1
|
Romeo F, Spetter MJ, Pereyra SB, Morán PE, González Altamiranda EA, Louge Uriarte EL, Odeón AC, Pérez SE, Verna AE. Whole Genome Sequence-Based Analysis of Bovine Gammaherpesvirus 4 Isolated from Bovine Abortions. Viruses 2024; 16:739. [PMID: 38793621 PMCID: PMC11125609 DOI: 10.3390/v16050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine gammaherpesvirus 4 (BoGHV4) is a member of the Gammaherspivirinae subfamily, Rhadinovirus genus. Its natural host is the bovine, and it is prevalent among the global cattle population. Although the complete genome of BoGHV4 has been successfully sequenced, the functions of most of its genes remain unknown. Currently, only six strains of BoGHV4, all belonging to Genotype 1, have been sequenced. This is the first report of the nearly complete genome of Argentinean BoGHV4 strains isolated from clinical cases of abortion, representing the first BoGHV4 Genotype 2 and 3 genomes described in the literature. Both Argentinean isolates presented the highest nt p-distance values, indicating a greater level of divergence. Overall, the considerable diversity observed in the complete genomes and open reading frames underscores the distinctiveness of both Argentinean isolates compared to the existing BoGHV4 genomes. These findings support previous studies that categorized the Argentinean BoGHV4 strains 07-435 and 10-154 as Genotypes 3 and 2, respectively. The inclusion of these sequences represents a significant expansion to the currently limited pool of BoGHV4 genomes while providing an important basis to increase the knowledge of local isolates.
Collapse
Affiliation(s)
- Florencia Romeo
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| | - Maximiliano Joaquín Spetter
- Facultad de Ciencias Veterinarias, Departamento de Fisiopatología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CC7000, Buenos Aires, Argentina
| | - Susana Beatriz Pereyra
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| | - Pedro Edgardo Morán
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CC7000, Buenos Aires, Argentina
| | - Erika Analía González Altamiranda
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| | - Enrique Leopoldo Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| | - Anselmo Carlos Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina
| | - Sandra Elizabeth Pérez
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CC7000, Buenos Aires, Argentina
| | - Andrea Elizabeth Verna
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| |
Collapse
|
2
|
Zhao H, Yang M, Fan X, Gui Q, Yi H, Tong Y, Xiao W. A Metagenomic Investigation of Potential Health Risks and Element Cycling Functions of Bacteria and Viruses in Wastewater Treatment Plants. Viruses 2024; 16:535. [PMID: 38675877 PMCID: PMC11054999 DOI: 10.3390/v16040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The concentration of viruses in sewage sludge is significantly higher (10-1000-fold) than that found in natural environments, posing a potential risk for human and animal health. However, the composition of these viruses and their role in the transfer of pathogenic factors, as well as their role in the carbon, nitrogen, and phosphorus cycles remain poorly understood. In this study, we employed a shotgun metagenomic approach to investigate the pathogenic bacteria and viral composition and function in two wastewater treatment plants located on a campus. Our analysis revealed the presence of 1334 amplicon sequence variants (ASVs) across six sludge samples, with 242 ASVs (41.22% of total reads) identified as pathogenic bacteria. Arcobacter was found to be the most dominant pathogen accounting for 6.79% of total reads. The virome analysis identified 613 viral genera with Aorunvirus being the most abundant genus at 41.85%. Approximately 0.66% of these viruses were associated with human and animal diseases. More than 60% of the virome consisted of lytic phages. Host prediction analysis revealed that the phages primarily infected Lactobacillus (37.11%), Streptococcus (21.11%), and Staphylococcus (7.11%). Furthermore, our investigation revealed an abundance of auxiliary metabolic genes (AMGs) involved in carbon, nitrogen, and phosphorus cycling within the virome. We also detected a total of 113 antibiotic resistance genes (ARGs), covering major classes of antibiotics across all samples analyzed. Additionally, our findings indicated the presence of virulence factors including the clpP gene accounting for approximately 4.78%, along with toxin genes such as the RecT gene representing approximately 73.48% of all detected virulence factors and toxin genes among all samples analyzed. This study expands our understanding regarding both pathogenic bacteria and viruses present within sewage sludge while providing valuable insights into their ecological functions.
Collapse
Affiliation(s)
- Haozhe Zhao
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Mingfei Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Xiang Fan
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Qian Gui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Hao Yi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (H.Z.); (M.Y.); (X.F.); (Q.G.); (H.Y.)
| |
Collapse
|
3
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Kamel MS, Munds RA, Verma MS. The Quest for Immunity: Exploring Human Herpesviruses as Vaccine Vectors. Int J Mol Sci 2023; 24:16112. [PMID: 38003300 PMCID: PMC10671728 DOI: 10.3390/ijms242216112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Herpesviruses are large DNA viruses that have long been used as powerful gene therapy tools. In recent years, the ability of herpesviruses to stimulate both innate and adaptive immune responses has led to their transition to various applications as vaccine vectors. This vaccinology branch is growing at an unprecedented and accelerated rate. To date, human herpesvirus-based vectors have been used in vaccines to combat a variety of infectious agents, including the Ebola virus, foot and mouth disease virus, and human immunodeficiency viruses. Additionally, these vectors are being tested as potential vaccines for cancer-associated antigens. Thanks to advances in recombinant DNA technology, immunology, and genomics, numerous steps in vaccine development have been greatly improved. A better understanding of herpesvirus biology and the interactions between these viruses and the host cells will undoubtedly foster the use of herpesvirus-based vaccine vectors in clinical settings. To overcome the existing drawbacks of these vectors, ongoing research is needed to further advance our knowledge of herpesvirus biology and to develop safer and more effective vaccine vectors. Advanced molecular virology and cell biology techniques must be used to better understand the mechanisms by which herpesviruses manipulate host cells and how viral gene expression is regulated during infection. In this review, we cover the underlying molecular structure of herpesviruses and the strategies used to engineer their genomes to optimize capacity and efficacy as vaccine vectors. Also, we assess the available data on the successful application of herpesvirus-based vaccines for combating diseases such as viral infections and the potential drawbacks and alternative approaches to surmount them.
Collapse
Affiliation(s)
- Mohamed S. Kamel
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Rachel A. Munds
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
| | - Mohit S. Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Krishi Inc., West Lafayette, IN 47906, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Devlin JM, Hartley CA. Genomic diversity and natural recombination of equid gammaherpesvirus 5 isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105517. [PMID: 37879385 DOI: 10.1016/j.meegid.2023.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Equid gammaherpesvirus 5 (EHV5) is closely related to equid gammaherpesvirus 2 (EHV2). Detection of EHV5 is frequent in horse populations worldwide, but it is often without a clear and significant clinical impact. Infection in horses can often present as subclinical disease; however, it has been associated with respiratory disease, including equine multinodular pulmonary fibrosis (EMPF). Genetic heterogeneity within small regions of the EHV5 glycoprotein B (gB) sequences have been reported and multiple genotypes of this virus have been identified within individual horses, but full genome sequence data for these viruses is limited. The primary focus of this study was to assess the genomic diversity and natural recombination among EHV5 isolates. RESULTS The genome size of EHV5 prototype strain and the five EHV5 isolates cultured for this study, including four isolates from the same horse, ranged from 181,929 to 183,428 base pairs (bp), with the sizes of terminal repeat regions varying from 0 to 10 bp. The nucleotide sequence identity between the six EHV5 genomes ranged from 95.5 to 99.1%, and the estimated average nucleotide diversity between isolates was 1%. Individual genes displayed varying levels of nucleotide diversity that ranged from 0 to 19%. The analysis of nonsynonymous substitution (Ka > 0.025) revealed high diversity in eight genes. Genome analysis using RDP4 and SplitsTree programs detected evidence of past recombination events between EHV5 isolates. CONCLUSION Genomic diversity and recombination hotspots were identified among EHV5 strains. Recombination can drive genetic diversity, particularly in viruses that have a low rate of nucleotide substitutions. Therefore, the results from this study suggest that recombination is an important contributing factor to EHV5 genomic diversity. The findings from this study provide additional insights into the genetic heterogeneity of the EHV5 genome.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles El-Hage
- Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alistair R Legione
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Liu X, Lv L, Jiang C, Bai J, Gao Y, Ma Z, Jiang P. A natural product, (S)-10-Hydroxycamptothecin inhibits pseudorabies virus proliferation through DNA damage dependent antiviral innate immunity. Vet Microbiol 2022; 265:109313. [PMID: 34968801 DOI: 10.1016/j.vetmic.2021.109313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
Pseudorabies virus (PRV), a member of the subfamily alphaherpesvirinae, is one of the most important pathogenes that cause acute death in infected pigs and leads to substantial economic losses in the global swine industry. Recently, China's emerging PRV mutant strains resulted in the traditionally commercial vaccines not providing complete protection. Some studies reported that PRV could infect humans and cause endophthalmitis and encephalitis under certain circumstances. It is necessary to develop alternative manners to control the virus infection. Here, by screening a library of natural products, (S)-10-Hydroxycamptothecin (10-HCPT) was revealed to inhibit PRV replication with a selective index of 270.04. And 10-HCPT inhibited PRV replication by blocking the viral genome replication but not inhibiting the viral attachment, internalization, and release. RNA interference assay showed that 10-HCPT inhibited PRV replication by targeting DNA topoisomerase 1 (TOP1). Meanwhile, 10-HCPT treatment induced DNA damage response and stimulated antiviral innate immunity. Animal challenge experiments showed that 10-HCPT effectively alleviated clinical signs and hispathology, and increased INF-β responses in lung and brain tissues of mice induced by PRV infection. The results demonstrate that 10-HCPT is a promising therapeutic agent to control PRV infection.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Lv
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zicheng Ma
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
7
|
Schweininger J, Kriegel M, Häge S, Conrad M, Alkhashrom S, Lösing J, Weiler S, Tillmanns J, Egerer-Sieber C, Decker A, Lenac Roviš T, Eichler J, Sticht H, Marschall M, Muller YA. The crystal structure of the varicella-zoster Orf24-Orf27 nuclear egress complex spotlights multiple determinants of herpesvirus subfamily specificity. J Biol Chem 2022; 298:101625. [PMID: 35074430 PMCID: PMC8867122 DOI: 10.1016/j.jbc.2022.101625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Varicella-zoster virus (VZV) is a human pathogen from the α-subfamily of herpesviruses. The VZV Orf24-Orf27 complex represents the essential viral core nuclear egress complex (NEC) that orchestrates the egress of the preassembled virus capsids from the nucleus. While previous studies have primarily emphasized that the architecture of core NEC complexes is highly conserved among herpesviruses, the present report focuses on subfamily-specific structural and functional features that help explain the differences in the autologous versus nonautologous interaction patterns observed for NEC formation across herpesviruses. Here, we describe the crystal structure of the Orf24-Orf27 complex at 2.1 Å resolution. Coimmunoprecipitation and confocal imaging data show that Orf24-Orf27 complex formation displays some promiscuity in a herpesvirus subfamily-restricted manner. At the same time, analysis of thermodynamic parameters of NEC formation of three prototypical α-, β-, and γ herpesviruses, i.e., VZV, human cytomegalovirus (HCMV), and Epstein–Barr virus (EBV), revealed highly similar binding affinities for the autologous interaction with specific differences in enthalpy and entropy. Computational alanine scanning, structural comparisons, and mutational data highlight intermolecular interactions shared among α-herpesviruses that are clearly distinct from those seen in β- and γ-herpesviruses, including a salt bridge formed between Orf24-Arg167 and Orf27-Asp126. This interaction is located outside of the hook-into-groove interface and contributes significantly to the free energy of complex formation. Combined, these data explain distinct properties of specificity and permissivity so far observed in herpesviral NEC interactions. These findings will prove valuable in attempting to target multiple herpesvirus core NECs with selective or broad-acting drug candidates.
Collapse
|
8
|
Easton-Jones C. Recent advancements in our understanding of equid gammaherpesvirus infections. Equine Vet J 2021; 54:11-23. [PMID: 34519074 DOI: 10.1111/evj.13512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 06/18/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
Equid gammaherpesviruses are ubiquitous and widespread in the equine population. Despite their frequent detection, their contribution to immune system modulation and the pathogenesis of several diseases remains unclear. Genetic variability and the combination of equid gammaherpesvirus strains a horse is infected with might be clinically significant. Initial gammaherpesvirus infection occurs in foals peripartum with latency then established in peripheral blood mononuclear cells. A novel EHV-5 study suggests that following inhalation equid gammaherpesviruses might obtain direct access to T and B lymphocytes via the tonsillar crypts to establish latency. EHV-5 is associated with equine multinodular pulmonary fibrosis, however, unlike with EHV-2 there is currently minimal evidence for its role in milder cases of respiratory disease and poor performance. Transmission is presumed to be via the upper respiratory tract with periodic reactivation of the latent virus in adult horses. Stress of transport has been identified as a risk factor for reactivation and shedding of equine gammaherpesviruses. There is currently a lack of evidence for the effectiveness of antiviral drugs in the treatment of equine gammaherpesvirus infections.
Collapse
|
9
|
Marongiu L, Allgayer H. Viruses in colorectal cancer. Mol Oncol 2021; 16:1423-1450. [PMID: 34514694 PMCID: PMC8978519 DOI: 10.1002/1878-0261.13100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that microorganisms might represent at least highly interesting cofactors in colorectal cancer (CRC) oncogenesis and progression. Still, associated mechanisms, specifically in colonocytes and their microenvironmental interactions, are still poorly understood. Although, currently, at least seven viruses are being recognized as human carcinogens, only three of these – Epstein–Barr virus (EBV), human papillomavirus (HPV) and John Cunningham virus (JCV) – have been described, with varying levels of evidence, in CRC. In addition, cytomegalovirus (CMV) has been associated with CRC in some publications, albeit not being a fully acknowledged oncovirus. Moreover, recent microbiome studies set increasing grounds for new hypotheses on bacteriophages as interesting additional modulators in CRC carcinogenesis and progression. The present Review summarizes how particular groups of viruses, including bacteriophages, affect cells and the cellular and microbial microenvironment, thereby putatively contributing to foster CRC. This could be achieved, for example, by promoting several processes – such as DNA damage, chromosomal instability, or molecular aspects of cell proliferation, CRC progression and metastasis – not necessarily by direct infection of epithelial cells only, but also by interaction with the microenvironment of infected cells. In this context, there are striking common features of EBV, CMV, HPV and JCV that are able to promote oncogenesis, in terms of establishing latent infections and affecting p53‐/pRb‐driven, epithelial–mesenchymal transition (EMT)‐/EGFR‐associated and especially Wnt/β‐catenin‐driven pathways. We speculate that, at least in part, such viral impacts on particular pathways might be reflected in lasting (e.g. mutational or further genomic) fingerprints of viruses in cells. Also, the complex interplay between several species within the intestinal microbiome, involving a direct or indirect impact on colorectal and microenvironmental cells but also between, for example, phages and bacterial and viral pathogens, and further novel species certainly might, in part, explain ongoing difficulties to establish unequivocal monocausal links between specific viral infections and CRC.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| |
Collapse
|
10
|
Tsai MS, François S, Newman C, Macdonald DW, Buesching CD. Patterns of Genital Tract Mustelid Gammaherpesvirus 1 (Musghv-1) Reactivation Are Linked to Stressors in European Badgers ( Meles Meles). Biomolecules 2021; 11:biom11050716. [PMID: 34064759 PMCID: PMC8151406 DOI: 10.3390/biom11050716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Gammaherpesvirus reactivation can promote diseases or impair reproduction. Understanding reactivation patterns and associated risks of different stressors is therefore important. Nevertheless, outside the laboratory or captive environment, studies on the effects of stress on gammaherpesvirus reactivation in wild mammals are lacking. Here we used Mustelid gammaherpesvirus 1 (MusGHV-1) infection in European badgers (Meles meles) as a host-pathogen wildlife model to study the effects of a variety of demographic, physiological and environmental stressors on virus shedding in the genital tract. We collected 251 genital swabs from 150 free-ranging individuals across three seasons and screened them for the presence of MusGHV-1 DNA using PCR targeting the DNA polymerase gene. We explored possible links between MusGHV-1 DNA presence and seven variables reflecting stressors, using logistic regression analysis. The results reveal different sets of risk factors between juveniles and adults, likely reflecting primary infection and reactivation. In adults, virus shedding was more likely in badgers in poorer body condition and younger than 5 years or older than 7; while in juveniles, virus shedding is more likely in females and individuals in better body condition. However, living in social groups with more cubs was a risk factor for all badgers. We discuss possible explanations for these risk factors and their links to stress in badgers.
Collapse
Affiliation(s)
- Ming-shan Tsai
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
- Correspondence:
| | - Sarah François
- Evolve.Zoo, Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, South Park Road, Oxford OX1 3SY, UK;
| | - Chris Newman
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
- Cook’s Lake Farming Forestry and Wildlife Inc. (Ecological Consultancy), Queens County, NS B0J 2H0, Canada;
| | - David W. Macdonald
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
| | - Christina D. Buesching
- Cook’s Lake Farming Forestry and Wildlife Inc. (Ecological Consultancy), Queens County, NS B0J 2H0, Canada;
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
11
|
Lv L, Liu X, Jiang C, Wang X, Cao M, Bai J, Jiang P. Pathogenicity and immunogenicity of a gI/gE/TK/UL13-gene-deleted variant pseudorabies virus strain in swine. Vet Microbiol 2021; 258:109104. [PMID: 34004569 DOI: 10.1016/j.vetmic.2021.109104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/29/2022]
Abstract
Pseudorabies is a highly infectious disease with severe clinical symptoms, causing acute death in infected pigs and leading to substantial economic losses among swine producers. In this study, a vaccine candidate strain in which the protein kinase UL13 gene was deleted was constructed with the CRISPR/Cas9 system based on the recombinant pseudorabies virus (PRV) ZJ01-ΔgI/gE/TK. Pigs immunized with ZJ01-ΔgI/gE/TK or ZJ01-ΔgI/gE/TK/UL13 produced high levels of anti-gB antibodies and virus-neutralizing antibodies. ZJ01-ΔgI/gE/TK/UL13 provided greater protective efficacy against challenge with PRV variant strain ZJ01 than did Bartha-K61 or ZJ01-ΔgI/gE/TK. The pigs vaccinated with ZJ01-ΔgI/gE/TK/UL13 excreted significantly less virus than those vaccinated with Bartha-K61 or ZJ01-ΔgI/gE/TK. The viral loads in the lungs of pigs treated with ZJ01-ΔgI/gE/TK/UL13 were lower than those in pigs treated with ZJ01-ΔgI/gE/TK after challenge with PRV variant strain ZJ01. These data indicated that ZJ01-ΔgI/gE/TK/UL13 had greater protective efficacy and safety than the commercial ZJ01-ΔgI/gE/TK and Bartha-K61 vaccines, and could be developed as a promising vaccine candidate for the prevention and control of this disease.
Collapse
Affiliation(s)
- Lin Lv
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhu Cao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
12
|
Better immune efficacy triggered by the inactivated gI/gE-deleted pseudorabies virus with the additional insertion of gC gene in mice and weaned pigs. Virus Res 2021; 296:198353. [PMID: 33640358 DOI: 10.1016/j.virusres.2021.198353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
A new variant of pseudorabies virus (PRV) with high pathogenicity has been prevalent in many swineherds vaccinated with Bartha-K61 in China since 2011. Several gene-deleted vaccine candidates have been developed based on new emerging PRV variants. PRV-AH, a new emerging PRV strain from Anhui Province, was isolated in our laboratory in 2013. In the present study, rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ were generated based on PRV-AH by homologous recombination. The growth kinetics of rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ were similar to their parental strains. Compared with the commercial inactivated vaccine of Ea strain, the immune efficacy of the inactivated vaccine based on recombinant viruses was evaluated in mice and weaned pigs. The result showed that the level of neutralizing antibody in mice immunized with rPRV-AH-gI-/gE-/gC+ was higher compared with those immunized with rPRV-AH-gI-/gE- at a dose of 106 TCID50 at 8 weeks post initial immunization (p < 0.0001). Among the groups immunized at a dose of 105 TCID50, the rPRV-AH-gI-/gE- group showed a survival rate of 37.5 %, while the rPRV-AH-gI-/gE-/gC+ group showed a protection rate of 87.5 % against the PRV-AH challenge. Besides, the rPRV-AH-gI-/gE- and rPRV-AH-gI-/gE-/gC+ group immunized at a dose of 106 TCID50 showed a survival rate of 100 %. Interestingly, compared with the commercial vaccine group, the group of 105 TCID50 rPRV-AH-gI-/gE-/gC+ showed a lower level of neutralizing antibodies (p < 0.0001) but the same protection rate in mice. Moreover, in the pig experiment, the level of neutralizing antibodies in the group vaccinated with inactivated rPRV-AH-gI-/gE-/gC+ was higher than any other groups at 8 weeks post initial immunization (p < 0.05). More importantly, the milder symptoms and pathological lesions occurred in pigs vaccinated with rPRV-AH-gI-/gE-/gC+ after challenge with 106 TCID50 PRV-AH, revealing that additional insertion of gC gene could enhance the protective efficacy in PRV gI/gE-deleted vaccine in pigs. Collectively, these above-mentioned findings suggested that the inactivated vaccine of rPRV-AH-gI-/gE-/gC+ had a better immune efficacy, which could be regarded as a promising inactivated vaccine candidate for PRV control.
Collapse
|
13
|
Antiviral Activities of Quercetin and Isoquercitrin Against Human Herpesviruses. Molecules 2020; 25:molecules25102379. [PMID: 32443914 PMCID: PMC7287991 DOI: 10.3390/molecules25102379] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/16/2022] Open
Abstract
We previously reported that the ethyl acetate (EtOAc) fraction of a 70% ethanol extract of Elaeocarpus sylvestris (ESE) inhibits varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) replication in vitro. PGG (1,2,3,4,6-penta-O-galloyl-ß-D-glucose) is a major chemical constituent of the EtOAc fraction of ESE that inhibits VZV but not HCMV replication. In this study, we comprehensively screened the chemical compounds identified in the EtOAc fraction of ESE for potential antiviral properties. Among the examined compounds, quercetin and isoquercitrin displayed potent antiviral activities against both VZV and HCMV with no significant cytotoxic effects. Both compounds strongly suppressed the expression of VZV and HCMV immediate–early (IE) genes. Our collective results indicated that, in addition to PGG, quercetin and isoquercitrin are bioactive compounds in the EtOAc fraction of ESE that effectively inhibit human herpesvirus replication.
Collapse
|
14
|
Conserved G-Quadruplexes Regulate the Immediate Early Promoters of Human Alphaherpesviruses. Molecules 2019; 24:molecules24132375. [PMID: 31252527 PMCID: PMC6651000 DOI: 10.3390/molecules24132375] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
Human Alphaherpesviruses comprise three members, herpes simplex virus (HSV) 1 and 2 and varicella zoster virus (VZV). These viruses are characterized by a lytic cycle in epithelial cells and latency in the nervous system, with lifelong infections that may periodically reactivate and lead to serious complications, especially in immunocompromised patients. The mechanisms that regulate viral transcription have not been fully elucidated, but the master role of the immediate early (IE) genes has been established. G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in many organisms including viruses and that represent attractive antiviral targets. In this work, we investigate the presence, conservation, folding and activity of G-quadruplexes in the IE promoters of the Alphaherpesviruses. Our analysis shows that all IE promoters in the genome of HSV-1, HSV-2 and VZV contain fully conserved G-quadruplex forming sequences. These comprise sequences with long loops and bulges, and thus deviating from the classic G-quadruplex motifs. Moreover, their location is both on the leading and lagging strand and in some instances they contain exuberant G-tracts. Biophysical and biological analysis proved that all sequences actually fold into G-quadruplex under physiological conditions and can be further stabilized by the G-quadruplex ligand BRACO-19, with subsequent impairment of viral IE gene transcription in cells. These results help shed light on the control of viral transcription and indicate new viral targets to design drugs that impair the early steps of Alphaherpesviruses. In addition, they validate the significance of G-quadruplexes in the general regulation of viral cycles.
Collapse
|
15
|
Macaca arctoides gammaherpesvirus 1 (strain herpesvirus Macaca arctoides): virus sequence, phylogeny and characterisation of virus-transformed macaque and rabbit cell lines. Med Microbiol Immunol 2018; 208:109-129. [PMID: 30291474 DOI: 10.1007/s00430-018-0565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Herpesvirus Macaca arctoides (HVMA) has the propensity to transform macaque lymphocytes to lymphoblastoid cells (MAL-1). Inoculation of rabbits with cell-free virus-containing supernatant resulted in the development of malignant lymphomas and allowed isolation of immortalised HVMA-transformed rabbit lymphocytes (HTRL). In this study, the HVMA genome sequence (approx. 167 kbp), its organisation, and novel aspects of virus latency are presented. Ninety-one open reading frames were identified, of which 86 were non-repetitive. HVMA was identified as a Lymphocryptovirus closely related to Epstein-Barr virus, suggesting the designation as 'Macaca arctoides gammaherpesvirus 1' (MarcGHV-1). In situ lysis gel and Southern blot hybridisation experiments revealed that the MAL-1 cell line contains episomal and linear DNA, whereas episomal DNA is predominantly present in HTRL. Integration of viral DNA into macaque and rabbit host cell genomes was demonstrated by fluorescence in situ hybridisation on chromosomal preparations. Analysis of next-generation sequencing data confirmed this finding. Approximately 400 read pairs represent the overlap between macaque and MarcGHV-1 DNA. Both, MAL-1 cells and HTRL show characteristics of a polyclonal tumour with B- and T-lymphocyte markers. Based on analysis of viral gene expression and immunohistochemistry, the persistence of MarcGHV-1 in MAL-1 cells resemble the latency type III, whereas the expression pattern observed in HTRL was more comparable with latency type II. There was no evidence of the presence of STLV-1 proviral DNA in MAL-1 and HTRL. Due to the similarity to EBV-mediated cell transformation, MarcGHV-1 expands the available in vitro models by simian and rabbit cell lines.
Collapse
|
16
|
Detection of Ostreid herpesvirus -1 microvariants in healthy Crassostrea gigas following disease events and their possible role as reservoirs of infection. J Invertebr Pathol 2017; 148:20-33. [DOI: 10.1016/j.jip.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
|
17
|
Pfaff F, Schulze C, König P, Franzke K, Bock S, Hlinak A, Kämmerling J, Ochs A, Schüle A, Mettenleiter TC, Höper D, Beer M. A novel alphaherpesvirus associated with fatal diseases in banded Penguins. J Gen Virol 2017; 98:89-95. [PMID: 28036249 DOI: 10.1099/jgv.0.000698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel avian alphaherpesvirus, preliminarily designated sphenicid alphaherpesvirus 1 (SpAHV-1), has been independently isolated from juvenile Humboldt and African penguins (Spheniscus humboldti and Spheniscus demersus) kept in German zoos suffering from diphtheroid oropharyngitis/laryngotracheitis and necrotizing enteritis (collectively designated as penguin-diphtheria-like disease). High-throughput sequencing was used to determine the complete genome sequences of the first two SpAHV-1 isolates. SpAHV-1 comprises a class D genome with a length of about 164 kbp, a G+C content of 45.6 mol% and encodes 86 predicted ORFs. Taxonomic association of SpAHV-1 to the genus Mardivirus was supported by gene content clustering and phylogenetic analysis of herpesvirus core genes. The presented results imply that SpAHV-1 could be the primary causative agent of penguin-diphtheria-like fatal diseases in banded penguins. These results may serve as a basis for the development of diagnostic tools in order to investigate similar cases of penguin diphtheria in wild and captive penguins.
Collapse
Affiliation(s)
- Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | | | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Sabine Bock
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | - Andreas Hlinak
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | | | | | | | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| |
Collapse
|
18
|
Reyskens KMSE, Arthur JSC. Emerging Roles of the Mitogen and Stress Activated Kinases MSK1 and MSK2. Front Cell Dev Biol 2016; 4:56. [PMID: 27376065 PMCID: PMC4901046 DOI: 10.3389/fcell.2016.00056] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023] Open
Abstract
Mitogen- and stress-activated kinases (MSK) 1 and 2 are nuclear proteins activated downstream of the ERK1/2 or p38 MAPK pathways. MSKs phosphorylate multiple substrates, including CREB and Histone H3, and their major role is the regulation of specific subsets of Immediate Early genes (IEG). While MSKs are expressed in multiple tissues, their levels are high in immune and neuronal cells and it is in these systems most is known about their function. In immunity, MSKs have predominantly anti-inflammatory roles and help regulate production of the anti-inflammatory cytokine IL-10. In the CNS they are implicated in neuronal proliferation and synaptic plasticity. In this review we will focus on recent advances in understanding the roles of MSKs in the innate immune system and neuronal function.
Collapse
Affiliation(s)
- Kathleen M S E Reyskens
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee Dundee, UK
| |
Collapse
|
19
|
Besier AS, Mahony TJ, Crockford M, Gravel JL, Chapman TF, O'Dea MA. Alphaherpesvirus-associated disease in greater bilbies (Macrotis lagotis). Aust Vet J 2016; 94:208-212. [PMID: 27167050 DOI: 10.1111/avj.12447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 06/15/2015] [Accepted: 09/07/2015] [Indexed: 11/27/2022]
Abstract
CASE REPORT A captive breeding colony of 9 greater bilbies (Macrotis lagotis) exhibited mild upper respiratory signs and sudden deaths with 100% mortality over a 2-week period. Histologically, acute necrotising and erosive epithelial lesions throughout the upper respiratory system and bronchi were associated with eosinophilic intranuclear inclusion bodies. Inclusions were also present in hepatocytes and adrenocortical cells, but were not always associated with necrosis. Transmission electron microscopy of lung sections revealed nucleocapsids forming arrays within some nuclei. A pan-herpesvirus PCR yielded a 440-bp product, with sequencing confirming homology with the alphaherpesviruses. Viral culture in a marsupial cell line resulted in cytopathic effect consistent with an alphaherpesvirus. CONCLUSION This is the first report of a herpesvirus-associated disease in greater bilbies.
Collapse
Affiliation(s)
- A S Besier
- Animal Health Laboratories, Department of Agriculture and Food Western Australia, 3 Baron-Hay Crt, South Perth, WA 6151, Australia.
| | - T J Mahony
- Queensland Alliance for Food and Agricultural Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - M Crockford
- Department of Fisheries Western Australia, Hillarys, WA, Australia
| | - J L Gravel
- Department of Agriculture, Fisheries and Forestry, Agri-Science Queensland, St Lucia, QLD, Australia
| | - T F Chapman
- Department of Parks and Wildlife, Kensington, WA, Australia
| | - M A O'Dea
- College of Veterinary Medicine, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
20
|
Yang QY, Sun Z, Tan FF, Guo LH, Wang YZ, Wang J, Wang ZY, Wang LL, Li XD, Xiao Y, Tian KG. Pathogenicity of a currently circulating Chinese variant pseudorabies virus in pigs. World J Virol 2016; 5:23-30. [PMID: 26870671 PMCID: PMC4735551 DOI: 10.5501/wjv.v5.i1.23] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/29/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To test the pathogenicity of pseudorabies virus (PRV) variant HN1201 and compare its pathogenicity with a classical PRV Fa strain.
METHODS: The pathogenicity of the newly-emerging PRV variant HN1201 was evaluated by different inoculating routes, virus loads, and ages of pigs. The classical PRV Fa strain was then used to compare with HN1201 to determine pathogenicity. Clinical symptoms after virus infection were recorded daily and average daily body weight was used to measure the growth performance of pigs. At necropsy, gross pathology and histopathology were used to evaluate the severity of tissue damage caused by virus infection.
RESULTS: The results showed that the efficient infection method of RPV HN1201 was via intranasal inoculation at 107 TCID50, and that the virus has high pathogenicity to 35- to 127-d old pigs. Compared with Fa strain, pigs infected with HN1201 showed more severe clinical symptoms and pathological lesions. Immunochemistry results revealed HN1201 had more abundant antigen distribution in extensive organs.
CONCLUSION: All of the above results suggest that PRV variant HN1201 was more pathogenic to pigs than the classical Fa strain.
Collapse
|
21
|
Luo Y, Li N, Cong X, Wang CH, Du M, Li L, Zhao B, Yuan J, Liu DD, Li S, Li Y, Sun Y, Qiu HJ. Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China. Vet Microbiol 2014; 174:107-15. [PMID: 25293398 DOI: 10.1016/j.vetmic.2014.09.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
Pseudorabies (PR) or Aujeszky's disease (AD), caused by pseudorabies virus (PRV), is an economically important viral disease worldwide. Recently, PR outbreaks occurred in a large number of Bartha-K61-vaccinated swine herds in many regions of China. Here, we isolated a PRV variant, named TJ strain, from a Bartha-K61-vaccinated pig farm in China, evaluated the pathogenicity of the TJ strain in susceptible animals and analyzed its complete genomic sequence obtained by 454 pyrosequencing. Vaccination-challenge experiment in sheep showed that the classical Bartha-K61 vaccine could not provide complete protection against the challenge with the PRV TJ strain. In mice, the 50% lethal dose (LD50) of the TJ strain (10(2.3) TCID50) was lower than that of the classical PRV SC strain (10(3.0) TCID50). Furthermore, the TJ strain displayed higher mortality for pigs, as compared with the SC strain. The PRV TJ strain genome was determined to be 143,642 bp in length, encoding 67 open reading frames. The TJ strain was clustered to an independent branch together with some recent PRV isolates in China in the phylogenetic tree, which was relatively distant from previous PRV isolates. The TJ strain showed unique variations in the viral proteins that play key roles in the viral replication cycle. Taken together, the TJ strain is a highly pathogenic PRV variant with unique molecular signatures. Further studies are needed to explore the relevance of the sequence differences to the virulence alteration of the PRV variant.
Collapse
Affiliation(s)
- Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Na Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Xin Cong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Chun-Hua Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Min Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Lin Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Bibo Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Jin Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Dan-Dan Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, China.
| |
Collapse
|
22
|
Cantatore A, Randall SD, Traum D, Adams SD. Effect of black tea extract on herpes simplex virus-1 infection of cultured cells. Altern Ther Health Med 2013; 13:139. [PMID: 23777309 PMCID: PMC3698045 DOI: 10.1186/1472-6882-13-139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/14/2013] [Indexed: 02/07/2023]
Abstract
Background The purpose of this investigation was to determine if black tea extract (BTE), consisting primarily of flavanol compounds called theaflavins, could inhibit herpes simplex virus type-1 (HSV-1) infection in cultured A549 (human epithelial) and Vero cells. Methods The effect of BTE both on A549 and Vero cultured cells and on HSV-1 was assessed by using phase contrast and fluorescent microscopy, and cell viability and proliferation assays. After establishing the maximum non-cytotoxic concentration of BTE, A549 and Vero cells and HSV-1 virions were treated with varying concentrations of BTE, respectively. A549 and Vero cells were infected with HSV-1 with green fluorescent protein (GFP) insert at the UL46 gene. The effect of infectivity was determined by viral DNA extraction followed by PCR, plaque assays, adsorption assays, and electrophoresis of PCR products. Results BTE was not cytotoxic to A549 and Vero cells, as confirmed by cell viability and proliferation assays, in which BTE treated groups paralleled the positive control group. For both cell lines, plaque assays and fluorescent microscopy indicated an inverse relationship between BTE concentration (from 0.14 μM – 1.4 mM) and HSV-1 infectivity. Specifically, PCR and electrophoresis showed a reduction in the viral genome following treatment with BTE. In addition, there was a noticeable decrease in the amount of viral plaques for BTE treated samples in the adsorption assays. Conclusions BTE consisting primarily of theaflavins is not cytotoxic and can reduce or block the production of infectious HSV-1 virions in cultured A549 and Vero cells, thus inhibiting the infectivity of the virus by interfering in the attachment, penetration and viral DNA replication of HSV-1 particles. These findings indicate that BTE enriched with theaflavins has the potential to be developed as a safe, therapeutic antiviral agent to prevent the spread of HSV-1.
Collapse
|
23
|
Zaichick SV, Bohannon KP, Smith GA. Alphaherpesviruses and the cytoskeleton in neuronal infections. Viruses 2011; 3:941-81. [PMID: 21994765 PMCID: PMC3185784 DOI: 10.3390/v3070941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 12/13/2022] Open
Abstract
Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
24
|
Konrad A, Jochmann R, Kuhn E, Naschberger E, Chudasama P, Stürzl M. Reverse transfected cell microarrays in infectious disease research. Methods Mol Biol 2011; 706:107-18. [PMID: 21104058 DOI: 10.1007/978-1-61737-970-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several human pathogenic viruses encode large genomes with often more than 100 genes. Viral pathogenicity is determined by carefully orchestrated co-operative activities of several different viral genes which trigger the phenotypic functions of the infected cells. Systematic analyses of these complex interactions require high-throughput transfection technology. Here we have provided a laboratory manual for the reverse transfected cell microarray (RTCM; alternative name: cell chip) as a high-throughput transfection procedure, which has been successfully applied for the systematic analyses of single and combination effects of genes encoded by the human herpesvirus-8 on the NF-kappaB signal transduction pathway. In order to quantitatively determine the effects of viral genes in transfected cells, protocols for the use of GFP as an indicator gene and for indirect immunofluorescence staining of cellular target proteins have been included. RTCM provides a useful methodological approach to investigate systematically combination effects of viral genes on cellular functions.
Collapse
Affiliation(s)
- Andreas Konrad
- Division of Molecular and Experimental Surgery, Department of Surgery, University Medical Center Erlangen, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Saleh HM, Shaker AS, Saafan AM, Ibrahim AK. Herpes virus reactivation by low-intensity diode and CO₂ lasers. Photomed Laser Surg 2010; 29:83-90. [PMID: 20969439 DOI: 10.1089/pho.2009.2744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The herpes virus enters into latency after symptomatic or asymptomatic herpetic infection. During latency, the virus has no impact on infected cells. However, internal or external stimuli, including certain lasers, can induce virus reactivation. OBJECTIVE The aim was to study the reactivation power of the low-intensity diode and CO(2) lasers on the latent herpes virus. MATERIALS AND METHODS The bovine herpesvirus 1 (BHV-1) was inoculated in either the nasal cavity or the lacrimal film of an animal model. Once the virus entered into latency, the trigeminal ganglia of animals were exposed to either a low-intensity diode or CO(2) laser. The reactivation of the virus was then explored by PCR, RT-PCR, and dot-blot hybridization on nasal or lacrimal swabs. The accuracy, sensitivity, and specificity of the aforementioned techniques were compared. RESULTS The low-intensity diode laser reactivated the herpes virus less than the CO(2) laser. The nasally inoculated virus was more liable for reactivation by both lasers. PCR was considered as the standard method for the detection of the reactivated virus. CONCLUSIONS Low-intensity diode and CO(2) lasers can induce herpes virus reactivation, with the diode laser less likely to reactivate the virus than the CO(2) laser.
Collapse
Affiliation(s)
- Hazem Mohammad Saleh
- Otolaryngology unit, National Institute of Laser Enhanced Sciences, Cairo University, Egypt.
| | | | | | | |
Collapse
|
26
|
Marconi P, Argnani R, Epstein AL, Manservigi R. HSV as a vector in vaccine development and gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:118-44. [PMID: 20047039 DOI: 10.1007/978-1-4419-1132-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.
Collapse
Affiliation(s)
- Peggy Marconi
- Department of Experimental and Diagnostic Medicine-Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44100, Italy.
| | | | | | | |
Collapse
|
27
|
Huch JH, Cunningham AL, Arvin AM, Nasr N, Santegoets SJAM, Slobedman E, Slobedman B, Abendroth A. Impact of varicella-zoster virus on dendritic cell subsets in human skin during natural infection. J Virol 2010; 84:4060-72. [PMID: 20130046 PMCID: PMC2849518 DOI: 10.1128/jvi.01450-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 01/08/2010] [Indexed: 01/07/2023] Open
Abstract
Varicella-zoster virus (VZV) causes varicella and herpes zoster, diseases characterized by distinct cutaneous rashes. Dendritic cells (DC) are essential for inducing antiviral immune responses; however, the contribution of DC subsets to immune control during natural cutaneous VZV infection has not been investigated. Immunostaining showed that compared to normal skin, the proportion of cells expressing DC-SIGN (a dermal DC marker) or DC-LAMP and CD83 (mature DC markers) were not significantly altered in infected skin. In contrast, the frequency of Langerhans cells was significantly decreased in VZV-infected skin, whereas there was an influx of plasmacytoid DC, a potent secretor of type I interferon (IFN). Langerhans cells and plasmacytoid DC in infected skin were closely associated with VZV antigen-positive cells, and some Langerhans cells and plasmacytoid DC were VZV antigen positive. To extend these in vivo observations, both plasmacytoid DC (PDC) isolated from human blood and Langerhans cells derived from MUTZ-3 cells were shown to be permissive to VZV infection. In VZV-infected PDC cultures, significant induction of alpha IFN (IFN-alpha) did not occur, indicating the VZV inhibits the capacity of PDC to induce expression of this host defense cytokine. This study defines changes in the response of DC which occur during cutaneous VZV infection and implicates infection of DC subtypes in VZV pathogenesis.
Collapse
Affiliation(s)
- Jennifer H. Huch
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Anthony L. Cunningham
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Ann M. Arvin
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Najla Nasr
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Saskia J. A. M. Santegoets
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Eric Slobedman
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, New South Wales 2006, Australia, Centre For Virus Research, Westmead Millennium Institute and University of Sydney, Westmead, New South Wales 2145, Australia, Departments of Pediatrics and Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081HV, Netherlands, Laverty Pathology, North Ryde, New South Wales, 2113, Australia
| |
Collapse
|
28
|
Mühlbach H, Mohr CA, Ruzsics Z, Koszinowski UH. Dominant-negative proteins in herpesviruses - from assigning gene function to intracellular immunization. Viruses 2009; 1:420-40. [PMID: 21994555 PMCID: PMC3185506 DOI: 10.3390/v1030420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 11/17/2022] Open
Abstract
Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN) proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies.
Collapse
Affiliation(s)
| | | | - Zsolt Ruzsics
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| | - Ulrich H. Koszinowski
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| |
Collapse
|
29
|
Equine gammaherpesviruses: pathogenesis, epidemiology and diagnosis. Vet J 2009; 186:148-56. [PMID: 19766026 DOI: 10.1016/j.tvjl.2009.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 08/11/2009] [Accepted: 08/15/2009] [Indexed: 01/03/2023]
Abstract
Equine gammaherpesviruses (γEHV) have been widely studied over the past 45 years and many isolates have been characterised. Despite this, the diagnosis of γEHV infection remains difficult to establish as its clinical manifestations lack specificity, ranging from mild respiratory signs in a small number of animals to outbreaks in large groups of young horses. This review focuses on the epidemiology, pathogenesis, clinical manifestations and diagnosis of equine herpesvirus (EHV)-2 and -5 infections, as well as on the genetic variation of these viruses. Study of these variations has resulted in hypotheses relating to viral re-infection and re-activation. Interestingly, the viruses were found to contain genetic sequences identical to those of eukaryotic cells which are considered central to the development of viral latency through interfering with host immune and inflammatory responses. Future molecular biological studies will further elucidate the virulence mechanisms of these equine pathogens.
Collapse
|
30
|
Tan HH, Goh CL. Viral infections affecting the skin in organ transplant recipients: epidemiology and current management strategies. Am J Clin Dermatol 2006; 7:13-29. [PMID: 16489840 DOI: 10.2165/00128071-200607010-00003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Viral skin infections are common findings in organ transplant recipients. The most important etiological agents are the group of human herpesviruses (HHV), human papillomaviruses (HPV), and molluscum contagiosum virus. HHV that are important in this group of patients are herpes simplex virus (HSV) types 1 and 2, varicella-zoster virus (VZV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), HHV-6 and -7, and HHV-8, which causes Kaposi sarcoma (KS). HSV infections are characterized by their ability to establish latency and then reactivate at a later date. The most common manifestations of HSV infection in organ transplant recipients are mucocutaneous lesions of the oropharynx or genital regions. Treatment is usually with acyclovir, valaciclovir, or famciclovir. Acyclovir resistance may arise although the majority of acyclovir-resistant strains have been isolated from AIDS patients and not organ transplant recipients. In such cases, alternatives such as foscarnet, cidofovir, or trifluridine may have to be considered. VZV causes chickenpox as well as herpes zoster. In organ transplant recipients, recurrent herpes zoster can occur. Acute chickenpox in organ transplant patients should be treated with intravenous acyclovir. CMV infection occurs in 20-60% of all transplant recipients. Cutaneous manifestations, which include nonspecific macular rashes, ulcers, purpuric eruptions, and vesiculobullous lesions, are seen in 10-20% of patients with systemic infection and signify a poor prognosis. The present gold standard for treatment is ganciclovir, but newer drugs such as valganciclovir appear promising. EBV is responsible for some cases of post-transplant lymphoproliferative disorder, which represents the greatest risk of serious EBV disease in transplant recipients. HHV-6 and HHV-7 are two relatively newly discovered viruses and, at present, the body of information concerning these two agents is still fairly limited. KS is caused by HHV-8, which is the most recently discovered lymphotrophic HHV. Iatrogenic KS is seen in solid-organ transplant recipients, with a prevalence of 0.5-5% depending on the patient's country of origin. HPV is ubiquitous, and organ transplant recipients may never totally clear HPV infections, which are the most frequently recurring infections in renal transplant recipients. HPV infection in transplant recipients is important because of its link to the development of certain skin cancers, in particular, squamous cell carcinoma. Regular surveillance, sun avoidance, and patient education are important aspects of the management strategy.
Collapse
|
31
|
|
32
|
Hübner SO, Oliveira AP, Franco AC, Esteves PA, Silva AD, Spilki FR, Rijsewijk FAM, Roehe PM. Experimental infection of calves with a gI, gE, US9 negative bovine herpesvirus type 5. Comp Immunol Microbiol Infect Dis 2005; 28:187-96. [PMID: 15857658 DOI: 10.1016/j.cimid.2005.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2005] [Indexed: 11/26/2022]
Abstract
In this work, a role for the genes encoding glycoproteins I (gI) and E (gE) and the US9 protein of bovine herpesvirus type 5 (BHV-5) in neuropathogenicity and reactivation of latent infections was examined. Calves infected intranasally with a gI/gE/US9 deleted recombinant shed up to 10(2.85) TCID50/ml infectious virus in nasal secretions. Calves infected with the wild type BHV-5 parental virus shed up to 10(5) TCID50/ml virus. No signs of disease were observed in calves infected with the recombinant virus, whereas those infected with wild type virus displayed respiratory and neurological signs. The recombinant was only able to reach the basal portions of the central nervous system. In contrast, wild type virus was found widespread within the brain. Reactivation with dexamethasone 60 days post-infection resulted in reactivation of wild type virus, whereas the recombinant virus could not be reactivated. These studies demonstrate that genes gI, gE and US9 of BHV-5 are important for its neuropathogenicity and its ability to reactive from latency.
Collapse
Affiliation(s)
- S O Hübner
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), Campus Universitário, Caixa Postal 356, CEP 96010-900 Pelotas, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cortes PL, Cardona CJ. Pathogenesis of a Marek's disease virus mutant lacking vIL-8 in resistant and susceptible chickens. Avian Dis 2004; 48:50-60. [PMID: 15077797 DOI: 10.1637/7050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A homologue of interleukin-8, viral interleukin-8 (vIL-8) has been identified in the genome of Marek's disease virus (MDV). This protein attracts peripheral blood mononuclear cells in vitro although its role in the pathogenesis of Marek's disease (MD) is not known. P chickens, genetically susceptible to MD, and N chickens, genetically resistant to the disease, were inoculated with either RB1B MDVor RB1BvIL-8smGFP, a vIL8 knockout RB1B MDV, to assess the role of vIL8 in the pathogenesis of MD. The tumor incidence was highest in the P birds given the RBIB virus, where the incidence was 100%. Tumor incidence in N birds given RB1B was 41.5%. Thirty-one percent of the P birds given RB1BvIL-8smGFP developed tumors, and no N bird given RB1BvIL-8smGFP developed tumors. Histologically, the tumors from RB1B-inoculated birds were larger and more invasive and had a more homogeneous cellular composition than those from RB1BvIL-8smGFP-inoculated birds, which were best described as microtumors. These microtumors did not obliterate the normal architecture of the tissues, and in contrast to the RBIB tumors, moderate numbers of heterophils were admixed with the proliferating lymphocytes. Susceptible birds receiving RB1B had the highest viral titers throughout the study, followed by the resistant birds inoculated with RB1B. P and N birds receiving RB1BvIL-8smGFP virus had consistently lower levels of viremia than their RB1B-inoculated counterparts although virus could be recovered from the birds during all stages of MD. In addition, the RB1BvIL-8smGFP virus was detected in birds held in contact with the inoculated group, although no tumors developed in contact control birds. This result indicates that RB1BvIL-8smGFP replicates in vivo but not as well as RB1B and that vIL8 is not essential for the completion of the pathogenesis of MD.
Collapse
Affiliation(s)
- Portia L Cortes
- Department of Population Health and Reproduction, 1114 Tupper Hall, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
34
|
Abstract
Sporadic high mortalities were reported among larval French scallops (Pecten maximus). Electron microscopy of moribund larvae revealed particles with the characteristics of a herpesvirus in association with cellular lesions. PCR and DNA sequencing showed that the virus is a variant of ostreid herpesvirus-1 that has already been described in clams and oysters. This is the first description of a herpesvirus infection of a scallop species. The virus was transmitted successfully from an extract of infected scallop larvae to uninfected scallop or oyster (Crassostrea gigas) larvae, demonstrating that it is able to infect both species. Detection of viral DNA in asymptomatic adult scallops by in situ hybridisation indicates that the herpesvirus may have been transmitted from adults to larvae. It is notable that, unlike most herpesviruses, this virus has a wide host range reflected by its ability to infect several species of marine bivalve.
Collapse
Affiliation(s)
- I Arzul
- IFREMER, Laboratoire de Génétique et Pathologie, 17390 La Tremblade, France
| | | | | | | |
Collapse
|
35
|
Izumiya Y, Jang HK, Ono M, Mikami T. A complete genomic DNA sequence of Marek's disease virus type 2, strain HPRS24. Curr Top Microbiol Immunol 2001; 255:191-221. [PMID: 11217423 DOI: 10.1007/978-3-642-56863-3_8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Y Izumiya
- Department of Veterinary Microbiology, Faculty of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
36
|
Siedek EM, Whelan M, Edington N, Hamblin A. Equine herpesvirus type 1 infects dendritic cells in vitro: stimulation of T lymphocyte proliferation and cytotoxicity by infected dendritic cells. Vet Immunol Immunopathol 1999; 67:17-32. [PMID: 9950351 DOI: 10.1016/s0165-2427(98)00203-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Equine herpesvirus type 1 (EHV-1) causes respiratory disease, abortion and myeloencephalopathy in horses. As with other herpesviruses, cell-mediated immunity is considered important for both recovery and protection. Although virus-specific T-cell proliferation and cytotoxicity can be detected following in vivo infection, little is known about the role of antigen presenting cells such as dendritic cells (DCs) in these processes. Peripheral blood DCs were shown to express the viral glycoprotein gB perinuclearly following exposure to EHV-1 in vitro, demonstrating EHV-1 replication within them. Co-culture of infected DCs or their supernatants with a susceptible cell line (RK13) demonstrated that EHV-1 infection was productive. In vitro-infected DCs showed cytopathic effects, including loss of viability and syncytial formation. However, they were superior to other antigen presenting cells in stimulating both peripheral blood T-cell proliferation and cytotoxicity. Although ponies which had been intranasally infected with EHV-1 exhibited T-cell proliferation to live virus presented on DCs, the responses began to decline as early as 15 weeks and cease at 22 weeks post-in vivo infection. Cytotoxic responses were not detected 35 weeks after the first intranasal infection but were seen again 7 weeks following a second infection. These findings show that equine DCs, which are infected with EHV-1 in vitro, can stimulate memory T-cell responses but appear unable to circumvent the short-lived memory response found following this infection in vivo.
Collapse
Affiliation(s)
- E M Siedek
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, London, UK
| | | | | | | |
Collapse
|
37
|
Abstract
Ruminants are hosts for members of both Alpha- and Gamma-herpesvirinae. A wide range of disease syndromes is associated with infections by these agents. The associated diseases reflect the biological nature of the causative viruses. Clinically, the symptoms may be mild and localized or include severe generalized disease, leading eventually to death. Much knowledge has been gained concerning the pathogenesis of some alpha-herpesviruses. Initially, these viruses replicate in epithelial cells at the portal of entry. The symptoms of the acute diseases are often associated with the destruction of those epithelial cells. However, as in the case of bovine herpesvirus 1 (BHV-1), the virus may spread in the infected host by viremia, gaining access to a broader range of tissues and organs, and causing a broader variety of diseases. Furthermore, many herpesviruses are capable of entering neuronal cells. There, they may replicate, which may lead to neuronal diseases, for example, encephalitis. In addition, the herpesviruses may establish latency in neuronal or lymphoid cells. During latency, apparently no viral antigens are synthesized but the genomes of the latent viruses are present in the nuclei of long living cells, such as, e.g., neurones of the ganglia corresponding to the sites of peripheral replication. Upon reactivation, the viruses re-establish the lytic cycle of replication. Shielded from the effectors of the immune system, they migrate back to the peripheral tissues where they are excreted and may be transmitted. Although a strong immune response is provoked during primary viral replication, these mechanisms help the herpesviruses to escape from immune surveillance during latency and to a lesser degree during reactivation. It has been observed that certain herpesviruses may behave differently upon infection of different hosts. Relatively little progress has been made concerning the understanding of the pathogenesis of ruminant herpesviruses but much has been learned about viral molecular biology. Many viral proteins have been identified and characterized and the technology to create recombinant viruses has been established. With these tools in our hands, it is now possible to address the really interesting questions concerning pathogenesis. We postulate that herpesviruses contain at least two sets of genes, a first set involved in gene expression and viral replication, and a second set responsible for functions, which may affect pathogenesis, latency, and virus/host interactions. Using recombinant virus technology, it will be possible in the future to design targeted deletions and gene transfers in ruminant herpesviruses in order to study the viral and host factors involved in pathogenesis on the molecular level.
Collapse
Affiliation(s)
- M Engels
- Institute of Virology, Faculty of Veterinary Medicine, University of Zürich, Switzerland.
| | | |
Collapse
|
38
|
Jacobs L. Glycoprotein E of pseudorabies virus and homologous proteins in other alphaherpesvirinae. Arch Virol 1994; 137:209-28. [PMID: 7944945 DOI: 10.1007/bf01309470] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper reviews biological properties of glycoprotein E (gE) of pseudorabies virus (Aujeszky's disease virus) and homologous proteins in other alphaherpesvirinae. It focuses on the gene encoding gE, conserved regions in the gE protein and its homologs, the complex of gE and gI, biological functions of gE in vitro and in vivo, the role of gE in latency and the role of gE in the induction of humoral and cellular immune responses. Special emphasis is placed on the use of gE as a marker protein in the control and eradication of pseudorabies virus.
Collapse
Affiliation(s)
- L Jacobs
- Central Veterinary Institute (CDI-DLO), Lelystad, The Netherlands
| |
Collapse
|
39
|
Saalmüller A, Mettenleiter TC. Rapid identification and quantitation of cells infected by recombinant herpesvirus (pseudorabies virus) using a fluorescence-based beta-galactosidase assay and flow cytometry. J Virol Methods 1993; 44:99-108. [PMID: 8227283 DOI: 10.1016/0166-0934(93)90012-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We recently described construction and use of a beta-galactosidase expression cassette in isolating recombinant pseudorabies virus (PrV) mutants (Mettenleiter and Rauh, 1990). We report here the identification and exact quantitation of cells infected by these mutants using an assay based on the reaction of intracellular beta-galactosidase expressed during infection by the recombinant viruses with the fluorogenic substrate fluorescein di-beta-D-galactopyranoside (FDG) followed by detection of positive cells in flow cytometry (FACS-Gal assay; Nolan et al., 1988). The detection method is fast, sensitive, and reliable, and yields quantitative results on single cell basis.
Collapse
Affiliation(s)
- A Saalmüller
- Federal Research Centre for Virus Diseases of Animals, Tübingen, Germany
| | | |
Collapse
|
40
|
Gilka F, Spencer JL. Cytopathology caused by the AC‐1 isolate of Marek's disease virus in the feather follicle epidermis. Avian Pathol 1993; 22:283-93. [DOI: 10.1080/03079459308418921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|