1
|
Arosio P, Cairo G, Bou-Abdallah F. A Brief History of Ferritin, an Ancient and Versatile Protein. Int J Mol Sci 2024; 26:206. [PMID: 39796064 PMCID: PMC11719527 DOI: 10.3390/ijms26010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Ferritin, a highly conserved iron storage protein, is among the earliest proteins that have been purified, named, and characterized due to its unique properties that continue to captivate researchers. Ferritin is composed of 24 subunits that form an almost spherical shell delimiting a cavity where thousands of iron atoms can be stored in a nontoxic ferric form, thereby preventing cytosolic iron from catalyzing oxidative stress. Mitochondrial and extracellular ferritin have also been described and characterized, with the latter being associated with several signaling functions. In addition, serum ferritin serves as a reliable indicator of both iron stores and inflammatory conditions. First identified and purified through crystallization in 1937, ferritin has since drawn significant attention for its critical role in iron metabolism and regulation. Its unique structural features have recently been exploited for many diverse biological and technological applications. To date, more than 40,000 publications have explored this remarkable protein. Here, we present a historical overview, tracing its journey from discovery to current applications and highlighting the evolution of biochemical techniques developed for its structure-function characterization over the past eight decades.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA;
| |
Collapse
|
2
|
Zhang SP, Zhang J, Wang QH, Ye Y, Zhang DZ, Liu QN, Tang BP, Dai LS. Ferritin Heavy-like subunit is involved in the innate immune defense of the red swamp crayfish Procambarus clarkii. Front Immunol 2024; 15:1411936. [PMID: 39108270 PMCID: PMC11300234 DOI: 10.3389/fimmu.2024.1411936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.
Collapse
Affiliation(s)
- Si-Pei Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Qing-Hao Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Yang Ye
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Garmeh Motlagh F, Azimzadeh Irani M, Masoomi Nomandan SZ, Assadizadeh M. Computational design and investigation of the monomeric spike SARS-CoV-2-ferritin nanocage vaccine stability and interactions. Front Mol Biosci 2024; 11:1403635. [PMID: 38933369 PMCID: PMC11199398 DOI: 10.3389/fmolb.2024.1403635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak, several solutions have been proposed to manage the disease. The most viable option for controlling this virus is to produce effective vaccines. Most of the current SARS-CoV-2 vaccines have focused on the infusion spike protein. Spike exists as a trimer and plays a vital role in infecting host cells by binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor through its Receptor Binding Domain (RBD). Ferritin protein, a naturally occurring iron-storage protein, has gained attention for vaccine production due to its self-assembling property, non-toxic nature, and biocompatibility. Ferritin nanocages have recently been employed in the development of a SARS-CoV-2 vaccination eliciting not only long-term protective memory cells but also a sustained antibody response. In this study, a combination of in silico investigations including molecular docking, molecular dynamics simulations, and immune simulations were carried out to computationally model the monomeric spike protein on the ferritin nanocage as well as to evaluate its stability and interactions for the first time. The structural dynamics of the modeled complex demonstrated noticeable stability. In particular, the Receptor Binding Domain (RBD) and ferritin within the monomeric spike-ferritin complex illustrated significant stability. The lack of alterations in the secondary structure further supported the overall steadiness of the complex. The decline in the distance between ferritin and spike suggests a strong interaction over time. The cross-correlation matrices revealed that the monomeric spike and ferritin move towards each other supporting the stable interaction between spike and ferritin. Further, the orientation of monomeric spike protein within the ferritin unit facilitated the exposure of critical epitopes, specifically upward active Receptor Binding Domain (RBD), enabling effective interactions with the ACE2 receptor. The immune simulations of the model indicated high-level stimulations of both cellular and humoral immunity in the human body. It was also found that the employed model is effective regardless of the mutated spikes in different variants. These findings shed light on the current status of the SARS-CoV-2-ferritin nanoparticle vaccines and could be used as a framework for other similar vaccine designs.
Collapse
|
4
|
Sudarev VV, Gette MS, Bazhenov SV, Tilinova OM, Zinovev EV, Manukhov IV, Kuklin AI, Ryzhykau YL, Vlasov AV. Ferritin-based fusion protein shows octameric deadlock state of self-assembly. Biochem Biophys Res Commun 2024; 690:149276. [PMID: 38007906 DOI: 10.1016/j.bbrc.2023.149276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Ferritin is a universal protein complex responsible for iron perception in almost all living organisms and has applications from fundamental biophysics to drug delivery and structure-based immunogen design. Different platforms based on ferritin share similar technological challenges limiting their development - control of self-assembling processes of ferritin itself as well as ferritin-based chimeric recombinant protein complexes. In our research, we studied self-assembly processes of ferritin-based protein complexes under different expression conditions. We fused a ferritin subunit with a SMT3 protein tag, a homolog of human Small Ubiquitin-like Modifier (SUMO-tag), which was taken to destabilize ferritin 3-fold channel contacts and increase ferritin-SUMO subunits solubility. We first obtained the octameric protein complex of ferritin-SUMO (8xFer-SUMO) and studied its structural organization by small-angle X-ray scattering (SAXS). Obtained SAXS data correspond well with the high-resolution models predicted by AlphaFold and CORAL software of an octameric assembly around the 4-fold channel of ferritin without formation of 3-fold channels. Interestingly, three copies of 8xFer-SUMO do not assemble into 24-meric globules. Thus, we first obtained and structurally characterized ferritin-based self-assembling oligomers in a deadlock state. Deadlock oligomeric states of ferritin extend the known scheme of its self-assembly process, being new potential tools for a number of applications. Finally, our results might open new directions for various biotechnological platforms utilizing ferritin-based tools.
Collapse
Affiliation(s)
- V V Sudarev
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - M S Gette
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - S V Bazhenov
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - O M Tilinova
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - E V Zinovev
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - I V Manukhov
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation
| | - A I Kuklin
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation
| | - Yu L Ryzhykau
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation.
| | - A V Vlasov
- Research Center for Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation.
| |
Collapse
|
5
|
Li H, Xia X, Cheng S, Zang J, Wang Z, Du M. Oyster (Crassostrea gigas) ferritin relieves lead-induced liver oxidative damage via regulating the mitophagy. Int J Biol Macromol 2023; 253:126965. [PMID: 37729985 DOI: 10.1016/j.ijbiomac.2023.126965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Lead can induce oxidative stress and increase lipid peroxidation in biofilms, leading to liver damage and physiological dysfunction. This study aimed to investigate how oyster ferritin (GF1) attenuates lead-induced oxidative damage to the liver in vitro and in vivo. Animal experiments have confirmed that lead exposure can lead to oxidative damage and lipid peroxidation of the liver, and ferritin can regulate the activity of antioxidant enzymes and alleviate pathological changes in the liver. At the same time, oyster ferritin can regulate the expression of oxidative stress-related genes and reduce the expression of inflammasome-related genes. In addition, lead can induce apoptosis and mitophagy, leading to overproduction of reactive oxygen species and cell death, which can be effectively alleviated by oyster ferritin. Overall, this study provides a theoretical foundation for the use of oyster ferritin as a means of mitigating and preventing lead-induced damage.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Mijovilovich A, Cloetens P, Lanzirotti A, Newville M, Wellenreuther G, Kumari P, Katsaros C, Carrano CJ, Küpper H, Küpper FC. Synchrotron X-rays reveal the modes of Fe binding and trace metal storage in the brown algae Laminaria digitata and Ectocarpus siliculosus. Metallomics 2023; 15:mfad058. [PMID: 37740572 PMCID: PMC10588612 DOI: 10.1093/mtomcs/mfad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Iron is accumulated symplastically in kelp in a non-ferritin core that seems to be a general feature of brown algae. Microprobe studies show that Fe binding depends on tissue type. The sea is generally an iron-poor environment and brown algae were recognized in recent years for having a unique, ferritin-free iron storage system. Kelp (Laminaria digitata) and the filamentous brown alga Ectocarpus siliculosus were investigated using X-ray microprobe imaging and nanoprobe X-ray fluorescence tomography to explore the localization of iron, arsenic, strontium, and zinc, and micro-X-ray absorption near-edge structure (μXANES) to study Fe binding. Fe distribution in frozen hydrated environmental samples of both algae shows higher accumulation in the cortex with symplastic subcellular localization. This should be seen in the context of recent ultrastructural insight by cryofixation-freeze substitution that found a new type of cisternae that may have a storage function but differs from the apoplastic Fe accumulation found by conventional chemical fixation. Zn distribution co-localizes with Fe in E. siliculosus, whereas it is chiefly located in the L. digitata medulla, which is similar to As and Sr. Both As and Sr are mostly found at the cell wall of both algae. XANES spectra indicate that Fe in L. digitata is stored in a mineral non-ferritin core, due to the lack of ferritin-encoding genes. We show that the L. digitata cortex contains mostly a ferritin-like mineral, while the meristoderm may include an additional component.
Collapse
Affiliation(s)
- Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovska 1160/31, 370 05 Česke Budějovice, Czech Republic
| | - Peter Cloetens
- ESRF—The European Synchrotron Radiation Facility, Beamline ID16A, 71, avenue des Martyrs CS 40220 38043 Grenoble Cedex 9, France
| | - Antonio Lanzirotti
- Argonne National Laboratory, The University of Chicago, Building 434A, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Matt Newville
- Argonne National Laboratory, The University of Chicago, Building 434A, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | | | - Puja Kumari
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - Christos Katsaros
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 84, Hellas, Greece
| | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, CA 92182-1030,USA
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, Branišovska 1160/31, 370 05 Česke Budějovice, Czech Republic
- Department of Experimental Plant Biology, University of South Bohemia, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Frithjof C Küpper
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
- Department of Chemistry and Biochemistry, San Diego State University, CA 92182-1030,USA
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| |
Collapse
|
7
|
Guo J, Lyu S, Qi Y, Chen X, Yang L, Zhao C, Wang H. Molecular evolution and gene expression of ferritin family involved in immune defense of lampreys. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104729. [PMID: 37187445 DOI: 10.1016/j.dci.2023.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Ferritin, one of the key regulators of iron homeostasis, is widely present throughout almost all species. The vertebrate ferritin family, which originates from a single gene in the ancestral invertebrates, contains the widest variety of ferritin subtypes among all animal species. However, the evolutionary history of the vertebrate ferritin family remains to be further clarified. In this study, genome-wide identification of the ferritin homologs is performed in lampreys, which are the extant representatives of jawless vertebrates that diverged from the future jawed vertebrates more than 500 million years ago. Molecular evolutionary analyses show that four members of the lamprey ferritin family, L-FT1-4, are derived from a common ancestor with jawed vertebrate ferritins prior to the divergence of the jawed vertebrate ferritin subtypes. The lamprey ferritin family shares evolutionarily conserved characteristics of the ferritin H subunit with higher vertebrates, but certain members such as L-FT1 additionally accumulate some features of the M or L subunits. Expression profiling reveals that lamprey ferritins are highly expressed in the liver. The transcription of L-FT1 is significantly induced in the liver and heart during lipopolysaccharide stimulation, indicating that L-FTs may play a role in the innate immune response to bacterial infection in lampreys. Furthermore, the transcriptional expression of L-FT1 in quiescent and LPS-activated leukocytes is up- and down-regulated by the lamprey TGF-β2, an essential regulator of the inflammatory response, respectively. Our results provide new insights into the origin and evolution of the vertebrate ferritin family and reveal that lamprey ferritins may be involved in immune regulation as target genes of the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Junfu Guo
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Shuangyu Lyu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Yanchen Qi
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xuanyi Chen
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Lu Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China
| | - Chunhui Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116081, China.
| |
Collapse
|
8
|
Cruz-López R, Carrano CJ. Iron uptake, transport and storage in marine brown algae. Biometals 2023; 36:371-383. [PMID: 36930341 DOI: 10.1007/s10534-023-00489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2023] [Indexed: 03/18/2023]
Abstract
Iron is a vital although biologically inaccessible trace nutrient for nearly all forms of life but "free" iron can be deleterious to cells and thus iron uptake and storage must be carefully controlled. The marine environment is particularly iron poor making mechanisms for its uptake and storage even more imperative. In this brief review we explore the known and potential iron uptake and storage pathways for the biologically and economically important marine brown macroalgae (seaweeds/kelps).
Collapse
Affiliation(s)
- Ricardo Cruz-López
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Ensenada, Baja California, México.
| | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182-1030, USA
| |
Collapse
|
9
|
Oyster (Crassostrea gigas) ferritin should be a promising Fe2+ nanocarrier. Food Chem 2023; 404:134586. [DOI: 10.1016/j.foodchem.2022.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022]
|
10
|
Hernandez EP, Shimazaki K, Niihara H, Umemiya-Shirafuji R, Fujisaki K, Tanaka T. Localization of secreted ferritin (FER2) in the embryos of the tick Haemaphysalis longicornis. Parasit Vectors 2023; 16:42. [PMID: 36717957 PMCID: PMC9885654 DOI: 10.1186/s13071-023-05669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Despite the absence of a blood meal, embryogenesis involves many processes that require nutrients and other essential elements, including iron. Due to the lack of an external source of these nutrients, these requirements are acquired maternally. Because of the toxic nature of iron, they are transferred through iron transport molecules such as secreted ferritin (FER2). Here we tried to follow the trail of the FER2 through indirect immunofluorescence, and we observed an apparent shift of FER2 from the germ layer at the early part of development to the appendages during the late stage of embryogenesis. FER2 is also found in the middle part of the legs of the embryo. The apparent movement not only sheds light on iron processing events during embryogenesis but also indirectly guides organogenesis in the tick.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- grid.11176.300000 0000 9067 0374Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines at Los Baños College, 3004 Laguna, Philippines ,grid.258333.c0000 0001 1167 1801Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056 Japan
| | - Kei Shimazaki
- grid.258333.c0000 0001 1167 1801Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056 Japan
| | - Hiroko Niihara
- grid.258333.c0000 0001 1167 1801Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056 Japan
| | - Rika Umemiya-Shirafuji
- grid.412310.50000 0001 0688 9267National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
| | - Kozo Fujisaki
- grid.416835.d0000 0001 2222 0432National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856 Japan
| | - Tetsuya Tanaka
- grid.258333.c0000 0001 1167 1801Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056 Japan
| |
Collapse
|
11
|
Lei X, Yang L, Tan L, Yang Q, Zhou F, Jiang S, Huang J. Effect of Air Exposure and Re-Submersion on the Histological Structure, Antioxidant Response, and Gene Expression of Procambarus Clarkii. Animals (Basel) 2023; 13:462. [PMID: 36766351 PMCID: PMC9913771 DOI: 10.3390/ani13030462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Air exposure is an important environmental stressor during the transportation and cultivation of Procambarus clarkii. We evaluated the effect of re-submersion for 24 h after dry transportation for 24 h on the histological structure, antioxidant activity, and gene expression of crayfish. The antioxidant parameters of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and lactate dehydrogenase (LDH), and the relative expression of CAT, SOD, HSP70, and ferritin genes were subsequently measured in the hepatopancreas and gills at both stages. Histopathology found that air exposure led to vacuolation of the hepatopancreas and disorderly arrangement of respiratory epithelial cells (REC) in the gills. The activities of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and lactic dehydrogenase (LDH) in the hepatopancreas and gills increased with short-term air exposure. The relative expression of genes (CAT, SOD, HSP70, and Ferritin) were induced after short-term air exposure. During re-submersion, MDA content and CAT and SOD activities in the hepatopancreas and gills were restored after 24 h, however, LDH activity and hepatopancreatic tissue damage were not repaired. Our results indicate that air exposure can cause oxidative damage to P. clarkii, and CAT and SOD can be used to determine the response of crayfish exposed to air, in addition to some damage that can be eliminated after re-submersion to a limited degree. This study provides foundational data that re-submersion can improve crayfish performance under hypoxic stress to a certain extent and will lead to the development of more effective transportation strategies and decrease economic losses in the future.
Collapse
Affiliation(s)
- Xiangyu Lei
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lishi Yang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Liqi Tan
- Shenzhen animal Disease Prevention and Control Center, Shenzhen 518000, China
| | - Qibin Yang
- Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Falin Zhou
- Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shigui Jiang
- Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jianhua Huang
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518108, China
- Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
12
|
Leister D, Marino G, Minagawa J, Dann M. An ancient function of PGR5 in iron delivery? TRENDS IN PLANT SCIENCE 2022; 27:971-980. [PMID: 35618596 DOI: 10.1016/j.tplants.2022.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
In all phototrophic organisms, the photosynthetic apparatus must be protected from light-induced damage. One important mechanism that mitigates photodamage in plants is antimycin A (AA)-sensitive cyclic electron flow (CEF), the evolution of which remains largely obscure. Here we show that proton gradient regulation 5 (PGR5), a key protein involved in AA-sensitive CEF, displays intriguing commonalities - including sequence and structural features - with a group of ferritin-like proteins. We therefore propose that PGR5 may originally have been involved in prokaryotic iron mobilization and delivery, which facilitated a primordial type of CEF as a side effect. The abandonment of the bacterioferritin system during the transformation of cyanobacterial endosymbionts into chloroplasts might have allowed PGR5 to functionally specialize in CEF.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Marcel Dann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany; Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
| |
Collapse
|
13
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
14
|
Li H, Xia X, Zang J, Tan X, Wang Z, Xu X, Du M. Oyster (Crassostrea gigas) ferritin can efficiently reduce the damage of Pb 2+in vivo by electrostatic attraction. Int J Biol Macromol 2022; 210:365-376. [PMID: 35500778 DOI: 10.1016/j.ijbiomac.2022.04.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 02/08/2023]
Abstract
Heavy metal ions pollution can cause damage to human body through food, so the development of a new kind of macromolecular that can remove heavy metal ions damage has a good application prospect. The possibilities of removing heavy metal ions from food system with ferritin were studied in this paper. In this study, oyster ferritin (GF1) can resistant to denaturation induced by Pb2+, Cd2+, Cr3+ and still maintains its basic structure. GF1 can bind more Pb2+, Cd2+, Cr3+ than recombinant human H-chain ferritin (rHuHF), especially Pb2+, and the findings suggest that each GF1 can capture about 51.42 Pb2+ in solution. The hard and soft acids and base also verifies that Pb2+ have stronger binding ability to the key amino acids at the outer end of the three-fold symmetry channel. Cells preprotected by ferritin could resistant to heavy metal ions. And GF1 can reduce the high blood lead in mice and may play a role in alleviating lead poisoning in vivo. All findings demonstrated that GF1 can be used as a novel macromolecule to bind heavy metal ions, and the study can broaden the research scope of ferritin in contaminated food systems.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Woong Yoo S, Young Kwon S, Kang SR, Min JJ. Molecular imaging approaches to facilitate bacteria-mediated cancer therapy. Adv Drug Deliv Rev 2022; 187:114366. [PMID: 35654213 DOI: 10.1016/j.addr.2022.114366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Bacteria-mediated cancer therapy is a potential therapeutic strategy for cancer that has unique properties, including broad tumor-targeting ability, various administration routes, the flexibility of delivery, and facilitating the host's immune responses. The molecular imaging of bacteria-mediated cancer therapy allows the therapeutically injected bacteria to be visualized and confirms the accurate delivery of the therapeutic bacteria to the target lesion. Several hurdles make bacteria-specific imaging challenging, including the need to discriminate therapeutic bacterial infection from inflammation or other pathologic lesions. To realize the full potential of bacteria-specific imaging, it is necessary to develop bacteria-specific targets that can be associated with an imaging assay. This review describes the current status of bacterial imaging techniques together with the advantages and disadvantages of several imaging modalities. Also, we describe potential targets for bacterial-specific imaging and related applications.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea.
| |
Collapse
|
16
|
Conservative and Atypical Ferritins of Sponges. Int J Mol Sci 2021; 22:ijms22168635. [PMID: 34445356 PMCID: PMC8395497 DOI: 10.3390/ijms22168635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.
Collapse
|
17
|
Kawase O, Iwaya H, Asano Y, Inoue H, Kudo S, Sasahira M, Azuma N, Kondoh D, Ichikawa-Seki M, Xuan X, Sakamoto K, Okamoto H, Nakadate H, Inoue W, Saito I, Narita M, Sekii K, Kobayashi K. Identification of novel yolk ferritins unique to planarians: planarians supply aluminum rather than iron to vitellaria in egg capsules. Cell Tissue Res 2021; 386:391-413. [PMID: 34319433 DOI: 10.1007/s00441-021-03506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
All animals, other than Platyhelminthes, produce eggs containing yolk, referred to as "entolecithal" eggs. However, only Neoophora, in the phylum Platyhelminthes, produce "ectolecithal" eggs (egg capsules), in which yolk is stored in the vitelline cells surrounding oocytes. Vitelline cells are derived from vitellaria (yolk glands). Vitellaria are important reproductive organs that may be studied to elucidate unique mechanisms that have been evolutionarily conserved within Platyhelminthes. Currently, only limited molecular level information is available on vitellaria. The current study identified major vitellaria-specific proteins in a freshwater planarian, Dugesia ryukyuensis, using peptide mass fingerprinting (PMF) and expression analyses. Amino acid sequence analysis and orthology analysis via OrthoFinder ver.2.3.8 indicated that the identified major vitellaria-specific novel yolk ferritins were conserved in planarians (Tricladida). Because ferritins play an important role in Fe (iron) storage, we examined the metal elements contained in vitellaria and ectolecithal eggs, using non-heme iron histochemistry, elemental analysis based on inductively coupled plasma mass spectrometry and transmission electron microscopy- energy-dispersive X-ray spectroscopy analysis. Interestingly, vitellaria and egg capsules contained large amounts of aluminum (Al), but not Fe. The knockdown of the yolk ferritin genes caused a decrease in the volume of egg capsules, abnormality in juveniles, and increase in Al content in vitellaria. Yolk ferritins of D. ryukyuensis may regulate Al concentration in vitellaria via their pooling function of Al and protect the egg capsule production and normal embryogenesis from Al toxicity.
Collapse
Affiliation(s)
- Osamu Kawase
- Department of Biology, Premedical Sciences, Dokkyo Medical University, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Hisashi Iwaya
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiromoto Inoue
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Seiya Kudo
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Motoki Sasahira
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Nobuyuki Azuma
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Daisuke Kondoh
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Inaba-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Madoka Ichikawa-Seki
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inaba-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Kimitoshi Sakamoto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hikaru Okamoto
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hinaki Nakadate
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Wataru Inoue
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Ikuma Saito
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Miyu Narita
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Kiyono Sekii
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Kazuya Kobayashi
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
18
|
Huang CW, Chuang CP, Chen YJ, Wang HY, Lin JJ, Huang CY, Wei KC, Huang FT. Integrin α 2β 1-targeting ferritin nanocarrier traverses the blood-brain barrier for effective glioma chemotherapy. J Nanobiotechnology 2021; 19:180. [PMID: 34120610 PMCID: PMC8201891 DOI: 10.1186/s12951-021-00925-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ferritin, the natural iron storage protein complex, self-assembles into a uniform cage-like structure. Human H-ferritin (HFn) has been shown to transverse the blood-brain barrier (BBB) by binding to transferrin receptor 1 (TfR1), which is abundant in endothelial cells and overexpressed in tumors, and enters cells via endocytosis. Ferritin is easily genetically modified with various functional molecules, justifying that it possesses great potential for development into a nanocarrier drug delivery system. RESULTS In this study, a unique integrin α2β1-targeting H-ferritin (2D-HFn)-based drug delivery system was developed that highlights the feasibility of receptor-mediated transcytosis (RMT) for glioma tumor treatment. The integrin targeting α2β1 specificity was validated by biolayer interferometry in real time monitoring and followed by cell binding, chemo-drug encapsulation stability studies. Compared with naïve HFn, 2D-HFn dramatically elevated not only doxorubicin (DOX) drug loading capacity (up to 458 drug molecules/protein cage) but also tumor targeting capability after crossing BBB in an in vitro transcytosis assay (twofold) and an in vivo orthotopic glioma model. Most importantly, DOX-loaded 2D-HFn significantly suppressed subcutaneous and orthotopic U-87MG tumor progression; in particular, orthotopic glioma mice survived for more than 80 days. CONCLUSIONS We believe that this versatile nanoparticle has established a proof-of-concept platform to enable more accurate brain tumor targeting and precision treatment arrangements. Additionally, this unique RMT based ferritin drug delivery technique would accelerate the clinical development of an innovative drug delivery strategy for central nervous system diseases with limited side effects in translational medicine.
Collapse
Affiliation(s)
- Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation (CAMIT), Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Pao Chuang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Yan-Jun Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Hsu-Yuan Wang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan
| | - Jia-Jia Lin
- Center for Advanced Molecular Imaging and Translation (CAMIT), Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Feng-Ting Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, AC2-414, No.1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan.
| |
Collapse
|
19
|
Miao X, Yue H, Ho SL, Cha H, Marasini S, Ghazanfari A, Ahmad MY, Liu S, Tegafaw T, Chae KS, Chang Y, Lee GH. Synthesis, Biocompatibility, and Relaxometric Properties of Heavily Loaded Apoferritin with D-Glucuronic Acid-Coated Ultrasmall Gd2O3 Nanoparticles. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Li H, Xia X, Tan X, Zang J, Wang Z, Ei-Seedi HR, Du M. Advancements of nature nanocage protein: preparation, identification and multiple applications of ferritins. Crit Rev Food Sci Nutr 2021; 62:7117-7128. [PMID: 33860692 DOI: 10.1080/10408398.2021.1911925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ferritin is an important iron storage protein, which is widely existed in all forms of life. Ferritin can regulate iron homeostasis when iron ions are lacking or enriched in the body, so as to avoid iron deficiency diseases and iron poisoning. Ferritin presents a hollow nanocage, which can store ions or other small molecular substances in the cavity. Therefore, ferritin shows its potential as a functional nanomaterial that can deliver nutrients or drugs in a targeted manner to improve bioavailability. Due to the special structure, the research on ferritin has attracted more and more attention in recent years. In this paper, the structural characteristics of ferritin were introduced, and the natural purification and prokaryotic expression methods of ferritin from different sources were described. At the same time, ferritin can bind to small molecules, so that it has the activity of small molecules, to construct a new type of ferritin. As a result, ferritin plays an important role as a nutrient substance, in targeted transport, and disease monitoring, etc. In conclusion, the yield of ferritin can be improved by means of molecular biology. Meanwhile, molecular modification can be used to make ferritin have unique activity and function, which lays a foundation for subsequent research. HighlightsThe molecular and structural properties of ferritins were clearly described.Isolation and purification technologies of ferritin were compared.Characterization, functions and molecular modifications mechanism of ferritin were reviewed.The applications of ferritin in pharmaceutical and food industry were prospected.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Hesham R Ei-Seedi
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
21
|
Li H, Tan X, Xia X, Zang J, El-Seedi H, Wang Z, Du M. Improvement of thermal stability of oyster (Crassostrea gigas) ferritin by point mutation. Food Chem 2020; 346:128879. [PMID: 33406454 DOI: 10.1016/j.foodchem.2020.128879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022]
Abstract
Ferritin can be widely used as functional nanomaterial. But the physiological activity of ferritin can be damaged under excessive temperatures, which affect the self-assembly property. In this study, point mutation was produced in Asp120 to Gly120 of ferritin amino acid sequence and the heat resistance was improved significantly. The thermal denaturation temperature of mutated ferritin is 89.17 °C and has increased by 13 °C more than the wild-type oyster ferritin. The effect of thermal treatment on the denaturation, aggregation state, particle size and the structure of ferritin was not changed before 90 °C. The computational modeling and analysis indicated that mutated ferritin promotes the overall structural stability assembly via decreasing the interaction energies of 62 percent energies in 3-fold interface. Improving the thermal stability of oyster ferritin by point mutation enhances its applications as a food ingredient.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hesham El-Seedi
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
22
|
Golan MP, Piłsyk S, Muszewska A, Wawrzyniak A. Ferritins in Chordata: Potential evolutionary trajectory marked by discrete selective pressures: History and reclassification of ferritins in chordates and geological events' influence on their evolution and radiation. Bioessays 2020; 43:e2000207. [PMID: 33226145 DOI: 10.1002/bies.202000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022]
Abstract
Ferritins (FTs) are iron storage proteins that are involved in managing iron-oxygen balance. In our work, we present a hypothesis on the putative effect of geological changes that have affected the evolution and radiation of ferritin proteins. Based on sequence analysis and phylogeny reconstruction, we hypothesize that two significant factors have been involved in the evolution of ferritin proteins: fluctuations of atmospheric oxygen concentrations, altering redox potential, and changing availability of water rich in bioavailable ferric ions. Fish, ancient amphibians, reptiles, and placental mammals developed the broadest repertoire of singular FTs, attributable to embryonic growth in aquatic environments containing low oxygen levels and abundant forms of soluble iron. In contrast, oviparous land vertebrates, like reptiles and birds, that have developed in high oxygen levels and limited levels of environmental Fe2+ exhibit a lower diversity of singular FTs, but display a broad repertoire of subfamilies, particularly notable in early reptiles.
Collapse
Affiliation(s)
- Maciej P Golan
- Department of Neuropathology, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Agata Wawrzyniak
- Morphological Sciences Department, College for Medical Sciences of University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
23
|
pH induced reorganization of protein-protein interface in liposome encapsulated Ferritin at air/fluid and fluid/solid interfaces. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
de la Fuente V, Rufo L, Rodríguez N, Ramírez E, Sánchez-Gavilán I, Amils R. Differential iron management in monocotyledon and dicotyledon plants from the Río Tinto basin. PROTOPLASMA 2020; 257:889-900. [PMID: 31909435 DOI: 10.1007/s00709-019-01476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The study of plants adapted to an extreme environment with a high concentration of iron such as Río Tinto allowed the study of important elements for the development and control of plant growth including their localization, management, and storage. The absorption, transport, and accumulation of iron were studied in different species of dicotyledons (Sarcocornia pruinosa, Salicornia patula, Arthrocnemum macrostachyum, and Halogeton sativus of the Chenopodiaceae family) and monocotyledons (Imperata cylindrica, Cynodon dactylon, and Panicum repens from the Poaceae family), all obtained from the Río Tinto banks in different sample collection campaigns. The results clearly show that phytoferritin is not observed in the chloroplast of monocotyledons, an important difference from what is observed in dicotyledons. The presence of plastids with a high concentration of iron in the sieve tubes of monocotyledons strongly suggests their possible role in the transport and accumulation of iron in these plants.
Collapse
Affiliation(s)
- V de la Fuente
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain.
| | - L Rufo
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - N Rodríguez
- Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
| | - E Ramírez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain
| | - I Sánchez-Gavilán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain
| | - R Amils
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
25
|
Abstract
Ferritins are evolutionarily conserved proteins that regulate cellular iron metabolism. It is the only intracellular protein that is capable of storing large quantities of iron. Although the ratio of different subunits determines the iron content of each ferritin molecule, the exact mechanism that dictates organization of these subunits still is unclear. In this review, we address renal ferritin expression and its implication in kidney disease. Specifically, we address the role of ferritin subunits in preventing kidney injury and also promoting tolerance against infection-associated kidney injury. We describe functions for ferritin that are independent of its ability to ferroxidize and store iron. We further discuss the implications of ferritin in body fluids, including blood and urine, during inflammation and kidney disease. Although there are several in-depth review articles on ferritin in the context of iron metabolism, we chose to focus on the role of ferritin particularly in kidney health and disease and highlight unanswered questions in the field.
Collapse
Affiliation(s)
- Kayla McCullough
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
26
|
De Samber B, Vanden Berghe T, Meul E, Bauters S, Seyrich M, Smet J, De Paepe B, da Silva JC, Bohic S, Cloetens P, Van Coster R, Vandenabeele P, Vincze L. Nanoscopic X-ray imaging and quantification of the iron cellular architecture within single fibroblasts of Friedreich's ataxia patients. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:185-198. [PMID: 31868751 DOI: 10.1107/s1600577519015510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease characterized by an increase in intracytoplasmic iron concentration. Here the nanoscale iron distribution within single fibroblasts from FRDA patients was investigated using synchrotron-radiation-based nanoscopic X-ray fluorescence and X-ray in-line holography at the ID16A nano-imaging beamline of the ESRF. This unique probe was deployed to uncover the iron cellular two-dimensional architecture of freeze-dried FRDA fibroblasts. An unsurpassed absolute detection capability of 180 iron atoms within a 30 nm × 50 nm nanoscopic X-ray beam footprint was obtained using state-of-the-art X-ray focusing optics and a large-solid-angle detection system. Various micrometre-sized iron-rich organelles could be revealed for the first time, tentatively identified as endoplasmic reticulum, mitochondria and lysosomes. Also a multitude of nanoscopic iron hot-spots were observed in the cytosol, interpreted as chaperoned iron within the fibroblast's labile iron pool. These observations enable new hypotheses on the storage and trafficking of iron in the cell and ultimately to a better understanding of iron-storage diseases such as Friedreich's ataxia.
Collapse
Affiliation(s)
- Björn De Samber
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| | | | - Eline Meul
- VIB Center for Inflammation Research, Ghent, Belgium
| | | | | | - Joél Smet
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Boel De Paepe
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | | | | | | | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | | | - Laszlo Vincze
- Department of Analytical Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Pinto G, D'Acierno M, Illiano A, Petruk G, Ferraro G, Merlino A, Monti DM, Godovac-Zimmermann J, Amoresano A. Label-free quantitative proteomics of the MCF-7 cellular response to a ferritin–metallodrug complex. Mol Omics 2020; 16:165-173. [DOI: 10.1039/c9mo00158a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schematic summary of the experimental workflow based on label-free quantitative proteomics.
Collapse
Affiliation(s)
- Gabriella Pinto
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | | | - Anna Illiano
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | - Ganna Petruk
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
- Department of Chemistry Ugo Schiff
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | - Daria Maria Monti
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| | | | - Angela Amoresano
- Department of Chemical Sciences
- University of Naples Federico II
- Napoli
- Italy
| |
Collapse
|
28
|
Kwan YH, Zhang D, Mestre NC, Wong WC, Wang X, Lu B, Wang C, Qian PY, Sun J. Comparative Proteomics on Deep-Sea Amphipods after in Situ Copper Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13981-13991. [PMID: 31638389 DOI: 10.1021/acs.est.9b04503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interest in deep-sea mining increased along with the environmental concerns of these activities to the deep-sea fauna. The discovery of optimal biomarkers of deep-sea mining activities in deep-sea species is a crucial step toward the supply of important ecological information for environmental impact assessment. In this study, an in situ copper exposure experiment was performed on deep-sea scavenging amphipods. Abyssorchomene distinctus individuals were selected among all the exposed amphipods for molecular characterization. Copper concentration within the gut was assessed, followed by a tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) applied to identify and quantify the protein expression changes after 48 h of exposure. 2937 proteins were identified and annotated, and 1918 proteins among all identified proteins were assigned by at least two nonambiguous peptides. The screening process was performed based on the differences in protein abundance and the specific correlation between the proteins and copper in previous studies. These differentially produced proteins include Na+/K+ ATPase, cuticle, chitinase, and proteins with unknown function. Their abundances showed correlation with copper and had high sensitivity to indicate the copper level, being here proposed as biomarker candidates for deep-sea mining activities in the future. This is a key step in the development of environmental impact assessment of deep-sea mining activities integrating ecotoxicological data.
Collapse
Affiliation(s)
- Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Dongsheng Zhang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Nélia C Mestre
- CIMA - Centro de Investigação Marinha e Ambiental , Universidade do Algarve , Campus de Gambelas, 8005-139 Faro , Portugal
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Xiaogu Wang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Bo Lu
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Chunsheng Wang
- Second Institute of Oceanography, Ministry of Natural Resources , Hangzhou 310012 , China
- Key Laboratory of Marine Ecosystem and Biochemistry , State Oceanic Administration , Hangzhou 311000 , China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory , The Hong Kong University of Science and Technology , Hong Kong , China
| |
Collapse
|
29
|
Rice Biofortification: High Iron, Zinc, and Vitamin-A to Fight against “Hidden Hunger”. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120803] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
One out of three humans suffer from micronutrient deficiencies called “hidden hunger”. Underprivileged people, including preschool children and women, suffer most from deficiency diseases and other health-related issues. Rice (Oryza sativa), a staple food, is their source of nutrients, contributing up to 70% of daily calories for more than half of the world’s population. Solving “hidden hunger” through rice biofortification would be a sustainable approach for those people who mainly consume rice and have limited access to diversified food. White milled rice grains lose essential nutrients through polishing. Therefore, seed-specific higher accumulation of essential nutrients is a necessity. Through the method of biofortification (via genetic engineering/molecular breeding), significant increases in iron and zinc with other essential minerals and provitamin-A (β-carotene) was achieved in rice grain. Many indica and japonica rice cultivars have been biofortified worldwide, being popularly known as ‘high iron rice’, ‘low phytate rice’, ‘high zinc rice’, and ‘high carotenoid rice’ (golden rice) varieties. Market availability of such varieties could reduce “hidden hunger”, and a large population of the world could be cured from iron deficiency anemia (IDA), zinc deficiency, and vitamin-A deficiency (VAD). In this review, different approaches of rice biofortification with their outcomes have been elaborated and discussed. Future strategies of nutrition improvement using genome editing (CRISPR/Cas9) and the need of policy support have been highlighted.
Collapse
|
30
|
Tamleh Z, Rafipour R, Kashanian S. Protein-Based Nanobiosensor for Electrochemical Determination of Hydrogen Peroxide. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Maity B, Hishikawa Y, Lu D, Ueno T. Recent progresses in the accumulation of metal ions into the apo-ferritin cage: Experimental and theoretical perspectives. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Jin Y, He J, Fan K, Yan X. Ferritin variants: inspirations for rationally designing protein nanocarriers. NANOSCALE 2019; 11:12449-12459. [PMID: 31231742 DOI: 10.1039/c9nr03823j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferritin, a natural iron storage protein, is endowed with a unique structure, the ability to self-assemble and excellent physicochemical properties. Beyond these, genetic manipulation can easily tune the structure and functions of ferritin nanocages, which further expands the biomedical applications of ferritin. Here, we focus on human H-ferritin, a recently discovered ligand of transferrin receptor 1, to review its derived variants and related structures and properties. We hope this review will provide new insights into how to rationally design versatile protein cage nanocarriers for effective disease treatment.
Collapse
Affiliation(s)
- Yiliang Jin
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China. and University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China.
| | - Jiuyang He
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China. and University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China. and Academy of Medical Sciences, Zhengzhou University, 40 N Daxue Road, Zhengzhou 450052, China
| |
Collapse
|
33
|
Palombarini F, Ghirga F, Boffi A, Macone A, Bonamore A. Application of crossflow ultrafiltration for scaling up the purification of a recombinant ferritin. Protein Expr Purif 2019; 163:105451. [PMID: 31301427 DOI: 10.1016/j.pep.2019.105451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023]
Abstract
Ferritin proteins are taking center stage as smart nanocarriers for drug delivery due to their hollow cage-like structures and their unique 24-meric assembly. Among all ferritins, the chimeric Archaeoglobus ferritin (HumFt) is able assemble/disassemble varying the ionic strength of the medium while recognizing human TfR1 receptor overexpressed in cancer cells. In this paper we present a highly efficient, large scale purification protocol mainly based on crossflow ultrafiltration, starting from fermented bacterial paste. This procedure allows one to obtain about 2 g of purified protein starting from 100 g of fermented bacterial paste. The current procedure can easily remove contaminant proteins as well as DNA molecules in the absence of expensive and time consuming chromatographic steps.
Collapse
Affiliation(s)
- Federica Palombarini
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Alessandra Bonamore
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
34
|
Ning M, Wei P, Shen H, Wan X, Jin M, Li X, Shi H, Qiao Y, Jiang G, Gu W, Wang W, Wang L, Meng Q. Proteomic and metabolomic responses in hepatopancreas of whiteleg shrimp Litopenaeus vannamei infected by microsporidian Enterocytozoon hepatopenaei. FISH & SHELLFISH IMMUNOLOGY 2019; 87:534-545. [PMID: 30721776 DOI: 10.1016/j.fsi.2019.01.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 05/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) causes hepatopancreatic microsporidiosis (HPM) in shrimp. HPM is not normally associated with shrimp mortality, but is associated with significant growth retardation. In this study, the responses induced by EHP were investigated in hepatopancreas of shrimp Litopenaeus vannamei using proteomics and metabolomics. Among differential proteins identified, several (e.g., peritrophin-44-like protein, alpha2 macroglobulin isoform 2, prophenoloxidase-activating enzymes, ferritin, Rab11A and cathepsin C) were related to pathogen infection and host immunity. Other proteomic biomarkers (i.e., farnesoic acid o-methyltransferase, juvenile hormone esterase-like carboxylesterase 1 and ecdysteroid-regulated protein) resulted in a growth hormone disorder that prevented the shrimp from molting. Both proteomic KEGG pathway (e.g., "Glycolysis/gluconeogenesis" and "Glyoxylate and dicarboxylate metabolism") and metabolomic KEGG pathway (e.g., "Galactose metabolism" and "Biosynthesis of unsaturated fatty acids") data indicated that energy metabolism pathway was down-regulated in the hepatopancreas when infected by EHP. More importantly, the changes of hormone regulation and energy metabolism could provide much-needed insight into the underlying mechanisms of stunted growth in shrimp after EHP infection. Altogether, this study demonstrated that proteomics and metabolomics could provide an insightful view into the effects of microsporidial infection in the shrimp L. vannamei.
Collapse
Affiliation(s)
- Mingxiao Ning
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Panpan Wei
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hui Shen
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Mingjian Jin
- Rudong Center for Control and Prevention of Aquatic Animal Infectious Disease, 25# Changjiang Road, Rudong, 226400, China
| | - Xiangqian Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hao Shi
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yi Qiao
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Ge Jiang
- Institute of Oceanology and Marine Fisheries, Jiangsu, Jiangsu, 226007, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
35
|
Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, Hartl M, von Haeseler A, Gerner C, Raible F, Tessmar-Raible K. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. eLife 2019; 8:e41556. [PMID: 30767890 PMCID: PMC6377233 DOI: 10.7554/elife.41556] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Many marine animals, ranging from corals to fishes, synchronise reproduction to lunar cycles. In the annelid Platynereis dumerilii, this timing is orchestrated by an endogenous monthly (circalunar) clock entrained by moonlight. Whereas daily (circadian) clocks cause extensive transcriptomic and proteomic changes, the quality and quantity of regulations by circalunar clocks have remained largely elusive. By establishing a combined transcriptomic and proteomic profiling approach, we provide first systematic insight into the molecular changes in Platynereis heads between circalunar phases, and across sexual differentiation and maturation. Whereas maturation elicits large transcriptomic and proteomic changes, the circalunar clock exhibits only minor transcriptomic, but strong proteomic regulation. Our study provides a versatile extraction technique and comprehensive resources. It corroborates that circadian and circalunar clock effects are likely distinct and identifies key molecular brain signatures for reproduction, sex and circalunar clock phase. Examples include prepro-whitnin/proctolin and ependymin-related proteins as circalunar clock targets.
Collapse
Affiliation(s)
- Sven Schenk
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Stephanie C Bannister
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Fritz J Sedlazeck
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Dorothea Anrather
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F Perutz Laboratories, Vienna, Austria
| | - Bui Quang Minh
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Andrea Bileck
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Markus Hartl
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F Perutz Laboratories, Vienna, Austria
| | - Arndt von Haeseler
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Center of Integrative Bioinformatics Vienna, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Florian Raible
- Max F Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Research Platform 'Rhythms of Life', University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
36
|
Petruk G, Monti DM, Ferraro G, Pica A, D'Elia L, Pane F, Amoresano A, Furrer J, Kowalski K, Merlino A. Encapsulation of the Dinuclear Trithiolato-Bridged Arene Ruthenium Complex Diruthenium-1 in an Apoferritin Nanocage: Structure and Cytotoxicity. ChemMedChem 2019; 14:594-602. [PMID: 30674089 DOI: 10.1002/cmdc.201800805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Indexed: 12/14/2022]
Abstract
The effects of encapsulating the cytotoxic dinuclear trithiolato-bridged arene ruthenium complex [(η6 -p-MeC6 H4 iPr)2 Ru2 (μ2 -S-p-C6 H4 tBu)3 ]Cl (DiRu-1) within the apoferritin (AFt) nanocage were investigated. The DiRu-1-AFt nanocarrier was characterized by UV/Vis spectroscopy, ICP-MS, CD and X-ray crystallography. In contrast to previously reported Au- and Pt-based drug-loaded AFt carriers, we found no evidence of direct interactions between DiRu-1 and AFt. DiRu-1-AFt is cytotoxic toward immortalized murine BALB/c-3T3 fibroblasts transformed with SV40 virus (SVT2) and human epidermoid carcinoma A431 malignant cells, and exhibits moderate selectivity for these cancer cells over normal BALB/c-3T3 cells. DiRu-1-AFt triggers the production of reactive oxygen species, depolarization of mitochondrial membrane potential, and induces cell death via p53-mediated apoptosis. Comparison between our data and previous results suggests that the presence of specific interactions between a metal-based drug and AFt within the protein cage is not essential for drug encapsulation.
Collapse
Affiliation(s)
- Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Andrea Pica
- EMBL, CS 90181, 71 AV des Martyrs, 38009, Grenoble (38), France
| | - Luigi D'Elia
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Poland
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia 21, 80126, Naples, Italy
| |
Collapse
|
37
|
Ferraro G, Pica A, Petruk G, Pane F, Amoresano A, Cilibrizzi A, Vilar R, Monti DM, Merlino A. Preparation, structure, cytotoxicity and mechanism of action of ferritin-Pt(II) terpyridine compound nanocomposites. Nanomedicine (Lond) 2018; 13:2995-3007. [PMID: 30501559 DOI: 10.2217/nnm-2018-0259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM A Pt(II)-terpyridine compound, bearing two piperidine substituents at positions 2 and 2' of the terpyridine ligand (1), is highly cytotoxic and shows a mechanism of action distinct from cisplatin. 1 has been incorporated within the ferritin nanocage (AFt). MATERIALS & METHODS Spectroscopic and crystallographic data of the Pt(II)-AFt nanocomposite have been collected and in vitro anticancer activity has been explored using cancer cells. RESULTS Pt(II)-containing fragments bind His49, His114 and His132. Pt(II)-AFt nanocomposite is less cytotoxic than 1, but it is more toxic than cisplatin at high concentrations. The Pt(II)-AFt nanocomposite triggers necrosis in cancer cells, as free 1 does. CONCLUSION Pt(II)-AFt nanocomposites are promising vehicles to deliver Pt-based drugs to cancer cells.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Andrea Pica
- EMBL Grenoble, 71 avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Agostino Cilibrizzi
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom.,Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, United Kingdom
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
38
|
Ciambellotti S, Pratesi A, Severi M, Ferraro G, Alessio E, Merlino A, Messori L. The NAMI A - human ferritin system: a biophysical characterization. Dalton Trans 2018; 47:11429-11437. [PMID: 30063237 DOI: 10.1039/c8dt00860d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The reaction of the antimetastatic ruthenium(iii) drug NAMI A with human H-chain ferritin (HuHf) was investigated through a variety of biophysical methods. We observed that the addition of HuHf to NAMI A solutions significantly increases the rate of spontaneous NAMI A hydrolysis suggesting the occurrence of a direct metallodrug-protein interaction. The resulting hydrolyzed Ru species binds the protein mostly forming a relatively tight 1 : 1 ruthenium/ferritin (subunit) adduct that was then separated and characterized. Notably, this adduct shows a characteristic CD spectrum in the visible region, which is diagnostic of the existence of at least one protein bound ruthenium center. The crystal structure of this NAMI A/HuHf adduct was subsequently solved at 1.58 Å resolution; clear evidence is given for the selective binding of a single Ru ion to His105 of each subunit with concomitant release of all other original Ru ligands in agreement with previous observations. We also noted that NAMI A produces a partial inhibition of HuHf ferroxidase activity. The implications of the above results are discussed.
Collapse
Affiliation(s)
- Silvia Ciambellotti
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Monti DM, Ferraro G, Petruk G, Maiore L, Pane F, Amoresano A, Cinellu MA, Merlino A. Ferritin nanocages loaded with gold ions induce oxidative stress and apoptosis in MCF-7 human breast cancer cells. Dalton Trans 2018; 46:15354-15362. [PMID: 29072740 DOI: 10.1039/c7dt02370g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two anticancer gold(iii) compounds, Au2phen and Auoxo4, were encapsulated within a ferritin nanocage. The gold-compound loaded proteins were characterized by UV-Vis spectroscopy, inductively coupled plasma mass spectrometry and circular dichroism. X-ray crystallography shows that the compounds degrade upon encapsulation and gold(i) ions bind Ft within the cage, close to the side chains of Cys126. The gold-encapsulated nanocarriers are cytotoxic to human cancer cells. Au(i)-loaded Ft, obtained upon the encapsulation of Au2phen within the cage, induces oxidative stress activation, which finally leads to apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu Y, Shi J, Hao W, Xiang T, Zhou H, Wang W, Meng Q, Ding Z. iTRAQ-based quantitative proteomic analysis of Procambarus clakii hemocytes during Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2018; 77:438-444. [PMID: 29625245 DOI: 10.1016/j.fsi.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/13/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
As a new-found aquaculture pathogen, Spiroplasma eriocheiris, has resulted in inconceivable economic losses in aquaculture. In the infection of S. eriocheiris, the Procambarus clakii hemocytes have indicated to be major target cells. What was designed to examine in our study is the hemocytes' immune response at the protein levels. Before the pathogen was injected and after 192 h of post-injection, the differential proteomes of the crayfish hemocytes were analyzed immediately by isobaric tags for relative and absolute quantization (iTRAQ) labeling, followed by liquid chromatogramphytandem mass spectrometry (LC-MS/MS). This research had identified a total of 285 differentially expressed proteins. Eighty-three and 202 proteins were up-regulated and down-regulated, respectively, caused by the S. eriocheiris infection. Up-regulated proteins included alpha-2-macroglobulin (α2M), vitellogenin, ferritin, etc. Down-regulated proteins, involved with serine protease, peroxiredoxin 6, 14-3-3-like protein, C-type lectin, cdc42 homolog precursor, etc. The prophenoloxidase-activating system, antimicrobial action involved in the immune responses of P. clarkii is considered to be damaged due to S. eriocheiris infection. The present work could lay the foundation for future research on the proteins related to the susceptibility/resistance of P. clarkii to S. eriocheiris. In addition, it is helpful for our understanding molecular mechanism of disease processes in crayfishes.
Collapse
Affiliation(s)
- Yinbin Xu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Jinyan Shi
- Jiangsu Key Laboratory for Biofunctional Molecules & Aquatic Institute of Jiangsu Second Normal University, College of Life Science and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing, 210013, China
| | - Wenjing Hao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Tao Xiang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Haifeng Zhou
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Zhengfeng Ding
- Jiangsu Key Laboratory for Biofunctional Molecules & Aquatic Institute of Jiangsu Second Normal University, College of Life Science and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing, 210013, China.
| |
Collapse
|
41
|
Ferraro G, Petruk G, Maiore L, Pane F, Amoresano A, Cinellu MA, Monti DM, Merlino A. Caged noble metals: Encapsulation of a cytotoxic platinum(II)-gold(I) compound within the ferritin nanocage. Int J Biol Macromol 2018; 115:1116-1121. [PMID: 29709536 DOI: 10.1016/j.ijbiomac.2018.04.142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022]
Abstract
The encapsulation of Pt and Au-based anticancer agents within a protein cage is a promising way to enhance the selectivity of these potential drugs. Here a cytotoxic organometallic compound containing platinum(II) and gold(I) has been encapsulated within a ferritin nanocage (AFt). Inductively plasma coupled mass spectrometry data, collected to evaluate the amount of Pt and Au within the cage, indicate disruption of the starting heterobimetallic complex upon encapsulation within the nanocage. The drug-loaded protein (Pt(II)/Au(I)-AFt) has been characterized by UV-Vis spectroscopy, circular dichroism and X-ray diffraction analysis. Data indicate that the protein maintains its fold upon encapsulation of the metallodrug and that Au(I) and Pt(II)-containing fragments are encapsulated within the AFt cage, with Au(I) ion that binds the side chain of Cys126 and Pt(II) in the bulk, respectively. The in vitro cytotoxicity of Pt(II)Au(I)-AFt, as well as that of the free heterobimetallic complex, has been comparatively evaluated on human cervix and breast cancer cells and against cardiomyoblasts and keratinocytes non-tumorigenic cells. Our data demonstrate that it is possible to obtain a protein nanocarrier containing both Pt and Au atoms starting from a bimetallic compound, opening the way for the design and development of new potential drugs based on protein nanocarriers.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Ganna Petruk
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Laura Maiore
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy.
| |
Collapse
|
42
|
Geiser DL, Patel N, Patel P, Bhakta J, Velasquez LS, Winzerling JJ. Description of a Second Ferritin Light Chain Homologue From the Yellow Fever Mosquito (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE 2017. [PMCID: PMC5751084 DOI: 10.1093/jisesa/iex096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ferritin is required for iron storage in vertebrates and for iron transport and storage in invertebrates, specifically insects. Classical ferritins consist of 24 subunits configured as a polyhedron wherein iron is held. The 24 subunits include light and heavy chains, each with specific functions. Several homologues of the light and heavy chains have been sequenced and studied in insects. In addition to iron transport and storage, ferritin has a role in dietary iron absorption, and functions as a protective agent preventing iron overload, decreasing oxidative stress, and reducing infection in these animals. The expression profile and regulation of a second ferritin light chain homologue (LCH2) in Aedes aegypti [Linnaeus (Diptera: Culicidae), yellow fever mosquito] was characterized in cells, animal developmental stages, and tissues post bloodmeal (PBM) by real-time PCR and immunoblot. Two previously studied ferritin subunits from Ae. aegypti, HCH and LCH1, along with LCH2 were immunoprecipitated and analyzed by mass spectrometry. The three Ae. aegypti ferritin subunits, HCH, LCH1, and LCH2, have different expression profiles and regulation with iron exposure, developmental stage, and tissue response PBM. Ae. aegypti expresses multiple and unique ferritin light chain subunits. Ae. aegypti, the vector for Zika, Dengue, and yellow fever, requires iron for oogenesis that is transported and stored in ferritin; this vector expresses a second light chain ferritin subunit homologue unlike any other species in which ferritin has been studied to date.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
- Corresponding author, e-mail:
| | - Naren Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Pritesh Patel
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Janki Bhakta
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Lissette S Velasquez
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| | - Joy J Winzerling
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, the University of Arizona, Tucson, Arizona
| |
Collapse
|
43
|
Yu HZ, Zhang SZ, Ma Y, Fei DQ, Li B, Yang LA, Wang J, Li Z, Muhammad A, Xu JP. Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini. Int J Mol Sci 2017; 18:ijms18102126. [PMID: 29036914 PMCID: PMC5666808 DOI: 10.3390/ijms18102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ricini ferritin heavy chain subunit (ScFerHCH) was 1863 bp and encoded a protein of 231 amino acids with a deduced molecular weight of 25.89 kDa. Phylogenetic analysis revealed that ScFerHCH shared a high amino acid identity with the Bombyx mori and Danaus plexippus heavy chain subunits. Higher ScFerHCH expression levels were found in the silk gland, fat body and midgut of S. c. ricini by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Injection of Staphylococcus aureus and Pseudomonas aeruginosa was associated with an upregulation of ScFerHCH in the midgut, fat body and hemolymph, indicating that ScFerHCH may contribute to the host’s defense against invading pathogens. In addition, the anti-oxidation activity and iron-binding capacity of recombinant ScFerHCH protein were examined. Taken together, our results suggest that the ferritin heavy chain subunit from eri-silkworm may play critical roles not only in innate immune defense, but also in organismic iron homeostasis.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Azharuddin Muhammad
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
44
|
Sojka B, Kociołek D, Banski M, Borisova T, Pozdnyakova N, Pastukhov A, Borysov A, Dudarenko M, Podhorodecki A. Effects of surface functionalization of hydrophilic NaYF 4 nanocrystals doped with Eu 3+ on glutamate and GABA transport in brain synaptosomes. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2017; 19:275. [PMID: 28824289 PMCID: PMC5543196 DOI: 10.1007/s11051-017-3958-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Specific rare earth doped nanocrystals (NCs), a recent class of nanoparticles with fluorescent features, have great bioanalytical potential. Neuroactive properties of NaYF4 nanocrystals doped with Eu3+ were assessed based on the analysis of their effects on glutamate- and γ-aminobutyric acid (GABA) transport process in nerve terminals isolated from rat brain (synaptosomes). Two types of hydrophilic NCs were examined in this work: (i) coated by polyethylene glycol (PEG) and (ii) with OH groups at the surface. It was found that NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH within the concentration range of 0.5-3.5 and 0.5-1.5 mg/ml, respectively, did not influence Na+-dependent transporter-dependent l-[14C]glutamate and [3H]GABA uptake and the ambient level of the neurotransmitters in the synaptosomes. An increase in NaYF4:Eu3+-PEG and NaYF4:Eu3+-OH concentrations up to 7.5 and 3.5 mg/ml, respectively, led to the (1) attenuation of the initial velocity of uptake of l-[14C]glutamate and [3H]GABA and (2) elevation of ambient neurotransmitters in the suspension of nerve terminals. In the mentioned concentrations, nanocrystals did not influence acidification of synaptic vesicles that was shown with pH-sensitive fluorescent dye acridine orange, however, decreased the potential of the plasma membrane of synaptosomes. In comparison with other nanoparticles studied with similar methodological approach, NCs start to exhibit their effects on neurotransmitter transport at concentrations several times higher than those shown for carbon dots, detonation nanodiamonds and an iron storage protein ferritin, whose activity can be registered at 0.08, 0.5 and 0.08 mg/ml, respectively. Therefore, NCs can be considered lesser neurotoxic as compared to above nanoparticles.
Collapse
Affiliation(s)
- Bartlomiej Sojka
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Daria Kociołek
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mateusz Banski
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Natalia Pozdnyakova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Artem Pastukhov
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Arsenii Borysov
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Marina Dudarenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha str, Kiev, 01601 Ukraine
| | - Artur Podhorodecki
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
45
|
Cornell TA, Srivastava Y, Jauch R, Fan R, Orner BP. The Crystal Structure of a Maxi/Mini-Ferritin Chimera Reveals Guiding Principles for the Assembly of Protein Cages. Biochemistry 2017; 56:3894-3899. [PMID: 28682051 DOI: 10.1021/acs.biochem.7b00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cage proteins assemble into nanoscale structures with large central cavities. They play roles, including those as virus capsids and chaperones, and have been applied to drug delivery and nanomaterials. Furthermore, protein cages have been used as model systems to understand and design protein quaternary structure. Ferritins are ubiquitous protein cages that manage iron homeostasis and oxidative damage. Two ferritin subfamilies have strongly similar tertiary structure yet distinct quaternary structure: maxi-ferritins normally assemble into 24-meric, octahedral cages with C-terminal E-helices centered around 4-fold symmetry axes, and mini-ferritins are 12-meric, tetrahedral cages with 3-fold axes defined by C-termini lacking E-domains. To understand the role E-domains play in ferritin quaternary structure, we previously designed a chimera of a maxi-ferritin E-domain fused to the C-terminus of a mini-ferritin. The chimera is a 12-mer cage midway in size between those of the maxi- and mini-ferritin. The research described herein sets out to understand (a) whether the increase in size over a typical mini-ferritin is due to a frozen state where the E-domain is flipped out of the cage and (b) whether the symmetrical preference of the E-domain in the maxi-ferritin (4-fold axis) overrules the C-terminal preference in the mini-ferritin (3-fold axis). With a 1.99 Å resolution crystal structure, we determined that the chimera assembles into a tetrahedral cage that can be nearly superimposed with the parent mini-ferritin, and that the E-domains are flipped external to the cage at the 3-fold symmetry axes.
Collapse
Affiliation(s)
- Thomas A Cornell
- Department of Chemistry, King's College London , London, U.K.,Division of Chemistry and Biological Chemistry, Nanyang Technological University , Singapore
| | - Yogesh Srivastava
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou, China
| | - Ralf Jauch
- Genome Institute of Singapore , Singapore.,Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou, China
| | - Rongli Fan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University , Singapore
| | - Brendan P Orner
- Department of Chemistry, King's College London , London, U.K.,Division of Chemistry and Biological Chemistry, Nanyang Technological University , Singapore
| |
Collapse
|
46
|
Pontillo N, Ferraro G, Helliwell JR, Amoresano A, Merlino A. X-ray Structure of the Carboplatin-Loaded Apo-Ferritin Nanocage. ACS Med Chem Lett 2017; 8:433-437. [PMID: 28435532 DOI: 10.1021/acsmedchemlett.7b00025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
The second-generation Pt anticancer agent carboplatin (CBDCA) was encapsulated within the apo horse spleen ferritin (AFt) nanocage, and the X-ray structure of the drug-loaded protein was refined at 1.49 Å resolution. Two Pt binding sites, different from the one observed in the cisplatin-encapsulated AFt, were identified in Ft subunits by inspection of anomalous electron density maps at two wavelengths and difference Fourier electron density maps, which provide the necessary sensitivity to discriminate between Pt from CBDCA and Cd ions that are present in the crystallization conditions. Pt centers coordinate to the NE2 atom of His49 and to the NE2 atom of His132, both on the inner surface of the Ft nanocage.
Collapse
Affiliation(s)
- Nicola Pontillo
- Department
of Chemical Sciences, University of Naples Federico II, Complesso
Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples Federico II, Complesso
Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
| | - John R. Helliwell
- School
of Chemistry, Faculty of Engineering and Physical Sciences, University of Manchester, Brunswick Street, Manchester M13 9PL, England
| | - Angela Amoresano
- Department
of Chemical Sciences, University of Naples Federico II, Complesso
Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples Federico II, Complesso
Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli, Italy
- CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16, I-80126 Napoli, Italy
| |
Collapse
|
47
|
Chemistry at the protein-mineral interface in L-ferritin assists the assembly of a functional (μ 3-oxo)Tris[(μ 2-peroxo)] triiron(III) cluster. Proc Natl Acad Sci U S A 2017; 114:2580-2585. [PMID: 28202724 DOI: 10.1073/pnas.1614302114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
X-ray structures of homopolymeric L-ferritin obtained by freezing protein crystals at increasing exposure times to a ferrous solution showed the progressive formation of a triiron cluster on the inner cage surface of each subunit. After 60 min exposure, a fully assembled (μ3-oxo)Tris[(μ2-peroxo)(μ2-glutamato-κO:κO')](glutamato-κO)(diaquo)triiron(III) anionic cluster appears in human L-ferritin. Glu60, Glu61, and Glu64 provide the anchoring of the cluster to the protein cage. Glu57 shuttles incoming iron ions toward the cluster. We observed a similar metallocluster in horse spleen L-ferritin, indicating that it represents a common feature of mammalian L-ferritins. The structures suggest a mechanism for iron mineral formation at the protein interface. The functional significance of the observed patch of carboxylate side chains and resulting metallocluster for biomineralization emerges from the lower iron oxidation rate measured in the E60AE61AE64A variant of human L-ferritin, leading to the proposal that the observed metallocluster corresponds to the suggested, but yet unobserved, nucleation site of L-ferritin.
Collapse
|
48
|
Zheng N, Sun DD, Zou P, Jiang W. Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials. AAPS JOURNAL 2017; 19:619-631. [PMID: 28116676 DOI: 10.1208/s12248-017-0044-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022]
Abstract
In the past few decades, the development of medicine at the nanoscale has been applied to oral and parenteral dosage forms in a wide range of therapeutic areas to enhance drug delivery and reduce toxicity. An obvious response to these benefits is reflected in higher market shares of complex drug products containing nanomaterials than that of conventional formulations containing the same active ingredient. The surging market interest has encouraged the pharmaceutical industry to develop cost-effective generic versions of complex drug products based on nanotechnology when the associated patent and exclusivity on the reference products have expired. Due to their complex nature, nanotechnology-based drugs present unique challenges in determining equivalence standards between generic and innovator products. This manuscript attempts to provide the scientific rationales and regulatory considerations of key equivalence standards (e.g., in vivo studies and in vitro physicochemical characterization) for oral drugs containing nanomaterials, iron-carbohydrate complexes, liposomes, protein-bound drugs, nanotube-forming drugs, and nano emulsions. It also presents active research studies in bridging regulatory and scientific gaps for establishing equivalence of complex products containing nanomaterials. We hope that open communication among industry, academia, and regulatory agencies will accelerate the development and approval processes of generic complex products based on nanotechnology.
Collapse
Affiliation(s)
- Nan Zheng
- Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, USA
| | - Dajun D Sun
- Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, USA
| | - Peng Zou
- Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, USA
| | - Wenlei Jiang
- Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20993, USA.
| |
Collapse
|
49
|
Milto IV, Suhodolo IV, Prokopieva VD, Klimenteva TK. Molecular and Cellular Bases of Iron Metabolism in Humans. BIOCHEMISTRY (MOSCOW) 2017; 81:549-64. [PMID: 27301283 DOI: 10.1134/s0006297916060018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron is a microelement with the most completely studied biological functions. Its wide dissemination in nature and involvement in key metabolic pathways determine the great importance of this metal for uni- and multicellular organisms. The biological role of iron is characterized by its indispensability in cell respiration and various biochemical processes providing normal functioning of cells and organs of the human body. Iron also plays an important role in the generation of free radicals, which under different conditions can be useful or damaging to biomolecules and cells. In the literature, there are many reviews devoted to iron metabolism and its regulation in pro- and eukaryotes. Significant progress has been achieved recently in understanding molecular bases of iron metabolism. The purpose of this review is to systematize available data on mechanisms of iron assimilation, distribution, and elimination from the human body, as well as on its biological importance and on the major iron-containing proteins. The review summarizes recent ideas about iron metabolism. Special attention is paid to mechanisms of iron absorption in the small intestine and to interrelationships of cellular and extracellular pools of this metal in the human body.
Collapse
Affiliation(s)
- I V Milto
- Siberian State Medical University, Tomsk, 634050, Russia.
| | | | | | | |
Collapse
|
50
|
Si K, Ming T, Li Y, Qiu X, Chen L, Zhou J, Lu C, Su X, Li Y, Cheong LZ. Heavy metal detoxification by recombinant ferritin from Apostichopus japonicus. RSC Adv 2017. [DOI: 10.1039/c7ra06989h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ferritin fromApostichopus japonicasshowed better ability in heavy metal detoxification than horse spleen ferritin.
Collapse
Affiliation(s)
- Kaixue Si
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Tinghong Ming
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Yanyan Li
- Department of Food Science
- Cornell University
- New York
- USA
| | - Xiaoting Qiu
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Liping Chen
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Jun Zhou
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Chenyang Lu
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Xiurong Su
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | - Ye Li
- School of Marine Science
- Ningbo University
- Ningbo
- China
| | | |
Collapse
|