1
|
Gupta S, Puttaiahgowda YM, Deiglmayr L. Recent advances in the design and immobilization of heparin for biomedical application: A review. Int J Biol Macromol 2024; 264:130743. [PMID: 38462098 DOI: 10.1016/j.ijbiomac.2024.130743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Heparin, a member of the glycosaminoglycan family, is renowned as the most negatively charged biomolecule discovered within the realm of human biology. This polysaccharide serves a vital role as a regulator for various proteins, cells, and tissues within the human body, positioning itself as a pivotal macromolecule of significance. The domain of biology has witnessed substantial interest in the intricate design of heparin and its derivatives, particularly focusing on heparin-based polymers and hydrogels. This intrigue spans a wide spectrum of applications, encompassing diverse areas such as protein adsorption, anticoagulant properties, controlled drug release, development of implants, stent innovation, enhancement of blood compatibility, acceleration of wound healing, and pioneering strides in tissue engineering. This comprehensive overview delves into a multitude of developed heparin conjugates, employing various methods, and explores their functions in both the biomedicine and electronics fields. The efficacy of materials derived from heparin is also thoroughly investigated, encompassing considerations such as thrombogenicity, drug release kinetics, affinity for growth factors (GFs), biocompatibility, and electrochemical analyses. We firmly believe that by redirecting focus towards research and advancements in heparin-related polymers/hydrogels, this study will ignite further research and accelerate potential breakthroughs in this promising and evolving field of discovery.
Collapse
Affiliation(s)
- Sonali Gupta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Lisa Deiglmayr
- Department of Chemistry, University of Munich (LMU), Butenandtstraβe 5-13, (D), 81377 Munich, Germany
| |
Collapse
|
2
|
Zhang Y, Man J, Wang J, Liu J, Song X, Yu X, Li J, Li R, Qiu Y, Li J, Chen Y. Surface modification of polyvinyl chloride with sodium alginate/carboxymethyl chitosan and heparin for realizing the anticoagulation. Int J Biol Macromol 2024; 254:127653. [PMID: 37918597 DOI: 10.1016/j.ijbiomac.2023.127653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Thrombosis of extracorporeal circuits causes significant morbidity and mortality worldwide. In this study, plasma treatment technology and chemical grafting method were used to construct heparinized surfaces on the PVC substrate, which could not only reduce thrombosis but also decrease the side effects of the direct injection of anticoagulants. The PVC substrate was modified by plasma treatment technology firstly to obtain the active surface with the hydroxyl groups used for grafting. Then, heparin was grafted onto the modified PVC surface using different grafting strategies to prepare different heparinized surfaces. The experimental results indicated that the sodium alginate (SA) and carboxymethyl chitosan (CCS) used as interlayers could significantly increase the graft density of heparin to improve the anticoagulant effects and hemocompatibility of heparinized surfaces. In addition, the modification of heparin can further improve the anticoagulant effects. The CCS/low-molecular-weight heparin (LWMH) surface has the best anticoagulant properties, which can prolong the activated partial thromboplastin time (APTT) values of human plasma for about 35 s, reduce the hemolysis rates to <0.3 %, and perform well in the in-vitro blood circulation test. The heparinized surfaces prepared in this work have great application potential in anticoagulant treatment for medical devices.
Collapse
Affiliation(s)
- Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Xiaohan Yu
- School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
3
|
Guo M, Wang X, Liu Y, Yu H, Dong J, Cui Z, Bai Z, Li K, Li Q. Hierarchical Shish-Kebab Structures Functionalizing Nanofibers for Controlled Drug Release and Improved Antithrombogenicity. Biomacromolecules 2022; 23:1337-1349. [PMID: 35235295 DOI: 10.1021/acs.biomac.1c01572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The functionalization of the fibrous scaffolds including drug loading and release is of significance in tissue engineering and regenerative medicine. Our previous results have shown that the shish-kebab structure-modified fibrous scaffold shows a completely different microenvironment that mimics the topography of the collagen fibers, which interestingly facilitates the cell adhesion and migration. However, the functionalization of the unique structure needs to be further investigated. In this study, we modified the heparin-loaded fiber with a shish-kebab structure and tuned the kebab structure as the barrier for the sustained release of heparin. The introduction of the kebab structure increases the diffusion energy barrier by extending the diffusion distance. Moreover, the discontinued surface topography of the shish-kebab structure altered the surface chemistry from hydrophobic for the original poly(ε-caprolactone) (PCL) nanofibers to hydrophilic for the PCL nanofibers with the shish-kebab structure, which might have inhibited the activation of fibrinogen and thus improved the anticoagulant ability. This synergistic effect of heparin and the kebab structure significantly promotes the endothelial cell affinity and antithrombogenicity. This method might be a viable and versatile drug delivery strategy in vascular tissue engineering.
Collapse
Affiliation(s)
- Meng Guo
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Haichang Yu
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahui Dong
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhixiang Cui
- Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
| | - Zhiyuan Bai
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.,National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Wille I, Harre J, Oehmichen S, Lindemann M, Menzel H, Ehlert N, Lenarz T, Warnecke A, Behrens P. Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor. Front Bioeng Biotechnol 2022; 10:776890. [PMID: 35141211 PMCID: PMC8819688 DOI: 10.3389/fbioe.2022.776890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
State-of-the-art treatment for sensorineural hearing loss is based on electrical stimulation of residual spiral ganglion neurons (SGNs) with cochlear implants (CIs). Due to the anatomical gap between the electrode contacts of the CI and the residual afferent fibers of the SGNs, spatial spreading of the stimulation signal hampers focused neuronal stimulation. Also, the efficiency of a CI is limited because SGNs degenerate over time due to loss of trophic support. A promising option to close the anatomical gap is to install fibers as artificial nerve guidance structures on the surface of the implant and install on these fibers drug delivery systems releasing neuroprotective agents. Here, we describe the first steps in this direction. In the present study, suture yarns made of biodegradable polymers (polyglycolide/poly-ε-caprolactone) serve as the basic fiber material. In addition to the unmodified fiber, also fibers modified with amine groups were employed. Cell culture investigations with NIH 3T3 fibroblasts attested good cytocompatibility to both types of fibers. The fibers were then coated with the extracellular matrix component heparan sulfate (HS) as a biomimetic of the extracellular matrix. HS is known to bind, stabilize, modulate, and sustainably release growth factors. Here, we loaded the HS-carrying fibers with the brain-derived neurotrophic factor (BDNF) which is known to act neuroprotectively. Release of this neurotrophic factor from the fibers was followed over a period of 110 days. Cell culture investigations with spiral ganglion cells, using the supernatants from the release studies, showed that the BDNF delivered from the fibers drastically increased the survival rate of SGNs in vitro. Thus, biodegradable polymer fibers with attached HS and loaded with BDNF are suitable for the protection and support of SGNs. Moreover, they present a promising base material for the further development towards a future neuronal guiding scaffold.
Collapse
Affiliation(s)
- Inga Wille
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Jennifer Harre
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Oehmichen
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Lindemann
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Menzel
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Ehlert
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Thomas Lenarz
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Behrens
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- Cluster of Excellence PhoenixD, Hannover, Germany
| |
Collapse
|
5
|
Warner H, Wu Y, Wagner WD. Syndecan-4 functionalization of tissue regeneration scaffolds improves interaction with endothelial progenitor cells. Regen Biomater 2021; 8:rbab070. [PMID: 34900335 PMCID: PMC8659348 DOI: 10.1093/rb/rbab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Key to most implanted cell free scaffolds for tissue regeneration is the ability to sequester and retain undifferentiated mesenchymal stem cells at the repair site. In this report, syndecan-4, a heparan sulfate containing proteoglycan, was investigated as a unique molecule for use in scaffold functionalization. An electrospun hybrid scaffold comprised of poly (glycerol) sebacate (PGS), silk fibroin and type I collagen (PFC) was used as a model scaffold to develop a procedure and test the hypothesis that functionalization would result in increased scaffold binding of endothelial progenitor cells (EPCs). For these studies both Syndecan-4 and stromal derived factor-1α (SDF-1α) were used in functionalization PFC. Syndecan-4 functionalized PFC bound 4.8 fold more SDF-1α compared to nonfunctionalized PFC. Binding was specific as determined by heparin displacement studies. After culture for 7 days, significantly, more EPCs were detected on PFC scaffolds having both syndecan-4 and SDF-1α compared to scaffolds of PFC with only syndecan-4, or PFC adsorbed with SDF-1α, or PFC alone. Taken together, this study demonstrates that EPCs can be bound to and significantly expanded on PFC material through syndecan-4 mediated growth factor binding. Syndecan-4 with a multiplicity of binding sites has the potential to functionalize and expand stem cells on a variety of scaffold materials for use in tissue regeneration.
Collapse
Affiliation(s)
- Harleigh Warner
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | - Yidi Wu
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | - William D Wagner
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA.,Department of Biomedical Engineering, Wake Forest University School of Biomedical Engineering and Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
6
|
Lin Y, Yang Y, Zhao Y, Gao F, Guo X, Yang M, Hong Q, Yang Z, Dai J, Pan C. Incorporation of heparin/BMP2 complex on GOCS-modified magnesium alloy to synergistically improve corrosion resistance, anticoagulation, and osteogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:24. [PMID: 33675428 PMCID: PMC7936966 DOI: 10.1007/s10856-021-06497-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The in vivo fast degradation and poor biocompatibility are two major challenges of the magnesium alloys in the field of artificial bone materials. In this study, graphene oxide (GO) was first functionalized by chitosan (GOCS) and then immobilized on the magnesium alloy surface, finally the complex of heparin and bone morphogenetic protein 2 was incorporated on the modified surface to synergistically improve the corrosion resistance, anticoagulation, and osteogenesis. Apart from an excellent hydrophilicity after the surface modification, a sustained heparin and BMP2 release over 14 days was achieved. The corrosion resistance of the modified magnesium alloy was significantly better than that of the control according to the results of electrochemical tests. Moreover, the corrosion rate was also significantly reduced in contrast to the control. The modified magnesium alloy not only had excellent anticoagulation, but also can significantly promote osteoblast adhesion and proliferation, upregulate the expression of alkaline phosphatase and osteocalcin, and enhance mineralization. Therefore, the method of the present study can be used to simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys targeted for the orthopedic applications.
Collapse
Affiliation(s)
- Yuebin Lin
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Ya Yang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223003, China
| | - Yongjuan Zhao
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223003, China
| | - Fan Gao
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xin Guo
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Juan Dai
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
7
|
Wu B, Jin L, Ding K, Zhou Y, Yang L, Lei Y, Guo Y, Wang Y. Extracellular matrix coating improves the biocompatibility of polymeric heart valves. J Mater Chem B 2020; 8:10616-10629. [PMID: 33146226 DOI: 10.1039/d0tb01884h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prosthetic heart valve replacement is an effective therapy for patients with valvular heart disease. New-type polymer materials provide potential choices of material for preparing prosthetic heart valves. In this study, we focused on enhancing the biocompatibility of polystyrene-block-isobutylene-block-styrene (SIBS) by surface modification with an extracellular matrix (ECM). Experimental results demonstrated that the ECM coating increased the adsorption resistance against protein and platelets. SIBS coated with an ECM adsorbed much less bovine serum albumin and fibrinogen (5.38 μg cm-2 and 31.53 μg cm-2, respectively) than the original material (90.84 μg cm-2 and 132.38 μg cm-2, respectively). The relative platelet adsorption of the ECM-modified SIBS was lower than that of SIBS (0.04 versus 0.10). Moreover, the surface coating could also reduce endothelial cytotoxicity, suppress the immune response, and potentially induce tissue regeneration. In conclusion, ECM coating improved the biocompatibility of SIBS effectively.
Collapse
Affiliation(s)
- Binggang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China. and Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, P. R. China
| | - Linhe Jin
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Kailei Ding
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yonghua Zhou
- Beijing Huiyu Biomedical Technologies LLC, 1707 street, Chaoyang District, Beijing 100000, P. R. China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, P. R. China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
8
|
Gao F, Hu Y, Li G, Liu S, Quan L, Yang Z, Wei Y, Pan C. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility. Bioact Mater 2020; 5:611-623. [PMID: 32405576 PMCID: PMC7212186 DOI: 10.1016/j.bioactmat.2020.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloy is considered as one of the ideal cardiovascular stent materials owing to its good mechanical properties and biodegradability. However, the in vivo rapid degradation rate and the insufficient biocompatibility restrict its clinical applications. In this study, the magnesium alloy (AZ31B) was modified by combining the surface chemical treatment and in-situ self-assembly of 16-phosphonyl-hexadecanoic acid, followed by the immobilization of chitosan-functionalized graphene oxide (GOCS). Heparin (Hep) and GOCS were alternatively immobilized on the GOCS-modified surface through layer by layer (LBL) to construct the GOCS/Hep bioactive multilayer coating, and the corrosion resistance and biocompatibility were extensively explored. The results showed that the GOCS/Hep bioactive multilayer coating can endow magnesium alloys with an excellent in vitro corrosion resistance. The GOCS/Hep multilayer coating can significantly reduce the hemolysis rate and the platelet adhesion and activation, resulting in an excellent blood compatibility. In addition, the multilayer coating can not only enhance the adhesion and proliferation of the endothelial cells, but also promote the vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression of the attached endothelial cells on the surfaces. Therefore, the method of the present study can be used to simultaneously control the corrosion resistance and improve the biocompatibility of the magnesium alloys, which is expected to promote the application of magnesium alloys in biomaterials or medical devices, especially cardiovascular stent. The multilayer coating of GOCS and heparin was constructed on magnesium surface. The coating can obviously improve the corrosion resistance of magnesium alloys. The coating can enhance the hemocompatibility and endothelial cell growth behaviors.
Collapse
Affiliation(s)
- Fan Gao
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Guicai Li
- Jiangsu Key Laboratory of Nerve Regeneration, Nantong University, Nantong 226001, China
| | - Sen Liu
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Li Quan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yanchun Wei
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Corresponding author.
| |
Collapse
|
9
|
Gao H, Huang C, Zhu Y, Ma X, Cao C. Facile synthesis of 3D silk fibroin scaffolds with tunable properties for regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1272-1286. [DOI: 10.1080/09205063.2020.1758876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Haiying Gao
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| | - Chenghui Huang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| | - Youqi Zhu
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| | - Xilan Ma
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| | - Chuanbao Cao
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| |
Collapse
|
10
|
Shan L, Sun Y, Shan F, Li L, Xu ZP. Recent advances in heparinization of polymeric membranes for enhanced continuous blood purification. J Mater Chem B 2020; 8:878-894. [PMID: 31956883 DOI: 10.1039/c9tb02515d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Continuous blood purification technology such as hemodiafiltration has been used worldwide for saving patients suffering from severe diseases or organ function failure, especially in the intensive care unit and emergency setting. The filters as core devices are commonly made of polymer materials as hollow fiber membranes. However, the membrane is often inductively blocked by blood clot formation due to its interactions with blood components. Heparin is the anticoagulant often used in clinical practice for anti-coagulation. Recently, heparin is also employed to modify the hollow fiber membranes either chemically or physically to improve the filtration performance. This review summarizes recent advances in methodology for surface heparinization of such hollow fiber membranes, and their filtration performance improvement. The review also provides expert opinions for further research in this rapidly expanding field.
Collapse
Affiliation(s)
- Liang Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Yunbo Sun
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Feng Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
11
|
Wang D, Wang X, Li X, Jiang L, Chang Z, Li Q. Biologically responsive, long-term release nanocoating on an electrospun scaffold for vascular endothelialization and anticoagulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110212. [PMID: 31761208 DOI: 10.1016/j.msec.2019.110212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 01/19/2023]
Abstract
A critical challenge to the development of tissue engineering small-diameter vascular grafts is to achieve rapid endothelialization and long-term anticoagulation. It is necessary to graft both adhesion and antithrombus factors onto the surface of polycaprolactone without burst release to promote endothelial cell affinity and antithrombogenicity. A bionic structure with a nanocoating that allows a biologically responsive, long-term release was employed in this work to enable the grafting of various bioactive molecules such as gelatin, polylysine, and heparin. This approach involved orienting the biomimetic vascular structures; the self-assembly grafting of gelatin, polylysine, and heparin nanoparticles; and genipin crosslinking to form a multiphase crosslinked nanocoating. In this biologically inspired design, vascular endothelialization and long-term anticoagulation were successfully induced through a matrix metallopeptidase 2 regulative mechanism by delivering both adhesion and antithrombus factors with a responsive, long-term release without burst release. The method provided a simple and effective approach for delivering dual factors for tissue engineering small-diameter vascular grafts.
Collapse
Affiliation(s)
- Dongfang Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xiaofeng Wang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Xuyan Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Lin Jiang
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Zhonghua Chang
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou, 450001, PR China; National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
12
|
Aidun A, Zamanian A, Ghorbani F. Immobilization of polyvinyl alcohol‐siloxane on the oxygen plasma‐modified polyurethane‐carbon nanotube composite matrix. J Appl Polym Sci 2019. [DOI: 10.1002/app.48477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Amir Aidun
- National Cell Bank of IranPasteur Institute of Iran Tehran Iran
- Tissues and Biomaterials Research Group (TBRG)Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Tehran Iran
| | - Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong HospitalFudan University Pudong Medical Center Shanghai China
| |
Collapse
|
13
|
Hu H, Xu Y, Deng X, Luo Z, Zhou L, Shen M. Heparin-grafted PVA hydrogels: a material for the optical part of artificial cornea. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Heparin (Hep) was grafted to a poly(vinyl alcohol) (PVA) hydrogel surface by using the covalent grafting method. The structure of the modified hydrogel was determined from Fourier transform infrared attenuated total reflection and X-ray photoelectron spectroscopy. The thermal stability of the samples was investigated by thermogravimetry–differential thermal analysis. The effects of the concentration of (3-aminopropyl)triethoxysilane (kh550) and Hep on visible light transmittance, moisture content, equilibrium swelling, hydrophilicity and percentage of Hep sodium release of the composite hydrogel were studied. The visible light transmittance of the modified PVA hydrogel was above 94%. The time of swelling equilibrium was about 60 min and the equilibrium swelling ratio ranged from 3·0 to 3·5. The hydrophilicity was enhanced, and the static water contact angle decreased from 41 to 28°. The bioeffects of the PVA–kh550–Hep hydrogel were evaluated by studying cell adhesion and proliferation. During the adhesion assay in vitro, cell adhesion significantly decreased after the interfaces had been modified with Hep. The Cell Counting Kit-8 assay showed that the biocompatibility of the PVA–kh550–Hep hydrogel improved obviously compared to that of pure PVA. The experimental results demonstrated that the PVA–kh550–Hep hydrogel had good stability, bioactivity and biocompatibility, suggesting its potential applications in artificial corneas.
Collapse
Affiliation(s)
- Huiyuan Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Youqun Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xinwang Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Zhongkuan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Li Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Mingcheng Shen
- College of Chemistry and Environmental Engineering of Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109947. [PMID: 31499970 DOI: 10.1016/j.msec.2019.109947] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022]
Abstract
Due to its good biodegradability and mechanical properties, magnesium alloys are considered as the ideal candidate for the cardiovascular stents. However, the rapid degradation in human physiological environment and the poor biocompatibility seriously limit its application for biomaterials. In the present study, a chitosan/heparinized graphene oxide (Chi/HGO) multilayer coating was constructed on the AZ31B magnesium alloy surface using layer-by-layer (LBL) method to improve the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectrum (RAMAN), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that a dense and compact Chi/HGO multilayer coating was fabricated on the magnesium alloy surface. The results of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), pH value changes and magnesium ion release suggested that the multilayer coating can significantly enhance the corrosion resistance of the magnesium alloy. Moreover, the Chi/HGO multilayer coating could not only significantly reduce the hemolysis rate and platelet adhesion, but also promote the adhesion and proliferation of endothelial cells. Therefore, the Chi/HGO multilayer coating can simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys.
Collapse
|
15
|
Zhang X, Zhang G, Zhang H, Li J, Yao X, Tang B. Surface immobilization of heparin and chitosan on titanium to improve hemocompatibility and antibacterial activities. Colloids Surf B Biointerfaces 2018; 172:338-345. [DOI: 10.1016/j.colsurfb.2018.08.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
|
16
|
Malkin AD, Ye SH, Lee EJ, Yang X, Zhu Y, Gamble LJ, Federspiel WJ, Wagner WR. Development of zwitterionic sulfobetaine block copolymer conjugation strategies for reduced platelet deposition in respiratory assist devices. J Biomed Mater Res B Appl Biomater 2018; 106:2681-2692. [PMID: 29424964 PMCID: PMC6085169 DOI: 10.1002/jbm.b.34085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
Respiratory assist devices, that utilize ∼2 m2 of hollow fiber membranes (HFMs) to achieve desired gas transfer rates, have been limited in their adoption due to such blood biocompatibility limitations. This study reports two techniques for the functionalization and subsequent conjugation of zwitterionic sulfobetaine (SB) block copolymers to polymethylpentene (PMP) HFM surfaces with the intention of reducing thrombus formation in respiratory assist devices. Amine or hydroxyl functionalization of PMP HFMs (PMP-A or PMP-H) was accomplished using plasma-enhanced chemical vapor deposition. The generated functional groups were conjugated to low molecular weight SB block copolymers with N-hydroxysuccinimide ester or siloxane groups (SBNHS or SBNHSi) that were synthesized using reversible addition fragmentation chain transfer polymerization. The modified HFMs (PMP-A-SBNHS or PMP-H-SBNHSi) showed 80-95% reduction in platelet deposition from whole ovine blood, stability under the fluid shear of anticipated operating conditions, and uninhibited gas exchange performance relative to non-modified HFMs (PMP-C). Additionally, the functionalization and SBNHSi conjugation technique was shown to reduce platelet deposition on polycarbonate and poly(vinyl chloride), two other materials commonly found in extracorporeal circuits. The observed thromboresistance and stability of the SB modified surfaces, without degradation of HFM gas transfer performance, indicate that this approach is promising for longer term pre-clinical testing in respiratory assist devices and may ultimately allow for the reduction of anticoagulation levels in patients being supported for extended periods. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2681-2692, 2018.
Collapse
Affiliation(s)
- Alexander D. Malkin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Evan J. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Xiguang Yang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Yang Zhu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Lara J. Gamble
- Department of Bioengineering and NESAC/BIO, University of Washington, Seattle, Washington 98195, United States
| | - William J. Federspiel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
17
|
Gonzalez D, Ragusa J, Angeletti PC, Larsen G. Preparation and characterization of functionalized heparin-loaded poly-Ɛ-caprolactone fibrous mats to prevent infection with human papillomaviruses. PLoS One 2018; 13:e0199925. [PMID: 29966006 PMCID: PMC6028096 DOI: 10.1371/journal.pone.0199925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
In this study, heparin-loaded poly-ɛ-caprolactone (PCL) fibrous mats were prepared and characterized based on their physical, cytotoxic, thermal, and biological properties. The main objective of the work described here was to test the hypothesis that incorporation of heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture soluble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one material was produced via conventional heparin matrix encapsulation and electrohydrodynamic fiber processing in one step. A second type of material was obtained via heparin crosslinking. This was achieved by running a carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction on preformed PCL fibers. In vitro HPV16 L1 protein binding capacity studies were performed. Infectivity assays were done using HPV16 pseudoviruses (PsVs) carrying a GFP plasmid to directly test the ability of the fibrous mats to prevent internalization of HPV PsVs. The crosslinked heparin material presented a dissociation constant (Kd) value comparable to those found in the literature for different heparin-protein L1 peptide interactions. Both materials significantly reduced internalization of HPV PsVs, with a reduction of 94% of PsVs internalization when matrix encapsulated heparin-loaded material was present. Differences in performance between the two proposed structures are discussed.
Collapse
Affiliation(s)
- Daniela Gonzalez
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jorge Ragusa
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Peter C. Angeletti
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (PCA); (GL)
| | - Gustavo Larsen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (PCA); (GL)
| |
Collapse
|
18
|
Ghorbani F, Zamanian A. Oxygen-plasma treatment-induced surface engineering of biomimetic polyurethane nanofibrous scaffolds for gelatin-heparin immobilization. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPolyurethane (PU) has been extensively used in vascular tissue engineering due to its outstanding mechanical performance and blood compatibility behavior. Here, biomimetic PU-based scaffolds were prepared using an electrospinning technique and gelatin-heparin was introduced as a surface modifier after oxygen plasma treatment to improve cell attachment and release an anticoagulation agent. Morphology, Fourier transform infrared (FTIR) spectroscopy, compression strength, swelling and biodegradation ratio, drug release level and cellular interactions were evaluated. According to the scanning electron microscopy (SEM) micrographs, gelatin-heparin immobilized PU nanofibers exhibited a smooth surface and a bead free structure that nanofibers distributed in the range of 300–1000 nm. The mechanical strength of constructs, swelling and biodegradation ratio, and drug release level illustrated higher values for oxygen plasma-treated samples compared with bilayered scaffolds. Cellular adhesion and biocompatibility ameliorated after plasma treatment. All the mentioned findings indicated the initial physicomechanical and biological potential of biomimetic PU-based fibers in the improvements of vascular scaffolds.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, P.O. Box: 4515-775, Tehran, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box: 14155-4777, Tehran, Iran
| | - Ali Zamanian
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, P.O. Box: 14155-4777, Tehran, Iran, Phone: (+98) 912 3211180, Fax: (+98) 263 6201818
| |
Collapse
|
19
|
Gao A, Hang R, Li W, Zhang W, Li P, Wang G, Bai L, Yu XF, Wang H, Tong L, Chu PK. Linker-free covalent immobilization of heparin, SDF-1α, and CD47 on PTFE surface for antithrombogenicity, endothelialization and anti-inflammation. Biomaterials 2017; 140:201-211. [DOI: 10.1016/j.biomaterials.2017.06.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/17/2017] [Accepted: 06/18/2017] [Indexed: 01/20/2023]
|
20
|
Pan CJ, Hou Y, Wang YN, Liu T, Gong T, Lin YB, Wang LR, Ye W. Biofunctionalisation of magnesium alloys by successive immobilisation of poly(ethylene glycol), fibronectin and heparin. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2017. [DOI: 10.1680/jbibn.16.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the present study, with the aim of improving their corrosion resistance, anticoagulation and cytocompatibility with endothelial cells, a magnesium alloy (AZ31B) was modified by the alkali heat treatment followed by the immobilisation of the dopamine layer. Subsequently, molecules of poly(ethylene glycol) (PEG) and fibronectin or fibronectin–heparin complexes were successively immobilised on the dopamine-modified surface. After the surface modification, the hydrophilicity of magnesium alloy was obviously improved. The corrosion resistance of the magnesium alloy was improved through alkali heat treatment, and the immobilisation of dopamine and PEG can further reduce the corrosion rate. However, the corrosion resistance of the magnesium alloy was slightly reduced by the grafting of fibronectin or fibronectin–heparin complex. Furthermore, the modified samples showed improved hemocompatibility and good cytocompatibility with the endothelial cells on the fibronectin or fibronectin–heparin-modified surfaces. Therefore, the corrosion resistance, anticoagulation and cytocompatibility of the magnesium alloy can be enhanced by alkali heat treatment and subsequent immobilisation of biomolecules. The method of this study can be used for surface modification of magnesium alloys to impart these with better corrosion resistance, blood compatibility and cytocompatibility with endothelial cells simultaneously.
Collapse
Affiliation(s)
- Chang-Jiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Yu Hou
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Ya-Nan Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Tao Gong
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Yue-Bin Lin
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Ling-Ren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Wei Ye
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|
21
|
Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app7010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Pan C, Hu Y, Hou Y, Liu T, Lin Y, Ye W, Hou Y, Gong T. Corrosion resistance and biocompatibility of magnesium alloy modified by alkali heating treatment followed by the immobilization of poly (ethylene glycol), fibronectin and heparin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:438-449. [PMID: 27770914 DOI: 10.1016/j.msec.2016.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
Abstract
In recent years, magnesium alloys are attracting more and more attention as a kind of biodegradable metallic biomaterials, however, their uncontrollable biodegradation speed in vivo and the limited surface biocompatibility hinder their clinical applications. In the present study, with the aim of improving the corrosion resistance and biocompatibility, the magnesium alloy (AZ31B) surface was modified by alkali heating treatment followed by the self-assembly of 3-aminopropyltrimethoxysilane (APTMS). Subsequently, poly (ethylene glycol) (PEG) and fibronectin or fibronectin/heparin complex were sequentially immobilized on the modified surface. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that the above molecules were successfully immobilized on the magnesium alloy surface. An excellent hydrophilic surface was obtained after the alkali heating treatment while the hydrophilicity decreased to some degree after the self-assembly of APTMS, the surface hydrophilicity was gradually improved again after the immobilization of PEG, fibronectin or fibronectin/heparin complex. The corrosion resistance of the control magnesium alloy was significantly improved by the alkali heating treatment. The self-assembly of APTMS and the following immobilization of PEG further enhanced the corrosion resistance of the substrates, however, the grafting of fibronectin or fibronectin/heparin complex slightly lowered the corrosion resistance. As compared to the pristine magnesium alloy, the samples modified by the immobilization of PEG and fibronectin/heparin complex presented better blood compatibility according to the results of hemolysis assay and platelet adhesion as well as the activated partial thromboplastin time (APTT). In addition, the modified substrates had better cytocompatibility to endothelial cells due to the improved anticorrosion and the introduction of fibronectin. The substrates modified by fibronectin or fibronectin/heparin complex can significantly promote endothelial cell adhesion and proliferation. Taking all these results into consideration, the method of the present study can be used for the surface modification of the magnesium alloy to simultaneously impart it better corrosion resistance, favorable blood compatibility and good cytocompatibility to endothelial cells.
Collapse
Affiliation(s)
- Changjiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an 223003, China
| | - Yu Hou
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuebin Lin
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wei Ye
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yanhua Hou
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Tao Gong
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
23
|
Wang F, Zhang Y, Chen X, Leng B, Guo X, Zhang T. ALD mediated heparin grafting on nitinol for self-expanded carotid stents. Colloids Surf B Biointerfaces 2016; 143:390-398. [DOI: 10.1016/j.colsurfb.2016.03.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
|
24
|
Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol 2016; 86:630-45. [DOI: 10.1016/j.ijbiomac.2016.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 01/30/2023]
|
25
|
Arisaka Y, Kobayashi J, Ohashi K, Tatsumi K, Kim K, Akiyama Y, Yamato M, Okano T. A heparin-modified thermoresponsive surface with heparin-binding epidermal growth factor-like growth factor for maintaining hepatic functions in vitro and harvesting hepatocyte sheets. Regen Ther 2016; 3:97-106. [PMID: 31245479 PMCID: PMC6581876 DOI: 10.1016/j.reth.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/21/2023] Open
Abstract
A heparin-modified thermoresponsive surface bound with heparin-binding epidermal growth factor-like growth factor (HB-EGF) was designed to allow creation of transferrable and functional hepatocyte sheets. A heparin-modified thermoresponsive surface was prepared by covalently tethering heparin onto poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide)-grafted tissue culture polystyrene surfaces (Heparin-IC). HB-EGFs were able to stably bind to heparin-IC via affinity interaction. The survival of primary rat hepatocytes was maintained through HB-EGF-bound heparin-IC (HB-EGF/heparin-IC). Moreover, cultured rat primary hepatocytes on HB-EGF/heparin-IC exhibited higher albumin-secretion than hepatocytes cultured on PIPAAm-grafted and collagen-coated surfaces with soluble HB-EGF in the culture medium, regardless of whether soluble EGF was added. These results suggested that HB-EGF/heparin-IC is able to effectively maintain hepatic function via continuous signaling of HB-EGF. After a 4-day cultivation, the cultured hepatocytes on HB-EGF/heparin-IC detached as a cell sheet with fibronectin and HB-EGF only after the temperature was lowered to 20 °C. In addition, higher expression of hepatocyte-specific genes (albumin, hepatocyte nuclear factor 4 alpha, coagulation factor VII, and coagulation factor IX) in hepatocyte sheets was detected on HB-EGF/heparin-IC than on a PIPAAm surface with soluble HB-EGF, indicating that HB-EGF/heparin-IC suppressed the dedifferentiation of cultured hepatocytes. Hence, heparin-modified thermoresponsive surfaces bound with HB-EGF facilitate the fabrication of transferrable hepatocyte sheets with intact hepatic functions and have the potential to provide an in vitro culture system using functional hepatocyte sheet tissues, which may serve as an effective hepatocyte-based tissue engineering platform for liver disease treatments.
Collapse
Key Words
- Alb, albumin
- CIPAAm, 2-carboxyisopropylacrylamide
- DMEM, Dulbecco's modified Eagle's medium
- ECM, extracellular matrix
- EDC, 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide hydrochloride
- EDTA, trypsin/ethylenediaminetetraacetic acid
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- F7, coagulation factor VII
- F9, coagulation factor IX
- FBS, fetal bovine serum
- HB-EGF, heparin-binding EGF-like growth factor
- HB-EGFX/heparin-IC, HB-EGF-bound heparin-IC
- Heparin
- Heparin-binding EGF-like growth factor
- Hepatocyte sheet
- Hnf4α, hepatocyte nuclear factor 4 alpha
- IC, poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) on TCPS
- IPAAm, N-isopropylacrylamide
- MES, morpholinoethanesulfonic acid monohydrate
- NHS, N-hydroxysuccinimide
- PBS, Dulbecco's phosphate buffered saline
- PIPAAm, poly(N-isopropylacrylamide) on TCPS
- PIPAAm + HB-EGFY, PIPAAm with soluble HB-EGF
- Poly(N-isopropylacrylamide)
- RT-PCR, reverse transcription polymerase chain reaction
- TCPS, tissue culture polystyrene dishe
- Thermoresponsive cell culture surface
- bFGF, basic fibroblast growth factor
- heparin-IC, heparin-modified IC
Collapse
Affiliation(s)
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science and Global Center of Excellence (COE) Program, Tokyo Women's Medical University (TWIns), 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science and Global Center of Excellence (COE) Program, Tokyo Women's Medical University (TWIns), 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
26
|
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84:101-11. [DOI: 10.1016/j.ijbiomac.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/15/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
27
|
Brubert J, Krajewski S, Wendel HP, Nair S, Stasiak J, Moggridge GD. Hemocompatibility of styrenic block copolymers for use in prosthetic heart valves. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:32. [PMID: 26704549 PMCID: PMC4690832 DOI: 10.1007/s10856-015-5628-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
Certain styrenic thermoplastic block copolymer elastomers can be processed to exhibit anisotropic mechanical properties which may be desirable for imitating biological tissues. The ex-vivo hemocompatibility of four triblock (hard-soft-hard) copolymers with polystyrene hard blocks and polyethylene, polypropylene, polyisoprene, polybutadiene or polyisobutylene soft blocks are tested using the modified Chandler loop method using fresh human blood and direct contact cell proliferation of fibroblasts upon the materials. The hemocompatibility and durability performance of a heparin coating is also evaluated. Measures of platelet and coagulation cascade activation indicate that the test materials are superior to polyester but inferior to expanded polytetrafluoroethylene and bovine pericardium reference materials. Against inflammatory measures the test materials are superior to polyester and bovine pericardium. The addition of a heparin coating results in reduced protein adsorption and ex-vivo hemocompatibility performance superior to all reference materials, in all measures. The tested styrenic thermoplastic block copolymers demonstrate adequate performance for blood contacting applications.
Collapse
Affiliation(s)
- Jacob Brubert
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | - Stefanie Krajewski
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Tuebingen, Tübingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Tuebingen, Tübingen, Germany
| | - Sukumaran Nair
- Cardiothoracic Services, Freeman Hospital, Newcastle, UK
| | - Joanna Stasiak
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Geoff D Moggridge
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
28
|
Kara F, Aksoy EA, Calamak S, Hasirci N, Aksoy S. Immobilization of heparin on chitosan-grafted polyurethane films to enhance anti-adhesive and antibacterial properties. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515598794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections caused by bacteria adhering to implant surfaces are one of the main reasons for the failure of the implants. In this study, polyurethane (PU), which is the most commonly used polymer in the production of medical devices, was synthesized and surfaces of polyurethane films were modified by chitosan (CH) grafting and heparin (Hep) immobilization in order to enhance anti-adhesiveness and antibacterial properties. Functional groups present on the surface, topographical shapes, and free energies of the polyurethane films were determined. Pristine polyurethane, chitosan-grafted polyurethane (PU–CH), and heparin immobilized polyurethane (PU–CH–Hep) films demonstrated high anti-adhesive efficacy against bacteria in the given order, where PU–CH–Hep was the most effective one. When PU–CH–Hep samples were incubated with different bacteria, complete death was observed for Pseudomonas aeruginosa (Gram negative), Staphylococcus aureus (Gram positive), and Staphylococcus epidermidis (Gram positive). Some living Escherichia coli (Gram negative) were observed after 24 h of incubation. Pristine and modified polyurethane samples demonstrated no adverse effect on proliferation of L929 fibroblast cells and were found to be biocompatible according to MTT cytotoxicity tests.
Collapse
Affiliation(s)
- Filiz Kara
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| | - Eda Ayse Aksoy
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Semih Calamak
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Nesrin Hasirci
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| | - Serpil Aksoy
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
29
|
Xiong GM, Yuan S, Wang JK, Do AT, Tan NS, Yeo KS, Choong C. Imparting electroactivity to polycaprolactone fibers with heparin-doped polypyrrole: Modulation of hemocompatibility and inflammatory responses. Acta Biomater 2015; 23:240-249. [PMID: 25983317 DOI: 10.1016/j.actbio.2015.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
Abstract
Hemocompatibility, anti-inflammation and anti-thrombogenicity of acellular synthetic vascular grafts remains a challenge in biomaterials design. Using electrospun polycaprolactone (PCL) fibers as a template, a coating of polypyrrole (PPy) was successfully polymerized onto the fiber surface. The fibers coated with heparin-doped PPy (PPy-HEP) demonstrated better electroactivity, lower surface resistivity (9-10-fold) and better anti-coagulation response (non-observable plasma recalcification after 30min vs. recalcification at 8-9min) as compared to fibers coated with pristine PPy. Red blood cell compatibility, measured by% hemolysis, was greatly improved on PPy-HEP-coated PCL in comparison to uncoated PCL (3.9±2.1% vs. 22.1±4.1%). PPy-HEP-coated PCL fibers also exhibited higher stiffness values (6.8±0.9MPa vs. 4.2±0.8MPa) as compared to PCL fibers, but similar tensile strengths. It was also observed that the application of a low alternating current led to a 4-fold reduction of platelet activation (as quantitated by CD62p expression) for the PPy-HEP-coated fibers as compared to non-stimulated conditions. In parallel, a reduction in the leukocyte adhesion to both pristine PPy-coated and PPy-HEP-coated fibers was observable with AC stimulation. Overall, a new strategy involving the use of hemocompatible conducting polymers and electrical stimulation to control thrombogenicity and inflammatory responses for synthetic vascular graft designs was demonstrated.
Collapse
|
30
|
Kolar M, Mozetič M, Stana-Kleinschek K, Fröhlich M, Turk B, Vesel A. Covalent Binding of Heparin to Functionalized PET Materials for Improved Haemocompatibility. MATERIALS 2015; 8:1526-1544. [PMID: 28788016 PMCID: PMC5507051 DOI: 10.3390/ma8041526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/19/2015] [Accepted: 03/20/2015] [Indexed: 11/16/2022]
Abstract
The hemocompatibility of vascular grafts made from poly(ethylene terephthalate) (PET) is insufficient due to the rapid adhesion and activation of blood platelets that occur upon incubation with whole blood. PET polymer was treated with NHx radicals created by passing ammonia through gaseous plasma formed by a microwave discharge, which allowed for functionalization with amino groups. X-ray photoelectron spectroscopy characterization using derivatization with 4-chlorobenzaldehyde indicated that approximately 4% of the –NH2 groups were associated with the PET surface after treatment with the gaseous radicals. The functionalized polymers were coated with an ultra-thin layer of heparin and incubated with fresh blood. The free-hemoglobin technique, which is based on the haemolysis of erythrocytes, indicated improved hemocompatibility, which was confirmed by imaging the samples using confocal optical microscopy. A significant decrease in number of adhered platelets was observed on such samples. Proliferation of both human umbilical vein endothelial cells and human microvascular endothelial cells was enhanced on treated polymers, especially after a few hours of cell seeding. Thus, the technique represents a promising substitute for wet-chemical modification of PET materials prior to coating with heparin.
Collapse
Affiliation(s)
- Metod Kolar
- Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana 1000, Slovenia.
| | - Miran Mozetič
- Plasma Laboratory, Institute Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia.
| | - Karin Stana-Kleinschek
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, Maribor 2000, Slovenia.
| | - Mirjam Fröhlich
- Department of Biochemistry, Molecular and Structural Biology, Institute Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia.
- Educell Ltd., Prevale 9, Trzin 1236, Slovenia.
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Institute Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia.
| | - Alenka Vesel
- Plasma Laboratory, Institute Jozef Stefan, Jamova 39, Ljubljana 1000, Slovenia.
| |
Collapse
|
31
|
Ahmed AF, Zakaria KM. Synthesis, characterization, and biocompatibility of poly (acrylic acid/methyl methacrylate)-grafted-poly (ethylene-co-tetrafluoroethylene) film for prosthetic cardiac valves. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3383-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Sun C, Wang X, Mao C, Shen J. Novel Biomaterials for Human Health: Hemocompatible Polymeric Micro‐and Nanoparticles and Their Application in Biosensor. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Lee HS, Tomczyk N, Kandel J, Composto RJ, Eckmann DM. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing. J Mater Chem B 2013; 1:10.1039/C3TB21218A. [PMID: 24349719 PMCID: PMC3859438 DOI: 10.1039/c3tb21218a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nancy Tomczyk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Judith Kandel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Russell J. Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Zhao J, Cheng Z, Quan X, Zhao Z, Lü F, Liu X. Investigation of the long-term patency of a transmural heparinized polycaprolactone and poly(D,L-lactic/glycolic acid) scaffold. J Surg Res 2013; 187:394-402. [PMID: 24280687 DOI: 10.1016/j.jss.2013.10.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/11/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The transmural biodegradable polycaprolactone/poly(D,L-lactic/glycolic acid) (PCL/PLGA) scaffold is a promising modality for diffuse coronary atherosclerosis cases that are not suitable for bypass grafting. The purpose of this study was to evaluate the long-term performance of the PCL/PLGA scaffold in vivo in the setting of polymer and heparin degradation. MATERIALS AND METHODS After mechanical drilling through the ventricular wall was performed in the whole ventricular wall, two scaffolds were implanted into the ventricular wall. Animals were grouped into the single drilling group (SD group), the blank scaffold group (BS group), and the heparinized scaffold group (HS group) and were allowed to survived for 6 mo. Next, the patency and integrity of the scaffolds were evaluated by echocardiography and 3D-DOCTOR software. Endothelium coverage of the lumen was evaluated by scanning electron microscopy. Neovessels and collagen fiber within the scaffolds were identified by histologic staining. Metabolite production of prostacyclin (PGI2) and thromboxane A2 (TXA2) in the plasma was measured by an enzyme-linked immunosorbent assay. The expression levels of PGI2 synthase and cyclooxygenase 2 (COX-2) involved in PGI2 production and COX-1 involved in TXA2 production were measured by Western blot analysis. RESULTS The heparinized scaffolds were patent for up to 6 mo and the lumen was covered with confluent endothelial cells. Histologic staining revealed collagen fiber remodeling and reconstruction of the neovascular network immediately surrounding the lumen. The expression of PGI2 synthase and COX-2 in the HS group was significantly higher compared with the SD and BS groups (P < 0.01). The expression of COX-1 was similar in the three groups (P > 0.05). Consistent with synthetase expression, a PGI2 metabolite (6-keto-PGF1a) also showed a significant increase in the HS group relative to the SD and BS groups (P = 0.021 and P = 0.015, respectively). Concomitantly, as a PGI2 antagonist, the TXA2 metabolite (TXB2) did not exhibit a significant difference among the three groups (P = 0.17). CONCLUSIONS Despite polymer and heparin degradation, the scaffold could continuously maintain the structural integrity and lumen patency for up to 6 mo by reinforcement of host collagen fiber and the balance of PGI2/TXA2.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Cardiovascular Surgery, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Cardiovascular Surgery, Henan Provincial People' Hospital, Zhengzhou, Henan Province, China
| | - Zhaoyun Cheng
- Department of Cardiovascular Surgery, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Cardiovascular Surgery, Henan Provincial People' Hospital, Zhengzhou, Henan Province, China.
| | - Xiaoqiang Quan
- Department of Cardiovascular Surgery, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Cardiovascular Surgery, Henan Provincial People' Hospital, Zhengzhou, Henan Province, China
| | - Ziniu Zhao
- Department of Cardiovascular Surgery, Zhengzhou University People's Hospital, Zhengzhou, China; Department of Cardiovascular Surgery, Henan Provincial People' Hospital, Zhengzhou, Henan Province, China
| | - Feng Lü
- Molecular Design Laboratory, Institute of Biomedical Engineering, Peking Union Medical College, Beijing, China
| | - Xiaocheng Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin, China
| |
Collapse
|
35
|
Switching of cell growth/detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Biomaterials 2013; 34:4214-22. [DOI: 10.1016/j.biomaterials.2013.02.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/20/2013] [Indexed: 12/15/2022]
|
36
|
Hou X, Zhang T, Cao A. A heparin modified polypropylene non-woven fabric membrane adsorbent for selective removal of low density lipoprotein from plasma. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaodong Hou
- Laboratory for Polymer Materials, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Road Shanghai 200032 China
- School of Chemistry and Chemical Technology; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Tao Zhang
- School of Chemistry and Chemical Technology; Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 China
| | - Amin Cao
- Laboratory for Polymer Materials, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 354 Fenglin Road Shanghai 200032 China
| |
Collapse
|
37
|
Senthilkumar S, Rajesh S, Jayalakshmi A, Mohan D. Biocompatibility and separation performance of carboxylated poly (ether–imide) incorporated polyacrylonitrile membranes. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Surface modification of polycarbonate urethane by covalent linkage of heparin with a PEG spacer. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12209-013-1894-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Wang J, Wu G, Shi W, Liu X, Ruan C, Xue M, Ge D. Affinity electromembrane with covalently coupled heparin for thrombin adsorption. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Tong F, Chen X, Chen L, Zhu P, Luan J, Mao C, Bao J, Shen J. Preparation, blood compatibility and anticoagulant effect of heparin-loaded polyurethane microspheres. J Mater Chem B 2013; 1:447-453. [DOI: 10.1039/c2tb00250g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Li L, Li J, Kulkarni A, Liu S. Polyurethane (PU)-derived photoactive and copper-free clickable surface based on perfluorophenyl azide (PFPA) chemistry. J Mater Chem B 2013; 1:571-582. [DOI: 10.1039/c2tb00248e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Li J, Lin F, Li L, Li J, Liu S. Surface Engineering of Poly(ethylene terephthalate) for Durable Hemocompatibility via a Surface Interpenetrating Network Technique. MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Abbah SA, Liu J, Lam RWM, Goh JCH, Wong HK. In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J Control Release 2012; 162:364-72. [PMID: 22846985 DOI: 10.1016/j.jconrel.2012.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/14/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022]
Abstract
Electrostatic interactions between polycations and polyanions are being explored to fabricate polyelectrolyte complexes (PEC) that could entrap and regulate the release of a wide range of biomolecules. Here, we report the in vivo application of PEC shells fabricated from three different polycations: poly-l-ornithine (PLO), poly-l-arginine (PLA) and DEAE-dextran (DEAE-D) to condense heparin on the surface of alginate microbeads and further control the delivery of recombinant human bone morphogenetic protein 2 (rhBMP-2) in spinal fusion application. We observed large differences in the behavior of PEC shells fabricated from the cationic polyamino acids (PLO and PLA) when compared to the cationic polysaccharide, DEAE-D. Whereas DEAE-D-based PEC shells eroded and released rhBMP-2 over 2 days in vitro, PLO- and PLA-based shells retained at least 60% of loaded rhBMP-2 after 3 weeks of incubation in phosphate-buffered saline. In vivo implantation in a rat model of posterolateral spinal fusion revealed robust bone formation in the PLO- and PLA-based PEC shell groups. This resulted in a significantly enhanced mechanical stability of the fused segments. However, bone induction and biomechanical stability of spine segments implanted with DEAE-D-based carriers were significantly inferior to both PLO- and PLA-based PEC shell groups (p<0.01). From these results, we conclude that PEC shells incorporating native heparin could be used for growth factor delivery in functional bone tissue engineering application and that PLA- and PLO-based complexes could represent superior options to DEAE-D for loading and in vivo delivery of bioactive BMP-2 in this approach.
Collapse
Affiliation(s)
- Sunny-Akogwu Abbah
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
44
|
Zhang Q, Zhu D, Su F, Xie Y, Ma Z, Shen J. Structure-property investigations with dielectric study on phosphorylcholine-based polyurethane. J Biomed Mater Res A 2012; 100:1868-76. [DOI: 10.1002/jbm.a.34154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/28/2012] [Accepted: 02/02/2012] [Indexed: 11/11/2022]
|
45
|
Şaşmazel HT, Manolache S, Gümüşderelioğlu M. Water/O2-Plasma-Assisted Treatment of PCL Membranes for Biosignal Immobilization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1137-62. [DOI: 10.1163/156856209x444475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hilal Türkoğlu Şaşmazel
- a Atılım University, Department of Materials Engineering, Incek, Gölbaşı, 06836 Ankara, Turkey
| | - Sorin Manolache
- b University of Wisconsin-Madison, Center for Plasma-Aided Manufacturing, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Jin Z, Feng W, Zhu S, Sheardown H, Brash JL. Protein-Resistant Materials via Surface-Initiated Atom Transfer Radical Polymerization of 2-Methacryloyloxyethyl Phosphorylcholine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:1331-44. [DOI: 10.1163/092050609x12517190417713] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhilin Jin
- a Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada L8S4L7
| | - Wei Feng
- b Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada L8S4L7
| | - Shiping Zhu
- c Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada L8S4L7
| | - Heather Sheardown
- d Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada L8S4L7
| | - John L. Brash
- e Department of Chemical Engineering and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada L8S4L7
| |
Collapse
|
47
|
Degoutin S, Jimenez M, Casetta M, Bellayer S, Chai F, Blanchemain N, Neut C, Kacem I, Traisnel M, Martel B. Anticoagulant and antimicrobial finishing of non-woven polypropylene textiles. Biomed Mater 2012; 7:035001. [DOI: 10.1088/1748-6041/7/3/035001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Kabilan S, Ayyasamy M, Jayavel S, Paramasamy G. Pseudomonas sp. as a Source of Medium Chain Length Polyhydroxyalkanoates for Controlled Drug Delivery: Perspective. Int J Microbiol 2012; 2012:317828. [PMID: 22518140 PMCID: PMC3299479 DOI: 10.1155/2012/317828] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/27/2011] [Indexed: 01/21/2023] Open
Abstract
Controlled drug delivery technology represents one of the most rapidly advancing areas of science. They offer numerous advantages compared to conventional dosage forms including improved efficacy, reduced toxicity, improved patient compliance and convenience. Over the past several decades, many delivery tools or methods were developed such as viral vector, liposome-based delivery system, polymer-based delivery system, and intelligent delivery system. Recently, nonviral vectors, especially those based on biodegradable polymers, have been widely investigated as vectors. Unlike the other polymers tested, polyhydroxyalkanoates (PHAs) have been intensively investigated as a family of biodegradable and biocompatible materials for in vivo applications as implantable tissue engineering material as well as release vectors for various drugs. On the other hand, the direct use of these polyesters has been hampered by their hydrophobic character and some physical shortcomings, while its random copolymers fulfilled the expectation of biomedical researchers by exhibiting significant mechanical and thermal properties. This paper reviews the strategies adapted to make functional polymer to be utilized as delivery system.
Collapse
Affiliation(s)
- Sujatha Kabilan
- UGC-Networking Resource Centre in Biological Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - Mahalakshmi Ayyasamy
- UGC-Networking Resource Centre in Biological Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - Sridhar Jayavel
- UGC-Networking Resource Centre in Biological Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - Gunasekaran Paramasamy
- UGC-Networking Resource Centre in Biological Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
49
|
Joung YK, You SS, Park KM, Go DH, Park KD. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating. Colloids Surf B Biointerfaces 2011; 99:102-7. [PMID: 22100384 DOI: 10.1016/j.colsurfb.2011.10.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/29/2022]
Abstract
Durable and blood-compatible coating of metallic biomaterials remains a major issue in biomedical fields despite its long history of development. In this study, in situ forming, metal-adhesive heparin hydrogels were developed to coat metallic substrates to enhance blood compatibility. The hydrogels are composed of metal-adhesive and enzyme-reactive amphiphilic block copolymer (Tetronic-tyramine/dopamine; TTD) and enzyme-reactive heparin derivatives (heparin-tyramine or heparin-polyethylene glycol-tyramine), which are cross-linkable in situ via an enzyme reaction. The combinations of heparin and Tetronic formed hydrogels with relatively high mechanical strengths of 300-5000 Pa within several tens of seconds; this was also confirmed by observing a dried porous structure as coated on a metal surface. The introduction of dopamine to the hydrogel network enhanced the durability of the hydrogel layers coated on metal, such that more than 60% heparin remained for 7 days. Compared to bare metal surfaces, hydrogel-coated metal surfaces exhibited significantly enhanced blood compatibility. Reduced fibrinogen adsorption and platelet adhesion showed that blood compatibility was 3-5-fold-enhanced on coated hydrogel layers than on the bare metal surface. In conclusion, hydrogels containing heparin and dopamine prepared by enzyme reaction have the potential to be an alternative coating method for enhancing blood compatibility of metallic biomaterials.
Collapse
Affiliation(s)
- Yoon Ki Joung
- Department of Molecular Science and Technology, Ajou University, San 5, Woncheon, Yeoungtong, Suwon 443-749, South Korea
| | | | | | | | | |
Collapse
|
50
|
Liu H, Zhao Y, Cheng S, Huang N, Leng Y. Syntheses of novel chitosan derivative with excellent solubility, anticoagulation, and antibacterial property by chemical modification. J Appl Polym Sci 2011. [DOI: 10.1002/app.34889] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|