1
|
Kang IJ, Park Y, Roh E, Lee JH. Novel Single Nucleotide Variations Alter Pathogenicity in Korean Isolates of Erwinia amylovora. PLANT DISEASE 2024; 108:1174-1178. [PMID: 38105454 DOI: 10.1094/pdis-09-23-1836-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Erwinia amylovora, the causal agent of fire blight disease, has become a serious threat to the pome fruit industry in Korea since 2015. In this study, we showed that two new isolates of E. amylovora, Ea17-2187 and Ea19-7, obtained from pear orchards in Anseong, Korea, exhibited unique pathogenicity compared with other isolates thus far. Both were nonpathogenic to immature apple fruits but occasionally caused disease on immature pear fruits at varying reduced rates. Bioinformatic analyses revealed that their genomes are highly similar to those of the type strains TS3128 and ATCC49946 but have different mutations in essential virulence regulatory genes. Ea17-2187 has a single nucleotide substitution in rcsC, which encodes the core components of the Rcs system that activates the exopolysaccharide amylovoran production. In contrast, Ea19-7 contains a single nucleotide insertion in hrpL, which encodes a master regulator of the type III secretion system. In both cases, the mutation can cause premature termination and production of truncated gene products, disrupting virulence regulation. Introduction of the nonmutated rcsC and hrpL genes into Ea17-2187 and Ea19-7, respectively, fully recovered pathogenicity, comparable with that of TS3128; hence, these mutations were responsible for the altered pathogenicity observed. Interestingly, virulence assays on immature pear fruits showed that the hrpL mutant of Ea19-7 was still pathogenic, although its virulence level was markedly reduced. Taken together, these results suggest that the two new isolates might act as opportunistic pathogens or cheaters and that some Korean isolates might have evolved to acquire alternative pathways for activating pathogenicity factors.
Collapse
Affiliation(s)
- In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon 16613, Korea
| | - Yejin Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agricultural Science, Rural Development Administration, Wanju 55364, Korea
| | - Jae Hoon Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Kharadi RR, Hsueh BY, Waters CM, Sundin GW. pGpG-signaling regulates virulence and global transcriptomic targets in Erwinia amylovora. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575434. [PMID: 38260453 PMCID: PMC10802605 DOI: 10.1101/2024.01.12.575434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cyclic-di-GMP (c-di-GMP) is a critical bacterial second messenger that enables the physiological phase transition in Erwinia amylovora, the phytopathogenic bacterium that causes fire blight disease. C-di-GMP generation is dependent on diguanylate cyclase enzymes while the degradation of c-di-GMP can occur through the action of phosphodiesterase (PDE) enzymes that contain an active EAL and/or a HD-GYP domain. The HD-GYP-type PDEs, which are absent in E. amylovora, can directly degrade c-di-GMP into two GMP molecules. PDEs that contain an active EAL domain, as found in all active PDEs in E. amylovora, degrade c-di-GMP into pGpG. The signaling function of pGpG is not fully understood in bacterial systems. A transcriptomic approach revealed that elevated levels of pGpG in E. amylovora impacted several genes involved in metabolic and regulatory functions including several type III secretion and extracellular appendage related genes. The heterologous overexpression of an EAL or HD-GYP-type PDE in different background E. amylovora strains with varying c-di-GMP levels revealed that in contrast to the generation of pGpG, the direct breakdown of c-di-GMP into GMP by the HD-GYP-type PDE led to an elevation in amylovoran production and biofilm formation despite a decrease in c-di-GMP levels. The breakdown of c-di-GMP into pGpG (as opposed to GTP) also led to a decrease in virulence in apple shoots. The expression of hrpS was significantly increased in response to the breakdown of c-di-GMP into pGpG. Further, our model suggests that a balance in the intracellular ratio of pGpG and c-di-GMP is essential for biofilm regulation in E. amylovora.
Collapse
Affiliation(s)
- Roshni R. Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Brian Y. Hsueh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - George W. Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Besarab NV, Letarova MA, Babenko VV, Belalov IS, Golomidova AK, Kulikov EE, Lagonenko AL, Evtushenkov AN, Letarov AV. The metastable associations of bacteriophages and Erwinia amylovora. Arch Microbiol 2023; 205:214. [PMID: 37129715 DOI: 10.1007/s00203-023-03550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Bacteriophages are often considered as possible agents of biological control of unwanted bacterial populations in medicine, agriculture and food industry. Although the virulent phages can efficiently kill the infected host cells but at the population level phage attack not always leads to the host population collapse but may result in establishment of a more or less stable co-existence. The mechanism of the long-term stabilization of the mixed phage-host cultures is poorly understood. Here we describe bacteriophages VyarbaL and Hena2, the members of the Molineuxvirinae and the Ounavirinae subfamilies, respectively, that are able to form the pseudolysogenic associations (PA) with their host Erwinia amylovora 1/79Sm on solid media. These PAs were stable through multiple passages. The phenomenon of the PA formation between a bacterial culture and bacteriophages decreases the effectiveness of bacteriophage-mediated biological control agents based on lytic bacteriophages.
Collapse
Affiliation(s)
- Natalya V Besarab
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimisty Ave., 4, 220030, Minsk, Belarus.
| | - Maria A Letarova
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of Microbiology, Pr. 60-Letiya Oktyabrya 7 Bld. 2, 117312, Moscow, Russia
| | - Vladislav V Babenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ilya S Belalov
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of Microbiology, Pr. 60-Letiya Oktyabrya 7 Bld. 2, 117312, Moscow, Russia
| | - Alla K Golomidova
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of Microbiology, Pr. 60-Letiya Oktyabrya 7 Bld. 2, 117312, Moscow, Russia
| | - Eugene E Kulikov
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of Microbiology, Pr. 60-Letiya Oktyabrya 7 Bld. 2, 117312, Moscow, Russia
| | - Alexander L Lagonenko
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimisty Ave., 4, 220030, Minsk, Belarus
| | - Anatoly N Evtushenkov
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimisty Ave., 4, 220030, Minsk, Belarus
| | - Andrey V Letarov
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of Microbiology, Pr. 60-Letiya Oktyabrya 7 Bld. 2, 117312, Moscow, Russia
| |
Collapse
|
4
|
Tao Y, Ge Y, Yang J, Song W, Jin D, Lin H, Zheng H, Lu S, Luo W, Huang Y, Zhuang Z, Xu J. A novel phytopathogen Erwinia sorbitola sp. nov., isolated from the feces of ruddy shelducks. Front Cell Infect Microbiol 2023; 13:1109634. [PMID: 36875519 PMCID: PMC9978198 DOI: 10.3389/fcimb.2023.1109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
The species in the genus Erwinia are Gram-stain-negative, facultatively anaerobic, motile, and rod-shaped. Most species in the genus Erwinia are phytopathogens. Also, Erwinia persicina was involved in several human infections. Based on the reverse microbial etiology principles, it is worth analyzing the pathogenicity of species in this genus. In this study, we isolated and sequenced two species of Erwinia. Phylogenetic, phenotypic, biochemical, and chemotaxonomic analyses were performed to identify its taxonomy position. The virulence tests on plant leaves and pear fruits were used to identify the plant pathogenicity of two species of Erwinia. Bioinformatic methods predicted the possible pathogenic determinants based on the genome sequence. Meanwhile, adhesion, invasion, and cytotoxicity assays on RAW 264.7 cells were applied to identify animal pathogenicity. We isolated two Gram-stain-negative, facultatively anaerobic, motile, and rod-shaped strains from the feces of ruddy shelducks in the Tibet Plateau of China, designated J780T and J316. Distinct phylogenetic, genomic, phenotypic, biochemical, and chemotaxonomic characters of J780T and J316 identified they were novel species and belonged to the genus Erwinia, for which the name Erwinia sorbitola sp. nov. was proposed, the type strain was J780T (= CGMCC 1.17334T = GDMCC 1.1666T = JCM 33839T). Virulence tests showed blight and rot on the leaves and pear fruits confirmed Erwinia sorbitola sp. nov. was a phytopathogen. Predicted gene clusters of motility, biofilm formation, exopolysaccharides, stress survival, siderophores, and Type VI secretion system might be the causes of pathogenicity. In addition, predicted polysaccharide biosynthesis gene clusters on the genome sequence, and the high capacity for adhesion, invasion, and cytotoxicity to animal cells confirmed it has pathogenicity on animals. In conclusion, we isolated and identified a novel phytopathogen Erwinia sorbitola sp. nov. in ruddy shelducks. A predefined pathogen is beneficial for preventing from suffering potential economic losses caused by this new pathogen.
Collapse
Affiliation(s)
- Yuanmeihui Tao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yajun Ge
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Weitao Song
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenbo Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Proteomic Research Center, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhenhong Zhuang, ; Jianguo Xu,
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Research Institute of Public Health, Nankai University, Tianjin, China
- *Correspondence: Zhenhong Zhuang, ; Jianguo Xu,
| |
Collapse
|
5
|
Besarab NV, Letarov AV, Kulikov EE, Babenko VV, Belalov IS, Lagonenko AL, Golomidova AK, Evtushenkov AN. Two novel Erwinia amylovora bacteriophages, Loshitsa2 and Micant, isolated in Belarus. Arch Virol 2022; 167:2633-2642. [PMID: 36207555 DOI: 10.1007/s00705-022-05601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
The complete genomes of the new Erwinia amylovora bacteriophages Loshitsa2 and Micant are 43,092 bp and 43,028 bp long, respectively, encode 51 putative proteins, and have two tRNA genes. Comparative analysis with representatives of the class Caudoviricetes suggests that bacteriophages Loshitsa2 and Micant are related to LIMElight bacteriophage belonging to the family Autographiviridae and could be proposed to be members of a novel subfamily.
Collapse
Affiliation(s)
- Natalya V Besarab
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimisty Ave., 4, 220030, Minsk, Belarus.
| | - Andrey V Letarov
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of microbiology, pr. 60-letiya Oktyabrya 7 bld. 2, 117312, Moscow, Russia
| | - Eugene E Kulikov
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of microbiology, pr. 60-letiya Oktyabrya 7 bld. 2, 117312, Moscow, Russia
| | - Vladislav V Babenko
- GENOMIC Research and Computational Biology Lab, FSCC of Physico-Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Ilya S Belalov
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of microbiology, pr. 60-letiya Oktyabrya 7 bld. 2, 117312, Moscow, Russia
| | - Alexander L Lagonenko
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimisty Ave., 4, 220030, Minsk, Belarus
| | - Alla K Golomidova
- Research Center of Biotechnology of Russian Academy of Sciences, Winogradsky Institute of microbiology, pr. 60-letiya Oktyabrya 7 bld. 2, 117312, Moscow, Russia
| | - Anatoly N Evtushenkov
- Department of Molecular Biology, Faculty of Biology, Belarusian State University, Nezavisimisty Ave., 4, 220030, Minsk, Belarus
| |
Collapse
|
6
|
Yuan X, Eldred LI, Sundin GW. Exopolysaccharides amylovoran and levan contribute to sliding motility in the fire blight pathogen Erwinia amylovora. Environ Microbiol 2022; 24:4738-4754. [PMID: 36054324 PMCID: PMC9826367 DOI: 10.1111/1462-2920.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Erwinia amylovora, the causative agent of fire blight, uses flagella-based motilities to translocate to host plant natural openings; however, little is known about how this bacterium migrates systemically in the apoplast. Here, we reveal a novel surface motility mechanism, defined as sliding, in E. amylovora. Deletion of flagella assembly genes did not affect this movement, whereas deletion of biosynthesis genes for the exopolysaccharides (EPSs) amylovoran and levan resulted in non-sliding phenotypes. Since EPS production generates osmotic pressure that potentially powers sliding, we validated this mechanism by demonstrating that water potential positively contributes to sliding. In addition, no sliding was observed when the water potential of the surface was lower than -0.5 MPa. Sliding is a passive motility mechanism. We further show that the force of gravity plays a critical role in directing E. amylovora sliding on unconfined surfaces but has a negligible effect when cells are sliding in confined microcapillaries, in which EPS-dependent osmotic pressure acts as the main force. Although amylovoran and levan are both required for sliding, we demonstrate that they exhibit different roles in bacterial communities. In summary, our study provides fundamental knowledge for a better understanding of mechanisms that drive bacterial sliding motility.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Lauren I. Eldred
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
7
|
Knecht LE, Born Y, Pelludat C, Pothier JF, Smits THM, Loessner MJ, Fieseler L. Spontaneous Resistance of Erwinia amylovora Against Bacteriophage Y2 Affects Infectivity of Multiple Phages. Front Microbiol 2022; 13:908346. [PMID: 35979490 PMCID: PMC9376448 DOI: 10.3389/fmicb.2022.908346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Broad application of antibiotics gave rise to increasing numbers of antibiotic resistant bacteria. Therefore, effective alternatives are currently investigated. Bacteriophages, natural predators of bacteria, could work as such an alternative. Although phages can be highly effective at eliminating specific bacteria, phage resistance can be observed after application. The nature of this resistance, however, can differ depending on the phage. Exposing Erwinia amylovora CFBP 1430, the causative agent of fire blight, to the different phages Bue1, L1, S2, S6, or M7 led to transient resistance. The bacteria reversed to a phage sensitive state after the phage was eliminated. When wild type bacteria were incubated with Y2, permanently resistant colonies (1430Y2R) formed spontaneously. In addition, 1430Y2R revealed cross-resistance against other phages (Bue1) or lowered the efficiency of plating (L1, S2, and S6). Pull down experiments revealed that Y2 is no longer able to bind to the mutant suggesting mutation or masking of the Y2 receptor. Other phages tested were still able to bind to 1430Y2R. Bue1 was observed to still adsorb to the mutant, but no host lysis was found. These findings indicated that, in addition to the alterations of the Y2 receptor, the 1430Y2R mutant might block phage attack at different stage of infection. Whole genome sequencing of 1430Y2R revealed a deletion in the gene with the locus tag EAMY_2231. The gene, which encodes a putative galactosyltransferase, was truncated due to the resulting frameshift. The mutant 1430Y2R was monitored for potential defects or fitness loss. Weaker growth was observed in LB medium compared to the wild type but not in minimal medium. Strain 1430Y2R was still highly virulent in blossoms even though amylovoran production was observed to be reduced. Additionally, LPS structures were analyzed and were clearly shown to be altered in the mutant. Complementation of the truncated EAMY_2231 in trans restored the wild type phenotype. The truncation of EAMY_2231 can therefore be associated with manifold modifications in 1430Y2R, which can affect different phages simultaneously.
Collapse
Affiliation(s)
- Leandra E. Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- *Correspondence: Lars Fieseler,
| |
Collapse
|
8
|
Lee J, Choi J, Lee J, Cho Y, Kang IJ, Han SW. Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions. THE PLANT PATHOLOGY JOURNAL 2022; 38:410-416. [PMID: 35953061 PMCID: PMC9372105 DOI: 10.5423/ppj.nt.05.2022.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.
Collapse
Affiliation(s)
- Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Junhyeok Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jeongwook Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Yongmin Cho
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
9
|
Schachterle JK, Gdanetz K, Pandya I, Sundin GW. Identification of novel virulence factors in Erwinia amylovora through temporal transcriptomic analysis of infected apple flowers under field conditions. MOLECULAR PLANT PATHOLOGY 2022; 23:855-869. [PMID: 35246928 PMCID: PMC9104256 DOI: 10.1111/mpp.13199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The enterobacterial pathogen Erwinia amylovora uses multiple virulence-associated traits to cause fire blight, a devastating disease of apple and pear trees. Many virulence-associated phenotypes have been studied that are critical for virulence and pathogenicity. Despite the in vitro testing that has revealed how these systems are transcriptionally regulated, information on when and where in infected tissues these genes are being expressed is lacking. Here, we used a high-throughput sequencing approach to characterize the transcriptome of E. amylovora during disease progression on apple flowers under field infection conditions. We report that type III secretion system genes and flagellar genes are strongly co-expressed. Likewise, genes involved in biosynthesis of the exopolysaccharide amylovoran and sorbitol utilization had similar expression patterns. We further identified a group of 16 genes whose expression is increased and maintained at high levels throughout disease progression across time and tissues. We chose five of these genes for mutational analysis and observed that deletion mutants lacking these genes all display reduced symptom development on apple shoots. Furthermore, these induced genes were over-represented for genes involved in sulphur metabolism and cycling, suggesting the possibility of an important role for maintenance of oxidative homeostasis during apple flower infection.
Collapse
Affiliation(s)
- Jeffrey K. Schachterle
- Genetics and Genome Sciences ProgramMichigan State UniversityEast LansingMIUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
- Present address:
USDAARS, Cereal Crops Research UnitFargoNDUSA
| | - Kristi Gdanetz
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - Ishani Pandya
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| | - George W. Sundin
- Genetics and Genome Sciences ProgramMichigan State UniversityEast LansingMIUSA
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
10
|
The RNA-Binding Protein ProQ Impacts Exopolysaccharide Biosynthesis and Second Messenger Cyclic di-GMP Signaling in the Fire Blight Pathogen Erwinia amylovora. Appl Environ Microbiol 2022; 88:e0023922. [PMID: 35416685 DOI: 10.1128/aem.00239-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora is a plant-pathogenic bacterium that causes fire blight disease in many economically important plants, including apples and pears. This bacterium produces three exopolysaccharides (EPSs), amylovoran, levan, and cellulose, and forms biofilms in host plant vascular tissues, which are crucial for pathogenesis. Here, we demonstrate that ProQ, a conserved bacterial RNA chaperone, was required for the virulence of E. amylovora in apple shoots and for biofilm formation in planta. In vitro experiments revealed that the deletion of proQ increased the production of amylovoran and cellulose. Prc is a putative periplasmic protease, and the prc gene is located adjacent to proQ. We found that Prc and the associated lipoprotein NlpI negatively affected amylovoran production, whereas Spr, a peptidoglycan hydrolase degraded by Prc, positively regulated amylovoran. Since the prc promoter is likely located within proQ, our data showed that proQ deletion significantly reduced the prc mRNA levels. We used a genome-wide transposon mutagenesis experiment to uncover the involvement of the bacterial second messenger c-di-GMP in ProQ-mediated cellulose production. The deletion of proQ resulted in elevated intracellular c-di-GMP levels and cellulose production, which were restored to wild-type levels by deleting genes encoding c-di-GMP biosynthesis enzymes. Moreover, ProQ positively affected the mRNA levels of genes encoding c-di-GMP-degrading phosphodiesterase enzymes via a mechanism independent of mRNA decay. In summary, our study revealed a detailed function of E. amylovora ProQ in coordinating cellulose biosynthesis and, for the first time, linked ProQ with c-di-GMP metabolism and also uncovered a role of Prc in the regulation of amylovoran production. IMPORTANCE Fire blight, caused by the bacterium Erwinia amylovora, is an important disease affecting many rosaceous plants, including apple and pear, that can lead to devastating economic losses worldwide. Similar to many xylem-invading pathogens, E. amylovora forms biofilms that rely on the production of exopolysaccharides (EPSs). In this paper, we identified the RNA-binding protein ProQ as an important virulence regulator. ProQ played a central role in controlling the production of EPSs and participated in the regulation of several conserved bacterial signal transduction pathways, including the second messenger c-di-GMP and the periplasmic protease Prc-mediated systems. Since ProQ has recently been recognized as a global posttranscriptional regulator in many bacteria, these findings provide new insights into multitiered regulatory mechanisms for the precise control of virulence factor production in bacterial pathogens.
Collapse
|
11
|
Fontana R, Macchi G, Caproni A, Sicurella M, Buratto M, Salvatori F, Pappadà M, Manfredini S, Baldisserotto A, Marconi P. Control of Erwinia amylovora Growth by Moringa oleifera Leaf Extracts: In Vitro and in Planta Effects. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070957. [PMID: 35406937 PMCID: PMC9003111 DOI: 10.3390/plants11070957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora (EA) is a phytopathogenic bacterium, the causative agent of bacterial fire blight, a disease that affects Rosaceaes. In order to replace antibiotics and copper, the antimicrobial activity of three extracts of Moringa oleifera Lam., methanolic (MeOH-MOE), hydroalcoholic (HA-MOE) and hydroalcoholic with maltodextrins (HAMD-MOE), was tested on eleven strains of EA isolated from apple trees by the Emilia-Romagna Phytosanitary Department. MIC and MBC have been evaluated; biofilm formation, swarming motility and amylovoran production were performed with the crystalviolet, soft-agar assay and the amylovoran method. All extracts demonstrated bacteriostatic activity at a concentration of 1 mg/mL, resulting in a 80% reduction in biofilm formation. HAMD-MOE, MeOH-MOE and HA-MOE caused an inhibition of motility of 60%, 65% and 30% after 6 days and a decrease in amylovoran synthesis of 84%, 63% and 93%, respectively. In planta results showed how the compounds were able to inhibit EA virulence on apple trees, mainly if they were applied as a preventive treatment, although the treatment showed a significant reduction in fire blight symptoms progression. The antibacterial activity of the extracts is mainly due to the high concentration of polyphenolic compounds detected in the extracts that was able to alter the permeability of bacterial membrane, resulting in slowing the synthesis of ATP and consequently of all ATP-dependent functions, such as motility and less selectivity towards harmful compounds, which can, thus, enter the cytoplasm and inhibit enzymes involved in replication and quorum sensing. The efficacy, eco-compatibility and low cost make such extracts a potential tool for the control of bacterial fire blight.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Giovanna Macchi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Mattia Buratto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Francesca Salvatori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Mariangela Pappadà
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| |
Collapse
|
12
|
Knecht LE, Heinrich N, Born Y, Felder K, Pelludat C, Loessner MJ, Fieseler L. Bacteriophage S6 requires bacterial cellulose for Erwinia amylovora infection. Environ Microbiol 2022; 24:3436-3450. [PMID: 35289468 DOI: 10.1111/1462-2920.15973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023]
Abstract
Bacteriophages are highly selective in targeting bacteria. This selectivity relies on the specific adsorption of phages to the host cell surface. In this study, a Tn5 transposon mutant library of Erwinia amylovora, the causative agent of fire blight, was screened to identify bacterial receptors required for infection by the podovirus S6. Phage S6 was unable to infect mutants with defects in the bacterial cellulose synthase operon (bcs). The Bcs complex produces and secretes bacterial cellulose, an extracellular polysaccharide associated with bacterial biofilms. Deletion of the bcs operon or associated genes (bcsA, bcsC and bcsZ) verified the crucial role of bacterial cellulose for S6 infection. Application of the cellulose binding dye Congo Red blocked infection by S6. We demonstrate that infective S6 virions degraded cellulose and that Gp95, a phage-encoded cellulase, is involved to catalyse the reaction. In planta S6 did not significantly inhibit fire blight symptom development. Moreover, deletion of bcs genes in E. amylovora did not affect bacterial virulence in blossom infections, indicating that sole application of cellulose targeting phages is less appropriate to biologically control E. amylovora. The interplay between cellulose synthesis, host cell infection and maintenance of the host cell population is discussed.
Collapse
Affiliation(s)
- Leandra E Knecht
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland.,Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Nadine Heinrich
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Yannick Born
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Katja Felder
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Cosima Pelludat
- Agroscope, Plant Pathology and Zoology in Fruit and Vegetable Production, Wädenswil, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Lars Fieseler
- Food Microbiology Research Group, Institute of Food and Beverage Innovation, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
13
|
Chavonet E, Gaucher M, Warneys R, Bodelot A, Heintz C, Juillard A, Cournol R, Widmalm G, Bowen JK, Hamiaux C, Brisset MN, Degrave A. Search for host defense markers uncovers an apple agglutination factor corresponding with fire blight resistance. PLANT PHYSIOLOGY 2022; 188:1350-1368. [PMID: 34904175 PMCID: PMC8825249 DOI: 10.1093/plphys/kiab542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 06/12/2023]
Abstract
Pathenogenesis-related (PR) proteins are extensively used as molecular markers to dissect the signaling cascades leading to plant defense responses. However, studies focusing on the biochemical or biological properties of these proteins remain rare. Here, we identify and characterize a class of apple (Malus domestica) PR proteins, named M. domestica AGGLUTININS (MdAGGs), belonging to the amaranthin-like lectin family. By combining molecular and biochemical approaches, we show that abundant production of MdAGGs in leaf tissues corresponds with enhanced resistance to the bacterium Erwinia amylovora, the causal agent of the disease fire blight. We also show that E. amylovora represses the expression of MdAGG genes by injecting the type 3 effector DspA/E into host cells and by secreting bacterial exopolysaccharides. Using a purified recombinant MdAGG, we show that the protein agglutinates E. amylovora cells in vitro and binds bacterial lipopolysaccharides at low pH, conditions reminiscent of the intercellular pH occurring in planta upon E. amylovora infection. We finally provide evidence that negatively charged polysaccharides, such as the free exopolysaccharide amylovoran progressively released by the bacteria, act as decoys relying on charge-charge interaction with the MdAGG to inhibit agglutination. Overall, our results suggest that the production of this particular class of PR proteins may contribute to apple innate immunity mechanisms active against E. amylovora.
Collapse
Affiliation(s)
- Erwan Chavonet
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Matthieu Gaucher
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Romain Warneys
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Antoine Bodelot
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Christelle Heintz
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Anthony Juillard
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Raphaël Cournol
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Göran Widmalm
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Cyril Hamiaux
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Marie-Noëlle Brisset
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Alexandre Degrave
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| |
Collapse
|
14
|
Yuan X, McGhee GC, Slack SM, Sundin GW. A Novel Signaling Pathway Connects Thiamine Biosynthesis, Bacterial Respiration, and Production of the Exopolysaccharide Amylovoran in Erwinia amylovora. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1193-1208. [PMID: 34081536 DOI: 10.1094/mpmi-04-21-0095-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is a plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. This bacterium colonizes host vascular tissues via the production of exopolysaccharides (EPSs) including amylovoran. It is well-established that the nearly ubiquitous plasmid pEA29 of E. amylovora is an essential virulence factor, but the underlying mechanism remains uncharacterized. Here, we demonstrated that pEA29 was required for E. amylovora to produce amylovoran and to form a biofilm, and this regulation was dependent on the thiamine biosynthesis operon thiOSGF. We then conducted carbohydrate and genetic analyses demonstrating that the thiamine-mediated effect on amylovoran production was indirect, as cells lacking thiOSGF produced an EPS that did not contain glucuronic acid, one of the key components of amylovoran, whereas the transcriptional activity and RNA levels of the amylovoran biosynthesis genes were not altered. Alternatively, addition of exogenous thiamine restored amylovoran production in the pEA29-cured strain of E. amylovora and positively impacted amylovoran production in a dose-dependent manner. Individual deletion of several chromosomal thiamine biosynthesis genes also affected amylovoran production, implying that a complete thiamine biosynthesis pathway is required for the thiamine-mediated effect on amylovoran production in E. amylovora. Finally, we determined that an imbalanced tricarboxylic acid cycle negatively affected amylovoran production, which was restored by addition of exogenous thiamine or overexpression of the thiOSGF operon. In summary, our report revealed a novel signaling pathway that impacts E. amylovora virulence in which thiamine biosynthesis enhances bacterial respiration that provides energetic requirements for the biosynthesis of EPS amylovoran.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Gayle C McGhee
- United States Department of Agriculture, Agriculture Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330, U.S.A
| | - Suzanne M Slack
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
15
|
Sahebi M, Tarighi S, Taheri P. The Arac-like transcriptional regulator YqhC is involved in pathogenicity of Erwinia amylovora. J Appl Microbiol 2021; 132:1319-1329. [PMID: 34480830 DOI: 10.1111/jam.15286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to identify virulence-associated genes and functions that affect disease development on pear caused by Erwinia amylovora EaUMG3 isolated from Iran. METHODS AND RESULTS A mini-Tn5 transposon library was generated in EaUMG3. An E. amylovora mutant that had lost its ability to cause lesions on immature pear fruits, was selected for further analysis. This mutant was shown to have a transposon insertion in yqhC, a gene belongs to the AraC family of transcriptional regulators. A mutant of the wild-type EaUMG3 carrying an unmarked deletion of the yqhC gene was created using pDMS197. The Ea∆yqhC mutant showed reduced disease progression on immature pear fruits and pear plants, reduced motility and significantly lower levels of the virulence factors siderophore and amylovoran. Complementation with yqhC cloned in pBBR1MCS restored disease progression and the level of virulence factors to near wild type. CONCLUSION YqhC transcriptional regulator is necessary for full virulence of E. amylovora. In addition, this regulator affects virulence factors such as siderophore production, amylovoran production, and motility. SIGNIFICANCE AND IMPACT OF STUDY The identification of a novel transcriptional regulator with strong impact in the pathogenesis of E. amylovora, an organism causing significant economic losses in fruit production.
Collapse
Affiliation(s)
- Masood Sahebi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeed Tarighi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Peng J, Schachterle JK, Sundin GW. Orchestration of virulence factor expression and modulation of biofilm dispersal in Erwinia amylovora through activation of the Hfq-dependent small RNA RprA. MOLECULAR PLANT PATHOLOGY 2021; 22:255-270. [PMID: 33314618 PMCID: PMC7814967 DOI: 10.1111/mpp.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora is the causative agent of the devastating disease fire blight of pome fruit trees. After infection of host plant leaves at apple shoot tips, E. amylovora cells form biofilms in xylem vessels, restrict water flow, and cause wilting symptoms. Although E. amylovora is well known to be able to cause systemic infection, how biofilm cells of E. amylovora transit from the sessile mode of growth in xylem to the planktonic mode of growth in cortical parenchyma remains unknown. Increasing evidence has suggested the important modulatory roles of Hfq-dependent small RNAs (sRNAs) in the pathogenesis of E. amylovora. Here, we demonstrate that the sRNA RprA acts as a positive regulator of amylovoran exopolysaccharide production, the type III secretion system (T3SS), and flagellar-dependent motility, and as a negative regulator of levansucrase activity and cellulose production. We also show that RprA affects the promoter activity of multiple virulence factor genes and regulates hrpS, a critical T3SS regulator, at the posttranscriptional level. We determined that rprA expression can be activated by the Rcs phosphorelay, and that expression is active during T3SS-mediated host infection in an immature pear fruit infection model. We further showed that overexpression of rprA activated the in vitro dispersal of E. amylovora cells from biofilms. Thus, our investigation of the varied role of RprA in affecting E. amylovora virulence provides important insights into the functions of this sRNA in biofilm control and systemic infection.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey K. Schachterle
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
- Present address:
US National Arboretum – Floral and Nursery Plants Research UnitUSDA‐ARSBeltsvilleMarylandUSA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
17
|
Kharadi RR, Sundin GW. Cyclic-di-GMP Regulates Autoaggregation Through the Putative Peptidoglycan Hydrolase, EagA, and Regulates Transcription of the znuABC Zinc Uptake Gene Cluster in Erwinia amylovora. Front Microbiol 2020; 11:605265. [PMID: 33281804 PMCID: PMC7705223 DOI: 10.3389/fmicb.2020.605265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
Erwinia amylovora is the causal agent of fire blight, an economically impactful disease that affects apple and pear production worldwide. E. amylovora pathogenesis is comprised of distinct type III secretion-dependent and biofilm-dependent stages. Alterations in the intracellular levels of cyclic-di-GMP (c-di-GMP) regulate the transition between the different stages of infection in E. amylovora. We previously reported that hyper-elevation of c-di-GMP levels in E. amylovora Ea1189, resulting from the deletion of all three c-di-GMP specific phosphodiesterase genes (Ea1189ΔpdeABC), resulted in an autoaggregation phenotype. The two major exopolysaccharides, amylovoran and cellulose, were also shown to partially contribute to autoaggregation. In this study, we aimed to identify the c-di-GMP dependent factor(s) that contributes to autoaggregation. We conducted a transposon mutant screen in Ea1189ΔpdeABC and selected for loss of autoaggregation. Our search identified a peptidoglycan hydrolase, specifically, a D, D-endopeptidase of the metallopeptidase class, EagA (Erwiniaaggregation factor A), that was found to physiologically contribute to autoaggregation in a c-di-GMP dependent manner. The production of amylovoran was also positively affected by EagA levels. An eagA deletion mutant (Ea1189ΔeagA) was significantly reduced in virulence compared to the wild type E. amylovora Ea1189. eagA is part of the znuABC zinc uptake gene cluster and is located within an operon downstream of znuA. The znuAeagA/znuCB gene cluster was transcriptionally regulated by elevated levels of c-di-GMP as well as by the zinc-dependent transcriptional repressor Zur. We also observed that with an influx of Zn2+ in the environment, the transcription of the znuAeagA/znuBC gene cluster is regulated by both Zur and a yet to be characterized c-di-GMP dependent pathway.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
18
|
Rocha-Arriaga C, Espinal-Centeno A, Martinez-Sánchez S, Caballero-Pérez J, Alcaraz LD, Cruz-Ramírez A. Deep microbial community profiling along the fermentation process of pulque, a biocultural resource of Mexico. Microbiol Res 2020; 241:126593. [DOI: 10.1016/j.micres.2020.126593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022]
|
19
|
Virulence Genetics of an Erwinia amylovora Putative Polysaccharide Transporter Family Member. J Bacteriol 2020; 202:JB.00390-20. [PMID: 32839177 DOI: 10.1128/jb.00390-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 01/26/2023] Open
Abstract
The Gram-negative enterobacterium Erwinia amylovora causes fire blight disease in apple and pear trees. Lipopolysaccharides and the exopolysaccharide amylovoran are essential E. amylovora virulence factors. We found that mutations in rfbX disrupted amylovoran production and virulence in apple fruits and tree shoots and that the deletion of yibD suppressed the rfbX mutant phenotype. The level of expression of yibD was about 10-fold higher in the ΔrfbX mutant than the wild type. A forward genetic suppressor screen in the ΔrfbX mutant uncovered multiple mutations in yibD and supported the conclusion that the virulence defect of rfbX mutants is due to reduced amylovoran production. The yibD and rfbX genes are expressed as a two-gene operon, yibD rfbX The rfbX gene encodes a previously uncharacterized putative polysaccharide subunit transporter, while yibD encodes a predicted glycosyltransferase. Mutation of rfbX did not have a detectable effect on lipopolysaccharide patterns; however, the overexpression of yibD in both the wild-type and ΔyibD ΔrfbX genetic backgrounds disrupted both amylovoran and lipopolysaccharide production. Additionally, the overexpression of yibD in the ΔyibD ΔrfbX mutant inhibited bacterial growth in amylovoran-inducing medium. This growth inhibition phenotype was used in a forward genetic suppressor screen and reverse-genetics tests to identify several genes involved in lipopolysaccharide production, which, when mutated, restored the ability of the ΔyibD ΔrfbX mutant overexpressing yibD to grow in amylovoran-inducing medium. Remarkably, all the lipopolysaccharide gene mutants tested were defective in lipopolysaccharide and amylovoran production. These results reveal a genetic connection between amylovoran and lipopolysaccharide production in E. amylovora IMPORTANCE This study discovered previously unknown genetic connections between exopolysaccharide and lipopolysaccharide production in the fire blight pathogen Erwinia amylovora This represents a step forward in our understanding of the biology underlying the production of these two macromolecules. Fire blight is an economically important disease that impacts the production of apples and pears worldwide. Few fire blight control measures are available, and growers rely heavily on antibiotic applications at bloom time. Both exopolysaccharide and lipopolysaccharide are E. amylovora virulence factors. Our results indicate that the overexpression of the yibD gene in E. amylovora disrupts both lipopolysaccharide production and exopolysaccharide production. This effect could potentially be used as the basis for the development of an antivirulence treatment for the prevention of fire blight disease.
Collapse
|
20
|
Schachterle JK, Onsay DM, Sundin GW. Small RNA ArcZ Regulates Oxidative Stress Response Genes and Regulons in Erwinia amylovora. Front Microbiol 2019; 10:2775. [PMID: 31849909 PMCID: PMC6895013 DOI: 10.3389/fmicb.2019.02775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Erwinia amylovora, causative agent of fire blight disease of apple and pear trees, has evolved to use small RNAs for post-transcriptional regulation of virulence traits important for disease development. The sRNA ArcZ regulates several virulence traits, and to better understand its roles, we conducted a transcriptomic comparison of wild-type and ΔarcZ mutant E. amylovora. We found that ArcZ regulates multiple cellular processes including genes encoding enzymes involved in mitigating the threat of reactive oxygen species (katA, tpx, osmC), and that the ΔarcZ mutant has reduced catalase activity and is more susceptible to exogenous hydrogen peroxide. We quantified hydrogen peroxide production by apple leaves inoculated with E. amylovora and found that the while wild-type E. amylovora cells produce enough catalase to cope with defense peroxide, the ΔarcZ mutant is likely limited in virulence because of inability to cope with peroxide levels in host leaves. We further found that the ArcZ regulon overlaps significantly with the regulons of transcription factors involved in oxidative sensing including Fnr and ArcA. In addition, we show that ArcZ regulates arcA at the post-transcriptional level suggesting a role for this system in mediating adaptations to oxidative state, especially during disease development.
Collapse
Affiliation(s)
- Jeffrey K Schachterle
- Genetics Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Daphne M Onsay
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - George W Sundin
- Genetics Graduate Program, Michigan State University, East Lansing, MI, United States.,Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Host Range of Bacteriophages Against a World-Wide Collection of Erwinia amylovora Determined Using a Quantitative PCR Assay. Viruses 2019; 11:v11100910. [PMID: 31581574 PMCID: PMC6832558 DOI: 10.3390/v11100910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023] Open
Abstract
Erwinia amylovora is a globally devastating pathogen of apple, pear, and other Rosaceous plants. The use of lytic bacteriophages for disease management continues to garner attention as a possible supplement or alternative to antibiotics. A quantitative productive host range was established for 10 Erwinia phages using 106 wild type global isolates of E. amylovora, and the closely related Erwinia pyrifoliae, to investigate the potential regional efficacy of these phages within a biopesticide. Each host was individually infected with each of the 10 Erwinia phages and phage production after 8 h incubation was measured using quantitative real time PCR (qPCR) in conjunction with a standardized plasmid. PCR amplicons for all phages used in the study were incorporated into a single plasmid, allowing standardized quantification of the phage genome copy number after the infection process. Nine of the tested phages exhibited a broad host range, replicating their genomes by at least one log in over 88% of tested hosts. Also, every Amygdaloideae infecting E. amylovora host was able to increase at least one phage by three logs. Bacterial hosts isolated in western North America were less susceptible to most phages, as the mean genomic titre produced dropped by nearly two logs, and this phenomenon was strongly correlated to the amount of exopolysaccharide produced by the host. This method of host range analysis is faster and requires less effort than traditional plaque assay techniques, and the resulting quantitative data highlight subtle differences in phage host preference not observable with typical plaque-based host range assays. These quantitative host range data will be useful to determine which phages should be incorporated into a phage-mediated biocontrol formulation to be tested for regional and universal control of E. amylovora.
Collapse
|
22
|
Effects of Exposure Time and Biological State on Acquisition and Accumulation of Erwinia amylovora by Drosophila melanogaster. Appl Environ Microbiol 2019; 85:AEM.00726-19. [PMID: 31126937 DOI: 10.1128/aem.00726-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
Fire blight, caused by the bacterium Erwinia amylovora, is a disease devastating the production of rosaceous crops, primarily apple and pear, with worldwide distribution. Fire blight begins in the spring when primary inoculum is produced as ooze, which consists of plant sap, E. amylovora, and exopolysaccharides. Ooze is believed to be transferred to healthy tissues by wind, rain, and insects. However, the mechanisms by which insects locate and transmit ooze are largely undocumented. The goals of this study were to investigate the biological factors affecting acquisition of E. amylovora from ooze by a model dipteran, Drosophila melanogaster, and to determine whether flies are able to mechanically transfer this bacterium after acquisition. We found that the percentage of positive flies increased as exposure time increased, but nutritional state, mating status, and sex did not significantly alter the number of positive individuals. Bacterial abundance was highly variable at all exposure times, suggesting that other biological factors play a role in acquisition. Nutritional state had a significant effect on E. amylovora abundance, and food-deprived flies had higher E. amylovora counts than satiated flies. We also demonstrated that D. melanogaster transmits E. amylovora to a selective medium surface and hypothesize that the same is possible for plant surfaces, where bacteria can persist until an opportunity to colonize the host arises. Collectively, these data suggest a more significant role for flies than previously thought in transmission of fire blight and contribute to a shift in our understanding of the E. amylovora disease cycle.IMPORTANCE A recent hypothesis proposed that dissemination of Erwinia amylovora from ooze by flies to native rosaceous trees was likely key to the life cycle of the bacterium during its evolution. Our study validates an important component of this hypothesis by showing that flies are capable of acquiring and transmitting this bacterium from ooze under various biotic conditions. Understanding how dipterans interact with ooze advances our current knowledge of its epidemiological function and provides strong evidence for an underappreciated role of flies in the disease cycle. These findings may be especially important as they pertain to shoot blight, because this stage of the disease is poorly understood and may involve a significant amount of insect activity. Broadly, this study underscores a need to consider the depth, breadth, and origin of interactions between flies and E. amylovora to better understand its epidemiology.
Collapse
|
23
|
Klee SM, Sinn JP, Holmes AC, Lehman BL, Krawczyk T, Peter KA, McNellis TW. Extragenic Suppression of Elongation Factor P Gene Mutant Phenotypes in Erwinia amylovora. J Bacteriol 2019; 201:e00722-18. [PMID: 30885930 PMCID: PMC6509650 DOI: 10.1128/jb.00722-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor P (EF-P) facilitates the translation of certain peptide motifs, including those with multiple proline residues. EF-P must be posttranslationally modified for full functionality; in enterobacteria, this is accomplished by two enzymes, namely, EpmA and EpmB, which catalyze the β-lysylation of EF-P at a conserved lysine position. Mutations to efp or its modifying enzymes produce pleiotropic phenotypes, including decreases in virulence, swimming motility, and extracellular polysaccharide production, as well as proteomic perturbations. Here, we generated targeted deletion mutants of the efp, epmA, and epmB genes in the Gram-negative bacterium Erwinia amylovora, which causes fire blight, an economically important disease of apples and pears. As expected, the Δefp, ΔepmA, and ΔepmB mutants were all defective in virulence on apples, and all three mutants were complemented in trans with plasmids bearing wild-type copies of the corresponding genes. By analyzing spontaneous suppressor mutants, we found that mutations in the hrpA3 gene partially or completely suppressed the colony size, extracellular polysaccharide production, and virulence phenotypes in apple fruits and apple tree shoots but not the swimming motility phenotypes of the Δefp, ΔepmA, and ΔepmB mutants. The deletion of hrpA3 alone did not produce any alterations in any characteristics measured, indicating that the HrpA3 protein is not essential for any of the processes examined. The hrpA3 gene encodes a putative DEAH-box ATP-dependent RNA helicase. These results suggest that the loss of the HrpA3 protein at least partially compensates for the lack of the EF-P protein or β-lysylated EF-P.IMPORTANCE Fire blight disease has relatively few management options, with antibiotic application at bloom time being chief among them. As modification to elongation factor P (EF-P) is vital to virulence in several species, both EF-P and its modifying enzymes make attractive targets for novel antibiotics. However, it will be useful to understand how bacteria might overcome the hindrance of EF-P function so that we may be better prepared to anticipate bacterial adaptation to such antibiotics. The present study indicates that the mutation of hrpA3 could provide a partial offset for the loss of EF-P activity. In addition, little is known about EF-P functional interactions or the HrpA3 predicted RNA helicase, and our genetic approach allowed us to discern a novel gene associated with EF-P function.
Collapse
Affiliation(s)
- Sara M Klee
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Judith P Sinn
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Aleah C Holmes
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian L Lehman
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Teresa Krawczyk
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Kari A Peter
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Timothy W McNellis
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
24
|
The Leucine-Responsive Regulatory Protein Lrp Participates in Virulence Regulation Downstream of Small RNA ArcZ in Erwinia amylovora. mBio 2019; 10:mBio.00757-19. [PMID: 31138749 PMCID: PMC6538786 DOI: 10.1128/mbio.00757-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fire blight disease continues to plague the commercial production of apples and pears despite more than a century of research into disease epidemiology and disease control. The causative agent of fire blight, Erwinia amylovora coordinates turning on or off specific virulence-associated traits at the appropriate time during disease development. The development of novel control strategies requires an in-depth understanding of E. amylovora regulatory mechanisms, including regulatory control of virulence-associated traits. This study investigates how the small RNA ArcZ regulates motility at the transcriptional level and identifies the transcription factor Lrp as a novel participant in the regulation of several virulence-associated traits. We report that ArcZ and Lrp together affect key virulence-associated traits through integration of transcriptional and posttranscriptional mechanisms. Further understanding of the topology of virulence regulatory networks can uncover weak points that can subsequently be exploited to control E. amylovora. Erwinia amylovora causes the devastating fire blight disease of apple and pear trees. During systemic infection of host trees, pathogen cells must rapidly respond to changes in their environment as they move through different host tissues that present distinct challenges and sources of nutrition. Growing evidence indicates that small RNAs (sRNAs) play an important role in disease progression as posttranscriptional regulators. The sRNA ArcZ positively regulates the motility phenotype and transcription of flagellar genes in E. amylovora Ea1189 yet is a direct repressor of translation of the flagellar master regulator, FlhD. We utilized transposon mutagenesis to conduct a forward genetic screen and identified suppressor mutations that increase motility in the Ea1189ΔarcZ mutant background. This enabled us to determine that the mechanism of transcriptional activation of the flhDC mRNA by ArcZ is mediated by the leucine-responsive regulatory protein, Lrp. We show that Lrp contributes to expression of virulence and several virulence-associated traits, including production of the exopolysaccharide amylovoran, levansucrase activity, and biofilm formation. We further show that Lrp is regulated posttranscriptionally by ArcZ through destabilization of lrp mRNA. Thus, ArcZ regulation of FlhDC directly and indirectly through Lrp forms an incoherent feed-forward loop that regulates levansucrase activity and motility as outputs. This work identifies Lrp as a novel participant in virulence regulation in E. amylovora and places it in the context of a virulence-associated regulatory network.
Collapse
|
25
|
Phosphodiesterase Genes Regulate Amylovoran Production, Biofilm Formation, and Virulence in Erwinia amylovora. Appl Environ Microbiol 2018; 85:AEM.02233-18. [PMID: 30366999 DOI: 10.1128/aem.02233-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger molecule that is an important virulence regulator in the plant pathogen Erwinia amylovora Intracellular levels of c-di-GMP are modulated by diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP and by phosphodiesterase (PDE) enzymes that degrade c-di-GMP. The regulatory role of the PDE enzymes in E. amylovora has not been determined. Using a combination of single, double, and triple deletion mutants, we determined the effects of each of the four putative PDE-encoding genes (pdeA, pdeB, pdeC, and edcA) in E. amylovora on cellular processes related to virulence. Our results indicate that pdeA and pdeC are the two phosphodiesterases most active in virulence regulation in E. amylovora Ea1189. The deletion of pdeC resulted in a measurably significant increase in the intracellular pool of c-di-GMP, and the highest intracellular concentrations of c-di-GMP were observed in the Ea1189 ΔpdeAC and Ea1189 ΔpdeABC mutants. The regulation of virulence traits due to the deletion of the pde genes showed two patterns. A stronger regulatory effect was observed on amylovoran production and biofilm formation, where both Ea1189 ΔpdeA and Ea1189 ΔpdeC mutants exhibited significant increases in these two phenotypes in vitro In contrast, the deletion of two or more pde genes was required to affect motility and virulence phenotypes. Our results indicate a functional redundancy among the pde genes in E. amylovora for certain traits and indicate that the intracellular degradation of c-di-GMP is mainly regulated by pdeA and pdeC, but they also suggest a role for pdeB in regulating motility and virulence.IMPORTANCE Precise control of the expression of virulence genes is essential for successful infection of apple hosts by the fire blight pathogen, Erwinia amylovora The presence and buildup of a signaling molecule called cyclic di-GMP enables the expression and function of some virulence determinants in E. amylovora, such as amylovoran production and biofilm formation. However, other determinants, such as those for motility and the type III secretion system, are expressed and functional when cyclic di-GMP is absent. Here, we report studies of enzymes called phosphodiesterases, which function in the degradation of cyclic di-GMP. We show the importance of these enzymes in virulence gene regulation and the ability of E. amylovora to cause plant disease.
Collapse
|
26
|
Fire blight host-pathogen interaction: proteome profiles of Erwinia amylovora infecting apple rootstocks. Sci Rep 2018; 8:11689. [PMID: 30076380 PMCID: PMC6076297 DOI: 10.1038/s41598-018-30064-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/24/2018] [Indexed: 11/09/2022] Open
Abstract
Fire blight, caused by the enterobacterium Erwinia amylovora, is a destructive disease, which can affect most members of the Rosaceae family. Since no significant genomic differences have been found by others to explain differences in virulence, we used here a gel-based proteomic approach to elucidate mechanisms and key players that allow the pathogen to survive, grow and multiply inside its host. Therefore, two strains with proven difference in virulence were grown under controlled conditions in vitro as well as in planta (infected apple rootstocks). Proteomic analysis including 2DE and mass spectrometry revealed that proteins involved in transcription regulation were more abundant in the in planta condition for both strains. In addition, genes involved in RNA processing were upregulated in planta for the highly virulent strain PFB5. Moreover, the upregulation of structural components of the F0F1-ATP synthase are major findings, giving important information on the infection strategy of this devastating pathogen. Overall, this research provides the first proteomic profile of E. amylovora during infection of apple rootstocks and insights into the response of the pathogen in interaction with its host.
Collapse
|
27
|
Klee SM, Mostafa I, Chen S, Dufresne C, Lehman BL, Sinn JP, Peter KA, McNellis TW. An Erwinia amylovora yjeK mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations. MOLECULAR PLANT PATHOLOGY 2018; 19:1667-1678. [PMID: 29232043 PMCID: PMC6638024 DOI: 10.1111/mpp.12650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 05/02/2023]
Abstract
The Gram-negative bacterium Erwinia amylovora causes fire blight, an economically important disease of apples and pears. Elongation factor P (EF-P) is a highly conserved protein that stimulates the formation of the first peptide bond of certain proteins and facilitates the translation of certain proteins, including those with polyproline motifs. YjeK and YjeA are two enzymes involved in the essential post-translational β-lysylation of EF-P at a conserved lysine residue, K34. EF-P, YjeA and YjeK have been shown to be essential for the full virulence of Escherichia coli, Salmonella species and Agrobacterium tumefaciens, with efp, yjeA and yjeK mutants having highly similar phenotypes. Here, we identified an E. amylovora yjeK::Tn5 transposon mutant with decreased virulence in apple fruit and trees. The yjeK::Tn5 mutant also showed pleiotropic phenotypes, including reduced growth in rich medium, lower extracellular polysaccharide production, reduced swimming motility and increased chemical sensitivity compared with the wild-type, whilst maintaining wild-type level growth in minimal medium. All yjeK::Tn5 mutant phenotypes were complemented in trans with a plasmid bearing a wild-type copy of yjeK. Comprehensive, quantitative proteomics analyses revealed numerous, environmentally dependent changes in the prevalence of a wide range of proteins, in higher abundance and lower abundance, in yjeK::Tn5 compared with the wild-type, and many of these alterations could be linked to yjeK::Tn5 mutant phenotypes. The environmental dependence of the yjeK::Tn5 mutant proteomic alterations suggests that YjeK could be required for aspects of the environmentally dependent regulation of protein translation. YjeK activity may be critical to overcoming stress, including the challenging host environment faced by invading pathogenic bacteria.
Collapse
Affiliation(s)
- Sara M. Klee
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
- Graduate Program in Plant PathologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| | - Islam Mostafa
- Department of BiologyUniversity of FloridaGainesvilleFL 32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFL 32611USA
- Department of Pharmacognosy, Faculty of PharmacyZagazig UniversityZagazig 44519Egypt
| | - Sixue Chen
- Department of BiologyUniversity of FloridaGainesvilleFL 32611USA
- Genetics InstituteUniversity of FloridaGainesvilleFL 32611USA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFL 32611USA
- Interdisciplinary Center for Biotechnology ResearchUniversity of FloridaGainesvilleFL 32611USA
| | | | - brian L. Lehman
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePA 17307USA
| | - Judith P. Sinn
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| | - Kari A. Peter
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
- The Pennsylvania State University Fruit Research and Extension CenterBiglervillePA 17307USA
| | - Timothy W. McNellis
- Department of Plant Pathology & Environmental MicrobiologyThe Pennsylvania State UniversityUniversity ParkPA 16802USA
| |
Collapse
|
28
|
Salomone-Stagni M, Bartho JD, Kalita E, Rejzek M, Field RA, Bellini D, Walsh MA, Benini S. Structural and functional analysis of Erwinia amylovora SrlD. The first crystal structure of a sorbitol-6-phosphate 2-dehydrogenase. J Struct Biol 2018; 203:109-119. [PMID: 29605571 DOI: 10.1016/j.jsb.2018.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Sorbitol-6-phosphate 2-dehydrogenases (S6PDH) catalyze the interconversion of d-sorbitol 6-phosphate to d-fructose 6-phosphate. In the plant pathogen Erwinia amylovora the S6PDH SrlD is used by the bacterium to utilize sorbitol, which is used for carbohydrate transport in the host plants belonging to the Amygdaloideae subfamily (e.g., apple, pear, and quince). We have determined the crystal structure of S6PDH SrlD at 1.84 Å resolution, which is the first structure of an EC 1.1.1.140 enzyme. Kinetic data show that SrlD is much faster at oxidizing d-sorbitol 6-phosphate than in reducing d-fructose 6-phosphate, however, equilibrium analysis revealed that only part of the d-sorbitol 6-phosphate present in the in vitro environment is converted into d-fructose 6-phosphate. The comparison of the structures of SrlD and Rhodobacter sphaeroides sorbitol dehydrogenase showed that the tetrameric quaternary structure, the catalytic residues and a conserved aspartate residue that confers specificity for NAD+ over NADP+ are preserved. Analysis of the SrlD cofactor and substrate binding sites identified residues important for the formation of the complex with cofactor and substrate and in particular the role of Lys42 in selectivity towards the phospho-substrate. The comparison of SrlD backbone with the backbone of 302 short-chain dehydrogenases/reductases showed the conservation of the protein core and identified the variable parts. The SrlD sequence was compared with 500 S6PDH sequences selected by homology revealing that the C-terminal part is more conserved than the N-terminal, the consensus of the catalytic tetrad (Y[SN]AGXA) and a not previously described consensus for the NAD(H) binding.
Collapse
Affiliation(s)
- Marco Salomone-Stagni
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Joseph D Bartho
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Gene Center of the LMU Department of Biochemistry, Feodor-Lynen Strasse 25, D-81377 Munich, Germany
| | - Eeshan Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Dom Bellini
- School of Life Science, Gibbet Hill, Warwick University, Coventry CV4 7AL, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, UK
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B(2)Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy.
| |
Collapse
|
29
|
Lee JH, Ancona V, Zhao Y. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems. MOLECULAR PLANT PATHOLOGY 2018; 19:827-840. [PMID: 28509355 PMCID: PMC6638003 DOI: 10.1111/mpp.12566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 05/10/2023]
Abstract
Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL 61801USA
| | - Veronica Ancona
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL 61801USA
- Present address:
Texas A&M University‐Kingsville, Citrus CenterWeslacoTX 78596USA
| | | |
Collapse
|
30
|
Lee JH, Zhao Y. ClpXP-Dependent RpoS Degradation Enables Full Activation of Type III Secretion System, Amylovoran Production, and Motility in Erwinia amylovora. PHYTOPATHOLOGY 2017; 107:1346-1352. [PMID: 28691868 DOI: 10.1094/phyto-06-17-0198-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Erwinia amylovora, the causal agent of fire blight disease of apple and pear, employs intracellular proteases, including Lon and ClpXP, for posttranslational regulation of various cellular proteins. It has been shown that Lon plays a critical role in E. amylovora virulence by directly targeting type III secretion system (T3SS) proteins and the Rcs phosphorelay system. In this study, we genetically examined the role of ClpXP and its potential interaction with Lon in E. amylovora. Mutation in clpXP diminished the expression of the T3SS, reduced exopolysaccharide amylovoran production and motility, and resulted in delayed disease progress. Western blot analyses showed highly accumulated RpoS proteins in the clpXP mutant. Moreover, mutation of rpoS in the clpXP mutant background rescued the expression of the T3SS and amylovoran production, suggesting that ClpXP-dependent RpoS degradation positively affects virulence traits. Interestingly, lack of both ClpXP and Lon resulted in significantly reduced virulence but increased expression of the T3SS and amylovoran production. However, this phenomenon was independent of RpoS accumulation, suggesting that ClpXP and Lon are indispensable for full virulence in E. amylovora.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana 61801
| |
Collapse
|
31
|
Benini S, Toccafondi M, Rejzek M, Musiani F, Wagstaff BA, Wuerges J, Cianci M, Field RA. Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1348-1357. [PMID: 28844747 DOI: 10.1016/j.bbapap.2017.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity.
Collapse
Affiliation(s)
- Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy.
| | - Mirco Toccafondi
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna 40127, Italy
| | - Ben A Wagstaff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jochen Wuerges
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Universita' Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
32
|
Tian Y, Zhao Y, Shi L, Cui Z, Hu B, Zhao Y. Type VI Secretion Systems of Erwinia amylovora Contribute to Bacterial Competition, Virulence, and Exopolysaccharide Production. PHYTOPATHOLOGY 2017; 107:654-661. [PMID: 28421913 DOI: 10.1094/phyto-11-16-0393-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The type VI secretion system (T6SS) plays a major role in mediating interbacterial competition and might contribute to virulence in plant pathogenic bacteria. However, the role of T6SS in Erwinia amylovora remains unknown. In this study, 33 deletion mutants within three T6SS clusters were generated in E. amylovora strain NCPPB1665. Our results showed that all 33 mutants displayed reduced antibacterial activities against Escherichia coli as compared with that of the wild-type (WT) strain, indicating that Erwinia amylovora T6SS are functional. Of the 33 mutants, 19 exhibited reduced virulence on immature pear fruit as compared with that of the WT strain. Among them, 6, 1, and 12 genes belonged to T6SS-1, T6SS-2, and T6SS-3 clusters, respectively. Interestingly, these 19 mutants also produced less amylovoran or levan or both. These findings suggest that E. amylovora T6SS play a role in bacterial competition and virulence possibly by influencing exopolysaccharide production.
Collapse
Affiliation(s)
- Yanli Tian
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Yuqiang Zhao
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Linye Shi
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Zhongli Cui
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Baishi Hu
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| | - Youfu Zhao
- First, third, and fifth authors: College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China; second author: Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; fourth author: College of Life Sciences and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; and sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana
| |
Collapse
|
33
|
Majkowska-Skrobek G, Łątka A, Berisio R, Maciejewska B, Squeglia F, Romano M, Lavigne R, Struve C, Drulis-Kawa Z. Capsule-Targeting Depolymerase, Derived from Klebsiella KP36 Phage, as a Tool for the Development of Anti-Virulent Strategy. Viruses 2016; 8:v8120324. [PMID: 27916936 PMCID: PMC5192385 DOI: 10.3390/v8120324] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 01/13/2023] Open
Abstract
The rise of antibiotic-resistant Klebsiella pneumoniae, a leading nosocomial pathogen, prompts the need for alternative therapies. We have identified and characterized a novel depolymerase enzyme encoded by Klebsiella phage KP36 (depoKP36), from the Siphoviridae family. To gain insights into the catalytic and structural features of depoKP36, we have recombinantly produced this protein of 93.4 kDa and showed that it is able to hydrolyze a crude exopolysaccharide of a K. pneumoniae host. Using in vitro and in vivo assays, we found that depoKP36 was also effective against a native capsule of clinical K. pneumoniae strains, representing the K63 type, and significantly inhibited Klebsiella-induced mortality of Galleria mellonella larvae in a time-dependent manner. DepoKP36 did not affect the antibiotic susceptibility of Klebsiella strains. The activity of this enzyme was retained in a broad range of pH values (4.0–7.0) and temperatures (up to 45 °C). Consistently, the circular dichroism (CD) spectroscopy revealed a highly stability with melting transition temperature (Tm) = 65 °C. In contrast to other phage tailspike proteins, this enzyme was susceptible to sodium dodecyl sulfate (SDS) denaturation and proteolytic cleavage. The structural studies in solution showed a trimeric arrangement with a high β-sheet content. Our findings identify depoKP36 as a suitable candidate for the development of new treatments for K. pneumoniae infections.
Collapse
Affiliation(s)
- Grażyna Majkowska-Skrobek
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Agnieszka Łątka
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Maria Romano
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, I-80134 Naples, Italy.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, box 2462, B-3001 Leuven, Belgium.
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300S Copenhagen, Denmark.
- World Health Organization Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Statens Serum Institut, Artillerivej 5, DK-2300S Copenhagen, Denmark.
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
34
|
Ancona V, Lee JH, Zhao Y. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora. Sci Rep 2016; 6:37195. [PMID: 27845410 PMCID: PMC5109040 DOI: 10.1038/srep37195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| |
Collapse
|
35
|
Holtappels M, Noben JP, Valcke R. Virulence of Erwinia amylovora, a prevalent apple pathogen: Outer membrane proteins and type III secreted effectors increase fitness and compromise plant defenses. Proteomics 2016; 16:2377-90. [PMID: 27345300 DOI: 10.1002/pmic.201500513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 01/30/2023]
Abstract
Until now, no data are available on the outer membrane (OM) proteome of Erwinia amylovora, a Gram-negative plant pathogen, causing fire blight in most of the members of the Rosaceae family. Since the OM forms the interface between the bacterial cell and its environment it is in direct contact with the host. Additionally, the type III secretion system, embedded in the OM, is a pathogenicity factor of E. amylovora. To assess the influence of the OM composition and the secretion behavior on virulence, a 2D-DIGE analysis and gene expression profiling were performed on a high and lower virulent strain, both in vitro and in planta. Proteome data showed an increase in flagellin for the lower virulent strain in vitro, whereas, in planta several interesting proteins were identified as being differently expressed between both the strains. Further, gene expression of nearly all type III secreted effectors was elevated for the higher virulent strain, both in vitro and in planta. As a first, we report that several characteristics of virulence can be assigned to the OM proteome. Moreover, we demonstrate that secreted proteins prove to be the important factors determining differences in virulence between the strains, otherwise regarded as homogeneous on a genome level.
Collapse
Affiliation(s)
- Michelle Holtappels
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jean-Paul Noben
- School of Life Sciences, Biomedical Research Institute, Hasselt University and Transnational University Limburg, Hasselt, Belgium
| | - Roland Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
36
|
Holtappels M, Vrancken K, Noben J, Remans T, Schoofs H, Deckers T, Valcke R. The in planta proteome of wild type strains of the fire blight pathogen, Erwinia amylovora. J Proteomics 2016; 139:1-12. [DOI: 10.1016/j.jprot.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/13/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
|
37
|
Piqué N, Miñana-Galbis D, Merino S, Tomás JM. Virulence Factors of Erwinia amylovora: A Review. Int J Mol Sci 2015; 16:12836-54. [PMID: 26057748 PMCID: PMC4490474 DOI: 10.3390/ijms160612836] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/31/2023] Open
Abstract
Erwinia amylovora, a Gram negative bacteria of the Enterobacteriaceae family, is the causal agent of fire blight, a devastating plant disease affecting a wide range of host species within Rosaceae and a major global threat to commercial apple and pear production. Among the limited number of control options currently available, prophylactic application of antibiotics during the bloom period appears the most effective. Pathogen cells enter plants through the nectarthodes of flowers and other natural openings, such as wounds, and are capable of rapid movement within plants and the establishment of systemic infections. Many virulence determinants of E. amylovora have been characterized, including the Type III secretion system (T3SS), the exopolysaccharide (EPS) amylovoran, biofilm formation, and motility. To successfully establish an infection, E. amylovora uses a complex regulatory network to sense the relevant environmental signals and coordinate the expression of early and late stage virulence factors involving two component signal transduction systems, bis-(3'-5')-cyclic di-GMP (c-di-GMP) and quorum sensing. The LPS biosynthetic gene cluster is one of the relatively few genetic differences observed between Rubus- and Spiraeoideae-infecting genotypes of E. amylovora. Other differential factors, such as the presence and composition of an integrative conjugative element associated with the Hrp T3SS (hrp genes encoding the T3SS apparatus), have been recently described. In the present review, we present the recent findings on virulence factors research, focusing on their role in bacterial pathogenesis and indicating other virulence factors that deserve future research to characterize them.
Collapse
Affiliation(s)
- Núria Piqué
- Departament de Microbiologia i Parasiologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - David Miñana-Galbis
- Departament de Microbiologia i Parasiologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| | - Susana Merino
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08071 Barcelona, Spain.
| | - Juan M Tomás
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08071 Barcelona, Spain.
| |
Collapse
|
38
|
Holtappels M, Vrancken K, Schoofs H, Deckers T, Remans T, Noben JP, Valcke R. A comparative proteome analysis reveals flagellin, chemotaxis regulated proteins and amylovoran to be involved in virulence differences between Erwinia amylovora strains. J Proteomics 2015; 123:54-69. [PMID: 25849252 DOI: 10.1016/j.jprot.2015.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/07/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Erwinia amylovora is a Gram-negative bacterium that causes the destructive disease fire blight affecting most members of the Rosaceae family, of which apple and pear are economically the most important hosts. E. amylovora has been considered as a homogeneous species in whole, although significant differences in virulence patterns have been observed. However, the underlying causes of the differences in virulence remain to be discovered. In a first-time comparative proteomic approach using E. amylovora, 2D differential in-gel electrophoresis (DIGE) was used to identify proteins that could explain the gradual difference in virulence between four different strains. Two important proteins were identified, FliC and CheY, both involved in flagella structure, motility and chemotaxis, which were more abundant in the least virulent strain. In the highly virulent strains the protein GalF, involved in amylovoran production, was more abundant, which was consistent with the higher expression of the gene and the higher amylovoran content in this strain in vitro. Together, these results confirm the involvement of amylovoran in virulence, but also imply an indirect role of flagellin in virulence as elicitor of plant defence. BIOLOGICAL SIGNIFICANCE This research provides new insights into our current understanding of the virulence of Erwinia amylovora. This plant-pathogen is considered a homogeneous species although different strains show differences in virulence. Despite the efforts made on the genomic level which resulted in the discovery of virulence factors, the reason for the different virulence patterns between strains has not yet been identified. In our lab we used a comparative proteomic approach, which has never been published before, to identify proteins involved in these differences between strains and hereby possibly involved in virulence. Our results provide interesting insights in virulence and present us with the opportunity to glance into the proteome of E. amylovora.
Collapse
Affiliation(s)
- M Holtappels
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - K Vrancken
- Zoology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - H Schoofs
- Pomology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - T Deckers
- Pomology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - T Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - J P Noben
- Biomedical Research Institute, Hasselt University and Transnational University Limburg, School of Life Sciences, Hasselt, Belgium
| | - R Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
39
|
Pletzer D, Stahl A, Oja AE, Weingart H. Role of the cell envelope stress regulators BaeR and CpxR in control of RND-type multidrug efflux pumps and transcriptional cross talk with exopolysaccharide synthesis in Erwinia amylovora. Arch Microbiol 2015; 197:761-72. [DOI: 10.1007/s00203-015-1109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/31/2023]
|
40
|
The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora. J Bacteriol 2015; 197:1433-43. [PMID: 25666138 DOI: 10.1128/jb.02551-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional.
Collapse
|
41
|
Ancona V, Chatnaparat T, Zhao Y. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol Genet Genomics 2015; 290:1265-76. [PMID: 25577258 DOI: 10.1007/s00438-015-0988-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
In Erwinia amylovora, the Rcs phosphorelay system is essential for amylovoran production and virulence. To further understand the role of conserved aspartate residue (D56) in the phosphor receiver (PR) domain and lysine (K180) residue in the function domain of RcsB, amino acid substitutions of RcsB mutant alleles were generated by site-directed mutagenesis and complementation of various rcs mutants were performed. A D56E substitution of RcsB, which mimics the phosphorylation state of RcsB, complemented the rcsB mutant, resulting in increased amylovoran production and gene expression, reduced swarming motility, and restored pathogenicity. In contrast, D56N and K180A or K180Q substitutions of RcsB did not complement the rcsB mutant. Electrophoresis mobility shift assays showed that D56E, but not D56N, K180Q and K180A substitutions of RcsB bound to promoters of amsG and flhD, indicating that both D56 and K180 are required for DNA binding. Interestingly, the RcsBD56E allele could also complement rcsAB, rcsBC and rcsABCD mutants with restored virulence and increased amylovoran production, indicating that RcsB phosphorylation is essential for virulence of E. amylovora. In addition, mutations of T904 and A905, but not phosphorylation mimic mutation of D876 in the PR domain of RcsC, constitutively activate the Rcs system, suggesting that phosphor transfer is required for activating the Rcs system and indicating both A905 and T904 are required for the phosphatase activity of RcsC. Our results demonstrated that RcsB phosphorylation and dephosphorylation, phosphor transfer from RcsC are essential for the function of the Rcs system, and also suggested that constitutive activation of the Rcs system could reduce the fitness of E. amylovora.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
42
|
Ismail E, Blom J, Bultreys A, Ivanović M, Obradović A, van Doorn J, Bergsma-Vlami M, Maes M, Willems A, Duffy B, Stockwell VO, Smits THM, Puławska J. A novel plasmid pEA68 of Erwinia amylovora and the description of a new family of plasmids. Arch Microbiol 2014; 196:891-9. [DOI: 10.1007/s00203-014-1028-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/31/2014] [Accepted: 08/09/2014] [Indexed: 11/29/2022]
|
43
|
Zeng Q, Sundin GW. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function. BMC Genomics 2014; 15:414. [PMID: 24885615 PMCID: PMC4070566 DOI: 10.1186/1471-2164-15-414] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Erwinia amylovora is a phytopathogenic bacterium and causal agent of fire blight disease in apples and pears. Although many virulence factors have been characterized, the coordination of expression of these virulence factors in E. amylovora is still not clear. Regulatory small RNAs (sRNAs) are important post-transcriptional regulatory components in bacteria. A large number of sRNAs require the RNA chaperone Hfq for both stability and functional activation. In E. amylovora, Hfq was identified as a major regulator of virulence and various virulence traits. However, information is still lacking about Hfq-dependent sRNAs on a genome scale, including the virulence regulatory functions of these sRNAs in E. amylovora. RESULTS Using both an RNA-seq analysis and a Rho-independent terminator search, 40 candidate Hfq-dependent sRNAs were identified in E. amylovora. The expression and sizes of 12 sRNAs and the sequence boundaries of seven sRNAs were confirmed by Northern blot and 5' RACE assay respectively. Sequence conservation analysis identified sRNAs conserved only in the Erwinia genus as well as E. amylovora species-specific sRNAs. In addition, a dynamic re-patterning of expression of Hfq-dependent sRNAs was observed at 6 and 12 hours after induction in Hrp-inducing minimal medium. Furthermore, sRNAs that control virulence traits were characterized, among which ArcZ positively controls the type III secretion system (T3SS), amylovoran exopolysaccahride production, biofilm formation, and motility, and negatively modulates attachment while RmaA (Hrs6) and OmrAB both negatively regulate amylovoran production and positively regulate motility. CONCLUSIONS This study has significantly enhanced our understanding of the Hfq-dependent sRNAs in E. amylovora at the genome level. The identification of multiple virulence-regulating sRNAs also suggests that post-transcriptional regulation by sRNAs may play a role in the deployment of virulence factors needed during varying stages of pathogenesis during host invasion by E. amylovora.
Collapse
Affiliation(s)
- Quan Zeng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
44
|
Erratum to Genes of Erwinia amylovora involved in yellow color formation and release of a low-molecular-weight compound during growth in the presence of copper ions. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s004380000425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Yang F, Korban SS, Pusey PL, Elofsson M, Sundin GW, Zhao Y. Small-molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora. MOLECULAR PLANT PATHOLOGY 2014; 15:44-57. [PMID: 23915008 PMCID: PMC6638656 DOI: 10.1111/mpp.12064] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The type III secretion system (T3SS) and exopolysaccharide (EPS) amylovoran are two essential pathogenicity factors in Erwinia amylovora, the causal agent of the serious bacterial disease fire blight. In this study, small molecules that inhibit T3SS gene expression in E. amylovora under hrp (hypersensitive response and pathogenicity)-inducing conditions were identified and characterized using green fluorescent protein (GFP) as a reporter. These compounds belong to salicylidene acylhydrazides and also inhibit amylovoran production. Microarray analysis of E. amylovora treated with compounds 3 and 9 identified a total of 588 significantly differentially expressed genes. Among them, 95 and 78 genes were activated and suppressed by both compounds, respectively, when compared with the dimethylsulphoxide (DMSO) control. The expression of the majority of T3SS genes in E. amylovora, including hrpL and the avrRpt2 effector gene, was suppressed by both compounds. Compound 3 also suppressed the expression of amylovoran precursor and biosynthesis genes. However, both compounds induced significantly the expression of glycogen biosynthesis genes and siderophore biosynthesis, regulatory and transport genes. Furthermore, many membrane, lipoprotein and exported protein-encoding genes were also activated by both compounds. Similar expression patterns were observed for compounds 1, 2 and 4. Using crab apple flower as a model, compound 3 was capable of reducing disease development in pistils. These results suggest a common inhibition mechanism shared by salicylidene acylhydrazides and indicate that small-molecule inhibitors that disable T3SS function could be explored to control fire blight disease.
Collapse
Affiliation(s)
- Fan Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | | | |
Collapse
|
46
|
Li W, Ancona V, Zhao Y. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora. Mol Genet Genomics 2013; 289:63-75. [PMID: 24218204 DOI: 10.1007/s00438-013-0790-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.
Collapse
Affiliation(s)
- Wenting Li
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201W. Gregory Dr., Urbana, IL, 61801, USA
| | | | | |
Collapse
|
47
|
Born Y, Fieseler L, Klumpp J, Eugster MR, Zurfluh K, Duffy B, Loessner MJ. The tail-associated depolymerase ofErwinia amylovoraphage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection by other phage. Environ Microbiol 2013; 16:2168-80. [DOI: 10.1111/1462-2920.12212] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/05/2013] [Accepted: 07/10/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Yannick Born
- Institute of Food, Nutrition and Health; ETH Zurich; Zürich CH-8092 Switzerland
- Phytopathology; Research Station Agroscope Changins-Wädenswil ACW; Wädenswil CH-8820 Switzerland
| | - Lars Fieseler
- Institute of Food, Nutrition and Health; ETH Zurich; Zürich CH-8092 Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health; ETH Zurich; Zürich CH-8092 Switzerland
| | - Marcel R. Eugster
- Institute of Food, Nutrition and Health; ETH Zurich; Zürich CH-8092 Switzerland
| | - Katrin Zurfluh
- Institute of Food, Nutrition and Health; ETH Zurich; Zürich CH-8092 Switzerland
| | - Brion Duffy
- Phytopathology; Research Station Agroscope Changins-Wädenswil ACW; Wädenswil CH-8820 Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health; ETH Zurich; Zürich CH-8092 Switzerland
| |
Collapse
|
48
|
Edmunds AC, Castiblanco LF, Sundin GW, Waters CM. Cyclic Di-GMP modulates the disease progression of Erwinia amylovora. J Bacteriol 2013; 195:2155-65. [PMID: 23475975 PMCID: PMC3650540 DOI: 10.1128/jb.02068-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/27/2013] [Indexed: 01/11/2023] Open
Abstract
The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis.
Collapse
Affiliation(s)
- Adam C. Edmunds
- Departments of Microbiology and Molecular Genetics
- Cell and Molecular Biology Graduate Program,
| | - Luisa F. Castiblanco
- Plant, Soil, and Microbial Sciences,
- Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan, USA
| | - George W. Sundin
- Plant, Soil, and Microbial Sciences,
- Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Departments of Microbiology and Molecular Genetics
- Cell and Molecular Biology Graduate Program,
- Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
49
|
Jock S, Wensing A, Pulawska J, Drenova N, Dreo T, Geider K. Molecular analyses of Erwinia amylovora strains isolated in Russia, Poland, Slovenia and Austria describing further spread of fire blight in Europe. Microbiol Res 2013; 168:447-54. [PMID: 23570971 DOI: 10.1016/j.micres.2013.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/27/2022]
Abstract
Fire blight, a bacteriosis of apple and pear, was assayed with molecular tools to associate its origin in Russia, Slovenia and south-eastern Austria with neighboring countries. The identification of all investigated strains was confirmed by MALDI-TOF mass spectroscopy except one. Independent isolation was verified by the level of amylovoran synthesis and by the number of short sequence DNA repeats in plasmid pEA29. DNA of gently lysed E. amylovora strains from Russia, Slovenia, Austria, Hungary, Italy, Spain, Croatia, Poland, Central Europe and Iran was treated with restriction enzymes XbaI and SpeI to create typical banding patterns for PFGE analysis. The pattern Pt2 indicated that most Russian E. amylovora strains were related to strains from Turkey and Iran. Strains from Slovenia exhibited patterns Pt3 and Pt2, both present in the neighboring countries. Strains were also probed for the recently described plasmid pEI70 detected in Pt1 strains from Poland and in Pt3 strains from other countries. The distribution of pattern Pt3 suggests distribution of fire blight from Belgium and the Netherlands to Central Spain and Northern Italy and then north to Carinthia. The PFGE patterns indicate that trade of plants may have introduced fire blight into southern parts of Europe proceeded by sequential spread.
Collapse
Affiliation(s)
- Susanne Jock
- Julius Kuehn Institute, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Str. 101, D-69221 Dossenheim, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis. Appl Environ Microbiol 2013; 79:3249-56. [PMID: 23503310 DOI: 10.1128/aem.00067-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan.
Collapse
|