1
|
Park J, Lee W, Saadelin IM, Bang S, Lee S, Yi J, Cho J. Improved pregnancy rate and sex ratio in fresh/frozen in vivo derived embryo transfer of Hanwoo ( Bos taurus coreanae) cows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:779-791. [PMID: 37970502 PMCID: PMC10640948 DOI: 10.5187/jast.2023.e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023]
Abstract
This study aimed to assess the effects of embryonic developmental stage, quality grade, and fresh or frozen/thawed conditions on the pregnancy rate and sex ratio of live offspring in Hanwoo (Bos taurus coreanae) cows. The quality and developmental stage of in vivo-derived (IVD) transferred embryos were evaluated using the standard criteria of the International Embryo Technology Society. The recipient cows were synchronized using conventional (estradiol benzoate and progesterone) protocols before embryo transfer. Embryos were transferred to 297 cows, and pregnancy was monitored for 60-70 days after embryo transfer. The pregnancy rates of fresh and frozen/thawed embryos were 56.90% and 52.49%, respectively. Pregnancy rates varied according to embryo quality (56.18% for grade 1 vs. 36.67% for grade 2). Pregnancy rates also varied by developmental stage and cryopreservation (67.86% vs. 63.49% for stage 4-1, 64.00% vs. 54.72% for 5-1, and 50.00% vs. 47.83% for 6-1, in fresh embryos vs. frozen/thawed embryos, respectively). For stage 7-1, the pregnancy rates were 72.73% for fresh embryos and 20.00% for frozen/thawed embryos. In 66 fresh embryos, the sex ratio of live offspring was 5:5, whereas it was 4(female):6(male) for frozen/thawed embryos among the 95 frozen/thawed embryos. The miscarriage rate was approximately 3% higher for frozen/thawed embryos than for fresh embryos (18.1% for fresh vs. 21.1% for frozen). Seasonal fertility rates were 33.3% in spring, 55.67% in summer, 52.8% in autumn, 60.0% in winter. The following male-to-female ratios were observed in different seasons: 6.7:3.3 in spring, 4.0:6.0 in summer, 5.5:4.5 in autumn, and 3.3:6.7 in winter. The current data revealed no significant differences in pregnancy rates between fresh and frozen/thawed IVD embryos. However, there was a lower pregnancy rate with advanced-stage frozen/thawed embryos (stage 7-1). The current study provides comprehensive results for the better optimization of embryo transfer in Hanwoo cattle to obtain the desired fertility rate, pregnancy rate, and sex ratio of calves. These results provide important insights into the factors that influence the viability and success of IVD embryo transfer in Hanwoo cows and may have practical applications for improving breeding programs and reducing production costs.
Collapse
Affiliation(s)
- Jihyun Park
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | | | - Islam M. Saadelin
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science,
Hankyong National University, Anseong 17579, Korea
- Gyeonggi Regional Research Center,
Hankyong National University, Anseong 17579, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Korea
| |
Collapse
|
2
|
Yaacobi-Artzi S, Kalo D, Roth Z. Association between the morphokinetics of in-vitro-derived bovine embryos and the transcriptomic profile of the derived blastocysts. PLoS One 2022; 17:e0276642. [PMID: 36288350 PMCID: PMC9604948 DOI: 10.1371/journal.pone.0276642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
The time-lapse system is a non-invasive method that enables a continuous evaluation through embryo development. Here, we examined the association between the morphokinetics of the developing embryo and the transcriptomic profile of the formed blastocysts. Bovine oocytes were matured and fertilized in vitro; then, the putative zygotes were cultured in an incubator equipped with a time-lapse system. Based on the first-cleavage pattern, embryos were categorized as normal or abnormal (68.5±2.2 and 31.6±2.3%, respectively; P<0.001). A cleaved embryo was defined as normal when it first cleaved into two equal blastomeres; it was classified as synchronous or asynchronous according to its subsequent cleavages. An abnormal pattern was defined as direct, unequal, or reverse cleavage. Direct cleavage was classified as division from one cell directly into three or more blastomeres; unequal cleavage was classified as division that resulted in asymmetrically sized blastomeres; and reverse cleavage of the first division was classified as reduced number of blastomeres from two to one. Of the normally cleaving embryos, 60.2±3.1% underwent synchronous cleavage into 4, 8, and 16 blastomeres, and 39.7±3.1% cleaved asynchronously (P<0.001). The blastocyte formation rate was lower for the synchronously vs. the asynchronously cleaved embryos (P<0.03). The abnormally cleaved embryos showed low competence to develop to blastocysts, relative to the normally cleaved embryos (P<0.001). Microarray analysis revealed 895 and 643 differentially expressed genes in blastocysts that developed from synchronously and asynchronously cleaved embryos, respectively, relative to those that developed from directly cleaved embryos. The genes were related to the cell cycle, cell differentiation, metabolism, and apoptosis. About 180 differentially expressed genes were found between the synchronously vs. the asynchronously cleaved embryos, related to metabolism and the apoptosis mechanism. We provide the first evidence indicating that an embryo's morphokinetics is associated with the transcriptome profile of the derived blastocyst, which might be practically relevant for the embryo transfer program.
Collapse
Affiliation(s)
- Shira Yaacobi-Artzi
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Dorit Kalo
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel,* E-mail:
| |
Collapse
|
3
|
Sattar A, Rubessa M, Di Francesco S, Longobardi V, Di Palo R, Zicarelli L, Campanile G, Gasparrini B. The influence of gamete co-incubation length on the in vitro fertility and sex ratio of bovine bulls with different penetration speed. Reprod Domest Anim 2011; 46:1090-7. [PMID: 21535238 DOI: 10.1111/j.1439-0531.2011.01791.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objectives of this work were to evaluate whether the sperm penetration speed is correlated to the in vitro fertility and whether adapting the gamete co-incubation length to the kinetics of the bull improves in vitro fertility and affects the sex ratio. In vitro matured oocytes were co-incubated with spermatozoa from four different bulls (A-D). At various post-insemination (p.i.) times (4, 8, 12, 16 and 20 h), samples of oocytes were fixed and stained with DAPI for nuclei examination, while the remaining ones were transferred into culture to evaluate embryo development. The blastocysts produced were sexed by PCR. Two bulls (A and B) had faster kinetics than the others (C and D), as shown by the higher penetration rates recorded at 4 h p.i. (43%, 30%, 11% and 6%, respectively for bulls A, B, C and D; p<0.01). The differences in the kinetics among bulls did not reflect their in vitro fertility. The incidence of polyspermy was higher for faster penetrating bulls (36%, 24%, 16% and 4%, respectively for bulls A, B, C and D; p<0.01) and at longer co-incubation times (0%, 16%, 19%, 30% and 34%, respectively at 4, 8, 12, 16 and 20 h p.i.; p<0.01). The fertilizing ability of individual bulls may be improved by adapting the co-incubation length to their penetration speed. A sperm-oocyte co-incubation length of 8 h ensured the greatest blastocyst yields for the two faster penetrating bulls. On the contrary, 16 h co-incubation was required to increase (p<0.01) cleavage rate of the two slower bulls. Bulls with a faster kinetics did not alter the embryo sex ratio towards males. The female/male (F/M) ratios recorded were 2.1, 1.4, 1.2, 1.3 and 1.6, respectively at 4, 8, 12, 16 and 20 h p.i.
Collapse
Affiliation(s)
- A Sattar
- DISCIZIA, Faculty of Veterinary Medicine, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Carvalho J, Sartori R, Machado G, Mourão G, Dode M. Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology 2010; 74:1521-30. [DOI: 10.1016/j.theriogenology.2010.06.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 06/05/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
|
5
|
George F, Kerschen D, Van Nuffel A, Rees JF, Donnay I. Plant protein hydrolysates (plant peptones) as substitutes for animal proteins in embryo culture medium. Reprod Fertil Dev 2009; 21:587-98. [DOI: 10.1071/rd08147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 02/06/2009] [Indexed: 11/23/2022] Open
Abstract
The aim of the present study was to improve the sanitary quality of in vitro-produced bovine embryos by using plant protein hydrolysates (plant peptones) as substitutes for animal proteins. Peptones were compared with bovine serum albumin (BSA) as the protein source in synthetic oviduct fluid medium and the quality of the resulting embryos was determined. Two batches of peptones (wheat and cotton) were selected on the basis of their anti-oxidant properties. When added to the culture medium, both peptones (at 0.56 mg mL–1 for cotton peptone and at 0.18 mg mL–1 for wheat peptone) led to similar developmental and hatching rates compared with 4 mg mL–1 BSA and embryos were equally resistant to freezing and able to elongate after transfer. Surprisingly, a significant decrease in reduced glutathione (GSH) content was observed when embryos were produced with plant peptone instead of BSA. Supplementation of the culture medium with precursors of GSH (cysteine and β-mercaptoethanol) significantly increased the GSH content. A shift of the sex ratio towards male embryos was seen for Day 8 embryos cultured with wheat peptone, whereas no shift was observed for embryos cultured in the presence of BSA or polyvinylpyrrolidone. In conclusion, culture with plant peptones enables embryos to be obtained at a similar rate and of similar quality to that seen following the use of BSA. The use of the plant peptones increased the sanitary quality of the embryos and decreased the cost of embryo production.
Collapse
|
6
|
Alomar M, Tasiaux H, Remacle S, George F, Paul D, Donnay I. Kinetics of fertilization and development, and sex ratio of bovine embryos produced using the semen of different bulls. Anim Reprod Sci 2008; 107:48-61. [PMID: 17629423 DOI: 10.1016/j.anireprosci.2007.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/23/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
The between bulls variation in in vitro fertility and the shift of sex ratio towards male embryos are two problems affecting the in vitro production (IVP) of bovine embryos. Our objective was to evaluate the kinetics of fertilization, embryo development and the sex ratio of the resulting embryos using the frozen/thawed semen of four different bulls. In a first experiment, the kinetics of pronucleus (PN) formation was evaluated at 8, 12 and 18 h post-insemination (hpi). Based upon the pronuclei sizes and the distance between the two pronuclei, inseminated oocytes were classified in three PN stages. Differences between bulls were observed at each time point, but were more important at 12 hpi. At 8 and 12 hpi bull III showed a significantly faster PN evolution by comparison with the three other bulls (P<0.05), while at 18 hpi, the proportion of the three PN stages was similar to those of bulls I and IV, bull II being delayed. In a second experiment, the kinetics of in vitro embryo development was compared using time-lapse cinematography. The analysis of embryos reaching the blastocyst stage revealed significant differences in the mean time of first cleavage (range of 22.7-25.6h, P<0.05), while the lengths of the subsequent three cell cycles did not differ between bulls. The early mean time of first cleavage with bull III was associated with an early blastulation and a high blastocyst rate at Day 7, in opposition to what was observed with bull II showing a later timing of first cleavage (first cleavage 22.1 hpi versus 25.5 hpi; blastulation 140.4 hpi versus 152.5 hpi; D7 blastocyst rates: 31.3% versus 21.9%; P<0.05). In a third experiment, 65-76 Day 8 blastocysts per bull were sexed by PCR. Only blastocysts obtained with bull III showed a shift in sex ratio towards male embryos (76% male embryos; P<0.05). Such shift was already observed at the 2-cell and morula stages. In conclusion, the bull influences the kinetics of PN formation, of embryo development and the sex ratio of the embryos. Moreover, those parameters might be related.
Collapse
Affiliation(s)
- M Alomar
- UCL, Institut des Sciences de la Vie, Unité des Sciences vétérinaires, Place Croix du sud 5 Boîte 10, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Feugang JM, Donnay I, Mermillod P, Marchandise J, Lequarre AS. Impact of pro-oxidant agents on the morula-blastocyst transition in bovine embryos. Mol Reprod Dev 2005; 71:339-46. [PMID: 15806560 DOI: 10.1002/mrd.20262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Exposing day 5 bovine morulae to reactive oxygen species induces a delayed degeneration of some blastocysts on day 8 post-insemination (pi) but without affecting the blastocyst rates. The aim of this study was to characterize the resisting and the degenerating population of blastocysts. The kinetics of degeneration of the embryos exposed to the two pro-oxidant agents: 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and buthionine sulfoximine (BSO) was evaluated using time-lapse cinematography. With both agents the first signs of degeneration appeared at day 7.5 pi but the duration of the degeneration process was shorter in presence of AAPH than BSO (4.2 vs. 12.5 hr, ANOVA, P < 0.05). The resisting blastocysts derived from morulae with a larger diameter (mean diameter: 161 vs. 154 microm, ANOVA, P < 0.05) and showed an earlier cavitation (135 vs. 142 hpi, P < 0.05) than the degenerating ones. The profile of protein neosynthesis at day 7 was not affected by the treatment. The proportion of male embryos was more important in the resisting than in the degenerating population (70 vs. 55%, chi2, P < 0.05) especially when the stress was induced by AAPH. The quality of the resisting embryos, measured by the total cell number and the rate of apoptosis, did not seem to be affected when compared to control embryos. In conclusion, resistance to oxidative stress seems related to the kinetics of development and/or the sex of the embryos. Resisting embryos apparently display a quality similar to untreated embryos.
Collapse
Affiliation(s)
- Jean-Magloire Feugang
- Unité des Sciences vétérinaires, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
8
|
Agung B, Otoi T, Abe H, Hoshi H, Murakami M, Karja NWK, Murakami MK, Wongsrikeao P, Watari H, Suzuki T. Relationship between oxygen consumption and sex of bovine in vitro fertilized embryos. Reprod Domest Anim 2005; 40:51-6. [PMID: 15655001 DOI: 10.1111/j.1439-0531.2004.00554.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study was conducted to examine the relationship between the oxygen consumption rate and sex ratio of bovine in vitro fertilized embryos on each day of blastocyst formation. The quality of blastocysts collected on day 7, 8, and 9 after in vitro fertilization (IVF) were categorized as ranks A and B (excellent and good, respectively) based on microscopic observation of the morphology. The oxygen consumption rate and sex of individual blastocysts were evaluated using two novel techniques: scanning electrochemical microscopy (SECM) and loop-mediated isothermal amplification (LAMP), respectively. The oxygen consumption rates of embryos of rank A were significantly higher (p < 0.05) than those of rank B, irrespective of the day of blastocyst appearance after IVF. Neither did the proportion of male embryos of ranks A and B differ significantly from each other at any of the days examined, nor from the average proportion (53%). The oxygen consumption rate of embryos of rank B collected on day 8 was significantly higher (p < 0.05) in female embryos than in male embryos collected on the same day. However, there were no apparent differences of oxygen consumption rates at each day of blastocyst appearance between male and female embryos of rank A. These results indicate that the oxygen consumption rate of individual embryos reflects their quality but does not correlate with the sex ratio of embryos of excellent quality.
Collapse
Affiliation(s)
- B Agung
- Laboratory of Animal Reproduction, Department of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nedambale TL, Dinnyés A, Yang X, Tian XC. Bovine Blastocyst Development In Vitro: Timing, Sex, and Viability Following Vitrification1. Biol Reprod 2004; 71:1671-6. [PMID: 15253921 DOI: 10.1095/biolreprod.104.027987] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Selection of blastocysts based on their morphological characteristics and rate of development in vitro can skew the sex ratios. The aim of this study was to determine whether an embryo's developmental rate affects its survival after vitrification, and whether male and female embryos survive vitrification differently. In vitro fertilized bovine oocytes were cultured in potassium simplex optimized medium (KSOM) + 0.1% BSA for 96 h, and then into KSOM + 1% BSA (KSOM) or in sequential KSOM + 0.1% BSA for 96 h, and then into synthetic oviduct fluid (SOF) + 5% FBS (KSOM-SOF). In part 1 of this study, embryos cultured in each medium that had developed into blastocysts at approximately 144, 156, or 180 h were recovered from culture, graded, and then vitrified. After warming, blastocyst survival rates were immediately evaluated by reexpansion of the blastocoels. In the second part of the study, all blastocysts (n = 191) were sexed by polymerase chain reaction 48 h after warming. When cultured in KSOM medium, more 144-h blastocysts survived vitrification (68%) than blastocysts vitrified at 180 h (49%). Blastocysts derived at 156 h in KSOM-SOF survived vitrification better (87%) than blastocysts vitrified at either 144 h or 180 h, and subsequently hatched at a greater rate than those vitrified at 180 h. The overall blastocyst survival rates did not differ significantly whether embryos were cultured in KSOM or sequential KSOM-SOF. Blastocysts derived at 144 and 156 h in KSOM or KSOM-SOF were predominately male, and significantly more of them survived vitrification 48 h after warming. However, blastocysts cultured in KSOM-SOF, and then vitrified at 180 h were predominately female. Overall, blastocysts that survived vitrification, and subsequently hatched 48 h after warming, were male. In summary, embryos that reached the blastocyst stage earlier were predominantly males; these males had better morphology, endured vitrification, and subsequently hatched at a greater rate than did female blastocysts.
Collapse
Affiliation(s)
- Tshimangadzo L Nedambale
- Center for Regenerative Biology, University of Connecticut, Storrs, 1392 Storrs Road, Connecticut 06269-4243, USA
| | | | | | | |
Collapse
|
10
|
Gardón JC, Agüera S, Castejón F. Sexing in vitro produced bovine embryos, at different stages of development, using rat H-Y antiserum. Theriogenology 2004; 62:35-43. [PMID: 15159099 DOI: 10.1016/j.theriogenology.2003.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Accepted: 05/15/2003] [Indexed: 11/27/2022]
Abstract
The male-specific H-Y antigen is present on mammalian cell membranes and has been identified by various methods, including antiserum cytotoxicity. The objective of the present study was to determine the sex of in vitro produced (IVP) bovine embryos, at varying stages of development, by culturing in the presence of rat monoclonal H-Y antibodies. Embryos derived from IVM/IVF were classified according to the interval after IVF (48, 96 or 120 h) as Category 1, 2 or 3 if they had 4 to 8, <32, and >32 cells, respectively. Embryos of each category were cultured for 24h in TCM-199 supplemented with bovine oviductal epithelial cells, fetal calf serum (FCS), and antibiotics (Control group), to which the following had been added: guinea pig serum (GPS; C' group); H-Y antiserum (HY group); or GPS and H-Y antiserum (C' + HY group). After culture, embryos were designated as "affected" when development was arrested or one or more blastomeres was degenerate; embryos lacking these changes were designated "unaffected." The sex of each embryo was subsequently determined by chromosome analysis. After 48h of IVF (Category 1), within each of the four treatments, the proportion of unaffected embryos was higher than the proportion of unaffected embryos (81% versus 19%, P < 0.05). Similarly, the Control, C' and HY groups of Categories 2 and 3 embryos had different proportions of unaffected versus affected embryos (75% versus 25%, P < 0.05). In all these groups, the male:female ratio did not significantly differ from 1:1. In contrast, in the C' + HY group of Categories 2 and 3 embryos, the ratio of unaffected versus affected embryos was 41% versus 59% (P < 0.05) and the male:female ratio differed (P < 0.05) from the expected 1:1 ratio (approximately 0.3:1 and 4.5:1 for unaffected versus affected, respectively). In conclusion, when bovine embryos were cultured in the presence of rat monoclonal H-Y antibodies and compliment, alterations occurred in embryos that were beyond the 8-cell stage; we inferred that the antibodies cross-reacted with H-Y antigens.
Collapse
Affiliation(s)
- J C Gardón
- Program of Applied Biotechnologies in Animal Reproduction, School of Agrarian Science, National University of Lomas de Zamora, Buenos Aires, Argentina.
| | | | | |
Collapse
|
11
|
Rosenfeld CS, Roberts RM. Maternal diet and other factors affecting offspring sex ratio: a review. Biol Reprod 2004; 71:1063-70. [PMID: 15229140 DOI: 10.1095/biolreprod.104.030890] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammals usually produce approximately equal numbers of sons and daughters, but there are exceptions to this general rule, as has been observed in ruminant ungulate species, where the sex-allocation hypothesis of Trivers and Willard has provided a rational evolutionary underpinning to adaptive changes in sex ratio. Here, we review circumstances whereby ruminants and other mammalian species, especially rodents and primates, appear able to skew the sex ratio of their offspring. We also discuss some of the factors, both nutritional and nonnutritional, that potentially promote such skewing. Work from our laboratory, performed on mice, suggests that age of the mother and maternal diet, rather than the maternal body condition per se, play directive roles in controlling sex ratio. In particular, a diet high in saturated fats but low in carbohydrate leads to the birth of significantly more male than female offspring in mature laboratory mice, whereas when calories are supplied mainly in the form of carbohydrate rather than fat, daughters predominate. As the diets fed to the mice in these experiments were nutritionally complete and because litter sizes did not differ between treatments, dietary inadequacy seems not to be the cause for sex-ratio distortion. A number of mechanisms, all of which are testable, are discussed to provide an explanation for the phenomenon. We conclude the review by discussing potential implications of these observations to human medicine and agriculture.
Collapse
|
12
|
Boediono A, Suzuki T, Godke RA. Comparison of hybrid and purebred in vitro-derived cattle embryos during in vitro culture. Anim Reprod Sci 2003; 78:1-11. [PMID: 12753778 DOI: 10.1016/s0378-4320(03)00065-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Frozen-thawed spermatozoa collected from a beef bull (Japanese Black) were used for in vitro fertilization (IVF) of matured oocytes obtained from dairy (Holstein) and beef (Japanese Black) females. Embryos were examined for fertilization, cleavage rate, interval between insemination and blastocyst production (experiment I), total cell number per embryo and sex ratio during blastocyst formation (experiment II), and blastocyst production rate of zygotes that developed to 2-, 4-, and 8-cell stages at 48h post-fertilization (experiment III). Fertilized oocytes were cultured in vitro on a cumulus cell co-culture system. The fertilization and cleavage rate of oocytes groups were similar, however, the blastocyst production rate was greater (P<0.05) in hybrid than from purebred embryos (27% versus 20%). Development of blastocysts produced from hybrid embryos developed at a faster rate than blastocysts produced from the straightbred embryos. In hybrid embryos, blastocyst production was significantly greater on day 7 (56%) and gradually decreased from 20% on day 8 to 17% on day 9. In contrast, blastocyst production rate from the purebred embryos was lower on day 7 (17%), increasing on day 8 to 59% and then decreased on day 9 to 24%. The total number of cells per embryo and sex ratio of in vitro-produced blastocysts were not different between hybrid and purebred embryos. The number of blastocysts obtained from embryos at the 8-cell stage of development by 48h post-fertilization (94%) was greater (P<0.01) than the number of zygotes producing blastocysts that had developed to the 4-cell stage (4%) and the 2-cell stage (2%) during the same interval. These results show that the blastocyst production rate and developmental rate to the blastocyst stage were different between hybrid and purebred embryos, and that almost all of the in vitro-produced blastocysts were obtained from zygotes that had developed to the 8-cell stage 48h post-fertilization.
Collapse
Affiliation(s)
- A Boediono
- Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | | | | |
Collapse
|
13
|
Wrenzycki C, Lucas-Hahn A, Herrmann D, Lemme E, Korsawe K, Niemann H. In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol Reprod 2002; 66:127-34. [PMID: 11751274 DOI: 10.1095/biolreprod66.1.127] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Equal expression of X-linked genes such as G6PD and PGK in females and males and the initiation of X-chromosome inactivation are critically dependent on the expression of the X-inactive specific transcript (Xist). The objective of the present study was to determine the effects of in vitro production (IVP) and nuclear transfer (NT) on the relative abundance (RA) of the X-linked transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. In experiment 1, sex-determined IVP or in vivo-produced embryos were analyzed for mRNA expression of the 3 genes. The sex ratio was 36% vs. 64% in IVP blastocysts and thus deviated significantly from the expected ratio of 50% in the vivo control group. The RA of G6PD transcripts was significantly higher in female IVP embryos than in male embryos. In contrast, no significant differences were seen between in vivo-derived female embryos and their male counterparts. At the morula stage, female IVP embryos transcribed significantly more PGK mRNA than did male embryos. However, blastocysts did not exhibit significant differences in PGK transcripts. No differences were observed for in vivo-derived embryos with regard to the RA of PGK transcripts. The RA of Xist mRNA was significantly higher in all female embryos than in their male counterparts. In experiment 2, IVP, in vivo-developed, NT-derived, and parthenogenetic embryos carrying two X chromosomes of either maternal and paternal origin or of maternal origin only (parthenogenotes) were analyzed for the RA of the 3 genes. In NT-derived morulae, the RA of G6PD transcripts was significantly increased compared with their IVP and in vivo-generated counterparts. G6PD transcript levels were significantly increased in IVP blastocysts compared with in vivo-generated and parthenogenetic embryos. At the morula stage, PGK transcripts were similar in all groups, but the RA of PGK transcripts was significantly higher in IVP blastocysts than in their in vivo-generated, parthenogenetic, and NT-derived counterparts. The RA of Xist was significantly elevated in NT-derived morulae compared with IVP, in vivo-generated, and parthenogenetic embryos. NT-derived blastocysts showed an increased Xist expression compared with that of IVP, in vivo-generated, and parthenogenetic embryos. Results of the present study show for the first time that differences in X-chromosome-linked gene transcript levels are related to a perturbed dosage compensation in female and male IVP and female NT-derived embryos. This finding warrants further studies to improve IVP systems and NT protocols to ensure the production of embryos with normal gene expression patterns.
Collapse
Affiliation(s)
- C Wrenzycki
- Department of Biotechnology, Institut für Tierzucht und Tierverhalten (FAL), Mariensee, 31535 Neustadt, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Larson MA, Kimura K, Kubisch HM, Roberts RM. Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-tau. Proc Natl Acad Sci U S A 2001; 98:9677-82. [PMID: 11481449 PMCID: PMC55511 DOI: 10.1073/pnas.171305398] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2001] [Indexed: 11/18/2022] Open
Abstract
IFN-tau is a secretory product of trophectoderm of cattle, sheep, and their relatives and is expressed for a few days in early pregnancy after the blastocyst first forms. It serves to alert the mother that she is pregnant. A delayed or less than robust IFN-tau signal is a likely cause of embryonic loss. Here we have determined whether blastocyst production of IFN-tau, which is encoded by a cluster of genes on chromosome 9, differs between the sexes in cattle, as assessed by culture of in vitro-derived embryos on two different media, one complex (tissue culture medium 199 supplemented with serum) with coculture support, the other relatively simple (synthetic oviductal fluid plus albumin). With both media, female blastocysts produced approximately double the amount of IFN-tau as males, regardless of such variables as oocyte batch, blastocyst quality, hatching, and length of time in culture. However, in either tissue culture medium 199, which contains 5.5 mM d-glucose, or in synthetic oviductal fluid, in the presence but not in the absence of added glucose, significantly fewer female than male embryos were able to progress from the morula/early blastocyst stage to more advanced stages of development. It is possible that the differences between male and female embryos both in their production of IFN-tau and in their ability to progress in development in glucose-rich media are manifestations of phenomena that occur in vivo and provide plasticity in embryo selection during early pregnancy.
Collapse
Affiliation(s)
- M A Larson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
15
|
Gutiérrez-Adán A, Lonergan P, Rizos D, Ward FA, Boland MP, Pintado B, de la Fuente J. Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology 2001; 55:1117-26. [PMID: 11322239 DOI: 10.1016/s0093-691x(01)00471-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bovine blastocysts were produced using 6 different systems: 5 commonly used in vitro culture systems (synthetic oviduct fluid medium - SOF- without fetal calf serum, SOF supplemented with 10% serum for the entire culture period, SOF supplemented with 10% serum from Day 4 of culture, M199 coculture with bovine oviduct epithelial cells, M199 coculture with granulosa cell monolayer) and 1 in vivo culture system involving collection of blastocysts from superovulated bovine donors at Day 7. Zygotes obtained from IVM/IVF were assigned randomly to 1 of the 5 systems tested and were cultured for 9 d (Day 0= day of insemination). Cleavage, development to the blastocyst stage and blastocyst sex ratio were assessed in all treatments. In addition, the effect of the IVC system on the kinetics of blastocyst development and sex ratio was assessed on Days 6, 7, 8, and 9. The presence of fetal calf serum in SOF not only resulted in faster development (19.1% of blastocysts in SOF supplemented with serum vs 7.1% in absence of serum at Day 6; P < 0.05) and increased blastocyst production (47.5% of blastocysts in SOF supplemented with serum vs 34.4% in absence of serum; P < 0.05) but it also enhanced overall male survival. The coculture systems produced fewer blastocysts than culture in SOF (27.6 to 28.3% in coculture vs 47.5% in SOF supplemented with serum; P < 0.05), but similar to SOF without fetal calf serum, they had no effect on blastocyst sex ratio.
Collapse
Affiliation(s)
- A Gutiérrez-Adán
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Although sexual dimorphic development in the mammalian embryo prior to differentiation of the gonad has been documented, there are many seemingly conflicting observations and gaps in our understanding of this process. Conditions that influence the process include gamete interaction, that might give one sex and advantage in the fertilization process and in rates of blastomere cleavage that would allow one sex to accumulate cells at a faster rate. In this scenario, males could accumulate more cells within a defined window of development. Another key difference between males and females is the number of copies of genes located on the sex chromosomes. Transcripts from the Y-chromosome are thought to function as transcription factors, which could accelerate development. Conversely, the X-chromosome contains genes that code for rate limiting steps in pathways key to embryo metabolism and stress reduction. It can be envisioned that prior to X-chromosome inactivation in females, elevated levels of transcripts for such genes may enable greater protection from environmental stress and regulate growth. As we gain a better understanding of how males and female develop we will be able to exert greater control over the manipulation of the sex ratio for the offspring of domestic animals.
Collapse
Affiliation(s)
- H P Kochhar
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada NIG 2W1
| | | | | |
Collapse
|
17
|
Beyhan Z, Johnson LA, First NL. Sexual dimorphism in IVM-IVF bovine embryos produced from X and Y chromosome-bearing spermatozoa sorted by high speed flow cytometry. Theriogenology 1999; 52:35-48. [PMID: 10734404 DOI: 10.1016/s0093-691x(99)00108-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of this study was to examine preimplantation development and sperm aster characteristics of bovine male and female embryos produced by using spermatozoa sorted for the X or Y chromosome. In vitro matured oocytes were inseminated at 24 h of maturation with sorted X or Y chromosome-bearing spermatozoa, using either fresh or frozen-thawed semen. Samples were taken from each sperm group 12 h post insemination (hpi), fixed, and immunostained for the microtubule cytoskeleton. Confocal microscopy enabled visualization of sperm aster formation and microtubule characteristics of each zygote during early fertilization. Cultured embryos were checked for cleavage at 30, 35, 40 and 45 hpi, embryo development was examined daily until Day 8 of culture. Blastocyst cell numbers were determined at the end of the experiments. Reanalysis of the sorted sperm cells for DNA content showed purity rates of 90.1 and 92.1% for X and Y chromosome-bearing spermatozoa, respectively. Reduced fertilization and development rates were observed when sorted spermatozoa were used compared with fresh and frozen-thawed spermatozoa. Penetration rates at 12 hpi were 39.5, 44.7, 55.9 and 79.0%, while blastocyst formation rates at Day 8 were 26.7, 26.5, 31.7 and 40.7% for X and Y chromosome-bearing spermatozoa, using fresh and frozen-thawed semen groups, respectively. Sperm aster size was larger in males than females, while the size of pronuclei and subjective grade of sperm aster quality showed no differences between sexes. In this study, a greater cleavage rate and sperm aster size in male embryos indicated a dimorphic pattern of development in male and female embryos during fertilization and first cleavage.
Collapse
Affiliation(s)
- Z Beyhan
- University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
18
|
Holm P, Shukri NN, Vajta G, Booth P, Bendixen C, Callesen H. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology 1998; 50:1285-99. [PMID: 10734442 DOI: 10.1016/s0093-691x(98)00227-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The development of bovine IVP-embryos was observed in a time-lapse culture system to determine cell cycle lengths of 1) embryos that developed into compact morulae (CM) or blastocysts (BL) within 174 h after insemination (viable), 2) embryos that arrested during earlier stages (nonviable) and 3) male and female embryos. In 4 replicates, inseminated oocytes were cultured on a microscope stage in 3 to 4 groups on a granulosa cell monolayer in supplemented TCM 199. Images were sequentially recorded and stored at 30-min intervals. All embryos that could be identified throughout the culture period were included (n = 392), and the times of cleavage events noted. After culture, 100 CM or BL were randomly selected for sexing by PCR. BL developed equally well in the time-lapse and control culture systems (36 vs 38%). The respective lengths of the first 4 cell cycles of viable embryos were 32.0 +/- 3.9, 8.8 +/- 1.6, 10.8 +/- 4.7 and 47.7 +/- 11.8 h. The subsequent intervals between the 9- to 16-cell, early morula, CM and BL stages lasted 16.2 to 18.2 h. Blastomeres of 2-, 4- and 8-cell embryos cleaved asynchronously with < 1, 2.6 +/- 2.5 and 9.2 +/- 4.5 h intervals, respectively, between the first and last blastomere to cleave. The interval from insemination to tight compaction and formation of a blastocoel was 128.4 +/- 10.7 and 145.8 +/- 12.5 h, respectively. The first 3 cell cycles were approximately 3 h shorter (P < 0.1) while the fourth cycle was 5 h shorter (P = 0.06) for the viable vs nonviable embryos. On this basis it was possible to define time windows in which the proportion of viable 2-, 3- to 4-, 5- to 8- and 9- to 16- cell embryos were at their highest. No differences were found between the cleavage intervals of male and female embryos. We conclude 1) that the time-lapse culture system allows for detailed observation of the developmental kinetics of several embryo groups at the same time, and 2) that these embryos can be manipulated at the end of culture, thus allowing a linkage between early cleavage events and other developmental parameters such as embryo sex or viability after transfer.
Collapse
Affiliation(s)
- P Holm
- Embryo Technology Center, Danish Institute of Agricultural Sciences, Tjele, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Pegoraro LM, Thuard JM, Delalleau N, Guérin B, Deschamps JC, Marquant Le Guienne B, Humblot P. Comparison of sex ratio and cell number of IVM-IVF bovine blastocysts co-cultured with bovine oviduct epithelial cells or with Vero cells. Theriogenology 1998; 49:1579-90. [PMID: 10732021 DOI: 10.1016/s0093-691x(98)00103-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influence of 2 co-culture systems (BOEC and Vero cells) on the development rates, quality grades and sex ratios of IVM-IVF bovine embryos were studied. Zygotes obtained after IVF were co-cultured in each co-culture system for 7 and 8 d (Day 0 = day of insemination) in B2 medium. No effect of the co-culture system was observed on development rates measured on Days 7 and 8. However, Vero cell co-culture had a positive influence on embryo quality. Irrespective of their sex, embryos produced on Vero cells showed higher cells number than those co-cultured on BOEC (103.4 +/- 3.8 and 97 +/- 8.12 for BOEC vs 113.7 +/- 3.5 and 114 +/- 5.9 for Vero cells at Days 7 and 8, respectively; P < 0.05). The percentage of male embryos was increased in the two co-culture systems (60.7% males for BOEC; P < 0.05 vs 63% males for Vero cells; P < 0.01) on Day 7. In both co-culture systems the increase in the percentage of males was more obvious for embryos reaching the most advanced stage (expanded blastocysts). The results show that Vero cells improved the quality grade of bovine embryos produced in vitro, and thus are recommended for use as a safe co-culture system that does not contain pathogens.
Collapse
Affiliation(s)
- L M Pegoraro
- UNCEIA Services techniques, Maisons Alfort, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Catt S, O'Brien J, Maxwell W, Evans G. Effects of rate of development of in vitro-produced ovine embryos on sex ratio and in vivo survival after embryo transfer. Theriogenology 1997. [DOI: 10.1016/s0093-691x(97)00378-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Krackow S. Further evaluation of the developmental asynchrony hypothesis of sex ratio variation. Appl Anim Behav Sci 1997. [DOI: 10.1016/s0168-1591(96)01107-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Gutiérrez-Adán A, Behboodi E, Andersen GB, Medrano JF, Murray JD. Relationship between stage of development and sex of bovine IVM-IVF embryos cultured in vitro versus in the sheep oviduct. Theriogenology 1996; 46:515-25. [PMID: 16727919 DOI: 10.1016/0093-691x(96)00173-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/1995] [Accepted: 11/22/1995] [Indexed: 01/01/2023]
Abstract
We have confirmed more rapid development of male compared with female in vitro-cultured bovine embryos during the first 7 d after in vitro fertilization. The male-to-female sex ratio of expanded blastocysts after 10 d of in vitro culture was 1.37:1.00, which was significantly different from the expected 1:1 ratio, but no deviation from a 1:1 ratio was observed for male and female expanded blastocysts derived from culture of bovine embryos in the sheep oviduct (1.11:1.00). When embryos that developed only to the morula stage were analyzed for sex, a greater number of female than male bovine embryos was observed from in vitro culture but not after culture in the sheep oviduct. Possible causes of these sex-related differences in development of cultured bovine embryos are discussed.
Collapse
Affiliation(s)
- A Gutiérrez-Adán
- Department of Animal Science, University of California, Davis, CA 95616-8521, USA
| | | | | | | | | |
Collapse
|
23
|
Soom A, Kruif A. Oocyte Maturation, Sperm Capacitation and Pre-implantation Development in the Bovine: Implications for in vitro Production of Embryos. Reprod Domest Anim 1996. [DOI: 10.1111/j.1439-0531.1996.tb01441.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
|