1
|
Arriaga MA, Amieva JA, Quintanilla J, Jimenez A, Ledezma J, Lopez S, Martirosyan KS, Chew SA. The application of electrosprayed minocycline-loaded PLGA microparticles for the treatment of glioblastoma. Biotechnol Bioeng 2023; 120:3409-3422. [PMID: 37605630 PMCID: PMC10592149 DOI: 10.1002/bit.28527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi-synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87-MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87-MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline-loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies.
Collapse
Affiliation(s)
- Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Juan A. Amieva
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Jaqueline Quintanilla
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Angela Jimenez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Julio Ledezma
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Silverio Lopez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Karen S. Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, TX 78520
| |
Collapse
|
2
|
Su D, Swearson S, Krongbaramee T, Sun H, Hong L, Amendt BA. Exploring microRNAs in craniofacial regenerative medicine. Biochem Soc Trans 2023; 51:841-854. [PMID: 37073783 PMCID: PMC11244734 DOI: 10.1042/bst20221448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/20/2023]
Abstract
microRNAs (miRs) have been reported over the decades as important regulators in bone development and bone regeneration. They play important roles in maintaining the stem cell signature as well as regulating stem cell fate decisions. Thus, delivering miRs and miR inhibitors to the defect site is a potential treatment towards craniofacial bone defects. However, there are challenges in translation of basic research to clinics, including the efficiency, specificity, and efficacy of miR manipulation methods and the safety of miR delivery systems. In this review, we will compare miR oligonucleotides, mimics and antagomirs as therapeutic reagents to treat disease and regenerate tissues. Newer technology will be discussed as well as the efficiency and efficacy of using these technologies to express or inhibit miRs in treating and repairing oral tissues. Delivery of these molecules using extracellular vesicles and nanoparticles can achieve different results and depending on their composition will elicit specific effects. We will highlight the specificity, toxicity, stability, and effectiveness of several miR systems in regenerative medicine.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
| | - Samuel Swearson
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
| | - Tadkamol Krongbaramee
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
- Division of Endodontics, Department of Restorative Dentistry & Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Liu Hong
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, U.S.A
- Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, U.S.A
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, U.S.A
| |
Collapse
|
3
|
Gupta R, Chen Y, Sarkar M, Xie H. Surfactant Mediated Accelerated and Discriminatory In Vitro Drug Release Method for PLGA Nanoparticles of Poorly Water-Soluble Drug. Pharmaceuticals (Basel) 2022; 15:ph15121489. [PMID: 36558940 PMCID: PMC9787738 DOI: 10.3390/ph15121489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
In vitro drug release testing is an important quality control tool for formulation development. However, the literature has evidence that poly-lactide-co-glycolide (PLGA)-based formulations show a slower in vitro drug release than a real in vivo drug release. Much longer in vitro drug release profiles may not be reflective of real in vivo performances and may significantly affect the timeline for a formulation development. The objective of this study was to develop a surfactant mediated accelerated in vitro drug release method for the PLGA nanoparticles (NPs) of a novel chemotherapeutic agent AC1LPSZG, a model drug with a poor solubility. The Sotax USP apparatus 4 was used to test in vitro drug release in a phosphate buffer with a pH value of 6.8. The sink conditions were improved using surfactants in the order of sodium lauryl sulfate (SLS) < Tween 80 < cetyltrimethylammonium bromide (CTAB). The dissolution efficiency (DE) and area under the dissolution curve (AUC) were increased three-fold when increasing the CTAB concentration in the phosphate buffer (pH 6.8). Similar Weibull release kinetics and good linear correlations (R2~0.99) indicated a good correlation between the real-time in vitro release profile in the phosphate buffer (pH 6.8) and accelerated release profiles in the optimized medium. This newly developed accelerated and discriminatory in vitro test can be used as a quality control tool to identify critical formulation and process parameters to ensure a batch-to-batch uniformity. It may also serve as a surrogate for bioequivalence studies if a predictive in vitro in vivo correlation (IVIVC) is obtained. The results of this study are limited to AC1LPSZG NPs, but a similar consideration can be extended to other PLGA-based NPs of drugs with similar properties and solubility profiles.
Collapse
|
4
|
Arriaga MA, Enriquez DM, Salinas AD, Garcia Jr. R, Trevino De Leo C, Lopez SA, Martirosyan KS, Chew SA. Application of iron oxide nanoparticles to control the release of minocycline for the treatment of glioblastoma. Future Med Chem 2021; 13:1833-1843. [PMID: 34545754 PMCID: PMC8525315 DOI: 10.4155/fmc-2021-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023] Open
Abstract
Background: The utilization of iron oxide nanoparticles (Fe3O4 NPs) to control minocycline release rates from poly(lactic-co-glycolic acid) scaffolds fabricated from an easy/economical technique is presented. Results & methodology: A larger change in temperature and amount of minocycline released was observed for scaffolds with higher amounts of Fe3O4 NPs, demonstrating that nanoparticle concentration can control heat generation and minocycline release. Temperatures near a polymer's glass transition temperature can result in the polymer's chain becoming more mobile and thus increasing drug diffusion out of the scaffold. Elevated temperature and minocycline released from the scaffold can work synergistically to enhance glioblastoma cell death. Conclusion: This study suggests that Fe3O4 NPs are promising materials for controlling minocycline release from polymeric scaffolds by magnetic hyperthermia for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Marco A Arriaga
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Dean Michael Enriquez
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Arely D Salinas
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Romeo Garcia Jr.
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Carlos Trevino De Leo
- Department of Physics & Astronomy, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Silverio A Lopez
- Department of Physics & Astronomy, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Karen S Martirosyan
- Department of Physics & Astronomy, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| |
Collapse
|
5
|
Kozak J, Rabiskova M, Lamprecht A. Muscle Tissue as a Surrogate for In Vitro Drug Release Testing of Parenteral Depot Microspheres. AAPS PharmSciTech 2021; 22:119. [PMID: 33782794 PMCID: PMC8007510 DOI: 10.1208/s12249-021-01965-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the importance of drug release testing of parenteral depot formulations, the current in vitro methods still require ameliorations in biorelevance. We have investigated here the use of muscle tissue components to better mimic the intramuscular administration. For convenient handling, muscle tissue was used in form of a freeze-dried powder, and a reproducible process of incorporation of tested microspheres to an assembly of muscle tissue of standardized dimensions was successfully developed. Microspheres were prepared from various grades of poly(lactic-co-glycolic acid) (PLGA) or ethyl cellulose, entrapping flurbiprofen, lidocaine, or risperidone. The deposition of microspheres in the muscle tissue or addition of only isolated lipids into the medium accelerated the release rate of all model drugs from microspheres prepared from ester-terminated PLGA grades and ethyl cellulose, however, not from the acid-terminated PLGA grades. The addition of lipids into the release medium increased the solubility of all model drugs; nonetheless, also interactions of the lipids with the polymer matrix (ad- and absorption) might be responsible for the faster drug release. As the in vivo drug release from implants is also often faster than in simple buffers in vitro, these findings suggest that interactions with the tissue lipids may play an important role in these still unexplained observations.
Collapse
Affiliation(s)
- Jan Kozak
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121, Bonn, Germany
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203/8, 500 05, Hradec Kralove, Czech Republic
| | - Miloslava Rabiskova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Akademika Heyrovskeho 1203/8, 500 05, Hradec Kralove, Czech Republic
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121, Bonn, Germany.
| |
Collapse
|
6
|
Sharan S, Fang L, Lukacova V, Chen X, Hooker AC, Karlsson MO. Model-Informed Drug Development for Long-Acting Injectable Products: Summary of American College of Clinical Pharmacology Symposium. Clin Pharmacol Drug Dev 2021; 10:220-228. [PMID: 33624456 DOI: 10.1002/cpdd.928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/30/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Satish Sharan
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Viera Lukacova
- Simulation Sciences, Simulations Plus, Inc., Lancaster, CA, USA
| | | | | | | |
Collapse
|
7
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
8
|
Liver Cancer: Current and Future Trends Using Biomaterials. Cancers (Basel) 2019; 11:cancers11122026. [PMID: 31888198 PMCID: PMC6966667 DOI: 10.3390/cancers11122026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools for locally administrating bioactive factors and provides a comprehensive discussion of the specific therapies and targeting agents to efficiently deliver those factors. This review also highlights the novel application of biomaterials to study HCC, which includes hydrogels and scaffolds to tissue engineer 3D in vitro models representative of the tumor environment. Such models will serve to better understand the tumor biology and investigate new therapies for HCC. Special focus is given to innovative approaches, e.g., combined delivery therapies, and to alternative approaches-e.g., cell capture-as promising future trends in the application of biomaterials to treat HCC.
Collapse
|
9
|
Arriaga MA, Ding MH, Gutierrez AS, Chew SA. The Application of microRNAs in Biomaterial Scaffold-Based Therapies for Bone Tissue Engineering. Biotechnol J 2019; 14:e1900084. [PMID: 31166084 DOI: 10.1002/biot.201900084] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/28/2019] [Indexed: 12/13/2022]
Abstract
In recent years, the application of microRNAs (miRNAs) or anti-microRNAs (anti-miRNAs) that can induce expression of the runt-related transcription factor 2 (RUNX2), a master regulator of osteogenesis, has been investigated as a promising alternative bone tissue engineering strategy. In this review, biomaterial scaffold-based applications that have been used to deliver cells expressing miRNAs or anti-miRNAs that induce expression of RUNX2 for bone tissue engineering are discussed. An overview of the components of the scaffold-based therapies including the miRNAs/anti-miRNAs, cell types, gene delivery vectors, and scaffolds that have been applied are provided. To date, there have been nine miRNAs/anti-miRNAs (i.e., miRNA-26a, anti-miRNA-31, anti-miRNA-34a, miRNA-135, anti-miRNA-138, anti-miRNA-146a, miRNA-148b, anti-miRNA-221, and anti-miRNA-335) that have been incorporated into scaffold-based bone tissue engineering applications and investigated in an in vivo bone critical-sized defect model. For all of the biomaterial scaffold-based miRNA therapies that have been developed thus far, cells that are transfected or transduced with the miRNA/anti-miRNA are loaded into the scaffolds and implanted at the site of interest instead of locally delivering the miRNA/anti-miRNAs directly from the scaffolds. Thus, future work may focus on developing biomaterial scaffolds to deliver miRNAs or anti-miRNAs into cells in vivo.
Collapse
Affiliation(s)
- Marco A Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - May-Hui Ding
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Astrid S Gutierrez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| |
Collapse
|
10
|
Design of Poly(lactic- co-glycolic Acid) (PLGA) Nanoparticles for Vaginal Co-Delivery of Griffithsin and Dapivirine and Their Synergistic Effect for HIV Prophylaxis. Pharmaceutics 2019; 11:pharmaceutics11040184. [PMID: 30995761 PMCID: PMC6523646 DOI: 10.3390/pharmaceutics11040184] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
Long-acting topical products for pre-exposure prophylaxis (PrEP) that combine antiretrovirals (ARVs) inhibiting initial stages of infection are highly promising for prevention of HIV sexual transmission. We fabricated core-shell poly(lactide-co-glycolide) (PLGA) nanoparticles, loaded with two potent ARVs, griffithsin (GRFT) and dapivirine (DPV), having different physicochemical properties and specifically targeting the fusion and reverse transcription steps of HIV replication, as a potential long-acting microbicide product. The nanoparticles were evaluated for particle size and zeta potential, drug release, cytotoxicity, cellular uptake and in vitro bioactivity. PLGA nanoparticles, with diameter around 180–200 nm, successfully encapsulated GRFT (45% of initially added) and DPV (70%). Both drugs showed a biphasic release with initial burst phase followed by a sustained release phase. GRFT and DPV nanoparticles were non-toxic and maintained bioactivity (IC50 values of 0.5 nM and 4.7 nM, respectively) in a cell-based assay. The combination of drugs in both unformulated and encapsulated in nanoparticles showed strong synergistic drug activity at 1:1 ratio of IC50 values. This is the first study to co-deliver a protein (GRFT) and a hydrophobic small molecule (DPV) in PLGA nanoparticles as microbicides. Our findings demonstrate that the combination of GRFT and DPV in nanoparticles is highly potent and possess properties critical to the design of a sustained release microbicide.
Collapse
|
11
|
Rodriguez de Anda DA, Ohannesian N, Martirosyan KS, Chew SA. Effects of solvent used for fabrication on drug loading and release kinetics of electrosprayed temozolomide-loaded PLGA microparticles for the treatment of glioblastoma. J Biomed Mater Res B Appl Biomater 2019; 107:2317-2324. [PMID: 30767394 DOI: 10.1002/jbm.b.34324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and invasive form of malignant brain tumors and despite advances in surgery, radiotherapy, and chemotherapy, the survival of patients with GBM still remains poor. Temozolomide (TMZ) is the chemotherapy drug that is most commonly given orally after surgical resection of these tumors. In this study, the effects of solvents (i.e., dichloromethane and acetonitrile) used for the fabrication of electrosprayed TMZ-loaded poly(lactic-co-glycolic acid) (PLGA) on drug loading, loading efficiency, drug release kinetics, surface morphology, and particle size were investigated. The results from this study demonstrated that by using a larger volume of a solvent with higher polarity (i.e., acetonitrile) which allows for a higher amount of hydrophilic TMZ to dissolve into the polymer solution, higher drug loading could be achieved. However, the particles fabricated with high amount of acetonitrile, which has a lower vapor pressure, had large pores and a smaller diameter which led to an initial burst release and high cumulative release at the end of the study. An optimal combination of the two solvents is needed to result in particles with a good amount of loading and minimal initial burst release. The electrosprayed microparticles were able to illicit a cytotoxic response in U-87 MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work indicated that electrospraying is a promising method for the fabrication of TMZ-loaded PLGA microparticles for the treatment of GBM and solvent composition can be altered to control drug loading and release kinetics. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2317-2324, 2019.
Collapse
Affiliation(s)
- Daniel A Rodriguez de Anda
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Nareg Ohannesian
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Karen S Martirosyan
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, One West University Blvd., Brownsville, Texas, 78520
| |
Collapse
|
12
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
13
|
Dutta D, Hickey K, Salifu M, Fauer C, Willingham C, Stabenfeldt SE. Spatiotemporal presentation of exogenous SDF-1 with PLGA nanoparticles modulates SDF-1/CXCR4 signaling axis in the rodent cortex. Biomater Sci 2017; 5:1640-1651. [PMID: 28703822 PMCID: PMC5588897 DOI: 10.1039/c7bm00489c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stromal cell-derived factor-1 (SDF-1) and its key receptor CXCR4 have been implicated in directing cellular recruitment for several pathological/disease conditions thus also gained considerable attention for regenerative medicine. One regenerative approach includes sustained release of SDF-1 to stimulate prolonged stem cell recruitment. However, the impact of SDF-1 sustained release on the endogenous SDF-1/CXCR4 signaling axis is largely unknown as auto-regulatory mechanisms typically dictate cytokine/receptor signaling. We hypothesize that spatiotemporal presentation of exogenous SDF-1 is a key factor in achieving long-term manipulation of endogenous SDF-1/CXCR4 signaling. Here in the present study, we sought to probe our hypothesis using a transgenic mouse model to contrast the spatial activation of endogenous SDF-1 and CXCR4 in response to exogenous SDF-1 injected in bolus or controlled release (PLGA nanoparticles) form in the adult rodent cortex. Our data suggests that the manner of SDF-1 presentation significantly affected initial CXCR4 cellular activation/recruitment despite having similar protein payloads over the first 24 h (∼30 ng for both bolus and sustained release groups). Yet, one week post-injection, this response was negligible. Therefore, the transient nature CXCR4 recruitment/activation in response to bolus or controlled release SDF-1 indicated that cytokine/receptor auto-regulatory mechanisms may demand more complex release profiles (i.e. delayed and/or pulsed release) to achieve sustained cellular response.
Collapse
Affiliation(s)
- D Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - K Hickey
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - M Salifu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - C Fauer
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - C Willingham
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - S E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
14
|
Tatard VM, Venier-Julienne MC, Benoit JP, Menei P, Montero-Menei CN. In Vivo Evaluation of Pharmacologically Active Microcarriers Releasing Nerve Growth Factor and Conveying PC12 Cells. Cell Transplant 2017; 13:573-83. [PMID: 15565869 DOI: 10.3727/000000004783983675] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell therapy will probably become a major therapeutic strategy in the coming years. Nevertheless, few cells survive transplantation when employed as a treatment for neuronal disorders. To address this problem, we have developed a new tool, the pharmacologically active microcarriers (PAM). PAM are biocompatible and biodegradable microparticles coated with cell adhesion molecules, conveying cells on their surface and presenting a controlled delivery of growth factor. Thus, the combined effect of growth factor and coating influences the transported cells by promoting their survival and differentiation and favoring their integration in the host tissue after their complete degradation. Furthermore, the released factor may also influence the microenvironment. In this study, we evaluated their efficacy using nerve growth factor (NGF)-releasing PAM and PC12 cells, in a Parkinson's disease paradigm. After implantation of NGF-releasing or unloaded PAM conveying PC12 cells, or PC12 cells alone, we studied cell survival, differentiation, and apoptosis, as well as behavior of the treated rats. We observed that the NGF-releasing PAM coated with two synthetic peptides (poly-D-lysine and fibronectin-like) induced PC12 cell differentiation and reduced cell death and proliferation. Moreover, the animals receiving this implant presented an improved amphetamine-induced rotational behavior. These findings indicate that PAM could be a promising strategy for cell therapy of neurological diseases and could be employed in other situations with fetal cell transplants or with stem cells.
Collapse
Affiliation(s)
- V M Tatard
- INSERM U 646, Laboratoire d'Ingénierie de la vectorisation particulaire, 10 rue André Boquel, 49100 Angers, France
| | | | | | | | | |
Collapse
|
15
|
Guarecuco R, Lu J, McHugh KJ, Norman JJ, Thapa LS, Lydon E, Langer R, Jaklenec A. Immunogenicity of pulsatile-release PLGA microspheres for single-injection vaccination. Vaccine 2017. [PMID: 28625520 PMCID: PMC5960071 DOI: 10.1016/j.vaccine.2017.05.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The World Health Organization's Expanded Programme on Immunization has led to a dramatic rise in worldwide vaccination rates over the past 40 years, yet 19.4 million infants remain underimmunized each year. Many of these infants have received at least one vaccine dose but may remain unprotected because they did not receive subsequent booster doses due to logistical challenges. This study aimed to develop injectable controlled release microparticles with kinetics that mimic common vaccine dosing regimens consisting of large antigen doses administered periodically over the course of months in order to eliminate the need for boosters. Sixteen poly(lactic-co-glycolic acid) (PLGA) microsphere formulations containing bovine serum albumin (BSA) as a model vaccine antigen were screened in vitro to determine their respective release kinetics. Three formulations that exhibited desirable pulsatile release profiles were then selected for studying immunogenicity in mice. Two low-dose microsphere formulations induced peak anti-BSA IgG antibody titers of 13.9 ± 1.3 and 13.7 ± 2.2 log2 compared to 15.5 ± 1.5 log2 for a series of three bolus injections delivered at 0, 4, and 8 weeks with an equivalent cumulative dose. Similarly, high-dose formulations induced peak antibody titers that were 16.1 ± 2.1 log2 compared to 17.7 ± 2.2 log2 for controls. All three microparticle formulations studied in vivo induced peak antibody titers that were statistically similar to bolus controls. These results suggest that pulsatile antigen release from polymeric microparticles is a promising approach for single-injection vaccination, which could potentially reduce the logistical burden associated with immunization in the developing world.
Collapse
Affiliation(s)
- Rohiverth Guarecuco
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Jennifer Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Kevin J McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - James J Norman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Lavanya S Thapa
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Emily Lydon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA.
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Morkhade DM, Nande VS, Barabde UV, Joshi SB. Study of biodegradation and biocompatibility of PEGylated rosin derivatives. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517705404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PEGylated rosin derivatives are improved in series ester-adduct derivatives of rosin. The aim of this study was to assess biodegradation and biocompatibility of PEGylated rosin derivatives. Study employed two different PEGylated rosin derivatives, namely, D1 and D2, with constant weight of rosin and increasing amounts of polyethylene glycol 400. PEGylated rosin derivatives were synthesized and tailored into spherical beads and disks with smooth surface for use. In vitro degradation was studied at pH 4.0, 7.4, and 10 for 60 days. In vivo study was performed in Wistar rats using poly(d,l-lactide- co-glycolide) (50:50) as a control. Post 3, 7, 14, and 21 days of implantation, PEGylated rosin derivatives disks were retrieved and evaluated for weight loss, molecular weight decline, morphology, and tissue response. D1 and D2 beads showed 21.68% and 32.37% weight loss, respectively, at pH 7.4 post 60 days. Degradation was increased substantially with increase in pH of medium. Degradation of disks was markedly slower than that of beads. In vivo degradation of PEGylated rosin derivative disks was faster than in vitro. Post 60 days of implantation, weight loss of D1 and D2 disk was 7.57% and 11.84%, whereas molecular weight was declined by about 19% and 26%, respectively. Owing to higher amounts of polyethylene glycol 400, in vitro and in vivo degradation of D2 was faster than D1. Poly(d,l-lactide- co-glycolide) as well as PEGylated rosin derivative implants evoked mild inflammatory responses characterized by few macrophages and absence of exudation at tissue–disk interface. The cellular density in tissue surrounding PEGylated rosin derivative disks increased initially with time up to 7 days and decreased eventually at the end of 21 days. The trend was similar for poly(d,l-lactide- co-glycolide) implants. Increase in polyethylene glycol 400 improved biodegradation and biocompatibility of PEGylated rosin derivatives. Results revealed that PEGylated rosin derivatives degrade slowly in vivo over a period of time, possess fair biocompatibility, and thus are promising biomaterial for drug delivery applications.
Collapse
Affiliation(s)
- Dinesh M Morkhade
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
- Piramal Healthcare, Morpeth, UK
| | - Vishwanath S Nande
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Umesh V Barabde
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Siddheshwar B Joshi
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| |
Collapse
|
17
|
Chen Y, Gu Q, Yue Z, Crook JM, Moulton SE, Cook MJ, Wallace GG. Development of drug-loaded polymer microcapsules for treatment of epilepsy. Biomater Sci 2017; 5:2159-2168. [DOI: 10.1039/c7bm00623c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibre- and sphere-based microcapsules have been developed, exhibiting controllable uniform morphologies, predictable drug release profiles, and neuro-cytocompatibility.
Collapse
Affiliation(s)
- Yu Chen
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Qi Gu
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Jeremy M. Crook
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Simon E. Moulton
- ARC Centre of Excellence for Electromaterials Science
- Faculty of Science
- Engineering and Technology
- Swinburne University of Technology
- Hawthorn
| | - Mark J. Cook
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- AIIM Facility
- Innovation Campus
- University of Wollongong
| |
Collapse
|
18
|
Validation of a cage implant system for assessing in vivo performance of long-acting release microspheres. Biomaterials 2016; 109:88-96. [DOI: 10.1016/j.biomaterials.2016.07.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 12/11/2022]
|
19
|
Korley JN, Yazdi S, McHugh K, Kirk J, Anderson J, Putnam D. One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone. Biomaterials 2016; 98:41-52. [DOI: 10.1016/j.biomaterials.2016.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
20
|
Thiem A, Bagheri M, Große-Siestrup C, Zehbe R. Gelatin-poly(lactic-co-glycolic acid) scaffolds with oriented pore channel architecture — From in vitro to in vivo testing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:585-95. [DOI: 10.1016/j.msec.2016.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/07/2023]
|
21
|
Xu Y, Kim CS, Saylor DM, Koo D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater 2016; 105:1692-1716. [PMID: 27098357 DOI: 10.1002/jbm.b.33648] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 02/12/2016] [Indexed: 01/03/2023]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) copolymers have been broadly used in controlled drug release applications. Because these polymers are biodegradable, they provide an attractive option for drug delivery vehicles. There are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA polymers and concurrent drug release kinetics. This work is intended to provide a comprehensive and collective review of the physicochemical and physiological factors that dictate the degradation behavior of PLGA polymers and drug release from contemporary PLGA-based drug-polymer products. In conjunction with the existing experimental results, analytical and numerical theories developed to predict drug release from PLGA-based polymers are summarized and correlated with the experimental observations. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1692-1716, 2017.
Collapse
Affiliation(s)
- Yihan Xu
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| | - Chang-Soo Kim
- Materials Science and Engineering Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211
| | - David M Saylor
- Division of Biology, Chemistry, and Materials Science, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993
| | - Donghun Koo
- Materials Science R&D, MilliporeSigma, Milwaukee, Wisconsin, 53209
| |
Collapse
|
22
|
Hulou MM, Cho CF, Chiocca EA, Bjerkvig R. Experimental therapies: gene therapies and oncolytic viruses. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:183-197. [PMID: 26948355 DOI: 10.1016/b978-0-12-802997-8.00011-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults. Over the past three decades, the overall survival time has only improved by a few months, therefore novel alternative treatment modalities are needed to improve clinical management strategies. Such strategies should ultimately extend patient survival. At present, the extensive insight into the molecular biology of gliomas, as well as into genetic engineering techniques, has led to better decision processes when it comes to modifying the genome to accommodate suicide genes, cytokine genes, and tumor suppressor genes that may kill cancer cells, and boost the host defensive immune system against neoantigenic cytoplasmic and nuclear targets. Both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment. Stem cells, microRNAs, nanoparticles, and viruses have also been designed. These have been armed with transgenes or peptides, and have been used both in laboratory-based experiments as well as in clinical trials, with the aim of improving selective killing of malignant glioma cells while sparing normal brain tissue. This chapter reviews the current status of gene therapies for malignant gliomas and highlights the most promising viral and cell-based strategies under development.
Collapse
Affiliation(s)
- M Maher Hulou
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Choi-Fong Cho
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rolf Bjerkvig
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg; Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
23
|
McHugh KJ, Guarecuco R, Langer R, Jaklenec A. Single-injection vaccines: Progress, challenges, and opportunities. J Control Release 2015; 219:596-609. [PMID: 26254198 DOI: 10.1016/j.jconrel.2015.07.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023]
Abstract
Currently, vaccination is the most efficient and cost-effective medical treatment for infectious diseases; however, each year 10 million infants remain underimmunized due to current vaccination schedules that require multiple doses to be administered across months or years. These dosing regimens are especially challenging in the developing world where limited healthcare access poses a major logistical barrier to immunization. Over the past four decades, researchers have attempted to overcome this issue by developing single-administration vaccines based on controlled-release antigen delivery systems. These systems can be administered once, but release antigen over an extended period of time to elicit both primary and secondary immune responses resulting in antigen-specific immunological memory. Unfortunately, unlike controlled release systems for drugs, single-administration vaccines have yet to be commercialized due to poor antigen stability and difficulty in obtaining unconventional release kinetics. This review discusses the current state of single-administration vaccination, challenges delaying the development of these vaccines, and potential strategies for overcoming these challenges.
Collapse
Affiliation(s)
- Kevin J McHugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rohiverth Guarecuco
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
24
|
Gupta A, Liberati TA, Verhulst SJ, Main BJ, Roberts MH, Potty AGR, Pylawka TK, El-Amin Iii SF. Biocompatibility of single-walled carbon nanotube composites for bone regeneration. Bone Joint Res 2015; 4:70-7. [PMID: 25943595 PMCID: PMC4438669 DOI: 10.1302/2046-3758.45.2000382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The purpose of this study was to evaluate in vivo biocompatibility of novel single-walled carbon nanotubes (SWCNT)/poly(lactic-co-glycolic acid) (PLAGA) composites for applications in bone and tissue regeneration. METHODS A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight and 12 weeks post-implantation were compared with control (Sham) and PLAGA (five rats per group/point in time). Rats were observed for signs of morbidity, overt toxicity, weight gain and food consumption, while haematology, urinalysis and histopathology were completed when the animals were killed. RESULTS No mortality and clinical signs were observed. All groups showed consistent weight gain, and the rate of gain for each group was similar. All groups exhibited a similar pattern for food consumption. No difference in urinalysis, haematology, and absolute and relative organ weight was observed. A mild to moderate increase in the summary toxicity (sumtox) score was observed for PLAGA and SWCNT/PLAGA implanted animals, whereas the control animals did not show any response. Both PLAGA and SWCNT/PLAGA showed a significantly higher sumtox score compared with the control group at all time intervals. However, there was no significant difference between PLAGA and SWCNT/PLAGA groups. CONCLUSIONS Our results demonstrate that SWCNT/PLAGA composites exhibited in vivo biocompatibility similar to the Food and Drug Administration approved biocompatible polymer, PLAGA, over a period of 12 weeks. These results showed potential of SWCNT/PLAGA composites for bone regeneration as the low percentage of SWCNT did not elicit a localised or general overt toxicity. Following the 12-week exposure, the material was considered to have an acceptable biocompatibility to warrant further long-term and more invasive in vivo studies. Cite this article: Bone Joint Res 2015;4:70-7.
Collapse
Affiliation(s)
- A Gupta
- Southern Illinois University School of Medicine, 701 N First Street, Springfield, Illinois 62794-9679, USA
| | - T A Liberati
- Southern Illinois University School of Medicine, 701 N First Street, Springfield, Illinois 62794-9679, USA
| | - S J Verhulst
- Southern Illinois University School of Medicine, 701 N First Street, Springfield, Illinois 62794-9679, USA
| | - B J Main
- Southern Illinois University School of Medicine, 701 N First Street, Springfield, Illinois 62794-9679, USA
| | - M H Roberts
- Southern Illinois University School of Medicine, 701 N First Street, Springfield, Illinois 62794-9679, USA
| | - A G R Potty
- Southern Illinois University School of Medicine, 701 N First Street, Springfield, Illinois 62794-9679, USA
| | - T K Pylawka
- Southern Illinois University School of Medicine, 701 N First Street, Springfield, Illinois 62794-9679, USA
| | - S F El-Amin Iii
- Southern Illinois University School of Medicine, 701 N First Street, Springfield, Illinois 62794-9679, USA
| |
Collapse
|
25
|
Prevention of postoperative tendon adhesion by biodegradable electrospun membrane of poly(lactide-co-glycolide). CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1611-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Kazemzadeh-Narbat M, Annabi N, Tamayol A, Oklu R, Ghanem A, Khademhosseini A. Adenosine-associated delivery systems. J Drug Target 2015; 23:580-96. [PMID: 26453156 PMCID: PMC4863639 DOI: 10.3109/1061186x.2015.1058803] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine's extremely short half-life in human blood (<10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this article, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted.
Collapse
Affiliation(s)
- Mehdi Kazemzadeh-Narbat
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston 02115, MA, USA
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - Rahmi Oklu
- Massachusetts General Hospital, Harvard Medical School, Division of Interventional Radiology, Boston 02114, MA, USA
| | - Amyl Ghanem
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
27
|
Elliott Donaghue I, Tam R, Sefton MV, Shoichet MS. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J Control Release 2014; 190:219-27. [DOI: 10.1016/j.jconrel.2014.05.040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022]
|
28
|
Wischke C, Weigel J, Bulavina L, Lendlein A. Sustained release carrier for adenosine triphosphate as signaling molecule. J Control Release 2014; 195:86-91. [PMID: 25087974 DOI: 10.1016/j.jconrel.2014.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/15/2014] [Accepted: 07/24/2014] [Indexed: 01/15/2023]
Abstract
Adenosine triphosphate (ATP) is a molecule with a fascinating variety of intracellular and extracellular biological functions that go far beyond energy metabolism. Due to its limited passive diffusion through biological membranes, controlled release systems may allow to interact with ATP-mediated extracellular processes. In this study, two release systems were explored to evaluate the capacity for either long-term or short-term release: (i) Poly[(rac-lactide)-co-glycolide] (PLGA) implant rods were capable of ATP release over days to weeks, depending on the PLGA molecular weight and end-group capping, but were also associated with partial hydrolytic degradation of ATP to ADP and AMP, but not adenosine. (ii) Thermosensitive methylcellulose hydrogels with a gelation occurring at body temperature allowed combining adjustable loading levels and the capacity for injection, with injection forces less than 50N even for small 27G needles. Finally, a first in vitro study illustrated purinergic-triggered response of primary murine microglia to ATP released from hydrogels, demonstrating the potential relevance for biomedical applications.
Collapse
Affiliation(s)
- Christian Wischke
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, Teltow, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Kantstr. 55, Teltow, Germany.
| | - Judith Weigel
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, Teltow, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Kantstr. 55, Teltow, Germany
| | - Larisa Bulavina
- Cellular Neuroscience, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, Teltow, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Kantstr. 55, Teltow, Germany.
| |
Collapse
|
29
|
Zhu T, Shen Y, Tang Q, Chen L, Gao H, Zhu J. BCNU/PLGA microspheres: a promising strategy for the treatment of gliomas in mice. Chin J Cancer Res 2014; 26:81-8. [PMID: 24653629 DOI: 10.3978/j.issn.1000-9604.2014.02.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/27/2014] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To investigate the effects of BCNU/PLGA microspheres on tumor growth, apoptosis and chemotherapy resistance in a C57BL/6 mice orthotopic brain glioma model using GL261 cell line. METHODS BCNU/PLGA sustained-release microspheres were prepared by the water-in-oil-in-water emulsion technique. GL261 cells were intracranially injected into C57BL/6 mouse by using the stereotactic technology. A total of 60 tumor-bearing mice were randomly and equally divided into three groups: untreated control, PLGA treated, BCNU/PLGA treated. Magnetic resonance imaging (MRI) was taken to evaluate tumor volume. BCNU/PLGA sustained-release wafers were implanted in the treatment group two weeks after inoculation. Survival time and quality were observed. Specimens were harvested, and immunohistochemical staining was used to check the expression of Bax, Bcl-2, and O(6)-methylguanine-DNA methyltransferase (MGMT). Statistical methods was used for analysis of relevant data. RESULTS BCNU/PLGA sustained-release wafers were fabricated and implanted successfully. There is statistical difference of survival time between the BCNU/PLGA treated group and control groups (P<0.05). MRI scan showed inhibitory effect of BCNU/PLGA on tumor growth. Compared to the group A and B, BCNU/PLGA decreased the expression of apoptosis related gene Bcl-2 (P<0.05), but did not elevate the expression level of Bax (P>0.05), with the ratio of Bax/Bcl-2 increased. For MGMT protein expression, no statistically significant change was found in treated group (P>0.05). CONCLUSIONS Local implantation of BCNU/PLGA microspheres improved the survival quality and time of GL261 glioma-bearing mice significantly, inhibited the tumor proliferation, induced more cell apoptosis, and did not increase the chemotherapy resistance.
Collapse
Affiliation(s)
- Tongming Zhu
- Fudan University Huashan Hospital, Dept. of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science,Shanghai Medical College-Fudan University, Shanghai 200040, China
| | - Yiwen Shen
- Fudan University Huashan Hospital, Dept. of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science,Shanghai Medical College-Fudan University, Shanghai 200040, China
| | - Qisheng Tang
- Fudan University Huashan Hospital, Dept. of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science,Shanghai Medical College-Fudan University, Shanghai 200040, China
| | - Luping Chen
- Fudan University Huashan Hospital, Dept. of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science,Shanghai Medical College-Fudan University, Shanghai 200040, China
| | - Huasong Gao
- Fudan University Huashan Hospital, Dept. of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science,Shanghai Medical College-Fudan University, Shanghai 200040, China
| | - Jianhong Zhu
- Fudan University Huashan Hospital, Dept. of Neurosurgery, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science,Shanghai Medical College-Fudan University, Shanghai 200040, China
| |
Collapse
|
30
|
Reguera-Nuñez E, Roca C, Hardy E, de la Fuente M, Csaba N, Garcia-Fuentes M. Implantable controlled release devices for BMP-7 delivery and suppression of glioblastoma initiating cells. Biomaterials 2014; 35:2859-67. [DOI: 10.1016/j.biomaterials.2013.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/08/2013] [Indexed: 01/04/2023]
|
31
|
Antibiotics Delivery for Treating Bone Infections. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/7355_2013_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
33
|
5-Fluorouracil delivery from a novel three-dimensional micro-device: in vitro and in vivo evaluation. Arch Pharm Res 2013; 36:1487-93. [DOI: 10.1007/s12272-013-0168-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/27/2013] [Indexed: 12/12/2022]
|
34
|
Zhang L, Zhang F, Weng Z, Brown BN, Yan H, Ma XM, Vosler PS, Badylak SF, Dixon CE, Cui XT, Chen J. Effect of an inductive hydrogel composed of urinary bladder matrix upon functional recovery following traumatic brain injury. Tissue Eng Part A 2013; 19:1909-18. [PMID: 23596981 DOI: 10.1089/ten.tea.2012.0622] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem with no effective clinical treatment. Use of bioactive scaffold materials has been shown to be a promising strategy for tissue regeneration and repair in a number of injury models. Of these scaffold materials, urinary bladder matrix (UBM) derived from porcine bladder tissue, has demonstrated desirable properties for supporting and promoting the growth of neural cells in vitro, suggesting its potential as a scaffold for brain tissue repair in the treatment of TBI. Herein we evaluate the biocompatibility of UBM within brain tissue and the effects of UBM delivery upon functional outcome following TBI. A hydrogel form of UBM was injected into healthy rat brains for 1, 3, and 21 days to examine the tissue response to UBM. Multiple measures of tissue injury, including reactive astrocytosis, microglial activation, and neuron degeneration showed that UBM had no deleterious effects on normal brain. Following TBI, the brains were evaluated histologically and behaviorally between sham-operated controls and UBM- and vehicle-treated groups. Application of UBM reduced lesion volume and attenuated trauma-induced myelin disruption. Importantly, UBM treatment resulted in significant neurobehavioral recovery following TBI as demonstrated by improvements in vestibulomotor function; however, no differences in cognitive recovery were observed between the UBM- and vehicle-treated groups. The present study demonstrated that UBM is not only biocompatible within the brain tissue, but also can exert protective effects upon injured brain.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Peter Christoper GV, Vijaya Raghavan C, Siddharth K, Siva Selva Kumar M, Hari Prasad R. Formulation and optimization of coated PLGA - Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency. Saudi Pharm J 2013; 22:133-40. [PMID: 24648825 DOI: 10.1016/j.jsps.2013.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/23/2013] [Indexed: 11/28/2022] Open
Abstract
In the current study zidovudine loaded PLGA nanoparticles were prepared, coated and further investigated for its effectiveness in brain targeting. IR and DSC studies were performed to determine the interaction between excipients used and to find out the nature of drug in the formulation. Formulations were prepared by adopting 2(3) factorial designs to evaluate the effects of process and formulation variables. The prepared formulations were subjected for in vitro and in vivo evaluations. In vitro evaluations showed particle size below 100 nm, entrapment efficiency of formulations ranges of 28-57%, process yield of 60-76% was achieved and drug release for the formulations were in the range of 50-85%. The drug release from the formulations was found to follow Higuchi release pattern, n-value obtained after Korsemeyer plot was in the range of 0.56-0.78. In vivo evaluations were performed in mice after intraperitoneal administration of zidovudine drug solution, uncoated and coated formulation. Formulation when coated with Tween 80 achieved a higher concentration in the brain than that of the drug in solution and of the uncoated formulation. Stability studies indicated that there was no degradation of the drug in the formulation after 90 days of preparation when stored in refrigerated condition.
Collapse
Affiliation(s)
- G V Peter Christoper
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, Tamil Nadu, India
| | - C Vijaya Raghavan
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, Tamil Nadu, India
| | - K Siddharth
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, Tamil Nadu, India
| | - M Siva Selva Kumar
- Department of Pharmaceutical Analysis, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, Tamil Nadu, India
| | - R Hari Prasad
- Department of Pharmaceutical Analysis, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, Tamil Nadu, India
| |
Collapse
|
36
|
El-Ghannam A, Hart A, White D, Cunningham L. Mechanical properties and cytotoxicity of a resorbable bioactive implant prepared by rapid prototyping technique. J Biomed Mater Res A 2013; 101:2851-61. [PMID: 23504981 DOI: 10.1002/jbm.a.34585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 12/30/2022]
Abstract
Bioceramic processing using rapid prototyping technique (RPT) results in a fragile device that requires thermal treatment to improve the mechanical properties. This investigation evaluates the effect of thermal treatment on the mechanical, porosity, and bioactivity properties as well as the cytotoxicity of a porous silica-calcium phosphate nanocomposite (SCPC) implant prepared by RPT. Porous SCPC implant was subject to 3-h treatment at 800°C, 850°C, or 900°C. The compressive strength (s) and modulus of elasticity (E) were doubled when the sintering temperature is raised from 850 to 900°C measuring (s = 15.326 ± 2.95 MPa and E = 1095 ± 164 MPa) after the later treatment. The significant increase in mechanical properties takes place with minimal changes in the surface area and the percentage of pores in the range 1-356 μm. The SCPC implant prepared at 900°C was loaded with rh-BMP-2 and grafted into a segmental defect in the rabbit ulna. Histology analyses showed highly vascularized bone formation inside the defect. Histopathological analyses of the liver, spleen, kidney, heart, and the lung of rabbits grafted with and without SCPC demonstrated healthy tissues with no signs of toxicity or morphology alterations. Results of the study suggest that it is possible to engineering the mechanical properties of the SCPC implant without compromising its bioactivity. The enhanced bone formation inside the porous SCPC facilitated cell-mediated graft resorption and prohibited any accumulation of the material in the body organs.
Collapse
Affiliation(s)
- Ahmed El-Ghannam
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223
| | | | | | | |
Collapse
|
37
|
Newland B, Dowd E, Pandit A. Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater Sci 2013; 1:556-576. [DOI: 10.1039/c3bm60030k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Marrache S, Pathak RK, Darley KL, Choi JH, Zaver D, Kolishetti N, Dhar S. Nanocarriers for tracking and treating diseases. Curr Med Chem 2013; 20:3500-14. [PMID: 23834187 PMCID: PMC8085808 DOI: 10.2174/0929867311320280007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Site directed drug delivery with high efficacy is the biggest challenge in the area of current pharmaceuticals. Biodegradable polymer-based controlled release nanoparticle platforms could be beneficial for targeted delivery of therapeutics and contrast agents for a myriad of important human diseases. Biodegradable nanoparticles, which can be engineered to load multiple drugs with varied physicochemical properties, contrast agents, and cellular or intracellular component targeting moieties, have emerged as potential alternatives for tracking and treating human diseases. In this review, we will highlight the current advances in the design and execution of such platforms for their potential application in the diagnosis and treatment of variety of diseases ranging from cancer to Alzheimer's and we will provide a critical analysis of the associated challenges for their possible clinical translation.
Collapse
Affiliation(s)
- Sean Marrache
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Rakesh Kumar Pathak
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Kasey L. Darley
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Joshua H. Choi
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | - Dhillon Zaver
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
| | | | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
39
|
Newland B, Moloney TC, Fontana G, Browne S, Abu-Rub MT, Dowd E, Pandit AS. The neurotoxicity of gene vectors and its amelioration by packaging with collagen hollow spheres. Biomaterials 2012; 34:2130-41. [PMID: 23245921 DOI: 10.1016/j.biomaterials.2012.11.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023]
Abstract
Over the last twenty years there have been several reports on the use of nonviral vectors to facilitate gene transfer in the mammalian brain. Whilst a large emphasis has been placed on vector transfection efficiency, the study of the adverse effects upon the brain, caused by the vectors themselves, remains completely overshadowed. To this end, a study was undertaken to study the tissue response to three commercially available transfection agents in the brain of adult Sprague Dawley rats. The response to these transfection agents was compared to adeno-associated viral vector (AAV), PBS and naked DNA. Furthermore, the use of a collagen hollow sphere (CHS) sustained delivery system was analysed for its ability to reduce striatal toxicity of the most predominantly studied polymer vector, polyethyleneimine (PEI). The size of the gross tissue loss at the injection site was analysed after immunohistochemical staining and was used as an indication of acute toxicity. Polymeric vectors showed similar levels of acute brain toxicity as seen with AAV, and CHS were able to significantly reduce the toxicity of the PEI vector. In addition; the host response to the vectors was measured in terms of reactive astrocytes and microglial cell recruitment. To understand whether this gross tissue loss was caused by the direct toxicity of the vectors themselves an in vitro study on primary astrocytes was conducted. All vectors reduced the viability of the cells which is brought about by direct necrosis and apoptosis. The CHS delivery system reduced cell necrosis in the early stages of post administration. In conclusion, whilst polymeric gene vectors cause acute necrosis, administration in the brain causes adverse effects no worse than that of an AAV vector. Furthermore, packaging the PEI vector with CHS reduces surface charge and direct toxicity without elevating the host response.
Collapse
Affiliation(s)
- Ben Newland
- Network of Excellence for Functional Biomaterials, IDA Business Park, Dangan, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Lin Y, Li Y, Ooi CP. 5-Fluorouracil encapsulated HA/PLGA composite microspheres for cancer therapy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2453-2460. [PMID: 22843166 DOI: 10.1007/s10856-012-4723-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 07/14/2012] [Indexed: 06/01/2023]
Abstract
5-Fluorouracil (5FU) was successfully entrapped within poly(lactide-co-glycolide) (PLGA) and hydroyapatite (HA) composite microspheres using the emulsification/solvent extraction technique. The effects of HA to PLGA ratio, solvent ratio as well as polymer inherent viscosity (IV) on encapsulation efficiency were investigated. The degradation and drug release rates of the microspheres were studied for 5 weeks in vitro in phosphate buffered solution of pH 7.4 at 37 °C. The drug release profile followed a biphasic pattern with a small initial burst followed by a zero-order release for up to 35 days. The initial burst release decreased with increasing HA content. The potential of HA in limiting the initial burst release makes the incorporation of HA into PLGA microspheres advantageous since it reduces the risk of drug overdose from high initial bursts. The linear sustained drug release profile over the course of 5 weeks makes these 5-FU-loaded HA/PLGA composite microparticles a promising delivery system for the controlled release of chemotherapy drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Yuting Lin
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 673978, Singapore
| | | | | |
Collapse
|
42
|
Abstract
Tice and colleagues pioneered site-specific, sustained-release drug delivery to the brain almost 30 years ago. Currently there is one drug approved for use in this manner. Clinical trials in subarachnoid hemorrhage have led to approval of nimodipine for oral and intravenous use, but other drugs, such as clazosentan, hydroxymethylglutaryl CoA reductase inhibitors (statins) and magnesium, have not shown consistent clinical efficacy. We propose that intracranial delivery of drugs such as nimodipine, formulated in sustained-release preparations, are good candidates for improving outcome after subarachnoid hemorrhage because they can be administered to patients that are already undergoing surgery and who have a self-limited condition from which full recovery is possible.
Collapse
|
43
|
Allhenn D, Boushehri MAS, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm 2012; 436:299-310. [PMID: 22721856 DOI: 10.1016/j.ijpharm.2012.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/07/2023]
Abstract
As primary brain tumors, malignant gliomas are known to be one of the most insidious types of brain cancer afflicting the humans. The current standard strategy for the treatment of malignant gliomas includes the surgical resection of the tumor when possible, followed by a combination of radiotherapy and/or a certain chemotherapeutic protocol. However, due to the short mean survival, frequent recurrences, and poor prognosis associated with the tumors, new therapeutic strategies are investigated consecutively. These novel drug delivery approaches can be subdivided as systemic and local drug administration. This review focuses on localized drug delivery strategies for the treatment of malignant gliomas, including the injections, infusions, trans-nasal delivery systems, convection enhanced delivery (CED) systems, and various types of polymeric implants. Furthermore, systemic strategies to increase the drug penetration into the brain, such as temporary disruption of the blood brain barrier (BBB), chemical modification of the available therapeutic substances, and utilization of endogenous transport systems will be briefly discussed.
Collapse
Affiliation(s)
- Daniela Allhenn
- Department of Pharm. Technology, Institute of Pharmacy, University of Bonn, Germany.
| | | | | |
Collapse
|
44
|
Wang GX, Yin TY, Luo LL, Hou YB, Wang YZ, Ruan CG, Guzman RP, Guidoin R. Eluting characteristics of a platelet glycoprotein receptor antibody using a PLLA-coated stent. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 19:359-71. [PMID: 18325236 DOI: 10.1163/156856208783721001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- G.-X. Wang
- a Bioengineering College of Chongqing University, Chongqing, China
| | - T.-Y. Yin
- b Bioengineering College of Chongqing University, Chongqing, China
| | - L.-L. Luo
- c Bioengineering College of Chongqing University, Chongqing, China
| | - Y.-B. Hou
- d Bioengineering College of Chongqing University, Chongqing, China
| | - Y.-Z. Wang
- e Bioengineering College of Chongqing University, Chongqing, China
| | - C.-G. Ruan
- f Jiangshu Institute of Hematology, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - R. P. Guzman
- g Vascular Surgery, St-Boniface General Hospital, Winnipeg, Canada
| | - R. Guidoin
- h Department of Surgery, Laval University and Quebec Biomaterials Institute, CHUQ, Quebec, Canada G1K 7P4
| |
Collapse
|
45
|
Joosten EAJ. Biodegradable biomatrices and bridging the injured spinal cord: the corticospinal tract as a proof of principle. Cell Tissue Res 2012; 349:375-95. [PMID: 22411698 PMCID: PMC3375422 DOI: 10.1007/s00441-012-1352-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/27/2012] [Indexed: 12/12/2022]
Abstract
Important advances in the development of smart biodegradable implants for axonal regeneration after spinal cord injury have recently been reported. These advances are evaluated in this review with special emphasis on the regeneration of the corticospinal tract. The corticospinal tract is often considered the ultimate challenge in demonstrating whether a repair strategy has been successful in the regeneration of the injured mammalian spinal cord. The extensive know-how of factors and cells involved in the development of the corticospinal tract, and the advances made in material science and tissue engineering technology, have provided the foundations for the optimization of the biomatrices needed for repair. Based on the findings summarized in this review, the future development of smart biodegradable bridges for CST regrowth and regeneration in the injured spinal cord is discussed.
Collapse
Affiliation(s)
- Elbert A J Joosten
- Department of Anesthesiology, Pain Management and Research Center, Maastricht University Medical Hospital, Maastricht, The Netherlands.
| |
Collapse
|
46
|
Preparation of self-solidifying polymeric depots from PLEC-PEG-PLEC triblock copolymers as an injectable drug delivery system. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-9834-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Attenello F, Raza SM, Dimeco F, Olivi A. Chemotherapy for brain tumors with polymer drug delivery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:339-53. [PMID: 22230452 DOI: 10.1016/b978-0-444-52138-5.00022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Frank Attenello
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
48
|
Macdonald RL. Site-Specific, Sustained-Release Drug Delivery for Subarachnoid Hemorrhage. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Engineer C, Parikh J, Raval A. Effect of copolymer ratio on hydrolytic degradation of poly(lactide-co-glycolide) from drug eluting coronary stents. Chem Eng Res Des 2011. [DOI: 10.1016/j.cherd.2010.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Ma X, Oyamada S, Wu T, Robich MP, Wu H, Wang X, Buchholz B, McCarthy S, Bianchi CF, Sellke FW, Laham R. In vitro and in vivo degradation of poly(D, L-lactide-co-glycolide)/amorphous calcium phosphate copolymer coated on metal stents. J Biomed Mater Res A 2011; 96:632-8. [PMID: 21268237 DOI: 10.1002/jbm.a.33016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/14/2010] [Accepted: 11/29/2010] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to optimize a novel biodegradable polymer for drug eluting stent (DES) applications. Degradation profiles of different poly(D,L-lactide-co-glycolide)/amorphous calcium phosphate (PLGA/ACP) composites coated on stents were studied both in vitro and in vivo for three months. For the in vitro study, stents were immersed into the phosphate buffered saline (37 °C, pH 7.4) with constant shaking. The polymer weight loss was measured weekly and morphological changes were analyzed. The results demonstrated that approximately 60% of polymer was degraded within the three-month period and there was no significant difference between the different PLGA/ACP composites. However, the composite of 50% PLGA (65/35) with 50% ACP showed a slightly faster degradation rate than other composites. Morphologically, all stent surfaces changed from a micro-porous before degradation to a corrugated solid micro-net-like structure at two months post degradation. Based on in vitro results, 65% PLGA (65/35) with 35% ACP) coated stents were selected and implanted into rat aortas (n = 12) for the in vivo study. Microscopic observation showed that no composite was found on any of the implanted stents at 12 weeks post implantation, which indicated the selected PLGA/ACP composite is desired for DES applications.
Collapse
Affiliation(s)
- Xiaodong Ma
- Biomedical Engineering and Biotechnology Doctoral Program, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|