1
|
Molinari P, Wadnerkar S, Ferrari KL, Castellano G, Chun N, Cravedi P. Role of intrarenal complement production in kidney transplantation. Clin Kidney J 2025; 18:sfaf135. [PMID: 40421273 PMCID: PMC12104811 DOI: 10.1093/ckj/sfaf135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Indexed: 05/28/2025] Open
Abstract
Systemic complement is a major contributor to the onset and progression of kidney graft injury. However, the kidney itself is an important site of complement production. Renal-derived complement plays a key role in graft dysfunction, unlike in some other solid organ transplants. Complement factors are generated by multiple renal cell types under both physiological and pathological conditions. Renal complement production mediates ischemia/reperfusion injury and acute cellular and humoral rejection but protective effects of the complement cascade have been reported as well. More recently, intracellular complement production and activation (complosome) has also been shown to be an important regulator of key metabolic and cellular functions in renal cells and in immune kidney infiltrates, adding complexity to the field. Herein, we review current knowledge on the role of renal-derived complement in the pathophysiology of kidney graft damage and the current landscape of complement targeted therapeutics in kidney transplantation.
Collapse
Affiliation(s)
- Paolo Molinari
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Shivani Wadnerkar
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katja L Ferrari
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Nicholas Chun
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Cravedi
- Translational Transplant Research Center and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Stepanova G, Manzéger A, Mózes MM, Kökény G. Renal Epithelial Complement C3 Expression Affects Kidney Fibrosis Progression. Int J Mol Sci 2024; 25:12551. [PMID: 39684261 DOI: 10.3390/ijms252312551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Kidney fibrosis is a hallmark of chronic kidney diseases. Evidence shows that genetic variability and complement component 3 (C3) might influence tubulointerstitial fibrosis. Still, the role of renal C3 production in the epithelial-to-mesenchymal transition (EMT) and genetically determined fibrosis progression remains undiscovered. The kidneys of fibrosis-resistant C57Bl/6J (B6) and fibrosis-prone CBA/J (CBA) and BALB/cJ (BalbC) mice (n = 4-8/group) were subjected to unilateral ureteral obstruction (UUO) and analyzed after 1, 3, and 7 days, along with human focal glomerular sclerotic (FSGS) and healthy kidneys. Mouse primary tubular epithelial cells (PTECs) were investigated after 24 h of treatment with transforming growth factor β (TGFβ) or complement anaphylatoxin 3a (C3a) agonist (n = 4/group). UUO resulted in delayed kidney injury in fibrosis-resistant B6 mice, but very early renal C3 messenger RNA (mRNA) induction in fibrosis-prone CBA and BalbC mice, along with collagen I (Col1a1) and collagen III (Col3a1). CBA depicted the fastest fibrosis progression with the highest C3, lipocalin-2 (Lcn2), Tgfb1, and chemokine (C-C motif) ligand 2 (Ccl2) expression. Human FSGS kidneys depicted C3 mRNA over-expression and strong tubular C3 immunostaining. In PTECs, C3a agonist treatment induced pro-fibrotic early growth response protein 1 (EGR1) expression and the EMT, independent of TGFβ signaling. We conclude that de novo renal tubular C3 synthesis is associated with the genetically determined kidney fibrosis progression rate in mice and the pathogenesis of FSGS in humans. This tubular C3 overproduction can, through local pro-fibrotic effects, influence the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Ganna Stepanova
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Manzéger
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Miklós M Mózes
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
3
|
Wojciuk B, Frulenko I, Brodkiewicz A, Kita D, Baluta M, Jędrzejczyk F, Budkowska M, Turkiewicz K, Proia P, Ciechanowicz A, Kostrzewa-Nowak D, Nowak R. The Complement System as a Part of Immunometabolic Post-Exercise Response in Adipose and Muscle Tissue. Int J Mol Sci 2024; 25:11608. [PMID: 39519159 PMCID: PMC11545998 DOI: 10.3390/ijms252111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The precise molecular processes underlying the complement's activation, which follows exposure to physical stress still remain to be fully elucidated. However, some possible mechanisms could play a role in initiating changes in the complement's activity, which are observed post-exposure to physical stress stimuli. These are mainly based on metabolic shifts that occur in the microenvironment of muscle tissue while performing its function with increased intensity, as well as the adipose tissue's role in sterile inflammation and adipokine secretion. This review aims to discuss the current opinions on the possible link between the complement activation and diet, age, sex, and health disorders with a particular emphasis on endocrinopathies and, furthermore, the type of physical activity and overall physical fitness. It has been indicated that regular physical activity incorporated into therapeutic strategies potentially improves the management of particular diseases, such as, e.g., autoimmune conditions. Moreover, it represents a favorable influence on immunoaging processes. A better understanding of the complement system's interaction with physical activity will support established clinical therapies targeting complement components.
Collapse
Affiliation(s)
- Bartosz Wojciuk
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Ignacy Frulenko
- Pomeranian Medical University in Szczecin, 1 Rybacka St., 70-204 Szczecin, Poland;
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Dagmara Kita
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Monica Baluta
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Filip Jędrzejczyk
- Department of Pediatrics, Pediatric Nephrology, Dialysis and Acute Intoxications, Pomeranian Medical University, 4 Mączna St., 70-204 Szczecin, Poland; (A.B.); (D.K.); (M.B.); (F.J.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Karolina Turkiewicz
- Department of Laboratory Diagnostics, University Clinical Hospital No. 2, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland;
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, 107 Hallera St., 80-416 Gdańsk, Poland
| | - Robert Nowak
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland
| |
Collapse
|
4
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Pajenda S, Zawedde F, Kapps S, Wagner L, Schmidt A, Winnicki W, O’Connell D, Gerges D. Urinary C3 levels associated with sepsis and acute kidney injury-A pilot study. PLoS One 2021; 16:e0259777. [PMID: 34767613 PMCID: PMC8589214 DOI: 10.1371/journal.pone.0259777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Acute kidney injury (AKI) is an abrupt deterioration of renal function often caused by severe clinical disease such as sepsis, and patients require intensive care. Acute-phase parameters for systemic inflammation are well established and used in routine clinical diagnosis, but no such parameters are known for AKI and inflammation at the local site of tissue damage, namely the nephron. Therefore, we sought to investigate complement factors C3a/C3 in urine and urinary sediment cells. After the development of a C3a/C3-specific mouse monoclonal antibody (3F7E2), urine excretion from ICU sepsis patients was examined by dot blot and immunoblotting. This C3a/C3 ELISA and a C3a ELISA were used to obtain quantitative data over 24 hours for 6 consecutive days. Urine sediment cells were analyzed for topology of expression. Patients with severe infections (n = 85) showed peak levels of C3a/C3 on the second day of ICU treatment. The majority (n = 59) showed C3a/C3 levels above 20 μg/ml at least once in the first 6 days after admission. C3a was detectable on all 6 days. Peak C3a/C3 levels correlated negatively with peak C-reactive protein (CRP) levels. No relationship was found between peak C3a/C3 with peak leukocyte count, age, or AKI stage. Analysis of urine sediment cells identified C3a/C3-producing epithelial cells with reticular staining patterns and cells with large-granular staining. Opsonized bacteria were detected in patients with urinary tract infections. In critically ill sepsis patients with AKI, urinary C3a/C3 inversely correlated with serum CRP. Whether urinary C3a/C3 has a protective function through autophagy, as previously shown for cisplatin exposure, or is a by-product of sepsis caused by pathogenic stimuli to the kidney must remain open in this study. However, our data suggest that C3a/C3 may function as an inverse acute-phase parameter that originates in the kidney and is detectable in urine.
Collapse
Affiliation(s)
- Sahra Pajenda
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florence Zawedde
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sebastian Kapps
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - David O’Connell
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Daniela Gerges
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
6
|
Lo S, Jiang L, Stacks S, Lin H, Parajuli N. Aberrant activation of the complement system in renal grafts is mediated by cold storage. Am J Physiol Renal Physiol 2021; 320:F1174-F1190. [PMID: 33998295 DOI: 10.1152/ajprenal.00670.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aberrant complement activation leads to tissue damage during kidney transplantation, and it is recognized as an important target for therapeutic intervention. However, it is not clear whether cold storage (CS) triggers the complement pathway in transplanted kidneys. The goal of the present study was to determine the impact of CS on complement activation in renal transplants. Male Lewis and Fischer rats were used, and donor rat kidneys were exposed to 4 h or 18 h of CS followed by transplantation (CS + transplant). To study CS-induced effects, a group with no CS was included in which the kidney was removed and transplanted back to the same rat [autotransplantation (ATx)]. Complement proteins (C3 and C5b-9) were evaluated with Western blot analysis (reducing and nonreducing conditions) and immunostaining. Western blot analysis of renal extracts or serum indicated that the levels of C3 and C5b-9 increased after CS + transplant compared with ATx. Quite strikingly, intracellular C3 was profoundly elevated within renal tubules after CS + transplant but was absent in sham or ATx groups, which showed only extratubular C3. Similarly, C5b-9 immunofluorescence staining of renal sections showed an increase in C5b-9 deposits in kidneys after CS + transplant. Real-time PCR (SYBR green) showed increased expression of CD11b and CD11c, components of complement receptors 3 and 4, respectively, as well as inflammatory markers such as TNF-α. In addition, recombinant TNF-α significantly increased C3 levels in renal cells. Collectively, these results demonstrate that CS mediates aberrant activation of the complement system in renal grafts following transplantation.NEW & NOTEWORTHY This study highlights cold storage-mediated aberrant activation of complement components in renal allografts following transplantation. Specifically, the results demonstrate, for the first time, that cold storage functions in exacerbation of C5b-9, a terminal cytolytic membrane attack complex, in renal grafts following transplantation. In addition, the results indicated that cold storage induces local C3 biogenesis in renal proximal cells/tubules and that TNF-α promotes C3 biogenesis and activation in renal proximal tubular cells.
Collapse
Affiliation(s)
- Sorena Lo
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Li Jiang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Savannah Stacks
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Haixia Lin
- Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Nirmala Parajuli
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
7
|
Loeschenberger B, Niess L, Würzner R, Schwelberger H, Eder IE, Puhr M, Guenther J, Troppmair J, Rudnicki M, Neuwirt H. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells. Eur J Immunol 2017; 48:330-343. [PMID: 29143318 DOI: 10.1002/eji.201747135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/12/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation.
Collapse
Affiliation(s)
| | - Lea Niess
- Department of Internal Medicine IV, Innsbruck Medical University, Innsbruck, Austria
| | - Reinhard Würzner
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Hubert Schwelberger
- Molecular Biology Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Iris E Eder
- Department of Urology, Division of Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Division of Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Julia Guenther
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Rudnicki
- Department of Internal Medicine IV, Innsbruck Medical University, Innsbruck, Austria
| | - Hannes Neuwirt
- Department of Internal Medicine IV, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
8
|
Wang X, Wilkinson R, Kildey K, Potriquet J, Mulvenna J, Lobb RJ, Möller A, Cloonan N, Mukhopadhyay P, Kassianos AJ, Healy H. Unique molecular profile of exosomes derived from primary human proximal tubular epithelial cells under diseased conditions. J Extracell Vesicles 2017; 6:1314073. [PMID: 28473886 PMCID: PMC5405564 DOI: 10.1080/20013078.2017.1314073] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/24/2017] [Indexed: 12/26/2022] Open
Abstract
Human proximal tubular epithelial cells (PTEC) of the kidney are known to respond to and mediate the disease process in a wide range of kidney diseases, yet their exosomal production and exosome molecular cargo remain a mystery. Here we investigate, for the first time, the production and molecular content of exosomes derived from primary human PTEC cultured under normal and diseased conditions representing a spectrum of in vivo disease severity from early inflammation, experienced in multiple initial kidney disease states, through to hypoxia, frequently seen in late stage chronic kidney disease (CKD) due to fibrosis and vascular compromise. We demonstrate a rapid reproducible methodology for the purification of PTEC-derived exosomes, identify increased numbers of exosomes from disease-state cultures and identify differential expression levels of both known and unique miRNA and protein species from exosomes derived from different disease-culture conditions. The validity of our approach is supported by the identification of miRNA, proteins and pathways with known CKD associations, providing a rationale to further evaluate these novel and known pathways as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xiangju Wang
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Ray Wilkinson
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Medical School, University of Queensland, Brisbane, Australia
| | - Katrina Kildey
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Richard J Lobb
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andreas Möller
- Medical School, University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Medical School, University of Queensland, Brisbane, Australia
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Australia.,Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
9
|
Zhao KW, Murray EJB, Murray SS. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface. J Cell Biochem 2016; 118:924-933. [DOI: 10.1002/jcb.25786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Ke-Wei Zhao
- Geriatric Research; Education and Clinical Center (11E); Veterans Affairs Greater Los Angeles Healthcare System; Sepulveda 91343 California
| | - Elsa J. Brochmann Murray
- Geriatric Research; Education and Clinical Center (11E); Veterans Affairs Greater Los Angeles Healthcare System; Sepulveda 91343 California
- Department of Medicine; University of California; Los Angeles 90095 California
| | - Samuel S. Murray
- Geriatric Research; Education and Clinical Center (11E); Veterans Affairs Greater Los Angeles Healthcare System; Sepulveda 91343 California
- Department of Medicine; University of California; Los Angeles 90095 California
- Interdepartmental Program in Biomedical Engineering; University of California; Los Angeles 90095 California
| |
Collapse
|
10
|
Yamanaka K, Kakuta Y, Miyagawa S, Nakazawa S, Kato T, Abe T, Imamura R, Okumi M, Maeda A, Okuyama H, Mizuno M, Nonomura N. Depression of Complement Regulatory Factors in Rat and Human Renal Grafts Is Associated with the Progress of Acute T-Cell Mediated Rejection. PLoS One 2016; 11:e0148881. [PMID: 26928779 PMCID: PMC4771804 DOI: 10.1371/journal.pone.0148881] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/25/2016] [Indexed: 01/02/2023] Open
Abstract
Background The association of complement with the progression of acute T cell mediated rejection (ATCMR) is not well understood. We investigated the production of complement components and the expression of complement regulatory proteins (Cregs) in acute T-cell mediated rejection using rat and human renal allografts. Methods We prepared rat allograft and syngeneic graft models of renal transplantation. The expression of Complement components and Cregs was assessed in the rat grafts using quantitative real-time PCR (qRT-PCR) and immunofluorescent staining. We also administered anti-Crry and anti-CD59 antibodies to the rat allograft model. Further, we assessed the relationship between the expression of membrane cofactor protein (MCP) by immunohistochemical staining in human renal grafts and their clinical course. Results qRT-PCR results showed that the expression of Cregs, CD59 and rodent-specific complement regulator complement receptor 1-related gene/protein-y (Crry), was diminished in the rat allograft model especially on day 5 after transplantation in comparison with the syngeneic model. In contrast, the expression of complement components and receptors: C3, C3a receptor, C5a receptor, Factor B, C9, C1q, was increased, but not the expression of C4 and C5, indicating a possible activation of the alternative pathway. When anti-Crry and anti-CD59 mAbs were administered to the allograft, the survival period for each group was shortened. In the human ATCMR cases, the group with higher MCP expression in the grafts showed improved serum creatinine levels after the ATCMR treatment as well as a better 5-year graft survival rate. Conclusions We conclude that the expression of Cregs in allografts is connected with ATCMR. Our results suggest that controlling complement activation in renal grafts can be a new strategy for the treatment of ATCMR.
Collapse
Affiliation(s)
- Kazuaki Yamanaka
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoichi Kakuta
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (YK); (SM)
| | - Shuji Miyagawa
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (YK); (SM)
| | - Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toyofumi Abe
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Akira Maeda
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroomi Okuyama
- Division of Organ Transplantation, Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
11
|
Fearn A, Sheerin NS. Complement activation in progressive renal disease. World J Nephrol 2015; 4:31-40. [PMID: 25664245 PMCID: PMC4317626 DOI: 10.5527/wjn.v4.i1.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/14/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is common and the cause of significant morbidity and mortality. The replacement of functioning nephrons by fibrosis is characteristic of progressive disease. The pathways that lead to fibrosis are not fully understood, although chronic non-resolving inflammation in the kidney is likely to drive the fibrotic response that occurs. In patients with progressive CKD there is histological evidence of inflammation in the interstitium and strategies that reduce inflammation reduce renal injury in pre-clinical models of CKD. The complement system is an integral part of the innate immune system but also augments adaptive immune responses. Complement activation is known to occur in many diverse renal diseases, including glomerulonephritis, thrombotic microangiopathies and transplant rejection. In this review we discuss current evidence that complement activation contributes to progression of CKD, how complement could cause renal inflammation and whether complement inhibition would slow progression of renal disease.
Collapse
|
12
|
Abstract
Many types of kidney injury induce inflammation as a protective response. However, unresolved inflammation promotes progressive renal fibrosis, which can culminate in end-stage renal disease. Kidney inflammation involves cells of the immune system as well as activation of intrinsic renal cells, with the consequent production and release of profibrotic cytokines and growth factors that drive the fibrotic process. In glomerular diseases, the development of glomerular inflammation precedes interstitial fibrosis; although the mechanisms linking these events are poorly understood, an important role for tubular epithelial cells in mediating this link is gaining support. Data have implicated macrophages in promoting both glomerular and interstitial fibrosis, whereas limited evidence suggests that CD4(+) T cells and mast cells are involved in interstitial fibrosis. However, macrophages can also promote renal repair when the cause of renal injury can be resolved, highlighting their plasticity. Understanding the mechanisms by which inflammation drives renal fibrosis is necessary to facilitate the development of therapeutics to halt the progression of chronic kidney disease.
Collapse
|
13
|
Abstract
The sensitive and broadly reactive character of the innate immune system makes it liable to activation by stress factors other than infection. Thermal and metabolic stresses experienced during the transplantation procedure are sufficient to trigger the innate immune response and also augment adaptive immunity in the presence of foreign antigen on the donor organ. The resulting inflammatory and immune reactions combine to form a potent effector response that can lead to graft rejection. Here we examine the evidence that the complement and toll-like receptor systems are central to these pathways of injury and present a formidable barrier to transplantation. We review extensive information about the effector mechanisms that are mediated by these pathways, and bring together what is known about the damage-associated molecular patterns that initiate this sequence of events. Finally, we refer to two ongoing therapeutic trials that are evaluating the validity of these concepts in man.
Collapse
Affiliation(s)
- Conrad A Farrar
- MRC Centre for Transplantation, Division of Transplantation Immunology and Mucosal Biology, King's College London School of Medicine at Guy's, King's College and St. Thomas' Hospitals, London SE1 9RT, United Kingdom
| | | | | |
Collapse
|
14
|
Kopec AK, Thompson CM, Kim S, Forgacs AL, Zacharewski TR. Comparative toxicogenomic analysis of oral Cr(VI) exposure effects in rat and mouse small intestinal epithelia. Toxicol Appl Pharmacol 2012; 262:124-38. [PMID: 22561333 DOI: 10.1016/j.taap.2012.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/29/2012] [Accepted: 04/20/2012] [Indexed: 11/18/2022]
Abstract
Continuous exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal tumors in mice but not rats. Concentration-dependent gene expression effects were evaluated in female F344 rat duodenal and jejunal epithelia following 7 and 90 days of exposure to 0.3-520 mg/L (as sodium dichromate dihydrate, SDD) in drinking water. Whole-genome microarrays identified 3269 and 1815 duodenal, and 4557 and 1534 jejunal differentially expressed genes at 8 and 91 days, respectively, with significant overlaps between the intestinal segments. Functional annotation identified gene expression changes associated with oxidative stress, cell cycle, cell death, and immune response that were consistent with reported changes in redox status and histopathology. Comparative analysis with B6C3F1 mouse data from a similarly designed study identified 2790 differentially expressed rat orthologs in the duodenum compared to 5013 mouse orthologs at day 8, and only 1504 rat and 3484 mouse orthologs at day 91. Automated dose-response modeling resulted in similar median EC₅₀s in the rodent duodenal and jejunal mucosae. Comparative examination of differentially expressed genes also identified divergently regulated orthologs. Comparable numbers of differentially expressed genes were observed at equivalent Cr concentrations (μg Cr/g duodenum). However, mice accumulated higher Cr levels than rats at ≥ 170 mg/L SDD, resulting in a ~2-fold increase in the number of differentially expressed genes. These qualitative and quantitative differences in differential gene expression, which correlate with differences in tissue dose, likely contribute to the disparate intestinal tumor outcomes.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Biochemistry & Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
15
|
Loirat C, Saland J, Bitzan M. Management of hemolytic uremic syndrome. Presse Med 2012; 41:e115-35. [PMID: 22284541 DOI: 10.1016/j.lpm.2011.11.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 12/19/2022] Open
Abstract
2011 has been a special year for hemolytic uremic syndrome (HUS): on the one hand, the dramatic epidemic of Shiga toxin producing E. coli -associated HUS in Germany brought the disease to the attention of the general population, on the other hand it has been the year when eculizumab, the first complement blocker available for clinical practice, was demonstrated as the potential new standard of care for atypical HUS. Here we review the therapeutic options presently available for the various forms of hemolytic uremic syndrome and show how recent knowledge has changed the therapeutic approach and prognosis of atypical HUS.
Collapse
Affiliation(s)
- Chantal Loirat
- Assistance publique-Hôpitaux de Paris, Hôpital Robert-Debré, Nephrology Department, 75019 Paris, France.
| | | | | |
Collapse
|
16
|
Damman J, Nijboer WN, Schuurs TA, Leuvenink HG, Morariu AM, Tullius SG, van Goor H, Ploeg RJ, Seelen MA. Local renal complement C3 induction by donor brain death is associated with reduced renal allograft function after transplantation. Nephrol Dial Transplant 2010; 26:2345-54. [PMID: 21127132 DOI: 10.1093/ndt/gfq717] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kidneys derived from brain-dead donors have inferior outcomes after transplantation compared to kidneys from living donors. Strikingly, early and profound serum levels of IL-6 in brain-dead donors are observed. IL-6 is the main regulator of the acute phase response (APR). The aim of this translational study was to investigate the expression of renal acute phase proteins (APPs) following brain death (BD) and to assess the association with renal allograft outcome after transplantation. METHODS BD was induced in rats by inflating a subdurally placed balloon catheter. Kidney biopsies were obtained from human living and brain-dead donors at donation, after cold preservation and reperfusion. In vitro, renal proximal tubular epithelial cells (HK-2 cells) were stimulated with IL-6. RESULTS Both in human and rat brain-dead donors, C3 and FBG expression was enhanced at donation compared to living donors and sham-operated animals. In human donors, no additional expression was found after cold ischaemia or reperfusion. C3 expression after reperfusion was independently associated with decreased short-term function after transplantation in grafts from brain-dead donors. In cultured HK-2 cells, C3 production was induced in the presence of IL-6. CONCLUSIONS In conclusion, BD induces renal C3 and FBG expression. Moreover, C3 expression is associated with a worse allograft function early after transplantation. Therefore, targeting renal APPs in brain-dead donors, especially complement C3, may improve transplant outcome.
Collapse
Affiliation(s)
- Jeffrey Damman
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang J, Ohno-Matsui K, Yoshida T, Shimada N, Ichinose S, Sato T, Mochizuki M, Morita I. Amyloid-β up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: Another mechanism of complement activation in age-related macular degeneration. J Cell Physiol 2009; 220:119-28. [DOI: 10.1002/jcp.21742] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Spirig R, van Kooten C, Obregon C, Nicod L, Daha M, Rieben R. The complement inhibitor low molecular weight dextran sulfate prevents TLR4-induced phenotypic and functional maturation of human dendritic cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:878-90. [PMID: 18606639 DOI: 10.4049/jimmunol.181.2.878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Rolf Spirig
- Departmentof Clinical Research, Laboratory of Cardiovascular Surgery, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Oliva KT, Ayhan M, Barker G, Dellios NL, Quinn MA, Rice GE. Proteomic Profiling of Ovarian Cancer Plasma using Immunoaffinity Depleted Plasma and Two-Dimensional PAGE. Clin Proteomics 2007. [DOI: 10.1007/s12014-007-9001-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Objective
The aim of this study was to evaluate a multiple immunoaffinity protein depletion (multiple affinity removal system, MARS) pre-treatment strategy with subsequent two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and peptide mass finger printing analysis for the detection of ovarian cancer-associated plasma proteins.
Materials and Methods
Following immunoaffinity depletion, total plasma protein content was reduced by 84.2 ± 1.8% (mean ± SE, n = 32). The number of proteins detected in the control and ovarian cancer groups was 349 and 357, respectively. This represented an increase in spot detection of almost twofold when compared to 2D PAGE displays of untreated plasma (174 spots). Of the proteins displayed, post-depletion, 300 (control) and 302 (ovarian cancer, OC) were common within each group. PDQuest analysis indicated that 109 protein spots were statistically different between the two groups and, of these, 59 exhibited greater than or equal to twofold difference in spot density (Student’s t test, p = 0.01). Thirty-nine of these proteins were successfully identified with reliable confidence.
Results and Discussion
The data obtained in this study demonstrates that immunodepletion of plasma before 2D PAGE profiling have generated identifiable plasma proteins that are differentially expressed in the high-grade ovarian cancer sample set compared to controls. This approach, therefore, may be useful in identifying candidate biomarkers for inclusion in multi-marker tests for ovarian cancer that may exhibit greater sensitivity and specificity than those currently available. It was evident, however, from the predominant identification of host response proteins that immunodepletion did not generate sufficient levels of enrichment of lower abundance tumor-specific proteins to facilitate detection.
Collapse
|
20
|
Li K, Sacks SH, Zhou W. The relative importance of local and systemic complement production in ischaemia, transplantation and other pathologies. Mol Immunol 2007; 44:3866-74. [PMID: 17768105 DOI: 10.1016/j.molimm.2007.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Indexed: 10/22/2022]
Abstract
Besides a critical role in innate host defence, complement activation contributes to inflammatory and immunological responses in a number of pathological conditions. Many tissues outside the liver (the primary source of complement) synthesise a variety of complement proteins, either constitutively or response to noxious stimuli. The significance of this local synthesis of complement has become clearer as a result of functional studies. It revealed that local production not only contributes to the systemic pool of complement but also influences local tissue injury and provides a link with the antigen-specific immune response. Extravascular production of complement seems particularly important at locations with poor access to circulating components and at sites of tissue stress responses, notably portals of entry of invasive microbes, such as interstitial spaces and renal tubular epithelial surfaces. Understanding the relative importance of local and systemic complement production at such locations could help to explain the differential involvement of complement in organ-specific pathology and inform the design of complement-based therapy. Here, we will describe the lessons we have learned over the last decade about the local synthesis of complement and its association with inflammatory and immunological diseases, placing emphasis on the role of local synthesis of complement in organ transplantation.
Collapse
Affiliation(s)
- Ke Li
- MRC Centre for Transplantation and Department of Nephrology and Transplantation, King's College London School of Medicine at Guy's Hospital, London, UK
| | | | | |
Collapse
|
21
|
Sinuani I, Averbukh Z, Gitelman I, Rapoport MJ, Sandbank J, Albeck M, Sredni B, Weissgarten J. Mesangial cells initiate compensatory renal tubular hypertrophy via IL-10-induced TGF-β secretion: effect of the immunomodulator AS101 on this process. Am J Physiol Renal Physiol 2006; 291:F384-94. [PMID: 16571592 DOI: 10.1152/ajprenal.00418.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The present study investigated the role of IL-10 produced by the mesangial cells in postnephrectomy compensatory renal growth and the effect of the immunomodulator AS101 on this process. One hundred forty unilateral nephrectomized and sham-operated male Sprague-Dawley rats were treated by AS101 or PBS before and after surgery. The results show that secretion of IL-10 and TGF-β by mesangial cells isolated from the remaining kidneys was increased significantly, compared with those of control and sham animals. Moreover, TGF-β secretion by mesangial cells was increased after the addition of exogenous recombinant IL-10 and inhibited in the presence of neutralizing anti-IL-10 antibodies. In vivo, compensatory growth of the remaining kidneys was associated with significant increase in IL-10 content in renal tissues and plasma. Immunohistochemical studies show that IL-10 was produced by mesangial cells. Elevated IL-10 levels were followed by the rise in TGF-β content in plasma and renal tissue. AS101 treatment decreased IL-10 and TGF-β expression in plasma and kidney tissues and results in 25% reduction in the fresh and fractional kidney weight and decreased hypertrophy of tubular cells (protein/DNA ratio, morphometric analysis). Taken together, these data demonstrate that TGF-β production by mesangial cells is IL-10 dependent. Mesangial cells are the major source of IL-10 in kidneys. AS101, by inhibiting the activity of IL-10, decreases TGF-β production by mesangial cells, thus limiting compensatory tubular cell hypertrophy.
Collapse
Affiliation(s)
- Inna Sinuani
- Nephrology Division, Assaf Harofeh Medical Center, 70300 Zerifin, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Farrar CA, Zhou W, Lin T, Sacks SH. Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J 2006; 20:217-26. [PMID: 16449793 DOI: 10.1096/fj.05-4747com] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The third complement component (C3) is an acute phase protein that plays a central role in reperfusion injury in several organ models. To investigate the contribution of local synthesis of C3 and distinguish it from that of circulating complement mainly produced by hepatic synthesis, we employed a mouse renal isograft model. Our model demonstrated a close relationship between the extent of intrarenal expression of C3 and cold-ischemia induced injury. Ischemic C3-positive donor kidneys transplanted into C3-positive or C3-negative recipients developed widespread tissue damage and severe acute renal failure. In contrast, ischemic C3-negative isografts exhibited only mild degrees of functional and structural disturbance, even when transplanted into normal C3-positive recipients. Thus local synthesis of C3, mostly identified in the tubular epithelium, was essential for complement-mediated reperfusion damage, whereas circulating C3 had a negligible effect. Our results suggest a two-compartment model for the pathogenic function of C3, in which the extravascular compartment is the domain of local synthesis of C3, and where the role of circulating C3 is redundant. Our data cast new light on the mechanism of complement-mediated tissue injury in nonimmunological disorders, and challenges the longstanding dogma that circulating components are the main complement effectors of extravascular tissue damage.
Collapse
Affiliation(s)
- Conrad A Farrar
- King's College London School of Medicine at Guy's, King's College and St. Thomas' Hospitals, Department of Nephrology & Transplantation, London
| | | | | | | |
Collapse
|
23
|
Sacks SH, Zhou W. Allograft rejection: effect of local synthesis of complement. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2005; 27:332-44. [PMID: 16189650 DOI: 10.1007/s00281-005-0005-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 03/18/2005] [Indexed: 12/12/2022]
Abstract
The complement system is known for its ability to participate in non-specific inflammation and membrane injury as well as contributing to antigen-specific immune stimulation. In renal transplantation, the complement cascade behaves true to form in that both non-immune- and immune-mediated destruction of the renal tubules are complement dependent. What is remarkable, however, is the extent of involvement of local synthesis of complement in both of these injuries, suggesting that the extravascular tissue compartment is the domain of local synthesis, whereas the effect of circulating complement is much less. This creates a new paradigm for studying the influence of local synthesis of complement in other organ-based diseases and underlines the need for tissue-targeting strategies in successful therapeutic development.
Collapse
Affiliation(s)
- Steven H Sacks
- Department of Nephrology and Transplantation, King's College London School of Medicine at Guy's, St Thomas Hospitals, 5th Floor Thomas Guy House, Guy's Hospital, London SE1 9RT, UK.
| | | |
Collapse
|
24
|
Abstract
Macrophages and progressive tubulointerstitial disease. In chronic renal disease, tubulointerstitial inflammation and injury is associated with infiltrating macrophages. As a consequence of primary injury, proteinuria, chronic hypoxia, and glomerular-derived cytokines may all differentially modulate the expression of factors that promote macrophage recruitment. In addition to adhesion molecules and chemokines, products of complement system and renin-angiotensin system activation may direct this process. Once present at interstitial sites, macrophages interact with resident cells and extracellular matrix to generate a proinflammatory microenvironment that amplifies tissues injury and promotes scarring. There is now increasing evidence for the efficacy of interventions directed against factors that recruit, activate, or are produced by macrophages. A detailed understanding of the biology of this area may lead to the further development of therapies that will improve the outcome of renal disease.
Collapse
Affiliation(s)
- Kevin Sean Eardley
- Department of Nephrology, University Hospital Birmingham NHS Trust, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | | |
Collapse
|
25
|
Castellano G, Cappiello V, Fiore N, Pontrelli P, Gesualdo L, Schena FP, Montinaro V. CD40 ligand increases complement C3 secretion by proximal tubular epithelial cells. J Am Soc Nephrol 2005; 16:2003-11. [PMID: 15872081 DOI: 10.1681/asn.2002120972] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Interstitial leukocyte infiltration is a major finding in tubulointerstitial damage (TID). Infiltrating lymphocytes interact with proximal tubular epithelial cells (PTEC) by means of secreted soluble factors and/or cell contact mechanisms. CD40 expressed onto PTEC can be engaged by CD40L present on T cells. PTEC are able to locally secrete complement C3, which may most likely promote TID. The aim of the study was to investigate the putative action of CD40 ligation on enhancement of C3 secretion by PTEC. Primary human PTEC and stabilized HK-2 cells were used in culture experiments. Cells were stimulated by soluble factors IL-1beta, IFN-gamma, and/or CD40L-expressing murine fibroblast L cells. Analysis of C3 gene expression was evaluated by reverse-transcription PCR and Northern blot. Secreted C3 was assayed by ELISA and a functional hemolytic test on supernatants. Intracellular events were explored by the NF-kappaB-specific inhibitor caffeic acid phenetyl ester (CAPE). Among soluble factors, IL-1beta and IFN-gamma increased C3 gene expression and secretion (two-fold to three-fold versus basal) on both HK-2 and PTEC. CD40 engagement by CD40L upregulated HK-2 C3 secretion by four-fold. IL-1beta did not further increase CD40-induced C3 secretion, whereas IFN-gamma associated with CD40L was the strongest stimulus (30-fold increase). Inhibition of NF-kappaB offset CD40L-induced C3 secretion by 70%. CD40 ligation is able to enhance C3 secretion by PTEC. This cell contact mechanism is in synergism with a T cell-derived soluble factor (IFN-gamma). C3 secretion induced by CD40L may represent a mechanism of amplification of TID associated with lymphocyte infiltration.
Collapse
Affiliation(s)
- Giuseppe Castellano
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Azienda Ospedaliera Policlinico, Piazza G. Cesare 11, 70124 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Chowdhury P, Sacks SH, Sheerin NS. Minireview: functions of the renal tract epithelium in coordinating the innate immune response to infection. Kidney Int 2005; 66:1334-44. [PMID: 15458426 DOI: 10.1111/j.1523-1755.2004.00896.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Infection of the urinary tract remains one of the most common infections affecting mankind. Renal epithelial cells, being one of the first cells to come into contact with invading organisms, are in a key position to coordinate host defense. The epithelium not only provides a physical barrier to infection, but can also augment the immune response via the production of a number of inflammatory mediators and antimicrobial proteins. Recent work has demonstrated that cells of the innate immune system, including epithelial cells, express toll-like receptors (TLRs), with the capacity to recognize bacterial components. Although the exact mechanisms remain unclear, engagement of TLRs can lead to epithelial cell activation and the production of inflammatory mediators. These include complement proteins, other bactericidal peptides, and chemotactic cytokines. The resulting inflammatory infiltrate serves to aid bacterial clearance, but can also lead to renal damage. In this review, we describe how renal epithelial cells contribute to the innate immune response to ascending urinary tract infection. We specifically relate previous work to more recent developments in this field. An improved understanding of the mechanisms involved may highlight potential therapeutic avenues to aid bacterial clearance and prevent the renal scarring associated with infection.
Collapse
Affiliation(s)
- Paramit Chowdhury
- Department of Nephrology and Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | | | | |
Collapse
|
27
|
Nauta AJ, de Haij S, Bottazzi B, Mantovani A, Borrias MC, Aten J, Rastaldi MP, Daha MR, van Kooten C, Roos A. Human renal epithelial cells produce the long pentraxin PTX3. Kidney Int 2005; 67:543-53. [PMID: 15673302 DOI: 10.1111/j.1523-1755.2005.67111.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Pentraxin 3 (PTX3) is a prototypic long pentraxin with structural similarities in the C-terminal domain to the classical short pentraxins C-reactive protein (CRP) and serum amyloid P component. PTX3 is suggested to play an important role in the innate resistance against pathogens, regulation of inflammatory reactions, and clearance of apoptotic cells. Unlike the classic pentraxins, PTX3 is mainly expressed extrahepatically. The present study was designed to investigate the expression of PTX3 by human proximal renal tubular epithelial cells (PTECs). METHODS PTECs were cultured in the presence or absence of inflammatory cytokines. PTX3 mRNA expression was measured by reverse transcription-polymerase chain reaction (RT-PCR) in human kidney and PTECs. PTX3 protein levels in PTEC cultures were quantified by enzyme-linked immunosorbent assay (ELISA). RESULTS PTX3 mRNA was shown to be constitutively expressed in human kidney. Constitutive expression and production of PTX3 was shown in primary mesangial cells, in primary PTECs, and in renal fibroblasts. Further analysis showed that interleukin (IL)-1 and tumor necrosis factor-alpha (TNF-alpha) stimulation strongly enhanced the expression and production of PTX3 in PTECs in a dose- and time-dependent manner. In addition, activation of PTECs with IL-17 and CD40L, respectively, but not with IL-6 or IL-4, resulted in strongly increased production of PTX3, whereas granulocyte macrophage-colony-stimulating factor (GM-CSF) inhibited IL-1-induced PTX3 production. PTX3 produced by PTEC is functionally active in binding C1q. CONCLUSION These results indicate that PTX3 is expressed and released by PTECs and that in proinflammatory conditions PTX3 production is up-regulated. Local expression of PTX3 may play a role in the innate immune response and inflammatory reactions in the kidney.
Collapse
Affiliation(s)
- Alma J Nauta
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Verschoor A, Brockman MA, Gadjeva M, Knipe DM, Carroll MC. Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. THE JOURNAL OF IMMUNOLOGY 2004; 171:5363-71. [PMID: 14607939 DOI: 10.4049/jimmunol.171.10.5363] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complement system, in addition to its role in innate immunity, is an important regulator of the B cell response. Complement exists predominantly in the circulation and although the primary source is hepatic, multiple additional cellular sources have been described that can contribute substantially to the complement pool. To date, however, complement produced by these secondary sources has been deemed redundant to that secreted by the liver. In contrast, using a bone marrow chimeric model, we observed that C3 synthesis by myeloid cells, a relatively minor source of complement, provided a critical function during the induction of humoral responses to peripheral HSV infection. Anti-viral Ab, as generated in an efficient humoral response, has been associated with protection from severe consequences of HSV dissemination. This report offers insight into the generation of the adaptive immune response in the periphery and describes a unique role for a nonhepatic complement source.
Collapse
Affiliation(s)
- Admar Verschoor
- Center for Blood Research, Boston, MA 02115. Pathology, Pediatrics, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Verschoor A, Brockman MA, Knipe DM, Carroll MC. Cutting edge: myeloid complement C3 enhances the humoral response to peripheral viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2446-51. [PMID: 11509581 DOI: 10.4049/jimmunol.167.5.2446] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HSV-1 is the causative agent of cutaneous lesions, commonly referred to as cold sores. Primary exposure to the virus ordinarily occurs through the periphery, in particular through abraded skin or mucosal membranes. Under certain circumstances (e.g., in neonatals or AIDS patients), the infection becomes disseminated, often with severe consequences. Spread of HSV-1 is limited by virus-specific Ab. The development of an efficient humoral response to the virus is dependent on innate immunity component complement C3. The liver is the major source of C3, but there are also extrahepatic origins of C3 such as lymphoid macrophages. In the present study, the significance of C3 synthesis by bone marrow-derived cells was assessed by the transfer of wild-type bone marrow into irradiated C3-deficient mice. Using these chimeric mice, extrahepatic C3 was determined sufficient to initiate specific Ab and memory responses to a peripheral HSV-1 infection.
Collapse
Affiliation(s)
- A Verschoor
- Department of Pathology, Harvard Medical School. The Center for Blood Research, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
Abstract
During the past decade, research has shown that the kidney has the capacity to synthesize most of the activation pathway components of the complement cascade. As well as implying physiological roles in local clearance of immune complexes and defense against invasive organisms, an increasing amount of evidence indicates that the intrarenal synthesis of complement makes an important contribution in the pathogenesis of renal injury. Here we review this evidence and present a case for more definitive investigation of these functions.
Collapse
Affiliation(s)
- W Zhou
- Department of Nephrology and Transplantation, Guy's Hospital, London, England, United Kingdom
| | | | | |
Collapse
|
31
|
Schiller B, Cunningham PN, Alexander JJ, Bao L, Holers VM, Quigg RJ. Expression of a soluble complement inhibitor protects transgenic mice from antibody-induced acute renal failure. J Am Soc Nephrol 2001; 12:71-79. [PMID: 11134252 DOI: 10.1681/asn.v12171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Crry is a potent complement regulator in rodents that inhibits C3 convertases. In rats, intrarenal arterial injection of anti-glomerular endothelial cell (GEN) antibodies leads to complement-dependent microvascular injury and acute renal failure. In this study, a mouse variant of this model and the effects of complement inhibition were examined. Transgenic mice that overexpressed soluble Crry systemically and in their kidneys were studied. Anti-GEN IgG was injected intravenously into eight Crry transgenic mice and seven transgene-negative littermates (which were used as control animals). Thirty h after injection, blood urea nitrogen (BUN) levels were 30.3 +/- 4.4 and 114.8 +/- 23.5 mg/dl for transgene-positive and -negative animals, respectively (P = 0.012). Four of five transgene-negative animals with BUN levels of > 100 mg/dl were anuric; the remaining animal exhibited minimal albuminuria and no detectable urinary C3. In animals with renal failure, glomerular capillary collapse and tubular necrosis were observed. There was significant tubular staining for C3 in transgene-negative animals, with cellular and basal distributions, both of which were statistically greater than those in transgene-positive animals. Tubular cell C3 staining was strongly correlated with BUN values (r = 0.83, P < 0.001), as was C9 staining (r = 0.56, P = 0.037), suggesting that complement activation to the C5b-9 membrane attack complex had a casual role in renal failure. Thus, systemic injection of anti-GEN antibodies into mice leads to acute renal failure, with glomerular and tubular injury. Animals that overexpress soluble Crry in renal tubules and elsewhere are protected from the acute renal failure that occurs in this model, which ultimately seems to develop because of complement activation focused on tubules.
Collapse
Affiliation(s)
- Brigitte Schiller
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, Illinois
| | - Patrick N Cunningham
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, Illinois
| | - Jessy J Alexander
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, Illinois
| | - Lihua Bao
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, Illinois
| | - V Michael Holers
- Department of Medicine, Division of Rheumatology, University of Colorado Health Sciences Center, Denver, Colorado
| | - Richard J Quigg
- Department of Medicine, Section of Nephrology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Daha MR, van Kooten C. Is there a role for locally produced complement in renal disease? Nephrol Dial Transplant 2000; 15:1506-9. [PMID: 11007812 DOI: 10.1093/ndt/15.10.1506] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Varsano S, Kaminsky M, Kaiser M, Rashkovsky L. Generation of complement C3 and expression of cell membrane complement inhibitory proteins by human bronchial epithelium cell line. Thorax 2000; 55:364-9. [PMID: 10770816 PMCID: PMC1745745 DOI: 10.1136/thorax.55.5.364] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The interrelationship between human airway epithelium and complement proteins may affect airway defence, airway function, and airway epithelial integrity. A study was undertaken to determine (1) whether unstimulated human bronchial epithelium generates complement proteins and expresses cell membrane complement inhibitory proteins (CIP) and (2) whether stimulation by proinflammatory cytokines affects the generation of complement and expression of cell membrane CIP by these cells. METHODS Human bronchial epithelium cell line BEAS-2B was cultured in a serum-free medium. Cells were incubated with and without proinflammatory cytokines to assess unstimulated and stimulated generation of complement C3, C1q and C5 (by ELISA), and to examine the expression of cell membrane CIP decay accelerating factor (DAF; CD55), membrane cofactor protein (MCP; CD46), and CD59 (protectin) by flow cytometry analysis. RESULTS Unstimulated human bronchial epithelial cell line BEAS-2B in serum-free medium generates complement C3 (mean 32 ng/10(6) cells/72 h, range 18-52) but not C1q and C5, and expresses cell membrane DAF, MCP, and CD59. Interleukin (IL)-1alpha (100 U/ml/72 h) and tumour necrosis factor (TNF-alpha; 1000 U/ml/72 h) increased generation of C3 up to a mean of 78% and 138%, respectively, above C3 generation by unstimulated cells. DAF was the only cell membrane CIP affected by cytokine stimulation. Interferon (IFN)-gamma (10 U/ml/72 h) and TNF-alpha (1000 U/ml/72 h) increased DAF expression up to a mean of 116% and 45%, respectively, above that in unstimulated cells. MCP and CD59 expression was not consistently affected by IL-1alpha, TNF-alpha, or IFN-gamma. CONCLUSIONS Local generation of complement C3 and expression of cell membrane CIP by human bronchial epithelium and its modulation by proinflammatory cytokines might be an additional regulatory mechanism of local airway defence and may affect airway function and epithelial integrity in health and disease.
Collapse
Affiliation(s)
- S Varsano
- Department of Pulmonary Medicine and Laboratory of Respiratory Cell Biology, Sapir Medical Center, Meir General Hospital Kfar-Sava 44281 and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | |
Collapse
|
34
|
Montinaro V, Lopez A, Monno R, Cappiello V, Manno C, Gesualdo L, Schena FP. Renal C3 synthesis in idiopathic membranous nephropathy: correlation to urinary C5b-9 excretion. Kidney Int 2000; 57:137-46. [PMID: 10620195 DOI: 10.1046/j.1523-1755.2000.00812.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED Renal C3 synthesis in idiopathic membranous nephropathy: Correlation to urinary C5b-9 excretion. BACKGROUND Complement activation plays a central pathogenetic role in idiopathic membranous nephropathy (IMN). Urinary excretion of C5b-9 correlates to the immunologic activity of this disease. Recently, renal cortical C3 gene expression has been described in several nephropathies. METHODS The aim of this study was to investigate the renal C3 gene expression by in situ hybridization in IMN and to correlate it with histopathologic, pathophysiologic, and immunologic (urinary C5b-9) indices of disease activity. RESULTS C3 was expressed in 77% of 22 renal biopsies of IMN patients, mainly at the cortical tubular and glomerular parietal epithelial cell levels. C3 protein synthesis by tubular cells was demonstrated by immunofluorescence. The intensity of C3 gene expression by both glomerular and tubulointerstitial compartments correlated with the glomerular stage of disease (P = 0. 0023 and P = 0.0214, respectively). Although no correlation was found with proteinuria, serum creatinine at renal biopsy time was strongly associated with renal C3 expression. IMN patients showed a trend of increased urinary C5b-9 levels, which correlated to C3 at the tubulointerstitial level (P = 0.0143). CONCLUSION Renal C3 production, mainly at the tubular level, may be induced by urinary excretion of C5b-9 in IMN and may have a pathogenetic role in the tubulointerstitial damage that can be associated with this disease.
Collapse
Affiliation(s)
- V Montinaro
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Peake PW, O'Grady S, Pussell BA, Charlesworth JA. C3a is made by proximal tubular HK-2 cells and activates them via the C3a receptor. Kidney Int 1999; 56:1729-36. [PMID: 10571781 DOI: 10.1046/j.1523-1755.1999.00722.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Some individual components of complement are synthesized by the kidney. However, it is not known whether these form functional pathways that are able to mediate more fundamental cellular events. We examined the ability of HK-2 tubular cells to produce an intact alternative pathway of complement and to respond to the C3a fragment thus produced through the C3a receptor. METHODS The production of mRNA for alternative pathway components was detected by reverse transcription-polymerase chain reaction, whereas protein synthesis was investigated by probing Western blots of concentrated culture supernatants with polyclonal antisera. Levels of C3a and inositol phosphate produced by HK-2 cells were determined by radioimmunoassay, whereas those of transforming growth factor-beta1 (TGF-beta1) were measured by ELISA. Intracellular tyrosine phosphorylation in response to C3a was evaluated by Western blotting and chemiluminescence. RESULTS HK-2 cells produce the complement polypeptides C3a, C3, and factors B and H. They also contain mRNA for all components of the alternative pathway and the C3a receptor. mRNA levels were up-regulated by interleukin-1alpha, interleukin-1beta, and tumor necrosis factor-alpha. Incubation of HK-2 cells with C3a led to an increase in intracellular inositol phosphate and to tyrosine phosphorylation of at least two proteins in a pertussis-toxin-sensitive fashion. C3a and C3a desarg also up-regulated the secretion of TGF-beta1 by these cells. CONCLUSION HK-2 cells produce an intact alternative pathway of complement. In addition, both locally produced and urinary C3a have the potential to activate these cells, resulting in inflammatory events such as TGF-beta1 production.
Collapse
Affiliation(s)
- P W Peake
- Renal Unit, Prince of Wales Hospital, Randwick, New South Wales, Australia.
| | | | | | | |
Collapse
|
36
|
van Kooten C, van der Linde X, Woltman AM, van Es LA, Daha MR. Synergistic effect of interleukin-1 and CD40L on the activation of human renal tubular epithelial cells. Kidney Int 1999; 56:41-51. [PMID: 10411678 DOI: 10.1046/j.1523-1755.1999.00514.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Renal tubular epithelial cells are a central cell type in tubulointerstitial inflammation because they can produce inflammatory mediators such as cytokines and chemokines. Several signals derived from either monocytes or activated T cells have been reported to regulate the activation of tubular epithelial cells. We studied this regulation in more detail by combined treatment with CD40 ligand and the proinflammatory cytokine interleukin-1 (IL-1) in vitro. METHODS The regulation of cytokine and chemokine production was studied in primary cultures of human proximal tubular epithelial cells (PTECs). PTECs were activated by coculture with CD40L-transfected murine fibroblasts in combination with recombinant human cytokines. The production of IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1), and RANTES were measured by specific enzyme-linked immunosorbent assay. RESULTS The combined activation of PTECs with CD40L and IL-1 resulted in strong synergistic effects on the production of IL-6, IL-8, and RANTES, whereas only an additive stimulation of MCP-1 production was observed. The effects were specific for IL-1 and could be neutralized by the addition of the IL-1R antagonist. Both IL-1alpha and IL-1beta showed similar effects on cytokine production by PTECs. The effects of IL-1 were dose dependent, and kinetic experiments showed that synergistic effects were observed after 24 hours of activation and remained present for at least five days. Reverse transcription-polymerase chain reaction analysis showed that human PTECs could express both IL-1alpha and IL-1beta. The activation of PTECs with IL-1 resulted in an up-regulation of CD40 expression on these cells. CONCLUSIONS A complex network of regulation exists for the production of cytokines and chemokines by PTECs. The combined treatment results in strong synergistic effects on IL-6, IL-8, and RANTES production. This strengthens the potential role of tubular epithelial cells in inflammatory responses within the kidney.
Collapse
Affiliation(s)
- C van Kooten
- Department of Nephrology, Leiden University, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Covalent attachment of activated complement C3 (C3d) to antigen links innate and adaptive immunity by targeting antigen to follicular dendritic cells (FDC) and B cells via specific receptors CD21 and CD35. Recent characterization of knockout mice deficient in complement components C3, C4, or the receptors CD21 and CD35 as well as biochemical studies of the CD21/CD19/Tapa-1 coreceptor on B cells have helped to elucidate the mechanism of complement regulation of both B-1 and B-2 lymphocytes. Interestingly, natural antibody of the adaptive immune system provides a major recognition role in activation of the complement system, which in turn enhances activation of antigen-specific B cells. Enhancement of the primary and secondary immune response to T-dependent antigens is mediated by coligation of the coreceptor and the B cell antigen receptor, which dramatically increases follicular retention and B cell survival within the germinal center. Most recent evidence suggests that complement also regulates elimination of self-reactive B cells, as breeding of mice that are deficient in C4 or CD21/CD35 with the lupus-prone strain of lpr mice demonstrates an exacerbation of disease due to an increase in autoantibodies.
Collapse
Affiliation(s)
- M C Carroll
- Department of Pathology, Harvard University Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
38
|
Blok VT, Daha MR, Tijsma O, Harris CL, Morgan BP, Fleuren GJ, Gorter A. A Bispecific Monoclonal Antibody Directed Against Both the Membrane-Bound Complement Regulator CD55 and the Renal Tumor-Associated Antigen G250 Enhances C3 Deposition and Tumor Cell Lysis by Complement. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.7.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Tumor cells may inhibit the induction of a complement-mediated inflammatory response through overexpression of membrane-bound regulators of complement activation. Therefore, it is of interest to determine the most efficient approach to block these membrane-bound complement regulators on tumor cells. In the present study, we first generated a bispecific mAb directed against both CD55, using the functional blocking mAb MBC1, and the highly expressed HLA class I molecule as a model for a tumor-associated Ag, using the mAb W6/32. Tumor cells opsonized with bispecific mAb W6/32*MBC1, then exposed to complement and subsequently stained for C3 deposition, were assessed by flow cytometric analysis. We found that opsonization with W6/32*MBC1 resulted in a 92% enhancement of C3 deposition on renal tumor cells as compared with opsonization with W6/32 alone and a 17% enhancement of the C3 deposition as compared with incubation with a mixture of both parental mAb. Based on these results, we developed a bispecific mAb recognizing both CD55 and the relatively low expressed renal tumor-associated Ag G250. Increasing concentrations of the bispecific mAb G250*MBC1 resulted in a 25 to 400% increase in C3 deposition on renal tumor cells as compared with C3 deposition in the presence of the parental mAb G250 alone. G250*MBC1 enhanced C3 deposition by 21% in comparison with a mixture of both parentals. Furthermore, opsonization of tumor cells with G250*MBC1 rendered these cells more sensitive to complement-mediated lysis. In conclusion, the bispecific mAb G250*MBC1 induces deposition of C3 and tumor cell lysis more efficiently than G250 alone.
Collapse
Affiliation(s)
| | - Mohamed R. Daha
- †Nephrology, Leiden University Hospital, Leiden, the Netherlands; and
| | | | - Claire L. Harris
- ‡Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, United Kingdom
| | - B. Paul Morgan
- ‡Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, United Kingdom
| | | | | |
Collapse
|
39
|
Fischer MB, Ma M, Hsu NC, Carroll MC. Local Synthesis of C3 Within the Splenic Lymphoid Compartment Can Reconstitute the Impaired Immune Response in C3-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.6.2619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Mice bearing a disrupted C3 locus (C3−/−) have an impaired Ab response to T-dependent Ags (bacteriophage φX 174 and nuclear protein-keyhole limpet hemocyanin) characterized by a reduction in number and size of germinal centers and impaired retention of Ag by follicular dendritic cells. To test the importance of C3 synthesized locally within the lymphoid compartment during an immune response to T-dependent Ag, we reconstituted C3−/− mice with wild-type bone marrow of MHC-identical littermates. Engraftment not only restored local C3 synthesis in the spleen, but also rescued the impaired humoral response. The major source of C3 mRNA was MOMA-2+ macrophages localized within the white pulp areas of the spleen. Interestingly, C3 expression is apparently regulated as C3 mRNA was not detected in splenic sections of nonimmune mice. Furthermore, local C3 synthesis by donor macrophages reversed the impaired Ag trapping by splenic follicular dendritic cells in C3-deficient mice.
Collapse
Affiliation(s)
| | - Minghe Ma
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Nelson C. Hsu
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
40
|
Gerritsma JS, van Kooten C, Gerritsen AF, van Es LA, Daha MR. Transforming growth factor-beta 1 regulates chemokine and complement production by human proximal tubular epithelial cells. Kidney Int 1998; 53:609-16. [PMID: 9507205 DOI: 10.1046/j.1523-1755.1998.00799.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previously it has been demonstrated that human proximal tubular epithelial cells (PTEC) are able to produce chemokines (such as IL-8 and MCP-1) and complement components (such as C2, C3, C4 and factor H), and that production of these proteins is regulated by pro-inflammatory cytokines such as interleukin-1 alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). Since TGF-beta is also expressed in the renal interstitium during inflammation, we investigated the effect of TGF-beta on the production of chemokines and complement components by PTEC in culture. Transforming growth factor-beta 1 up-regulated IL-8 production by an average of 4.17 +/- 1.0 fold. macrophage chemoattractant phagocyte (MCP-1) production, on the other hand, was down-regulated by TGF-beta 1 by an average of 2.2 +/- 0.7 fold. The production of C3 and C4 was also down-regulated after incubation with TGF-beta 1 (1.9 +/- 0.3- and 3.0 +/- 1.2-fold, respectively). All effects were dose- and time-dependent and were found to be specific for TGF-beta 1, as assessed by inhibition of the effect with a neutralizing antibody against TGF-beta 1. These data, together with the knowledge that TGF-beta, chemokines and complement components play a role in several types of renal disease, suggest that TGF-beta is involved in the regulation of local expression of chemokines and complement components by tubular cells.
Collapse
Affiliation(s)
- J S Gerritsma
- Department of Nephrology, Leiden University Hospital, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Abstract
This past year has seen a major advance in our understanding of how the complement system enhances the adaptive immune response. The use of in vivo models has revealed that direct coupling of C3d to antigen is sufficient to dramatically reduce the amount of antigen required for a secondary response. At least one important requirement for the enhancing effect was determined to be expression of the CD21 (C3d receptor) on B cells.
Collapse
Affiliation(s)
- M C Carroll
- Department of Pathology, Harvard Medical School, Building D-2, Room 533, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|