze
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - A Donato
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - G Alvarez
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina; Unidad Ejecutora de Investigaciones en Producción Animal (INPA, UBA-CONICET), Buenos Aires, Argentina
| | - G Dalvit
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina
| | - P Cetica
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Buenos Aires, Argentina; Unidad Ejecutora de Investigaciones en Producción Animal (INPA, UBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
40
|
Lucas CG, Chen PR, Seixas FK, Prather RS, Collares T. Applications of omics and nanotechnology to improve pig embryo production in vitro. Mol Reprod Dev 2019; 86:1531-1547. [PMID: 31478591 PMCID: PMC7183242 DOI: 10.1002/mrd.23260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
An appropriate environment to optimize porcine preimplantation embryo production in vitro is required as genetically modified pigs have become indispensable for biomedical research and agriculture. To provide suitable culture conditions, omics technologies have been applied to elucidate which metabolic substrates and pathways are involved during early developmental processes. Metabolomic profiling and transcriptional analysis comparing in vivo- and in vitro-derived embryos have demonstrated the important role of amino acids during preimplantation development. Transcriptional profiling studies have been helpful in assessing epigenetic reprogramming agents to allow for the correction of gene expression during the cloning process. Along with this, nanotechnology, which is a highly promising field, has allowed for the use of engineered nanoplatforms in reproductive biology. A growing number of studies have explored the use of nanoengineered materials for sorting, labeling, and targeting purposes; which demonstrates their potential to become one of the solutions for precise delivery of molecules into gametes and embryos. Considering the contributions of omics and the recent progress in nanoscience, in this review, we focused on their emerging applications for current in vitro pig embryo production systems to optimize the generation of genetically modified animals.
Collapse
Affiliation(s)
- Caroline G Lucas
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Paula R Chen
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Fabiana K Seixas
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Randall S Prather
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Tiago Collares
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
41
|
Yang Y, Kanno C, Sakaguchi K, Katagiri S, Yanagawa Y, Nagano M. Theca cells can support bovine oocyte growth in vitro without the addition of steroid hormones. Theriogenology 2019; 142:41-47. [PMID: 31574399 DOI: 10.1016/j.theriogenology.2019.09.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/15/2019] [Accepted: 09/22/2019] [Indexed: 10/26/2022]
Abstract
Theca cells (TCs) are essential to folliculogenesis by contributing to steroidogenesis. However, the in vitro growth (IVG) of oocytes co-cultured with TCs has not yet been examined. In the present study, we investigated the feasibility of the IVG of bovine oocyte-cumulus-granulosa cell complexes (OCGCs) co-cultured with TCs and the developmental competence of co-cultured oocytes. OCGCs and TCs were co-cultured without steroid hormone addition for 12 days. Steroidogenesis, the viability of OCGCs, and TC numbers during co-culture were assessed every 4 days. After IVG, oocytes were matured and the nuclear status was evaluated. Some oocytes were inseminated and cultured to examine blastocyst development. During the co-culture, androstenedione production by TCs was only observed during the first 4 days (1.1 ng/well) while estradiol-17β was continuously produced, peaking during the second 4 days (0.5 ng/well). The number of TCs decreased to ∼60% of the seeding number (4.0 × 104 cells/well) during the first 4 days, and was maintained thereafter. The majority of co-cultured OCGCs (82.7%) survived after 12-day IVG. Only a few OCGCs (6.2%) survived in the OCGC culture without TCs (p < 0.01); however, the addition of androstenedione to the culture medium markedly improved survivability to 80.1%, which was similar to that in the co-culture with TCs. In the subsequent development of oocytes derived from the co-culture, 58.3% reached metaphase II stage, 58.7% cleaved, and 17.3% developed to blastocysts, which were similar values to those of oocytes cultured with the addition of androstenedione. In conclusion, TC-produced androgen contributes to OCGC growth and the acquisition of subsequent embryonic developmental competence.
Collapse
Affiliation(s)
- Yinghua Yang
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Chihiro Kanno
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Kenichiro Sakaguchi
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Seiji Katagiri
- Laboratory of Theriogenology, Department of Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| |
Collapse
|
42
|
Peris-Frau P, Martín-Maestro A, Iniesta-Cuerda M, Sánchez-Ajofrín I, Mateos-Hernández L, Garde JJ, Villar M, Soler AJ. Freezing-Thawing Procedures Remodel the Proteome of Ram Sperm before and after In Vitro Capacitation. Int J Mol Sci 2019; 20:E4596. [PMID: 31533312 PMCID: PMC6769739 DOI: 10.3390/ijms20184596] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian sperm must undergo a set of structural and functional changes collectively termed as capacitation to ensure a successful oocyte fertilization. However, capacitation can be compromised by cryopreservation procedures, which alter the proteome and longevity of sperm. To date, how the protein changes induced by cryopreservation could affect the acquisition of sperm fertilizing potential remains unexplored. The present study investigated the protein profile of ram sperm during in vitro capacitation before and after cryopreservation to elucidate the impact of cryopreservation on sperm capacitation at a molecular level. Fresh and cryopreserved ram sperm were incubated under capacitating (CAP) and non-capacitating (NC) conditions for 240 min. The sperm proteome of these four treatments was analyzed and compared at different incubation times using reverse phase liquid chromatography coupled to mass spectrometry (RP-LC-MS/MS). The comparison between fresh and cryopreserved sperm suggested that cryopreservation facilitated an apoptosis-stress response and redox process, while the comparison between sperm incubated in CAP and NC conditions showed that capacitation increased those biological processes associated with signaling, metabolism, motility, and reproductive processes. In addition, 14 proteins related to mitochondrial activity, sperm motility, oocyte recognition, signaling, spermatogenesis, and the apoptosis-stress response underwent significant changes in abundance over time when fresh and cryopreserved sperm incubated in CAP and NC conditions were compared. Our results indicate that disturbances in a ram sperm proteome after cryopreservation may alter the quality of sperm and its specific machinery to sustain capacitation under in vitro conditions.
Collapse
Affiliation(s)
- Patricia Peris-Frau
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Alicia Martín-Maestro
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María Iniesta-Cuerda
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Irene Sánchez-Ajofrín
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lourdes Mateos-Hernández
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - J Julián Garde
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Margarita Villar
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Ana Josefa Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
43
|
Hamdi M, Lopera-Vasquez R, Maillo V, Sanchez-Calabuig MJ, Núnez C, Gutierrez-Adan A, Rizos D. Bovine oviductal and uterine fluid support in vitro embryo development. Reprod Fertil Dev 2019; 30:935-945. [PMID: 29167013 DOI: 10.1071/rd17286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
In order to mimic the maternal oviductal environment, we evaluated the effect of oviductal fluid (OF) and/or uterine fluid (UF) supplementation on in vitro embryo development and quality. In vitro-produced zygotes were cultured with 1.25% OF from Day 1 to Day 4 after insemination (OF group), 1.25% OF from Day 1 to Day 4 followed by 1.25% UF from Day 4 to Day 9 (OF+UF group) or 1.25% UF only from Day 4 to Day 9 (UF group). Control groups were cultured in the presence of synthetic oviduct fluid (SOF) supplemented with 3mgmL-1 bovine serum albumin (BSA) or 5% fetal calf serum (FCS). Supplementation of the culture medium with OF and/or UF (both at 1.25%) supported embryo development (Day 9 blastocyst rate 28.2-30.6%). At 72h after vitrification-warming, the survival of blastocysts from the OF and OF+UF groups was similar to that of blastocysts in the SOF+BSA group (61.0±5.7% and 62.8±6.4% vs 64.8±6.4% respectively), but significantly higher than that of blastocysts from the SOF+FCS group (31.6±4.9%; P<0.001). Blastocysts from the OF group exhibited upregulation of epigenetic genes (i.e. DNA methyltransferase 3α (DNMT3A) and insulin-like growth factor 2 receptor (IGF2R)), compared with expression in the SOF+FCS group (P<0.05). Whereas those from OF+UF and UF groups exhibited downregulation of oxidative stress genes compared to SOF+BSA and OF groups for glutathione peroxidase (GPX1) and to SOF+FCS, SOF+BSA and OF groups for chloride intracellular channel 1 (CLIC1) (P<0.05). In addition, accumulation of reactive oxygen species was lower in blastocysts from the OF, OF+UF and UF groups. In conclusion, the use of low concentrations of OF and UF in in vitro serum-free culture supports embryo development, with OF providing a better control of embryo methylation, whereas UF may have antioxidant activity.
Collapse
Affiliation(s)
- Meriem Hamdi
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Ricaurte Lopera-Vasquez
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Veronica Maillo
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Maria Jesus Sanchez-Calabuig
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Carolina Núnez
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| | - Dimitrios Rizos
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Ctra. de la Coruna KM 5.9 - 28040 Madrid, Spain
| |
Collapse
|
44
|
Obuchi T, Osada M, Ozawa T, Nakagawa H, Hayashi M, Akiyama K, Sakagami N, Miura R, Geshi M, Ushijima H. Comparative evaluation of the cost and efficiency of four types of sexing methods for the production of dairy female calves. J Reprod Dev 2019; 65:345-352. [PMID: 31178552 PMCID: PMC6708860 DOI: 10.1262/jrd.2019-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to evaluate and compare the economic benefits of different embryo sexing methods, based on the cost per female dairy calf produced. Female calves were produced from
four kinds of female embryos: (1) those collected from superstimulated donors at 7–8 days after artificial insemination (AI) with X-sorted semen; (2) those sex-determined by loop-mediated
isothermal amplification assay of a biopsy sample of embryos collected from superstimulated donors after AI with conventional unsorted semen; (3) those obtained by
invitro embryo production (IVEP), using X-sorted semen and in vitro-matured oocytes collected from donors by ovum pick-up (OPU); and (4)
those obtained by IVEP, using X-sorted semen and oocytes collected by OPU after dominant follicle ablation and follicle growth stimulation of the donors. The respective productivities of
female calves per technical service and the total production cost per female calf of each sexing method were compared. The production cost per female calf (66,537 JPY), as calculated from
the number of female calves per service (1.30), pregnancy rate of transfer (42.9%), rate of female calves obtained (92.9%), and total cost of the method (56,643 JPY plus embryo transfer
fee), was less for IVEP with X-sorted semen and follicular growth-stimulated (FGS) oocytes than for the other groups (P < 0.05). The results demonstrate that embryo production with
X-sorted semen and FGS oocytes provides a more efficient method for producing female calves than the other embryo sexing methods.
Collapse
Affiliation(s)
- Tomoko Obuchi
- Department of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan.,Present: Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Gunma 371-0121, Japan
| | - Masahiro Osada
- Department of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Takeyuki Ozawa
- Department of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Hiroshi Nakagawa
- Niigata Agricultural Research Institute, Niigata 955-0143, Japan
| | - Michiko Hayashi
- Ishikawa Livestock Research Center, Ishikawa 929-1325, Japan
| | - Kiyoshi Akiyama
- Kanagawa Prefectural Livestock Industry Technology Center, Kanagawa 243-0417, Japan
| | - Nobutada Sakagami
- Kanagawa Prefectural Livestock Industry Technology Center, Kanagawa 243-0417, Japan
| | - Ryotaro Miura
- Department of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masaya Geshi
- Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | - Hitoshi Ushijima
- Department of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| |
Collapse
|
45
|
Sakagami N, Konda K, Hashimura S, Kawate N, Inaba T, Tamada H. Production of Japanese Black calves by the transfer of embryos developed from in vitro-fertilized oocytes derived by ovum pick up and matured in culture with the mitogen-activated protein kinase kinase inhibitor U0126. J Vet Med Sci 2019; 81:379-382. [PMID: 30700676 PMCID: PMC6451900 DOI: 10.1292/jvms.18-0460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated whether treatment with the mitogen-activated protein kinase kinase inhibitor U0126 during in vitro maturation (IVM), which has previously been reported to improve oocyte developmental competence, is practical for use in calf production using ovum pick up (OPU)-derived oocytes. Two Japanese Black cows were repeatedly and simultaneously treated to stimulate follicular growth and were prepared for OPU. Cumulus-oocyte complexes (COCs) were collected from one cow using a collection medium containing 5 µM U0126 and were cultured in medium supplemented with the same concentration of U0126 for the first 2 hr of IVM; COCs from the other cow were used as controls without U0126 treatment. The cows were exchanged between the two groups at every sequential OPU (n=8). The number of oocytes developing to blastocysts in the U0126-treated group (39.1%, 34/87) was significantly higher than that in the control group (22.1%, 19/86). Eight blastocysts produced with U0126 treatment were transferred to recipients, and four normal calves were obtained. The results indicate that embryos develop efficiently from OPU-derived oocytes treated with U0126, and that these embryos may be of practical use in calf production.
Collapse
Affiliation(s)
- Nobutada Sakagami
- Kanagawa Prefectural Livestock Industry Technology Center, Ebina, Kanagawa 243-0417, Japan
| | - Kunitoshi Konda
- Kanagawa Prefectural Livestock Industry Technology Center, Ebina, Kanagawa 243-0417, Japan
| | - Shinji Hashimura
- Kanagawa Prefectural Livestock Industry Technology Center, Ebina, Kanagawa 243-0417, Japan
| | - Noritoshi Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Hiromichi Tamada
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| |
Collapse
|
46
|
Umezu K, Yajima R, Hiradate Y, Yanai R, Numabe T, Hara K, Oikawa T, Tanemura K. Improvement in blastocyst quality by neurotensin signaling via its receptors in bovine spermatozoa during in vitro fertilization. J Reprod Dev 2019; 65:147-153. [PMID: 30662011 PMCID: PMC6473113 DOI: 10.1262/jrd.2018-147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previously, we reported that neurotensin (NT), which is expressed in the uterus and oviduct, enhanced bovine sperm capacitation and acrosome reactions. As NT mRNA expression in bovine
oviducts increases dramatically in the follicular phase, we hypothesized that NT modulates fertilization and subsequent conception in cattle. The objective of this study was to evaluate the
effect of NT on embryo development and blastocyst quality. The rate of embryo cleavage was significantly increased by the addition of NT to the fertilization medium. Furthermore, the total
number of cells and numbers of cells in the inner cell mass of blastocysts were significantly increased by NT during in vitro fertilization (IVF). These results suggested
that NT enhanced the efficiency of early bovine embryo development and blastocyst quality. The expression of NT receptors (NTRs) in sperm, testes, oocytes, and cumulus cells was evaluated to
determine whether NT acted via NTRs in sperm alone or in both male and female reproductive cells during IVF. Immunocytochemistry and reverse transcription polymerase chain reaction revealed
that NTR1 and NTR2 were expressed in sperm and testes, but not in oocytes and cumulus cells. We propose that NT selectively acts upon sperm via NTR1 and NTR2 during IVF to improve the
cleavage rate and quality of blastocysts, which are important determinants of sperm quality for successful conception. This research supports our hypothesis that NT acts as a key modulator
of fertilization and conception in cattle. Further studies are necessary to apply our findings to the industrial framework of bovine reproduction.
Collapse
Affiliation(s)
- Kohei Umezu
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| | - Risa Yajima
- Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan
| | - Yuuki Hiradate
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| | - Rin Yanai
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| | - Takashi Numabe
- Miyagi Agricultural Development Corporation, Miyagi 981-0914, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| | - Toshinori Oikawa
- Miyagi Prefectural Livestock Experiment Station, Miyagi 989-6445, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-0845, Japan
| |
Collapse
|
47
|
Nagashima JB, Travis AJ, Songsasen N. The Domestic Dog Embryo: In Vitro Fertilization, Culture, and Transfer. Methods Mol Biol 2019; 2006:247-267. [PMID: 31230286 DOI: 10.1007/978-1-4939-9566-0_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Advances in embryo technologies in the domestic dog have made significant strides in the past decade. This progress has been spurred by interests in taking advantage of the dog as a biomedical research model for human and companion animal medicine, developing assisted reproductive technologies to manage genetic diversity in endangered canids maintained ex situ, and improving breeding in rare or working breeds of dogs. Here, we focus on recent advancements and techniques for collection of in vivo-matured oocytes, in vitro fertilization (IVF), in vitro culture of early (≤8-cell) and advanced stage (≥16-cell) embryos, and embryo transfer.
Collapse
Affiliation(s)
- J B Nagashima
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA.
| | - A J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Ithaca, NY, USA
- Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, USA
| | - N Songsasen
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| |
Collapse
|
48
|
Abdel-Ghani MA, Yanagawa Y, Balboula AZ, Sakaguchi K, Kanno C, Katagiri S, Takahashi M, Nagano M. Astaxanthin improves the developmental competence of in vitro-grown oocytes and modifies the steroidogenesis of granulosa cells derived from bovine early antral follicles. Reprod Fertil Dev 2019; 31:272-281. [DOI: 10.1071/rd17527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
In this study we investigated the effect of astaxanthin (Ax), which exhibits strong antioxidant activity, during invitro growth (IVG) on the developmental competence of oocytes and steroidogenesis of granulosa cells derived from early antral follicles. Bovine oocyte–cumulus–granulosa complexes collected from early antral follicles were cultured for 12 days in the presence or absence (control) of 500µM Ax. The viability of oocytes and antrum formation in the granulosa cell layer during IVG culture were greater in the presence than absence of Ax (P<0.05). Regardless of Ax treatment, 17β-oestradiol production increased during IVG culture; however, progesterone production was significantly lower in the presence than absence of Ax (P<0.05). Reactive oxygen species levels were lower in Ax-treated oocytes than in controls after IVG (P<0.05). Although nuclear maturation and cleavage rates did not differ between the Ax-treated and control groups, Ax treatment led to weaker cathepsin B activity in oocytes and better blastocyst rates than in controls (P<0.05). Accordingly, Ax treatment during IVG increased the total number of cells in blastocysts (P<0.05). These results indicate that Ax supplementation of IVG medium improves the quality of bovine oocytes due to its antioxidative effects on growing oocytes and its suppression of the luteinisation of granulosa cells.
Collapse
|
49
|
Emanuelli IP, Costa CB, Rafagnin Marinho LS, Seneda MM, Meirelles FV. Cumulus-oocyte interactions and programmed cell death in bovine embryos produced in vitro. Theriogenology 2018; 126:81-87. [PMID: 30537657 DOI: 10.1016/j.theriogenology.2018.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
This study investigated the interactions between cumulus cells (CCs) and oocytes and programmed cell death in bovine cumulus-oocyte complexes (COCs) with different morphological characteristics. DNA fragmentation was assessed in CCs at 0 and 24 h of maturation, as well as parthenogenetic developmental competence on the 9th day post-activation, blastocyst quality and BCL-2 and BAX transcript levels in matured CCs. Most immature oocytes in the COC-A group (full cumulus and several compact layers) were in the initial germinal vesicle (iGV) stage, exhibiting minimal or no DNA damage. In contrast, after follicle removal, the COCB (partial cumulus and one or two cell layers) and C (expanded cumulus) groups presented in more advanced GV stages and exhibited DNA fragmentation. After maturation, significant increases in fragmented nuclei were noted in COCC and COCB groups. Embryos resulting from the COC-A developed more rapidly and had increased competence compared to embryos resulting from groups COCB and COCC. The COCB group exhibited the highest BAX protein levels and a reduced BCL-2/BAX protein ratio. The results show a negative correlation between nuclear fragmentation and embryonic development potential in COCs with different morphologies. In addition, a low BCL-2/BAX protein ratio might be associated with an increase in nuclear fragmentation in CCs.
Collapse
Affiliation(s)
| | | | | | | | - Flávio Vieira Meirelles
- Laboratory of Molecular Biology, Faculty of Animal Science, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Hara T, Kin A, Aoki S, Nakamura S, Shirasuna K, Kuwayama T, Iwata H. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLoS One 2018; 13:e0204571. [PMID: 30335749 PMCID: PMC6193637 DOI: 10.1371/journal.pone.0204571] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/11/2018] [Indexed: 12/02/2022] Open
Abstract
The present study investigated the vitrification-induced deterioration of mitochondrial functions that may reduce the developmental ability of post-warming bovine embryos. In addition, the effect of supplementation of the culture medium with resveratrol on the mitochondrial functions and post-warming embryonic development was examined. Two days after in vitro fertilization, embryos with 8–12 cells (referred to hereafter as 8-cell embryos) were vitrified and warmed, followed by in vitro incubation for 5 days in a culture medium containing either the vehicle or 0.5 μM resveratrol. Vitrification reduced embryonic development until the blastocyst stage, reduced the ATP content of embryos, and impaired the mitochondrial genome integrity, as determined by real-time polymerase chain reaction. Although the total cell number and mitochondrial DNA copy number (Mt-number) of blastocysts were low in the vitrified embryos, the Mt-number per blastomere was similar among the blastocysts derived from fresh (non-vitrified) and vitrified-warmed embryos. Supplementation of the culture medium with resveratrol enhanced the post-warming embryonic development and reduced the Mt-number and reactive oxygen species level in blastocysts and blastomeres without affecting the ATP content. An increase in the content of cell-free mitochondrial DNA in the spent culture medium was observed following cultivation of embryos with resveratrol. These results suggested that vitrification induces mitochondrial damages and that resveratrol may enhance the development of post-warming embryos and activates the degeneration of damaged mitochondria, as indicated by the increase in the cell-free mitochondrial DNA content in the spent culture medium and the decrease in the Mt-number of blastocysts and blastomeres.
Collapse
Affiliation(s)
- Tomotaka Hara
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Airi Kin
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Sogo Aoki
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Shinsuke Nakamura
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|