1
|
Jha A, Mishra S. Exploring the potential of waste biomass-derived pectin and its functionalized derivatives for water treatment. Int J Biol Macromol 2024; 275:133613. [PMID: 38960223 DOI: 10.1016/j.ijbiomac.2024.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/02/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Environmental pollution remains a constant challenge due to the indiscriminate use of fossil fuels, mining activities, chemicals, drugs, aromatic compounds, pesticides, etc. Many emerging pollutants with no fixed standards for monitoring and control are being reported. These have adverse impacts on human life and the environment around us. This alarms the wastewater management towards developing materials that can be used for bulk water treatment and are easily available, low cost, non-toxic and biodegradable. Waste biomass like pectin is extracted from fruit peels which are a discarded material. It is used in pharmaceutical and nutraceutical applications but its application as a material for water treatment is very limited in literature. The scientific gap in literature review reports are evident with discussion only on pectin based hydrogels or specific pectin derivatives for some applications. This review focuses on the chemistry, extraction, functionalization and production of pectin derivatives and their applications in water treatment processes. Pectin functionalized derivatives can be used as a flocculant, adsorbent, nano biopolymer, biochar, hybrid material, metal-organic frameworks, and scaffold for the removal of heavy metals, ions, toxic dyes, and other contaminants. The huge quantum of pectin biomass may be explored further to strengthen environmental sustainability and circular economy practices.
Collapse
Affiliation(s)
- Adya Jha
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Sumit Mishra
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
2
|
Yang N, Jin Y, Zhou Y, Zhou X. Physicochemical characterization of pectin extracted from mandarin peels using novel electromagnetic heat. Int J Biol Macromol 2024; 262:130212. [PMID: 38365142 DOI: 10.1016/j.ijbiomac.2024.130212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
A novel electromagnetic heat extraction method was presented, whereby mandarin peels residue solution was located in a winding coil subjected to an oscillating magnetic field, and the pectin was extracted under appropriate conditions. Numerical relationships between applied magnetic field and induced electric field (IEF) in the extraction process were elaborated. The results showed that the induced current density, IEF and terminal temperature increased with increasing magnetic field. The maximum current density of 0.35 A/cm corresponds to the highest terminal temperature of 84.6 °C and IEF intensity of 26.6 V/cm. When magnetic field intensity was 1.39 T and the extraction time was 15 min, the maximum yield of pectin reached 9.16 %. In addition, all treatments impacted the ash content, protein content, water-holding capacity (WHC), and oil-holding capacity (OHC) of the obtained pectin. The pectin extracted by electromagnetic heat had the lowest DE value of 71.3 % with 126.55 kDa molecular weight, while the GalA content was at the highest level of 76.18 %. After different treatments, the composition of pectin monosaccharides changed, but there were slight differences in the composition of pectin polysaccharides. Moreover, the electromagnetic heat extracted pectin had light color and an obvious surface fragmentation of the peel residue.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Yamei Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Yuyi Zhou
- INDUC Scientific Co., Ltd., Wuxi 214000, PR China
| | - Xiaoqun Zhou
- INDUC Scientific Co., Ltd., Wuxi 214000, PR China
| |
Collapse
|
3
|
Bermúdez-Oria A, Castejón ML, Fernández-Prior Á, Rodríguez-Gutiérrez G, Fernández-Bolaños J. An Acid-Free Alternative to Pectin Production from the Cell Walls of Olive Oil Waste and Different Fruits Using Choline Chloride. Foods 2023; 12:4166. [PMID: 38002223 PMCID: PMC10670671 DOI: 10.3390/foods12224166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The pectin from the cell walls of olive waste (alperujo) and apple, orange and strawberry fruits was extracted using choline chloride (ChCl) and the yield and chemical and structural compositions were compared to pectin extracted using citric acid (CA) and ammonium oxalate/oxalic acid (AOOA). According to the results, the alperujo pectin extracted using ChCl from alcohol-insoluble residue (AIR) showed a higher yield (2.20-2.88% on the basis of dry weight of AIR) than using CA (0.65-1.22%) but lower than using AOOA (3.92-5.42%). For fruit pectin, the highest yield was obtained using CA (8.81-16%), followed by AOOA (5.4-6.63%), although for apple pectin, ChCl gave a similar yield (5.36%) to AOOA. The uronic acid contents in all ChCl pectins (45.9-70.6% dry basis AIR) were higher or similar to that of the other extracting agents (30.6-65.2%), although a lower level of neutral sugar side chains was detected, with a lower degree of branching and degree of methylation. The NMR and FT-IR spectroscopy of the pectin isolated using ChCl confirmed its slightly different structural composition with respect to CA and AOOA pectin. Therefore, depending on the source material and functionality, pectin isolated using ChCl could be an acid-free alternative to pectin production.
Collapse
Affiliation(s)
| | | | | | | | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo Olavide University, Building 46, Ctra de Utrera km 1, 41013 Seville, Spain; (A.B.-O.); (M.L.C.); (Á.F.-P.); (G.R.-G.)
| |
Collapse
|
4
|
Bender C, Stoll D, Huch M, Weinert C, Dötsch A, Dräger H, Keller J, Kulling S, Bunzel M. Time-dependent fermentation of different structural units of commercial pectins with intestinal bacteria. Carbohydr Polym 2023; 308:120642. [PMID: 36813335 DOI: 10.1016/j.carbpol.2023.120642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Many of the proposed health-related properties of pectins are based on their fermentability in the large intestine, but detailed structure-related studies on pectin fermentation have not been reported so far. Here, pectin fermentation kinetics were studied with a focus on structurally different pectic polymers. Therefore, six commercial pectins from citrus, apple, and sugar beet were chemically characterized and fermented in in vitro fermentation assays with human fecal samples over different periods of time (0 h, 4 h, 24 h, 48 h). Structure elucidation of intermediate cleavage products showed differences in fermentation speed and/or fermentation rate among the pectins, but the order in which specific structural pectic elements were fermented was comparable across all pectins. Neutral side chains of rhamnogalacturonan type I were fermented first (between 0 and 4 h), followed by homogalacturonan units (between 0 and 24 h) and, at last, the rhamnogalacturonan type I backbone (between 4 and 48 h). This indicates that fermentation of different pectic structural units might take place in different sections of the colon, potentially affecting their nutritional properties. For the formation of different short-chain fatty acids, mainly acetate, propionate, and butyrate, and the influence on microbiota, there was no time-dependent correlation regarding the pectic subunits. However, an increase of members of the bacterial genera Faecalibacterium, Lachnoclostridium, and Lachnospira was observed for all pectins.
Collapse
Affiliation(s)
- Caroline Bender
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Dominic Stoll
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Melanie Huch
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Christoph Weinert
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Andreas Dötsch
- Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Hannah Dräger
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Judith Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sabine Kulling
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
5
|
Jermendi É, Beukema M, van den Berg MA, de Vos P, Schols HA. Revealing methyl-esterification patterns of pectins by enzymatic fingerprinting: Beyond the degree of blockiness. Carbohydr Polym 2022; 277:118813. [PMID: 34893230 DOI: 10.1016/j.carbpol.2021.118813] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022]
Abstract
Citrus pectins were studied by enzymatic fingerprinting using a simultaneous enzyme treatment with endo-polygalacturonase (endo-PG) from Kluyveromyces fragilis and pectin lyase (PL) from Aspergillus niger to reveal the methyl-ester distribution patterns over the pectin backbone. Using HILIC-MS combined with HPAEC enabled the separation and identification of the diagnostic oligomers released. Structural information on the pectins was provided by using novel descriptive parameters such as degree of blockiness of methyl-esterified oligomers by PG (DBPGme) and degree of blockiness of methyl-esterified oligomers by PL (DBPLme). This approach enabled us to clearly differentiate citrus pectins with various methyl-esterification patterns. The simultaneous use of PG and PL showed additional information, which is not revealed in digests using PG or PL alone. This approach can be valuable to differentiate pectins having the same DM and to get specific structural information on pectins and therefore to be able to better predict their physical and biochemical functionalities.
Collapse
Affiliation(s)
- Éva Jermendi
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Marco A van den Berg
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands.
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
6
|
Extraction, characterization and gelling ability of pectins from Araçá (Psidium cattleianum Sabine) fruits. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Cui F, Zhao S, Guan X, McClements DJ, Liu X, Liu F, Ngai T. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106812] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Gotoh S, Naka T, Kitaguchi K, Yabe T. Arabinogalactan in the side chain of pectin from persimmon is involved in the interaction with small intestinal epithelial cells. Biosci Biotechnol Biochem 2021; 85:1729-1736. [PMID: 33877300 DOI: 10.1093/bbb/zbab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/12/2022]
Abstract
Pectin in Diospyros kaki (persimmon) is a complex polysaccharide and is classified as a dietary fiber. Pectin is characterized by the presence of side chains of neutral sugars, such as galactose residues; however, the structure and properties of these sugars vary greatly depending on the plant species from which it is derived. Here, we report the structural features of pectin extracted from persimmon. The polysaccharide was low-methoxy pectin with a degree of methyl esterification <50% and ratio of side chain galactan to arabinan in the rhamnogalacturonan-I region of pectin of 3-20. To investigate the physiological function of pectin from persimmon, we performed a coculture assay using Caco-2 cells. As a result, it was shown that the proliferation of undifferentiated Caco-2 cells was promoted, and further, the importance of arabinogalactan among the pectin structures was shown.
Collapse
Affiliation(s)
- Saki Gotoh
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Tomomi Naka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kohji Kitaguchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
9
|
Calvete-Torre I, Muñoz-Almagro N, Pacheco MT, Antón MJ, Dapena E, Ruiz L, Margolles A, Villamiel M, Moreno FJ. Apple pomaces derived from mono-varietal Asturian ciders production are potential source of pectins with appealing functional properties. Carbohydr Polym 2021; 264:117980. [PMID: 33910710 DOI: 10.1016/j.carbpol.2021.117980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
Comprehensive chemical characterization of nine mono-varietal apple pomaces obtained from the production of ciders with PDO is described. They were rich in essential minerals, fibers (35-52.9 %), and polyphenols. High levels in GalA (11.8-21.6 %), revealed the suitability of these apple pomaces as efficient sources of pectins. Extracted pectins showed high variability in monomer composition, with degrees of methylesterification, strongly associated with pectins functional properties, ranging from 58 to 88 %. For a subset of apple pomace varieties, pectin extraction was accomplished by conventional acid heat treatment or ultrasound. Despite ultrasound-assisted extraction did not improve pectin yield, it minimized levels of "non-pectin" components as revealed by the low content of Glc/Man, leading to the obtainment of high-purity pectin. Our work highlights the key role played by the selection of the apple variety to streamline the potential food applications (gelling/thickening agents or prebiotics) of the extracted pectins that largely depend on their structural features.
Collapse
Affiliation(s)
- Inés Calvete-Torre
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Nerea Muñoz-Almagro
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M Teresa Pacheco
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María José Antón
- The Regional Agrifood Research and Development Service (SERIDA), Carretera AS-267 PK 19, 33300, Villaviciosa, Asturias, Spain
| | - Enrique Dapena
- The Regional Agrifood Research and Development Service (SERIDA), Carretera AS-267 PK 19, 33300, Villaviciosa, Asturias, Spain
| | - Lorena Ruiz
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain; Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Mar Villamiel
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - F Javier Moreno
- Group of Chemistry and Functionality of Carbohydrates and Derivatives, Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera, 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
10
|
Chen Y, Wang Y, Xu L, Jia Y, Xue Z, Zhang M, Phisalaphong M, Chen H. Ultrasound-assisted modified pectin from unripe fruit pomace of raspberry (Rubus chingii Hu): Structural characterization and antioxidant activities. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Ghoshal G, Negi P. Isolation of pectin from kinnow peels and its characterization. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Asgari K, Labbafi M, Khodaiyan F, Kazemi M, Hosseini SS. Valorization of walnut processing waste as a novel resource: Production and characterization of pectin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kianoosh Asgari
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering University of Tehran Karaj Iran
| | - Mohsen Labbafi
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources University of Tehran Karaj Iran
| | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering University of Tehran Karaj Iran
| | - Milad Kazemi
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering University of Tehran Karaj Iran
| | - Seyed Saeid Hosseini
- Bioprocessing and Biodetection Laboratory, Department of Food Science and Engineering University of Tehran Karaj Iran
| |
Collapse
|
13
|
Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties. Carbohydr Polym 2020; 245:116473. [DOI: 10.1016/j.carbpol.2020.116473] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
|
14
|
Arachchige MPM, Mu T, Ma M. Structural, physicochemical and emulsifying properties of sweet potato pectin treated by high hydrostatic pressure and/or pectinase: a comparative study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4911-4920. [PMID: 32483850 DOI: 10.1002/jsfa.10552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sweet potato (Ipomoea batatas L.) is the sixth most important food crop in the world, and China is the largest producer. Large amounts of sweet potato residues are generated during starch extraction, leading to environmental pollution and resource waste. However, these residues can be used as a viable source for pectin extraction. As a natural biopolymer with high molecular weight and complex structure, the usefulness of pectin has been limited, and it needs to be modified in order to improve its physicochemical properties, thus expanding its applications in the food industry. Therefore, the reported study was conducted to modify sweet potato pectin (SPP) using high hydrostatic pressure (HHP) and/or pectinase treatment, and to determine the effects of such treatment on structural, physicochemical and emulsifying properties. RESULTS The results demonstrated that the molecular weight of SPP decreased following HHP and pectinase treatment, which was evidenced using scanning electron microscopy and atomic force microscopy. The degree of esterification was also decreased, confirmed by decreased intensity of the peak at 1739 cm-1 in the Fourier transform infrared spectrum and decreased peaks at 3.6 and 3.8 ppm in the 1 H NMR spectrum. Moreover, the content of monosaccharides and uronic acids increased and emulsifying properties improved after HHP and pectinase treatment. CONCLUSIONS HHP-assisted pectinase treatment could be used as novel technique for the modification of pectin to give better emulsifying properties with great potential for application in the food industry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Melani Purnika Mudugamuwa Arachchige
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Taihua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengmei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
15
|
Thermal degradation of citrus pectin in low-moisture environment – Investigation of backbone depolymerisation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Koh J, Morales-Contreras BE, Guerra-Rosas MI, Osorio-Hernández E, Culver CA, Morales-Castro J, Wicker L. Huanglongbing disease and quality of pectin and fruit juice extracted from Valencia oranges. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Optimization of acid-extraction of pectic fraction from grape (Vitis vinifera cv. Chardonnay) pomace, a Winery Waste. Int J Biol Macromol 2020; 161:204-213. [PMID: 32522547 DOI: 10.1016/j.ijbiomac.2020.05.272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022]
Abstract
Chardonnay grape pomace was evaluated as a source of pectin. A central composite design was used in order to determine the effect of pH, extraction time (Et) and liquid: solid ratio (LS) on the yield and uronic acid (UA) content of the pectins extracted using boiling HNO3 solution. The optimized extraction condition to reach the maximum yield and UA was pH = 2.08, Et = 135.23 min and LS = 35.11 ml/g, resulting in theoretical yield of 12.8% and UA of 64.4%. The experimental yield of the pectic fraction obtained under the optimized conditions (GPOP) was 11.1% and the UA was 56.8%. GPOP had ~25% glucose. It was treated with α-amylase and amyloglucosidase, resulting in the fraction α-GPOP. The starch-free pectic fraction was composed of 63.5% UA, 7.8% rhamnose, 6.0% arabinose, 13.6% galactose and minor amounts of other neutral monosaccharides. It contained a low-methoxyl pectin (degree of methyl-esterification 18.1%) and had an average molar mass of 154,100 g/mol. It consisted of 55.7% homogalacturonan and 35.2% rhamnogalacturonan I (RG-I). NMR analyses suggest that RG-I portion of α-GPOP is highly branched by short chains or single residues of arabinose and galactose.
Collapse
|
18
|
High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. Int J Biol Macromol 2020; 152:1274-1282. [DOI: 10.1016/j.ijbiomac.2019.10.224] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023]
|
19
|
Deng Z, Pan Y, Chen W, Chen W, Yun Y, Zhong Q, Zhang W, Chen H. Effects of cultivar and growth region on the structural, emulsifying and rheological characteristic of mango peel pectin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105707] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Dimopoulou M, Alba K, Campbell G, Kontogiorgos V. Pectin recovery and characterization from lemon juice waste streams. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6191-6198. [PMID: 31250441 DOI: 10.1002/jsfa.9891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 05/16/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pectin characteristics from different parts of lemon fruit (Citrus limon L.) were studied as a basis for assessing their suitability for functional applications. Pectin was extracted from lemon albedo, lemon core parts and membranes, and lemon extract using an aqueous extraction protocol. The composition and structural properties of the isolated pectins were examined by means of complementary analytical methods to assess their molecular characteristics for potential industrial applications. RESULTS The isolation protocol yielded pectins that were predominantly composed of galacturonic acid, with differences in the degree of methylation and neutral sugars content, and with low protein content, indicating high-purity materials. The same extraction protocol resulted in differences in yield and purity between the three different parts of lemon fruit, and in structural variations in the pectin backbone, as evidenced by differences in sugar composition and molecular weight. Solutions of the isolated lemon pectins exhibited pseudoplastic behavior. Macromolecular characterization showed that the lemon extract pectin had the highest molecular weight and hydrodynamic volume, followed by lemon core and lemon albedo pectin. CONCLUSION The work demonstrates that pectins with distinct structural properties may be extracted from different parts of lemon wastes and used for different technological purposes. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria Dimopoulou
- Department of Chemical Engineering, University of Huddersfield, UK
- Department of Biological and Geographical Sciences, University of Huddersfield, UK
| | - Katerina Alba
- Department of Biological and Geographical Sciences, University of Huddersfield, UK
| | - Grant Campbell
- Department of Chemical Engineering, University of Huddersfield, UK
| | | |
Collapse
|
21
|
Barbieri SF, da Costa Amaral S, Ruthes AC, de Oliveira Petkowicz CL, Kerkhoven NC, da Silva ERA, Silveira JLM. Pectins from the pulp of gabiroba (Campomanesia xanthocarpa Berg): Structural characterization and rheological behavior. Carbohydr Polym 2019; 214:250-258. [DOI: 10.1016/j.carbpol.2019.03.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
|
22
|
Pi F, Liu Z, Guo X, Guo X, Meng H. Chicory root pulp pectin as an emulsifier as compared to sugar beet pectin. Part 1: Influence of structure, concentration, counterion concentration. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Yang JS, Mu TH, Ma MM. Optimization of ultrasound-microwave assisted acid extraction of pectin from potato pulp by response surface methodology and its characterization. Food Chem 2019; 289:351-359. [PMID: 30955623 DOI: 10.1016/j.foodchem.2019.03.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 11/24/2022]
Abstract
The ultrasound-microwave assisted HCl extraction of pectin from potato pulp was optimized using the response surface methodology. Effects of extraction temperature, pH, and time on the yield were evaluated, and structural characteristics of pectin extracted under optimal conditions were determined. The yield was 22.86 ± 1.29% under optimal conditions of temperature 93 °C, pH 2.0, and time 50 min. The obtained pectin was rich in branched rhamnogalacturonan I (61.54 mol%). Furthermore, the pectin was a low-methoxyl (degree of methylation, 32.58%) but highly acetylated (degree of acetylation, 17.84%) pectin and the molecular weight was 1.537 × 105 g/mol. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance indicated that pectin had a linear region of α-1, 4-linked galacturonic acids which could be methyl and acetyl-esterified, and rhamnose linked with galacturonic acid to form rhamnogalacturonan which was branched with side chains. Scanning electron microscopy showed most of pectin had a lamellae structure.
Collapse
Affiliation(s)
- Jin-Shu Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| | - Tai-Hua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China.
| | - Meng-Mei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109, Beijing 100193, PR China
| |
Collapse
|
24
|
Emulsion stabilizing properties of citrus pectin and its interactions with conventional emulsifiers in oil-in-water emulsions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Process-induced water-soluble biopolymers from broccoli and tomato purées: Their molecular structure in relation to their emulsion stabilizing capacity. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Unravelling the structure of serum pectin originating from thermally and mechanically processed carrot-based suspensions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Fracasso AF, Perussello CA, Carpiné D, Petkowicz CLDO, Haminiuk CWI. Chemical modification of citrus pectin: Structural, physical and rheologial implications. Int J Biol Macromol 2018; 109:784-792. [DOI: 10.1016/j.ijbiomac.2017.11.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/11/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
|
28
|
Chen H, Qiu S, Liu Y, Zhu Q, Yin L. Emulsifying properties and functional compositions of sugar beet pectins extracted under different conditions. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2016.1151360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hao Chen
- Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuang Qiu
- Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Liu
- Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaomei Zhu
- Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lijun Yin
- Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
29
|
Yang JS, Mu TH, Ma MM. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem 2017; 244:197-205. [PMID: 29120771 DOI: 10.1016/j.foodchem.2017.10.059] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
Abstract
Effects of HCl, H2SO4, HNO3, citric acid, and acetic acid on the yield, structure, and emulsifying properties of potato pectins were investigated. Results showed that the highest yield (14.34%) was obtained using citric acid, followed by HNO3 (9.83%), HCl (9.72%), H2SO4 (8.38%), and acetic acid (4.08%). The degrees of methylation (37.45%) and acetylation (15.38%), protein content (6.97%), and molecular weight (3.207 × 105 g/mol) were the highest for pectin extracted using acetic acid, and (galactose + arabinose)/rhamnose was 33.34, indicating that it had a highly branched rhamnogalacturonan I domain. Fourier transform infrared spectroscopy showed a specific absorbance peak at 1064 cm-1, which corresponds to the acetyl groups in potato pectins. SEM showed that all potato pectins are morphologically different. The emulsifying activity (EA, 44.97%-47.71%) and emulsion stability (ES, 36.54%-46.00%) of the pectins were influenced by acid types, and were higher than those of commercial citrus and apple pectin.
Collapse
Affiliation(s)
- Jin-Shu Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| | - Tai-Hua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| | - Meng-Mei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture, No. 2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| |
Collapse
|
30
|
Eghbal N, Degraeve P, Oulahal N, Yarmand MS, Mousavi ME, Gharsallaoui A. Low methoxyl pectin/sodium caseinate interactions and composite film formation at neutral pH. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.01.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Begum R, Yusof YA, Aziz MG, Uddin MB. Structural and functional properties of pectin extracted from jackfruit (Artocarpus heterophyllus) waste: Effects of drying. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1295054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rokeya Begum
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Technology and Rural Industries, Faculty of Agricultural Engineering & Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohammad Gulzarul Aziz
- Department of Food Technology and Rural Industries, Faculty of Agricultural Engineering & Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. Burhan Uddin
- Department of Food Technology and Rural Industries, Faculty of Agricultural Engineering & Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
32
|
Assoi S, Konan K, Agbo GN, Dodo H, Holser R, Wicker L. Palmyra palm (Borassus aethiopum Mart.) fruits: novel raw materials for the pectin industry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2057-2067. [PMID: 27569539 DOI: 10.1002/jsfa.8010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 07/31/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Preventing post-harvest waste of Palmyra palm (Borassus aethiopum Mart.) fruits is possible by recovery of pectin as a value-added ingredient. Extraction conditions on yield and functionality of Palmyra palm pectin was determined at different temperatures and pH values with 30 min extraction time. RESULTS Palmyra palm fruits contain more than 650 g kg-1 galacturonic acid and produce soft gels with sucrose in acidic media despite a high degree of acetylation (∼5%). Mechanical deformation of pectin gel was similar when extracted at pH 2.5 and 70 °C or under natural pH at room temperature or 70 °C. Pectins isolated at pH 7 exhibited comparable gel softness (G'/G″) with commercial pectin. Palm pectins also showed emulsifying activity greater than 50%, attributed to high protein content of 8 g 100 g-1 . For pectins extracted at pH near 5.2-5.5, molar mass ranged from 3.00 to 3.38 × 105 g mol-1 ; intrinsic viscosity ranged from 218 to 297 mL g-1 ; arabinose was the main neutral sugar; ζ-potential ranged from -23 to -25 mV. CONCLUSION Palm fruit offers an inexpensive raw material to extract pectin in environmentally friendly and economical way and yield a pectin with unique gelling, viscosifying and emulsifying properties. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sylvie Assoi
- Departement de Biochimie et Sciences des Aliments, UFR Biosciences, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire
| | - Koffi Konan
- Department of Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA
| | - Georges N Agbo
- Departement de Biochimie et Sciences des Aliments, UFR Biosciences, Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire
| | - Hortense Dodo
- Department of Food and Animal Sciences, Alabama A&M University, Normal, AL 35762, USA
| | - Ron Holser
- Quality and Safety Assessment Unit, USDA ARS SAA, Athens, GA 30605, USA
| | - Louise Wicker
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- Department of Home Economics Education, College of Education, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
33
|
Guo X, Zhang T, Meng H, Yu S. Ethanol precipitation of sugar beet pectins as affected by electrostatic interactions between counter ions and pectin chains. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Chan SY, Choo WS, Young DJ, Loh XJ. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr Polym 2016; 161:118-139. [PMID: 28189220 DOI: 10.1016/j.carbpol.2016.12.033] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
Abstract
Pectins are a diverse family of biopolymers with an anionic polysaccharide backbone of α-1,4-linked d-galacturonic acids in common. They have been widely used as emulsifiers, gelling agents, glazing agents, stabilizers, and/or thickeners in food, pharmaceutical, personal care and polymer products. Commercial pectin is classified as high methoxy pectin (HMP) with a degree of methylation (DM) >50% and low methoxy pectin (LMP) with a DM <50%. Amidated low methoxy pectins (ALMP) can be obtained through aminolysis of HMP. Gelation of HMP occurs by cross-linking through hydrogen bonds and hydrophobic forces between the methyl groups, assisted by a high co-solute concentration and low pH. In contrast, gelation of LMP occurs by the formation of ionic linkages via calcium bridges between two carboxyl groups from two different chains in close proximity, known as the 'egg-box' model. Pectin gels exhibit Newtonian behaviour at low shear rates and shear-thinning behaviour when the shear rate is increased. An overview of pectin from its origin to its physicochemical properties is presented in this review.
Collapse
Affiliation(s)
- Siew Yin Chan
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - David James Young
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; Singapore Eye Research Institute (SERI), 11 Third Hospital Avenue, Singapore 168751, Singapore.
| |
Collapse
|
35
|
Verrijssen TA, Christiaens S, Verkempinck SH, Boeve J, Grauwet T, Van Loey AM, Salvia-Trujillo L, Hendrickx ME. In vitro
β-Carotene Bioaccessibility and Lipid Digestion in Emulsions: Influence of Pectin Type and Degree of Methyl-Esterification. J Food Sci 2016; 81:C2327-C2336. [DOI: 10.1111/1750-3841.13408] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/17/2016] [Accepted: 07/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Tina A.J. Verrijssen
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe); Dept. of Microbial and Molecular Systems (M2S); KU Leuven, Kasteelpark Arenberg 22, PB 2457 3001 Leuven Belgium
| | - Stefanie Christiaens
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe); Dept. of Microbial and Molecular Systems (M2S); KU Leuven, Kasteelpark Arenberg 22, PB 2457 3001 Leuven Belgium
| | - Sarah H.E. Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe); Dept. of Microbial and Molecular Systems (M2S); KU Leuven, Kasteelpark Arenberg 22, PB 2457 3001 Leuven Belgium
| | - Jeroen Boeve
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe); Dept. of Microbial and Molecular Systems (M2S); KU Leuven, Kasteelpark Arenberg 22, PB 2457 3001 Leuven Belgium
| | - Tara Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe); Dept. of Microbial and Molecular Systems (M2S); KU Leuven, Kasteelpark Arenberg 22, PB 2457 3001 Leuven Belgium
| | - Ann M. Van Loey
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe); Dept. of Microbial and Molecular Systems (M2S); KU Leuven, Kasteelpark Arenberg 22, PB 2457 3001 Leuven Belgium
| | - Laura Salvia-Trujillo
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe); Dept. of Microbial and Molecular Systems (M2S); KU Leuven, Kasteelpark Arenberg 22, PB 2457 3001 Leuven Belgium
| | - Marc E. Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe); Dept. of Microbial and Molecular Systems (M2S); KU Leuven, Kasteelpark Arenberg 22, PB 2457 3001 Leuven Belgium
| |
Collapse
|
36
|
Khozhaenko E, Kovalev V, Podkorytova E, Khotimchenko M. Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:913-921. [PMID: 26848015 DOI: 10.1016/j.scitotenv.2016.01.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 05/06/2023]
Abstract
Pectins from sea grasses are considered as promising substances with pronounced metal-binding activity. Due to the high molecular weight and heterogeneous structure, the use of pectins for removal of metal ions is difficult. Technology of directed pectin degradation was developed and homogenous degraded nanoscaled pectin polymers were synthesized. Experimental samples of degraded pectin isolated from Phyllospadix iwatensis were tested for their metal binding activity in comparison with native pectin from this seagrass and commercial citrus pectin. The metal uptake of all pectin compounds was highest within the pH range from 4.0 to 6.0. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants. Results showed that depolymerized pectin exerts highest lead and cadmium binding activity with pronounced affinity. All pectin compounds were suggested to be favorable sorbents. Therefore, it can be concluded that degraded pectin is a prospective material for creation of metal-removing water treatment systems.
Collapse
Affiliation(s)
- Elena Khozhaenko
- Far Eastern Federal University, School of Biomedicine, 8, Sukhanova str., Vladivostok 690091, Russia; A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059, Russia
| | - Valeri Kovalev
- A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059, Russia
| | - Elena Podkorytova
- A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059, Russia
| | - Maksim Khotimchenko
- Far Eastern Federal University, School of Biomedicine, 8, Sukhanova str., Vladivostok 690091, Russia; A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059, Russia.
| |
Collapse
|
37
|
Patil SN, Paradeshi JS, Chaudhari PB, Mishra SJ, Chaudhari BL. Bio-therapeutic Potential and Cytotoxicity Assessment of Pectin-Mediated Synthesized Nanostructured Cerium Oxide. Appl Biochem Biotechnol 2016; 180:638-654. [PMID: 27234032 DOI: 10.1007/s12010-016-2121-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
In the present studies, renewable and nontoxic biopolymer, pectin, was extracted from Indian red pomelo fruit peels and used for the synthesis of cerium oxide nanoparticles (CeO2-NPs) having bio-therapeutic potential. The structural information of extracted pectin was investigated by FTIR and NMR spectroscopic techniques. Physicochemical characteristics of this pectin suggested its application in the synthesis of metal oxide nanoparticles. Using this pectin as a template, CeO2-NPs were synthesized by simple, one step and eco-friendly approach. The UV-Vis spectrum of synthesized CeO2-NPs exhibited a characteristic absorption peak at wavelength 345 nm, which can be assigned to its intrinsic band gap (3.59 eV) absorption. Photoluminescence measurements of CeO2-NPs revealed that the broad emission was composed of seven different bands. FTIR analysis ensured involvement of pectin in the formation and stabilization of CeO2-NPs. FT-Raman spectra showed a sharp Raman active mode peak at 461.8 cm-1 due to a symmetrical stretching mode of Ce-O vibration. DLS, FESEM, EDX, and XRD analysis showed that the CeO2-NPs prepared were polydispersed, spherical shaped with a cubic fluorite structure and average particle size ≤40 nm. These CeO2-NPs displayed broad spectrum antimicrobial activity, antioxidant potential, and non-cytotoxic nature.
Collapse
Affiliation(s)
- Sandeep N Patil
- Department of Microbiology, School of Life Sciences, North Maharashtra University, Umavi Nagar, Post Box 80, Jalgaon, 425 001, India
| | - Jayasinh S Paradeshi
- Department of Microbiology, School of Life Sciences, North Maharashtra University, Umavi Nagar, Post Box 80, Jalgaon, 425 001, India
| | - Prapti B Chaudhari
- Department of Polymer Science and Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, 425 001, India
| | - Satyendra J Mishra
- Department of Polymer Science and Technology, University Institute of Chemical Technology, North Maharashtra University, Jalgaon, 425 001, India
| | - Bhushan L Chaudhari
- Department of Microbiology, School of Life Sciences, North Maharashtra University, Umavi Nagar, Post Box 80, Jalgaon, 425 001, India.
| |
Collapse
|
38
|
Karboune S, Khodaei N. Structures, isolation and health-promoting properties of pectic polysaccharides from cell wall-rich food by-products: a source of functional ingredients. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Santiago JSJ, Christiaens S, Van Loey AM, Hendrickx ME. Deliberate processing of carrot purées entails tailored serum pectin structures. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Liu C, Cheng FF, Wang JM, Wan ZL, Sun YE, Yang XQ. Preparation and characterisation of surface-active pectin from soya hulls by phosphate-assisted subcritical water combined with ultrasonic treatment. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun Liu
- Research and Development Center of Food Proteins; Department of Food Science and Technology; South China University of Technology; Guangzhou 510640 China
| | - Fen-Fen Cheng
- Research and Development Center of Food Proteins; Department of Food Science and Technology; South China University of Technology; Guangzhou 510640 China
| | - Jin-Mei Wang
- Research and Development Center of Food Proteins; Department of Food Science and Technology; South China University of Technology; Guangzhou 510640 China
| | - Zhi-Li Wan
- Research and Development Center of Food Proteins; Department of Food Science and Technology; South China University of Technology; Guangzhou 510640 China
| | - Ying-En Sun
- Research and Development Center of Food Proteins; Department of Food Science and Technology; South China University of Technology; Guangzhou 510640 China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins; Department of Food Science and Technology; South China University of Technology; Guangzhou 510640 China
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
41
|
Ngouémazong ED, Christiaens S, Shpigelman A, Van Loey A, Hendrickx M. The Emulsifying and Emulsion-Stabilizing Properties of Pectin: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12160] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eugénie D. Ngouémazong
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| | - Stefanie Christiaens
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| | - Avi Shpigelman
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| | - Ann Van Loey
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| | - Marc Hendrickx
- Dept. of Microbial and Molecular Systems (M²S), Laboratory of Food Technology; Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Univ. Leuven; Kasteelpark Arenberg 22, Box 2457 3001 Leuven Belgium
| |
Collapse
|
42
|
Gannasin SP, Adzahan NM, Hamzah MY, Mustafa S, Muhammad K. Physicochemical properties of tamarillo (Solanum betaceum Cav.) hydrocolloid fractions. Food Chem 2015; 182:292-301. [DOI: 10.1016/j.foodchem.2015.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/18/2015] [Accepted: 03/03/2015] [Indexed: 01/31/2023]
|
43
|
Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid. Carbohydr Polym 2015; 129:108-14. [DOI: 10.1016/j.carbpol.2015.04.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/19/2022]
|
44
|
|
45
|
Christiaens S, Uwibambe D, Uyttebroek M, Van Droogenbroeck B, Van Loey AM, Hendrickx ME. Pectin characterisation in vegetable waste streams: A starting point for waste valorisation in the food industry. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.12.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Schmidt U, Schmidt K, Kurz T, Endreß HU, Schuchmann H. Pectins of different origin and their performance in forming and stabilizing oil-in-water-emulsions. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.12.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Jamsazzadeh Kermani Z, Shpigelman A, Pham HTT, Van Loey AM, Hendrickx ME. Functional properties of citric acid extracted mango peel pectin as related to its chemical structure. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.10.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Alba K, Laws A, Kontogiorgos V. Isolation and characterization of acetylated LM-pectins extracted from okra pods. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.08.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Shpigelman A, Kyomugasho C, Christiaens S, Van Loey AM, Hendrickx ME. The effect of high pressure homogenization on pectin: Importance of pectin source and pH. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.05.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Mao L, Boiteux L, Roos YH, Miao S. Evaluation of volatile characteristics in whey protein isolate–pectin mixed layer emulsions under different environmental conditions. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|