1
|
Vachher M, Sen A, Kapila R, Nigam A. Microbial therapeutic enzymes: A promising area of biopharmaceuticals. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
2
|
Abstract
Aspergilli have been widely used in the production of organic acids, enzymes, and secondary metabolites for almost a century. Today, several GRAS (generally recognized as safe) Aspergillus species hold a central role in the field of industrial biotechnology with multiple profitable applications. Since the 1990s, research has focused on the use of Aspergillus species in the development of cell factories for the production of recombinant proteins mainly due to their natively high secretion capacity. Advances in the Aspergillus-specific molecular toolkit and combination of several engineering strategies (e.g., protease-deficient strains and fusions to carrier proteins) resulted in strains able to generate high titers of recombinant fungal proteins. However, the production of non-fungal proteins appears to still be inefficient due to bottlenecks in fungal expression and secretion machinery. After a brief overview of the different heterologous expression systems currently available, this review focuses on the filamentous fungi belonging to the genus Aspergillus and their use in recombinant protein production. We describe key steps in protein synthesis and secretion that may limit production efficiency in Aspergillus systems and present genetic engineering approaches and bioprocessing strategies that have been adopted in order to improve recombinant protein titers and expand the potential of Aspergilli as competitive production platforms.
Collapse
|
3
|
Ercan D, Demirci A. Recent advances for the production and recovery methods of lysozyme. Crit Rev Biotechnol 2015; 36:1078-1088. [PMID: 26383819 DOI: 10.3109/07388551.2015.1084263] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysozyme is an antimicrobial peptide with a high enzymatic activity and positive charges. Therefore, it has applications in food and pharmaceutical industries as an antimicrobial agent. Lysozyme is ubiquitous in both animal and plant kingdoms. Currently, egg-white lysozyme is the most commercially available form of lysozyme. The main concerns of egg-white lysozyme are high recovery cost, low activity and most importantly the immunological problems to some people. Therefore, human lysozyme production has gained importance in recent years. Scientists have developed transgenic plants, animals and microorganisms that can produce human lysozyme. Out of these, microbial production has advantages for commercial productions, because high production levels are achievable in a relatively short time. It has been reported that fermentation parameters, such as pH, temperature, aeration, are key factors to increase the effectiveness of the human lysozyme production. Moreover, purification of the lysozyme from the fermentation broth needs to be optimized for the economical production. In conclusion, this review paper covers the mechanism of lysozyme, its sources, production methods and recovery of lysozyme.
Collapse
Affiliation(s)
- Duygu Ercan
- a Department of Agricultural and Biological Engineering , The Pennsylvania State University, University Park , Pennsylvania , USA and
| | - Ali Demirci
- a Department of Agricultural and Biological Engineering , The Pennsylvania State University, University Park , Pennsylvania , USA and.,b The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park , Pennsylvania , USA
| |
Collapse
|
4
|
Ercan D, Demirci A. Production of human lysozyme in biofilm reactor and optimization of growth parameters of Kluyveromyces lactis K7. Appl Microbiol Biotechnol 2013; 97:6211-21. [PMID: 23657582 DOI: 10.1007/s00253-013-4944-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/01/2013] [Accepted: 04/22/2013] [Indexed: 11/26/2022]
Abstract
Lysozyme (1,4-β-N-acetylmuramidase) is a lytic enzyme, which degrades the bacterial cell wall. Lysozyme has been of interest in medicine, cosmetics, and food industries because of its anti-bactericidal effect. Kluyveromyces lactis K7 is a genetically modified organism that expresses human lysozyme. There is a need to improve the human lysozyme production by K. lactis K7 to make the human lysozyme more affordable. Biofilm reactor provides high biomass by including a solid support, which microorganisms grow around and within. Therefore, the aim of this study was to produce the human lysozyme in biofilm reactor and optimize the growth conditions of K. lactis K7 for the human lysozyme production in biofilm reactor with plastic composite support (PCS). The PCS, which includes polypropylene, soybean hull, soybean flour, bovine albumin, and salts, was selected based on biofilm formation on PCS (CFU/g), human lysozyme production (U/ml), and absorption of lysozyme inside the support. To find the optimum combination of growth parameters, a three-factor Box-Behnken design of response surface method was used. The results suggested that the optimum conditions for biomass and lysozyme productions were different (27 °C, pH 6, 1.33 vvm for biomass production; 25 °C, pH 4, no aeration for lysozyme production). Then, different pH and aeration shift strategies were tested to increase the biomass at the first step and then secrete the lysozyme after the shift. As a result, the lysozyme production amount (141 U/ml) at 25 °C without pH and aeration control was significantly higher than the lysozyme amount at evaluated pH and aeration shift conditions (p < 0.05).
Collapse
Affiliation(s)
- Duygu Ercan
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
5
|
Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL. Metabolic flux analysis for optimizing the specific growth rate of recombinant Aspergillus niger. Bioprocess Biosyst Eng 2007; 30:397-418. [PMID: 17629794 DOI: 10.1007/s00449-007-0136-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
A comprehensive metabolic network comprising three intracellular compartments (cytoplasm, mitochondrion and peroxisome) was developed for Aspergillus niger. The metabolic flux network includes carbohydrate and amino acid metabolism in both anabolic and catabolic reactions. Linear programming was used for the optimization of the specific growth rates in combination with 37 measured input and output fluxes of the key metabolites to evaluate corresponding intracellular flux distributions throughout the batch fermentations. Logarithmic sensitivity analysis revealed that the addition of proline, alanine and glutamate benefited growth in defined media. The experimental observations and flux analysis showed that tyrosine was a potential candidate for biomass production improvement. Model predictions was verified by conducting batch and fed-batch fermentations and it was found that the addition of the four amino acids according to the predetermined schedule resulted in a 44 and 41% improvements in biomass and recombinant protein productions, respectively.
Collapse
Affiliation(s)
- R Gheshlaghi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| | | | | | | |
Collapse
|
6
|
Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A, Fukuda H. Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng 2006; 101:328-33. [PMID: 16716941 DOI: 10.1263/jbb.101.328] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 01/12/2006] [Indexed: 11/17/2022]
Abstract
To identify the lipase responsible for the methanolysis activity of fungus whole-cell biocatalysts, the lipase localization of Rhizopus oryzae cells was determined. Western blot analysis showed that R. oryzae cells produce two types of lipase with different molecular masses of 34 and 31 kDa; the former (ROL34) was bound to the cell wall, whereas the latter (ROL31) was mainly bound to the cell membrane. It was found that cell immobilization within reticulated polyurethane foam biomass support particles strongly inhibits the secretion of membrane-bound lipase into the culture medium. An investigation of the relationship between ROL34 and ROL31 suggested that ROL31 originates from the cleavage of a 28-amino-acid residue at the N-terminus of ROL34. The addition of olive oil to the culture medium led to the retention of increased amounts of lipase within the cell. This phenomenon was further confirmed by an immunofluorescence labeling of hyphal cells. When cells were cultivated with various substrate-related compounds, such as olive oil and oleic acid, the intracellular methanolysis activity strongly correlated with the relative amounts of the membrane-bound lipase, which suggests that ROL31 localized in the membrane plays a crucial role in the methanolysis activity of R. oryzae cells.
Collapse
Affiliation(s)
- Shinji Hama
- Department of Molecular Science and Material Engineering, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Weenink XO, Punt PJ, van den Hondel CAMJJ, Ram AFJ. A new method for screening and isolation of hypersecretion mutants in Aspergillus niger. Appl Microbiol Biotechnol 2006; 69:711-7. [PMID: 16021486 DOI: 10.1007/s00253-005-0013-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/21/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
Although filamentous fungi have a unique property of secreting a large amount of homologous extracellular proteins, the use of filamentous fungi as hosts for the production of heterologous proteins is limited because of the low production levels that are generally reached. Here, we report a general screening method for the isolation of mutants with increased protein production levels. The screening method makes use of an Aspergillus niger strain that lacks the two major amylolytic enzymes, glucoamylase (GlaA) and acid amylase (AamA). The double-mutant strain grows poorly on starch and its growth is restored after reintroducing the catalytic part of the glucoamylase gene (GlaA512). We show that the fusion of a heterologous protein, a laccase from Pleurotus ostreatus (Pox2), to the catalytic part of glucoamylase (GlaA512-Pox2) severely hampers efficient production of the glucoamylase protein, resulting in a slow-growth phenotype on starch. Laccase-hypersecreting mutants were obtained by isolating mutants that displayed improved growth on starch plates. The mutant with the highest growth rate on starch displayed the highest laccase activity, indicating that increased glucoamylase protein levels are correlated with higher laccase production levels. In principle, our method can be applied to any low-produced heterologous protein that is secreted as a fusion with the glucoamylase protein.
Collapse
Affiliation(s)
- Xavier O Weenink
- Clusius Laboratory, Fungal Genetics Research Group, Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
| | | | | | | |
Collapse
|
8
|
Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL. Medium optimization for hen egg white lysozyme production by recombinant Aspergillus niger using statistical methods. Biotechnol Bioeng 2005; 90:754-60. [PMID: 15806549 DOI: 10.1002/bit.20474] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Statistics-based experimental design was used to investigate the effect of medium components (starch, peptone, ammonium sulfate, yeast extract, and CaCl2.2H2O) on hen's egg white lysozyme production by Aspergillus niger HEWL WT-13-16. A 2(5-1) fractional factorial design augmented with center points revealed that peptone, starch, and ammonium sulfate were the most significant factors, whereas the other factors were not important within the levels tested. The method of steepest ascent was used to approach the proximity of optimum. This task was followed by a central composite design to develop a response surface for medium optimization. The optimum medium composition for lysozyme production was found to be: starch 34 g L-1, peptone 34 g L-1, ammonium sulfate 11.9 g L-1, yeast extract 0.5 g L-1, and CaCl2.2H2O 0.5 g L-1. This medium was projected to produce, theoretically, 212 mg L-1 lysozyme. Using this medium, an experimental maximum lysozyme concentration of 209+/-18 mg L-1 verified the applied methodology.
Collapse
Affiliation(s)
- R Gheshlaghi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada.
| | | | | | | |
Collapse
|
9
|
Al-Sheikh H, Watson AJ, Lacey GA, Punt PJ, MacKenzie DA, Jeenes DJ, Pakula T, Penttilä M, Alcocer MJC, Archer DB. Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Mol Microbiol 2004; 53:1731-42. [PMID: 15341651 DOI: 10.1111/j.1365-2958.2004.04236.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a new endoplasmic reticulum (ER)-associated stress response in the filamentous fungus Aspergillus niger. The inhibition of protein folding within the ER leads to cellular responses known collectively as the unfolded protein response (UPR) and we show that the selective transcriptional downregulation of the gene encoding glucoamylase, a major secreted protein, but not two non-secreted proteins, is an additional consequence of ER stress. The transcriptional downregulation effect is shown by nuclear run-on studies to be at the level of transcription, rather than mRNA stability, and is found to be mediated through the promoter of glaA in a region more than 1 kb upstream of the translational start. The inhibition of protein folding in the ER can be induced in a variety of ways. We examined the effects of dithiothreitol (DTT), a reducing agent that causes the formation of unfolded proteins. Although a general downregulation of transcription was seen with DTT treatment, we show that selective downregulation was observed with the glaA gene compared with genes encoding the non-secreted proteins gamma-actin and glyceraldehyde 3'-phosphate dehydrogenase. The DTT-treated fungal cells also showed evidence for the induction of the UPR because expression of bipA and pdiA, encoding an ER-resident chaperone and foldase, respectively, are upregulated and splicing of hacA, the gene encoding the transcription factor responsible for induction of the UPR, occurs allowing the production of an active HacA protein. As a preliminary attempt to investigate if the transcriptional downregulation effect was mediated through HacA (i.e. part of the UPR), we examined ER stress induced through antisense technology to lower the level of PDI in the ER of A. niger. Although the transcription of glaA was attenuated in that strain of A. niger, UPR was not evident, suggesting that the transcriptional downregulation mechanism is controlled differently from the UPR.
Collapse
Affiliation(s)
- Hashem Al-Sheikh
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang L, Ridgway D, Gu T, Moo-Young M. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnol Adv 2004; 23:115-29. [PMID: 15694123 DOI: 10.1016/j.biotechadv.2004.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 11/15/2004] [Accepted: 11/17/2004] [Indexed: 11/24/2022]
Abstract
Filamentous fungi have long been used for the production of metabolites and enzymes. With developments in genetic engineering and molecular biology, filamentous fungi have also achieved increased attention as hosts for recombinant DNA. However, the production levels of non-fungal proteins are usually low. Despite the achievements obtained using molecular tools, the heterologous protein loss caused by extracellular fungal protease degradation persists. This review provides an overview of the potential bioprocessing strategies that can be applied to inhibit protease activity thereby enhancing heterologous protein production.
Collapse
Affiliation(s)
- Liping Wang
- Department of Chemical Engineering, Ohio University, Athens, OH 45701, USA
| | | | | | | |
Collapse
|
11
|
Parra R, Aldred D, Magan N. A novel immobilised design for the production of the heterologous protein lysozyme by a genetically engineered Aspergillus niger strain. Appl Microbiol Biotechnol 2004; 67:336-44. [PMID: 15480630 DOI: 10.1007/s00253-004-1742-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 08/19/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
A novel immobilisation design for increasing the final concentration of the heterologous protein lysozyme by a genetically engineered fungus, Aspergillus niger B1, was developed. A central composition design was used to investigate different immobilised polymer types (alginate and pectate), polymer concentration [24% and 4% (w/v)], inoculum support ratios (1:2 and 1:4) and gel-inducing agent concentration [CaCl(2), 2% and 3.5% (w/v)]. Studies of the kinetics of production showed that optimum lysozyme productivity occurred after 10 days. Lysozyme production was significantly affected by polymer type, polymer concentration, and inoculum support ratio. Overall, immobilisation in Ca-pectate resulted in higher lysozyme production compared to that in Ca-alginate. Similar effects were observed when the polymer concentration was reduced. Regardless of polymer type and concentration, increasing the fungal inoculum level increased lysozyme production. A significantly higher lysozyme yield was achieved with Ca-pectate in comparison to Ca-alginate (approximately 20-23 mg l(-1) and 0.5-2 mg l(-1), respectively). The maximum lysozyme yield achieved was about 23 mg l(-1) by immobilisation in Ca-pectate 2% (w/v) with 33% (v/v) mycelium and 3.5% (w/v) gel-inducing agent (CaCl(2)). Response surface methodology was used to investigate the effect of pH and water activity (a(w)). The best medium pH was 4.5-5.0, and bead a(w) for optimum lysozyme yield was 0.94, regardless of polymer type.
Collapse
Affiliation(s)
- Roberto Parra
- Applied Mycology Group, Institute of BioScience and Technology, Cranfield University, Silsoe, Bedford MK45 4DT, UK
| | | | | |
Collapse
|
12
|
Effects of oxidative stress on production of heterologous and native protein, and culture morphology in batch and chemostat cultures of Aspergillus niger (B1-D). Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Du LX, Jia SJ, Lu FP. Morphological changes of Rhizopus chinesis 12 in submerged culture and its relationship with antibiotic production. Process Biochem 2003. [DOI: 10.1016/s0032-9592(02)00089-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Higashiyama K, Fujikawa S, Park EY, Shimizu S. Production of arachidonic acid byMortierella fungi. BIOTECHNOL BIOPROC E 2002. [DOI: 10.1007/bf02932833] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Gordon CL, Archer DB, Jeenes DJ, Doonan JH, Wells B, Trinci AP, Robson GD. A glucoamylase::GFP gene fusion to study protein secretion by individual hyphae of Aspergillus niger. J Microbiol Methods 2000; 42:39-48. [PMID: 11000429 DOI: 10.1016/s0167-7012(00)00170-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although Aspergillus niger is used as a host for heterologous protein production, yields are generally lower than those obtained for homologous proteins. Mechanisms of protein secretion and the secretory pathway in filamentous fungi are poorly characterised, although there is evidence to suggest that secretion occurs by a mechanism similar to that in other eukaryotes, but with proteins destined for secretion being directed to the hyphal tip. We report on a method using a glucoamylase: GFP gene fusion which allows us for the first time to monitor, in vivo, protein secretion in A. niger at the single hyphal level. A synthetic green fluorescent protein (sGFP(S65T)) was fused to truncated A. niger glucoamylase (GLA:499). Southern blot analysis of transformants confirmed that the gene fusion had successfully integrated into the A. niger genome. Confocal and fluorescence microscopy revealed that the GLA::GFP fusion protein is fluorescent in A. niger and appears to be directed to the hyphal tip. In young mycelia, hyphal cell wall fluorescence is apparent and immunogold labelling of GFP confirmed that GFP was partially localised within the hyphal cell wall. Using Western blotting, extracellular GLA::GFP was detected only in culture filtrates of young mycelia grown in a soya milk medium. The actin inhibitor latrunculin B was used to disrupt the secretion process, and its effects on the distribution of GLA::GFP were monitored.
Collapse
Affiliation(s)
- C L Gordon
- 1.800 Stopford Building, School of Biological Sciences, University of Manchester, M13 9PT, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
MacKenzie DA, Jeenes DJ, Gou X, Archer DB. Molecular basis of glucoamylase overproduction by a mutagenised industrial strain of Aspergillus niger. Enzyme Microb Technol 2000; 26:193-200. [PMID: 10689077 DOI: 10.1016/s0141-0229(99)00145-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have compared a mutagenized strain of Aspergillus niger (S1), used industrially for glucoamylase production, and a related low glucoamylase-producing strain (S2) with a laboratory strain of A. niger (AB4.1). Our aim was to assess the properties of S1 in relation to the laboratory strain and to account at the molecular level for the basis of its glucoamylase overproduction. Both S1 and S2 have similar multiple copies of the glucoamylase-encoding gene (glaA) but only S1 has enhanced glaA transcript and glucoamylase levels compared to AB4.1 that has a single copy of the glaA gene. Glucoamylase production by S1 and AB4.1 was repressed by xylose and induced by starch but, in S2, remained unaffected by carbon source. S1 also secreted elevated levels of alpha-amylase relative to both S2 and AB4.1 but the production of alpha-glucosidase was low in all three strains. The gene encoding aspergillopepsin (pepA), an abundant secreted aspartyl protease, was present as a single copy in all strains but no aspergillopepsin could be detected by Western blotting in either S1 or S2 culture supernatants. We conclude that A. niger strain improvement by mutagenesis and screening for glucoamylase overproduction has led to glaA gene multiplication and an expression defect in the pepA gene.
Collapse
Affiliation(s)
- DA MacKenzie
- Division of Food Safety Science, Institute of Food Research, Norwich Research Park, Colney, Norwich, UK
| | | | | | | |
Collapse
|
17
|
Gordon CL, Khalaj V, Ram AFJ, Archer DB, Brookman JL, Trinci APJ, Jeenes DJ, Doonan JH, Wells B, Punt PJ, van den Hondel CAMJJ, Robson GD. Glucoamylase::green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):415-426. [PMID: 10708380 DOI: 10.1099/00221287-146-2-415] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A glucoamylase::green fluorescent protein fusion (GLA::sGFP) was constructed which allows the green fluorescent protein to be used as an in vivo reporter of protein secretion in Aspergillus niger. Two secretory fusions were designed for secretion of GLA::sGFP which employed slightly different lengths of the glucoamylase protein (GLA499 and GLA514). Expression of GLA::sGFP revealed that fluorescence was localized in the hyphal cell walls and septa, and that fluorescence was most intense at hyphal apices. Extracellular GLA::sGFP was detectable by Western blotting only in the supernatant of young cultures grown in soya milk medium. In older cultures, acidification of the medium and induction of proteases were probably responsible for the loss of extracellular and cell wall fluorescence and the inability to detect GLA::sGFP by Western analysis. A strain containing the GLA::sGFP construct was subjected to UV mutagenesis and survivors screened for mutations in the general secretory pathway. Three mutants were isolated that were unable to form a halo on either starch or gelatin medium. All three mutants grew poorly compared to the parental strain. Fluorescence microscopy revealed that for two of the mutants, GLA::sGFP accumulated intracellularly with no evidence of wall fluorescence, whereas for the third mutant, wall fluorescence was observed with no evidence of intracellular accumulation. These results indicate that the GLA::sGFP fusion constructs can be used as convenient fluorescent markers to study the dynamics of protein secretion in vivo and as a tool in the isolation of mutants in the general secretory pathway.
Collapse
Affiliation(s)
- Caroline L Gordon
- School of Biological Sciences, Stopford Building, University of Manchester, Manchester M13 9PT, UK1
| | - Vahid Khalaj
- School of Biological Sciences, Stopford Building, University of Manchester, Manchester M13 9PT, UK1
| | - Arthur F J Ram
- Centre for Phytotechnology, Institute for Molecular Plant Sciences, Clusius Laboratory, Wassenaarseweg 64, 2333 Al Leiden, The Netherlands2
| | - David B Archer
- Department of Genetics and Microbiology, Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA, UK3
| | - Jayne L Brookman
- School of Biological Sciences, Stopford Building, University of Manchester, Manchester M13 9PT, UK1
| | - Anthony P J Trinci
- School of Biological Sciences, Stopford Building, University of Manchester, Manchester M13 9PT, UK1
| | - David J Jeenes
- Department of Genetics and Microbiology, Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA, UK3
| | - John H Doonan
- Department of Cell Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK5
| | - Brian Wells
- Department of Cell Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK5
| | - Peter J Punt
- TNO Nutrition and Food Research Institute, Department of Molecular Genetics and Gene Technology, Utrechtseweg 48, PO Box 360, 3700 AJ Zeist, The Netherlands4
| | - Cees A M J J van den Hondel
- TNO Nutrition and Food Research Institute, Department of Molecular Genetics and Gene Technology, Utrechtseweg 48, PO Box 360, 3700 AJ Zeist, The Netherlands4
| | - Geoffrey D Robson
- School of Biological Sciences, Stopford Building, University of Manchester, Manchester M13 9PT, UK1
| |
Collapse
|
18
|
Ngiam C, Jeenes DJ, Punt PJ, Van Den Hondel CA, Archer DB. Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger. Appl Environ Microbiol 2000; 66:775-82. [PMID: 10653750 PMCID: PMC91895 DOI: 10.1128/aem.66.2.775-782.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein disulfide isomerase (PDI) is important in assisting the folding and maturation of secretory proteins in eukaryotes. A gene, pdiA, encoding PDIA was previously isolated from Aspergillus niger, and we report its functional characterization here. Functional analysis of PDIA showed that it catalyzes the refolding of denatured and reduced RNase A. pdiA also complemented PDI function in a Saccharomyces cerevisiae Deltapdi1 mutant in a yeast-based killer toxin assay. Levels of pdiA mRNA and PDIA protein were raised by the accumulation of unfolded proteins in the endoplasmic reticulum. This response of pdiA mRNA levels was slower and lower in magnitude than that of A. niger bipA, suggesting that the induction of pdiA is not part of the primary stress response. An increased level of pdiA transcripts was also observed in two A. niger strains overproducing a heterologous protein, hen egg white lysozyme (HEWL). Although overexpression of PDI has been successful in increasing yields of some heterologous proteins in S. cerevisiae, overexpression of PDIA did not increase secreted yields of HEWL in A. niger, suggesting that PDIA itself is not limiting for secretion of this protein. Downregulation of pdiA by antisense mRNA reduced the levels of microsomal PDIA activity by up to 50%, lowered the level of PDIA as judged by Western blots, and lowered the secreted levels of glucoamylase by 60 to 70%.
Collapse
Affiliation(s)
- C Ngiam
- Division of Food Safety Sciences, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Bocking SP, Wiebe MG, Robson GD, Hansen K, Christiansen LH, Trinci AP. Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol Bioeng 1999; 65:638-48. [PMID: 10550770 DOI: 10.1002/(sici)1097-0290(19991220)65:6<638::aid-bit4>3.0.co;2-k] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Highly branched mutants of two strains of Aspergillus oryzae (IFO4177, which produces alpha-amylase, and a transformant of IFO4177 [AMG#13], which produces heterologous glucoamylase in addition to alpha-amylase) were generated by UV or nitrous acid mutagenesis. Four mutants of the parental strain (IFO4177), which were 10 to 50% more branched than the parental strain, were studied in stirred batch culture and no differences were observed in either the amount or the rate of enzyme production. Five mutants of the transformed parental strain (AMG#13), which were 20 to 58% more branched than the parental strain, were studied in either batch, fed-batch or continuous culture. In batch culture, three of the mutants produced more glucoamylase than the transformed parental strain, although only two mutants produced more glucoamylase and alpha-amylase combined. No increase in enzyme production was observed in either chemostat or fed-batch culture. Cultures of highly branched mutants were less viscous than those of the parental and transformed parental strains. A linear relationship was found between the degree of branching (measured as hyphal growth unit length) and culture viscosity (measured as the torque exerted on the rheometer impeller) for these strains. DOT-controlled fed-batch cultures (in which the medium feed rate was determined by the DOT) were thus inoculated with either the transformed parent or highly branched mutants of the transformed parent to determine whether the reduced viscosity would improve aeration and give higher enzyme yields. The average rate of medium addition was higher for the two highly branched mutants (ca. 8.3 g medium h(-1)) than for the parental strain (5.7 g medium h(-1)). Specific enzyme production in the DOT controlled fed-batch cultures was similar for all three strains (approx. 0.24 g alpha-amylase and glucoamylase [g of biomass](-1)), but one of the highly branched mutants made more total enzyme (24.3 +/- 0.2 g alpha-amylase and glucoamylase) than the parental strain (21.7 +/- 0.4 g alpha-amylase and glucoamylase).
Collapse
Affiliation(s)
- S P Bocking
- 1.800 Stopford Building, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
20
|
Mainwaring DO, Wiebe MG, Robson GD, Goldrick M, Jeenes DJ, Archer DB, Trinci AP. Effect of pH on hen egg white lysozyme production and evolution of a recombinant strain of Aspergillus niger. J Biotechnol 1999; 75:1-10. [PMID: 10510855 DOI: 10.1016/s0168-1656(99)00123-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An Aspergillus niger strain (B1) transformed to produce mature hen egg white lysozyme (HEWL) from a glucoamylase fusion protein under control of the A. niger glucoamylase promoter was grown in glucose-limited chemostat culture at a dilution rate of 0.07 h-1 at various pH values. Maximum HEWL production (9.3 mg g-1; specific production rate = 0.65 mg g-1 per h) was obtained at pH 4.5. However, in chemostat culture, HEWL production was not stable at any pH tested. After 240 h in steady state, specific production decreased to only 0.03 +/- 0.01 and 0.24 +/- 0.02 mg g-1 per h at pH 6.5 and 4.5, respectively. Some isolates removed from the chemostat cultures had lost copies of the HEWL gene and when grown in shake flask cultures all of the isolates produced less HEWL than the parental strain. Morphological mutants with similar phenotypes were isolated at all pHs, but their rate of increase in the population was pH dependent, with cultures at low pH (< 4.5) being more morphologically stable than cultures at high (> 4.5) pH. The selective advantage of these mutants was also generally dependent on pH. Both yellow pigment producing mutants and brown sporulation mutants had higher selective advantages over the parental strain at high than at low pH, regardless of the pH at which they were isolated. However, the selective advantage of densely sporulating mutants was independent of pH.
Collapse
Affiliation(s)
- D O Mainwaring
- University of Manchester, School of Biological Sciences, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Higashiyama K, Murakami K, Tsujimura H, Matsumoto N, Fujikawa S. Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S-4. Biotechnol Bioeng 1999; 63:442-8. [PMID: 10099624 DOI: 10.1002/(sici)1097-0290(19990520)63:4<442::aid-bit7>3.0.co;2-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Arachidonic acid (AA) production by Mortierella alpina 1S-4 was investigated using a 50-L fermentor. In order to optimize the dissolved oxygen (DO) concentration and to investigate the effect of DO on morphology, cultivation was carried out under constant DO at various levels in the range of 3-50 ppm. To maintain a DO concentration above 7 ppm, two methods, i.e., the oxygen-enrichment (OE) method (experimental range, 25-90% oxygen gas supplied) and the pressurization (PR) method (experimental range, 180-380 kPa headspace pressure), were used. As a result, the optimum DO concentration range was found to be 10-15 ppm. In this optimum DO concentration range, the AA yield was enhanced about 1.6-fold compared to that obtained at 7 ppm DO, and there was no difference in the AA productivity between the OE and PR methods. When the DO concentration was maintained at 20-50 ppm using the OE method, the morphology changed from filaments to pellets, and the AA yield decreased drastically because of stress due to the limited mass transfer through the pellet wall. When the DO concentration was maintained at 15-20 ppm using the PR method, the morphology did not change, and the AA yield decreased gradually.
Collapse
Affiliation(s)
- K Higashiyama
- Institute for Fundamental Research, Suntory Ltd., Yamazaki 5-2-5, Shimamoto-cho, Mishima-gun, Osaka 618-0001, Japan.
| | | | | | | | | |
Collapse
|
22
|
Goller SP, Schoisswohl D, Baron M, Parriche M, Kubicek CP. Role of endoproteolytic dibasic proprotein processing in maturation of secretory proteins in Trichoderma reesei. Appl Environ Microbiol 1998; 64:3202-8. [PMID: 9726860 PMCID: PMC106710 DOI: 10.1128/aem.64.9.3202-3208.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 06/14/1998] [Indexed: 11/20/2022] Open
Abstract
Cell extracts of Trichoderma reesei exhibited dibasic endopeptidase activity toward the carboxylic side of KR, RR, and PR sequences. This activity was stimulated by the presence of Ca2+ ions and localized in vesicles of low bouyant density; it therefore exhibited some similarity to yeast Kex2. Analytical chromatofocusing revealed a single peak of activity. The dibasic endopeptidase activity was strongly and irreversibly inhibited in vitro as well as in vivo by 1 mM p-amidinophenylmethylsulfonyl fluoride (pAPMSF) but not by PMSF at concentrations up to 5 mM. We therefore used pAPMSF to study the role of the dibasic endopeptidase in the secretion of protein by T. reesei. Secretion of xylanase I (proprotein processing sequence -R-R- downward arrow-R- downward arrow-A-) and xylanase II (-K-R- downward arrow-Q-) was strongly inhibited by 1 mM pAPMSF, and a larger, unprocessed enzyme form was detected intracellularly under these conditions. Secretion of cellobiohydrolase II (CBH II; -E-R- downward arrow-Q-) was only slightly inhibited by pAPMSF, and no accumulation of unprocessed precursors was detected. In contrast, secretion of CBH I (-R-A- downward arrow-Q-) was stimulated by pAPMSF addition, and a simultaneous decrease in the concentration of intracellular CBH I was detected. Similar experiments were also carried out with a single heterologous protein, ShBLE, the phleomycin-binding protein from Streptoalloteichus hindustanus, fused to a series of model proprotein-processing sequences downstream of the expression signals of the Aspergillus nidulans gpdA promoter. Consistent with the results obtained with homologous proteins, pAPMSF inhibited the secretion of ShBLE with fusions containing dibasic (RK and KR) target sequences, but it even stimulated secretion in fusions to LR, NHA, and EHA target sequences. Addition of 5 mM PMSF, a nonspecific inhibitor of serine protease, nonspecifically inhibited the secretion of heterologous proteins from fusions bearing the NHA and LR targets. These data point to the existence of different endoproteolytic proprotein processing enzymes in T. reesei and demonstrate that dibasic processing is obligatory for the secretion of the proproteins containing this target.
Collapse
Affiliation(s)
- S P Goller
- Institute for Biochemical Technology and Microbiology, Technische Universität Wien, A-1060 Vienna, Austria
| | | | | | | | | |
Collapse
|
23
|
O'Herrin SM, Kulkarni S, Kenealy WR, Fechner JH, Sollinger H, Schneck JP, Burlingham WJ. Expression of human recombinant beta 2-microglobulin by Aspergillus nidulans and its activity. Hum Immunol 1996; 51:63-72. [PMID: 8960907 DOI: 10.1016/s0198-8859(96)00224-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The light chain of HLA class I protein (beta 2m) has been expressed in Aspergillus nidulans. The cDNA of beta 2m was modified using the polymerase chain reaction to include overlapping extensions for its subsequent fusion into an Aspergillus vector. This fusion resulted in beta 2m cDNA being flanked by the Aspergillus awamori glucoamylase promoter and the Aspergillus niger glucoamylase terminator. Expression of beta 2m was induced by the addition of starch to the culture medium. In preliminary mass culture trials, 177 micrograms/liter of f beta 2m were obtained in 60-liter fermentations. N-terminal sequencing of purified human beta 2m produced in fungi (f beta 2m) revealed that 28% of the purified protein was of proper sequence and 61% of the protein had an additional serine and lysine residue derived from the C-terminus of the fungal leader. Purified f beta 2m from culture supernatants appeared biochemically similar to beta 2m obtained from human urine (u beta 2m) as seen in immunoblot analysis. Functionally, f beta 2m effectively interacted as a subunit of class I MHC molecules. This was seen both in a sandwich ELISA for detecting properly folded HLA class I heavy chain and in assays showing cell-surface beta 2m exchange into the mouse class I MHC H-2Kd. In these experiments the biological activity of f beta 2m was indistinguishable from u beta 2m. The successful expression of biologically active beta 2m in A. nidulans suggests that fungal systems might be useful for the production of other active components of the HLA class I MHC complex.
Collapse
Affiliation(s)
- S M O'Herrin
- Department of Surgery, University of Wisconsin-Madison 53792, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
MacKenzie DA, Spencer JA, Le Gal-Coëffet MF, Archer DB. Efficient production from Aspergillus niger of a heterologous protein and an individual protein domain, heavy isotope-labelled, for structure-function analysis. J Biotechnol 1996; 46:85-93. [PMID: 8672288 DOI: 10.1016/0168-1656(95)00179-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aspergillus niger has been used successfully to secrete proteins labelled with 13C and/or 15N to a specific activity of > 99% for high resolution NMR analysis. In the case of a heterologous protein, hen egg-white lysozyme, 15N single-labelled and 13C, 15N double-labelled forms were secreted at yields of 100-200 mg l-1 by optimising the type of carbon source used and the ratio of carbon to nitrogen. Another protein, the glucoamylase starch-binding domain from A. niger, was also produced as the 15N single-labelled form at 20-40 mg l-1.
Collapse
Affiliation(s)
- D A MacKenzie
- Institute of Food Research, Norwich Research Park, Colney, UK
| | | | | | | |
Collapse
|
25
|
Archer DB, MacKenzie DA, Ridout MJ. Heterologous protein secretion by Aspergillus niger growing in submerged culture as dispersed or aggregated mycelia. Appl Microbiol Biotechnol 1995; 44:157-60. [PMID: 8579829 DOI: 10.1007/bf00164495] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The secreted production of a heterologous enzyme, hen egg-white lysozyme, by Aspergillus niger was studied in shake flasks containing media of different initial viscosities. Raising the viscosity of the medium by addition of polyvinylpyrrolidone (PVP) brought about a transition in the form of growth from aggregated mycelia (pellets) to dispersed mycelia. The specific yield of lysozyme in cultures containing an initial concentration of 5% (w/v) starch was 8 mg lysozyme/g dry weight. Addition of 2% (w/v) PVP to the medium resulted in a specific yield of 14 mg lysozyme/g dry weight.
Collapse
Affiliation(s)
- D B Archer
- Institute of Food Research, Colney, Norwich, UK
| | | | | |
Collapse
|
26
|
Le Gal-Coëffet MF, Jacks AJ, Sorimachi K, Williamson MP, Williamson G, Archer DB. Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:561-7. [PMID: 7588802 DOI: 10.1111/j.1432-1033.1995.561_2.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucoamylase 1 from Aspergillus niger is an economically important enzyme in many industrial processes. It hydrolyses granular starch and comprises two distinct domains, a catalytic and a starch-binding domain (SBD). We have transformed A. niger with an expression vector for the secretion of SBD for physico-chemical studies. This was achieved by introducing into the glucoamylase gene a short sequence encoding an endoproteolytic cleavage recognition site such that free SBD was secreted at yields up to 200 mg/l. Free SBD was also obtained by proteolytic digestion of full-length glucoamylase 1. Electrospray mass spectroscopy was used to determine the carbohydrate content of both SBDs. It revealed that the engineered one is more glycosylated: an average of three mannose residues compared to one for the proteolytically derived SBD. Sequencing results also suggest partial glycosylation for the three Thr residues involved (510, 511, 513). It is probable that the engineered SBD represents the true glycosylation level of the SBD in native glucoamylase. Binding of beta-cyclodextrin to the SBD was investigated. It was found that the stoichiometry and the spectral perturbation of Trp residues were identical for both SBDs, but the engineered SBD bound less strongly to the ligand. At high concentrations of beta-cyclodextrin relative to the estimated Kd values, the maximum absorbance changes were identical. The observed difference at low beta-cyclodextrin levels was probably due to the higher level of glycosylation of the expressed SBD. We conclude that the proteolytically derived and expressed starch binding domains both bind 2 mol beta-cyclodextrin/mol protein, but that the pattern of glycosylation and strength of binding are different.
Collapse
Affiliation(s)
- M F Le Gal-Coëffet
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | | | |
Collapse
|