1
|
Birmpilis AI, Karachaliou CE, Samara P, Ioannou K, Selemenakis P, Kostopoulos IV, Kavrochorianou N, Kalbacher H, Livaniou E, Haralambous S, Kotsinas A, Farzaneh F, Trougakos IP, Voelter W, Dimopoulos MA, Bamias A, Tsitsilonis O. Antitumor Reactive T-Cell Responses Are Enhanced In Vivo by DAMP Prothymosin Alpha and Its C-Terminal Decapeptide. Cancers (Basel) 2019; 11:cancers11111764. [PMID: 31717548 PMCID: PMC6896021 DOI: 10.3390/cancers11111764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Prothymosin α (proTα) and its C-terminal decapeptide proTα(100-109) were shown to pleiotropically enhance innate and adaptive immune responses. Their activities have been broadly studied in vitro, focusing primarily on the restoration of the deficient immunoreactivity of cancer patients' leukocytes. Previously, we showed that proTα and proTα(100-109) act as danger-associated molecular patterns (DAMPs), ligate Toll-like receptor-4, signal through TRIF- and MyD88-dependent pathways, promote the maturation of dendritic cells and elicit T-helper type 1 (Th1) immune responses in vitro, leading to the optimal priming of tumor antigen-reactive T-cell functions. Herein, we assessed their activity in a preclinical melanoma model. Immunocompetent mice bearing B16.F1 tumors were treated with two cycles of proTα or proTα(100-109) together with a B16.F1-derived peptide vaccine. Coadministration of proTα or proTα(100-109) and the peptide vaccine suppressed melanoma-cell proliferation, as evidenced by reduced tumor-growth rates. Higher melanoma infiltration by CD3+ T cells was observed, whereas ex vivo analysis of mouse total spleen cells verified the in vivo induction of melanoma-reactive cytotoxic responses. Additionally, increased levels of proinflammatory and Th1-type cytokines were detected in mouse serum. We propose that, in the presence of tumor antigens, DAMPs proTα and proTα(100-109) induce Th1-biased immune responses in vivo. Their adjuvant ability to orchestrate antitumor immunoreactivities can eventually be exploited therapeutically in humans.
Collapse
Affiliation(s)
- Anastasios I. Birmpilis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Chrysoula-Evangelia Karachaliou
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, Agia Paraskevi, 15310 Athens, Greece; (C.-E.K.); (E.L.)
| | - Pinelopi Samara
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Kyriaki Ioannou
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
- King’s College London, Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK;
| | - Platon Selemenakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece; (P.S.); (A.K.)
| | - Ioannis V. Kostopoulos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Nadia Kavrochorianou
- Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.K.); (S.H.)
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen. Germany; (H.K.); (W.V.)
| | - Evangelia Livaniou
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, NCSR “Demokritos”, Agia Paraskevi, 15310 Athens, Greece; (C.-E.K.); (E.L.)
| | - Sylva Haralambous
- Inflammation Research Group, Transgenic Technology Laboratory, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece; (N.K.); (S.H.)
| | - Athanasios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece; (P.S.); (A.K.)
| | - Farzin Farzaneh
- King’s College London, Rayne Institute, 123 Coldharbour Lane, SE5 9NU London, UK;
| | - Ioannis P. Trougakos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
| | - Wolfgang Voelter
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen. Germany; (H.K.); (W.V.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-A.D.); (A.B.)
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-A.D.); (A.B.)
| | - Ourania Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (A.I.B.); (P.S.); (K.I.); (I.V.K.); (I.P.T.)
- Correspondence: ; Tel.: +30-210-727-4215; Fax: +30-210-727-4635
| |
Collapse
|
2
|
Prothymosin Alpha and Immune Responses: Are We Close to Potential Clinical Applications? VITAMINS AND HORMONES 2016; 102:179-207. [PMID: 27450735 PMCID: PMC7126549 DOI: 10.1016/bs.vh.2016.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The thymus gland produces soluble molecules, which mediate significant immune functions. The first biologically active thymic extract was thymosin fraction V, the fractionation of which led to the isolation of a series of immunoactive polypeptides, including prothymosin alpha (proTα). ProTα displays a dual role, intracellularly as a survival and proliferation mediator and extracellularly as a biological response modifier. Accordingly, inside the cell, proTα is implicated in crucial intracellular circuits and may serve as a surrogate tumor biomarker, but when found outside the cell, it could be used as a therapeutic agent for treating immune system deficiencies. In fact, proTα possesses pleiotropic adjuvant activity and a series of immunomodulatory effects (eg, anticancer, antiviral, neuroprotective, cardioprotective). Moreover, several reports suggest that the variable activity of proTα might be exerted through different parts of the molecule. We first reported that the main immunoactive region of proTα is the carboxy-terminal decapeptide proTα(100-109). In conjunction with data from others, we also revealed that proTα and proTα(100-109) signal through Toll-like receptor 4. Although their precise molecular mechanism of action is yet not fully elucidated, proTα and proTα(100-109) are viewed as candidate adjuvants for cancer immunotherapy. Here, we present a historical overview on the discovery and isolation of thymosins with emphasis on proTα and data on some immune-related new activities of the polypeptide and smaller immunostimulatory peptides thereof. Finally, we propose a compiled scenario on proTα's mode of action, which could eventually contribute to its clinical application.
Collapse
|
3
|
Baxevanis CN, Voutsas IF, Tsitsilonis OE. Toll-like receptor agonists: current status and future perspective on their utility as adjuvants in improving anticancer vaccination strategies. Immunotherapy 2013; 5:497-511. [PMID: 23638745 DOI: 10.2217/imt.13.24] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor (TLR) agonists possess remarkable properties, particularly with regard to dendritic cell activation, promoting Th1-type cytokine production and optimizing cytotoxic T-cell responses. Preclinical and clinical studies conducted to date show that TLR agonists can improve currently applied anticancer vaccination protocols. Although these have resulted in the US FDA approval of three TLR agonists for use in humans, their abundant application encounters limitations, principally due to dose-limiting toxicity evoking from systemic cytokine production. Here, using selected examples of clinical studies, we provide a concise review regarding the knowledge acquired thus far on the adjuvant use of TLR agonists as cancer vaccine components. We also provide evidence on the exploitation of a novel TLR agonist, prothymosin-α, which enhances the efficacy of tumor-reactive effectors without causing severe adverse effects.
Collapse
|
4
|
Ioannou K, Derhovanessian E, Tsakiri E, Samara P, Kalbacher H, Voelter W, Trougakos IP, Pawelec G, Tsitsilonis OE. Prothymosin α and a prothymosin α-derived peptide enhance T(H)1-type immune responses against defined HER-2/neu epitopes. BMC Immunol 2013; 14:43. [PMID: 24053720 PMCID: PMC3852324 DOI: 10.1186/1471-2172-14-43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/17/2013] [Indexed: 12/31/2022] Open
Abstract
Background Active cancer immunotherapies are beginning to yield clinical benefit, especially those using peptide-pulsed dendritic cells (DCs). Different adjuvants, including Toll-like receptor (TLR) agonists, commonly co-administered to cancer patients as part of a DC-based vaccine, are being widely tested in the clinical setting. However, endogenous DCs in tumor-bearing individuals are often dysfunctional, suggesting that ex vivo educated DCs might be superior inducers of anti-tumor immune responses. We have previously shown that prothymosin alpha (proTα) and its immunoreactive decapeptide proTα(100–109) induce the maturation of human DCs in vitro. The aim of this study was to investigate whether proTα- or proTα(100–109)-matured DCs are functionally competent and to provide preliminary evidence for the mode of action of these agents. Results Monocyte-derived DCs matured in vitro with proTα or proTα(100–109) express co-stimulatory molecules and secrete pro-inflammatory cytokines. ProTα- and proTα(100–109)-matured DCs pulsed with HER-2/neu peptides induce TH1-type immune responses, prime autologous naïve CD8-positive (+) T cells to lyse targets expressing the HER-2/neu epitopes and to express a polyfunctional profile, and stimulate CD4+ T cell proliferation in an HER-2/neu peptide-dependent manner. DC maturation induced by proTα and proTα(100–109) is likely mediated via TLR-4, as shown by assessing TLR-4 surface expression and the levels of the intracellular adaptor molecules TIRAP, MyD88 and TRIF. Conclusions Our results suggest that proTα and proTα(100–109) induce both the maturation and the T cell stimulatory capacity of DCs. Although further studies are needed, evidence for a possible proTα and proTα(100–109) interaction with TLR-4 is provided. The initial hypothesis that proTα and the proTα-derived immunoactive decapeptide act as “alarmins”, provides a rationale for their eventual use as adjuvants in DC-based anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Kyriaki Ioannou
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Development of an ELISA for the quantification of the C-terminal decapeptide prothymosin α(100-109) in sera of mice infected with bacteria. J Immunol Methods 2013; 395:54-62. [PMID: 23831611 DOI: 10.1016/j.jim.2013.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 11/20/2022]
Abstract
Apoptosis is characterized by a series of discrete biochemical events, among which is the truncation of the nuclear polypeptide prothymosin alpha (proTα) by activated caspase-3. This early apoptotic event results in the generation of a carboxy-terminal fragment of proTα, the immunoactive decapeptide proTα(100-109). We hypothesized that the detection of increased levels of proTα(100-109) in serum can be directly correlated with the induction of massive cell apoptosis, resulting from a severe bacterial infection. Thus, using high-affinity-purified polyclonal antibodies (Abs), raised in rabbits and a prototype antibody-capture system, we developed a highly sensitive and specific competitive ELISA for proTα(100-109). The sensitivity of the ELISA (0.1ng/mL to 10μg/mL) is acceptable for the quantification of the decapeptide in serum samples. To assess our initial hypothesis, we determined the concentration of proTα(100-109) in the sera of mice infected with the bacterium Streptococcus pyogenes over the course of the infection. We show that serum concentration of proTα(100-109) was marginal to undetectable before infection, increased over time and peaked at 72h postinfection. In silico analysis suggests that the Abs generated are unlikely to cross-react with any other unrelated mouse or bacterial protein. Further validation of our ELISA using serum samples from humans, infected with bacteria, may provide a useful tool to differentiate the causative agent of a potentially lethal septic infection.
Collapse
|
6
|
Ioannou K, Samara P, Livaniou E, Derhovanessian E, Tsitsilonis OE. Prothymosin alpha: a ubiquitous polypeptide with potential use in cancer diagnosis and therapy. Cancer Immunol Immunother 2012; 61:599-614. [PMID: 22366887 PMCID: PMC11029552 DOI: 10.1007/s00262-012-1222-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/10/2012] [Indexed: 01/06/2023]
Abstract
The thymus is a central lymphoid organ with crucial role in generating T cells and maintaining homeostasis of the immune system. More than 30 peptides, initially referred to as "thymic hormones," are produced by this gland. Although the majority of them have not been proven to be thymus-specific, thymic peptides comprise an effective group of regulators, mediating important immune functions. Thymosin fraction five (TFV) was the first thymic extract shown to stimulate lymphocyte proliferation and differentiation. Subsequent fractionation of TFV led to the isolation and characterization of a series of immunoactive peptides/polypeptides, members of the thymosin family. Extensive research on prothymosin α (proTα) and thymosin α1 (Tα1) showed that they are of clinical significance and potential medical use. They may serve as molecular markers for cancer prognosis and/or as therapeutic agents for treating immunodeficiencies, autoimmune diseases and malignancies. Although the molecular mechanisms underlying their effect are yet not fully elucidated, proTα and Tα1 could be considered as candidates for cancer immunotherapy. In this review, we will focus in principle on the eventual clinical utility of proTα, both as a tumor biomarker and in triggering anticancer immune responses. Considering the experience acquired via the use of Tα1 to treat cancer patients, we will also discuss potential approaches for the future introduction of proTα into the clinical setting.
Collapse
Affiliation(s)
- Kyriaki Ioannou
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Pinelopi Samara
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Radioisotopes and Radiodiagnostic Products, National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou and Neapoleos, Aghia Paraskevi, 15310 Athens, Greece
| | - Evelyna Derhovanessian
- Tübingen Ageing and Tumour Immunology Group, Center for Medical Research, University of Tübingen Medical School, Waldhörnlestr. 22, 72072 Tübingen, Germany
| | - Ourania E. Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784 Athens, Greece
| |
Collapse
|
7
|
Skopeliti M, Iconomidou VA, Derhovanessian E, Pawelec G, Voelter W, Kalbacher H, Hamodrakas SJ, Tsitsilonis OE. Prothymosin α immunoactive carboxyl-terminal peptide TKKQKTDEDD stimulates lymphocyte reactions, induces dendritic cell maturation and adopts a β-sheet conformation in a sequence-specific manner. Mol Immunol 2009; 46:784-92. [DOI: 10.1016/j.molimm.2008.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
|
8
|
Skopeliti M, Voutsas IF, Klimentzou P, Tsiatas ML, Beck A, Bamias A, Moraki M, Livaniou E, Neagu M, Voelter W, Tsitsilonis OE. The immunologically active site of prothymosin alpha is located at the carboxy-terminus of the polypeptide. Evaluation of its in vitro effects in cancer patients. Cancer Immunol Immunother 2006; 55:1247-57. [PMID: 16453152 PMCID: PMC11030181 DOI: 10.1007/s00262-005-0108-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
Prothymosin alpha (proTalpha) is a 109 amino acid long polypeptide presenting distinct immunoenhancing activity in vitro and in vivo. Recent reports suggest that in apoptotic cells, proTalpha is cleaved by caspases at its carboxy(C)-terminus generating potentially bioactive fragments. In this study, we identified the peptide segment of proTalpha presenting maximum immunomodulatory activity. Calf thymus proTalpha was trypsinised, and the five fragments produced (spanning residues 1-14, 21-30, 31-87, 89-102 and 103-109) were tested for their ability to stimulate healthy donor- and cancer patient-derived peripheral blood mononuclear cell (PBMC) proliferation in autologous mixed lymphocyte reaction (AMLR), natural killer and lymphokine-activated killer cell activity, intracellular production of perforin, upregulation of adhesion molecules and CD25 expression. ProTalpha(89-102) and proTalpha(103-109) significantly fortified healthy donor-lymphocytes' immune responses to levels comparable to those induced by intact proTalpha. These effects were more pronounced in cancer patients, where peptides proTalpha(89-102) and proTalpha(103-109) partly, however significantly, restored the depressed AMLR and cytolytic ability of PBMC, by simulating the biological activity exerted by intact proTalpha. ProTalpha(1-14), proTalpha(21-30) and proTalpha(31-87) marginally upregulated lymphocyte activation. This is the first report showing that proTalpha's immunomodulating activity can be substituted by its C-terminal peptide(s). Whether generation and externalization of such immunoactive proTalpha fragments occurs in vivo, needs further investigation. However, if these peptides can trigger immune responses, they may eventually be used therapeutically to improve some PBMC functions of cancer patients.
Collapse
Affiliation(s)
- Margarita Skopeliti
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784, Ilissia, Athens, Greece
| | - Ioannis F. Voutsas
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784, Ilissia, Athens, Greece
| | | | - Marinos L. Tsiatas
- Department of Clinical Therapeutics, “Alexandra” Hospital, School of Medicine, University of Athens, Athens, Greece
| | - Alexander Beck
- Central Laboratory, Department of Internal Medicine IV, University Clinic of Tuebingen, Tuebingen, Germany
| | - Aristotelis Bamias
- Department of Clinical Therapeutics, “Alexandra” Hospital, School of Medicine, University of Athens, Athens, Greece
| | - Maria Moraki
- Blood Transfusion Unit, “St. Savas” Cancer Hospital, Athens, Greece
| | | | - Monica Neagu
- Immunology Laboratory, Victor Babes National Research Institute, Bucharest, Romania
| | - Wolfgang Voelter
- Biochemistry Institute, University of Tuebingen, Tuebingen, Germany
| | - Ourania E. Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Panepistimiopolis, 15784, Ilissia, Athens, Greece
| |
Collapse
|
9
|
Boysen P, Olsen I, Berg I, Kulberg S, Johansen GM, Storset AK. Bovine CD2-/NKp46+ cells are fully functional natural killer cells with a high activation status. BMC Immunol 2006; 7:10. [PMID: 16643649 PMCID: PMC1482717 DOI: 10.1186/1471-2172-7-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/27/2006] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Natural killer (NK) cells in the cow have been elusive due to the lack of specific NK cell markers, and various criteria including a CD3-/CD2+ phenotype have been used to identify such cells. The recent characterization of the NK-specific NKp46 receptor has allowed a more precise definition of bovine NK cells. NK cells are known as a heterogeneous cell group, and we here report the first functional study of bovine NK cell subsets, based on the expression of CD2. RESULTS Bovine CD2- NK cells, a minor subset in blood, proliferated more rapidly in the presence of IL-2, dominating the cultures after a few days. Grown separately with IL-2, CD2- and CD2+ NK cell subsets did not change CD2 expression for at least two weeks. In blood, CD2- NK cells showed a higher expression of CD44 and CD25, consistent with a high activation status. A higher proportion of CD2- NK cells had intracellular interferon-gamma in the cytoplasm in response to IL-2 and IL-12 stimulation, and the CD2- subset secreted more interferon-gamma when cultured separately. Cytotoxic capacity was similar in both subsets, and both carried transcripts for the NK cell receptors KIR, CD16, CD94 and KLRJ. Ligation by one out of two tested anti-CD2 monoclonal antibodies could trigger interferon-gamma production from NK cells, but neither of them could alter cytotoxicity. CONCLUSION These results provide evidence that bovine CD2- as well as CD2+ cells of the NKp46+ phenotype are fully functional NK cells, the CD2- subset showing signs of being more activated in the circulation.
Collapse
Affiliation(s)
- Preben Boysen
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O.Box 8146 Dep., N-0033 Oslo, Norway
| | - Ingrid Olsen
- Department of Animal Health, National Veterinary Institute, P.O.Box 8156 Dep., N-0033 Oslo, Norway
| | - Ingvild Berg
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O.Box 8146 Dep., N-0033 Oslo, Norway
| | - Siri Kulberg
- Department of Animal Health, National Veterinary Institute, P.O.Box 8156 Dep., N-0033 Oslo, Norway
| | - Grethe M Johansen
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O.Box 8146 Dep., N-0033 Oslo, Norway
| | - Anne K Storset
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O.Box 8146 Dep., N-0033 Oslo, Norway
| |
Collapse
|
10
|
Salgado FJ, Piñeiro A, Canda-Sánchez A, Lojo J, Nogueira M. Prothymosin alpha-receptor associates with lipid rafts in PHA-stimulated lymphocytes. Mol Membr Biol 2005; 22:163-76. [PMID: 16096260 DOI: 10.1080/09687860500063506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lipid rafts are specialized plasma membrane microdomains in which glycosphingolipids and cholesterol are major structural components. Their relative insolubility to nonionic detergents is the most widely used method to purify these structures. Several signalling proteins are associated with these microdomains in T lymphocytes, including receptors for growth factors and cytokines. ProTalpha is a highly conserved and widely distributed protein whose physiological functions remain elusive. In previous works we identified, by means of affinity cross-linking, affinity chromatography and fluorescence microscopy, a set of binding proteins for ProTalpha in human lymphoblasts. Now, this work goes deeply in that ProTalpha receptor description revealing, by different experimental approaches, its presence in lipid rafts. Moreover, our results fit a model in which a tyrosine phosphorylation signalling cascade confined to rafts is initiated upon ProTalpha receptor recognition, which represents an important and promising finding in the research for elucidating the molecular mechanisms underlying the immunomodulatory functions of ProTalpha.
Collapse
Affiliation(s)
- Francisco J Salgado
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Campus Sur s/n, 15782 Santiago de Compostela, A Coruña, Spain
| | | | | | | | | |
Collapse
|
11
|
Lima M, Almeida J, dos Anjos Teixeira M, Queirós ML, Justiça B, Orfão A. The "ex vivo" patterns of CD2/CD7, CD57/CD11c, CD38/CD11b, CD45RA/CD45RO, and CD11a/HLA-DR expression identify acute/early and chronic/late NK-cell activation states. Blood Cells Mol Dis 2002; 28:181-90. [PMID: 12064914 DOI: 10.1006/bcmd.2002.0506] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To define a dynamic sequence of phenotypic changes related to early and late phases of NK-cell activation, we have analyzed by four-color flow cytometry the immunophenotype of normal blood NK-cells from 12 healthy individuals and compared it with those from 15 patients with acute viral infections and 15 patients with either chronic infections or tumors. Although a great interindividual variability was found, nonstimulated CD56(+) NK-cells, present in normal blood samples, usually were CD2(-/+lo), CD7(+hi), HLA-DR(-), CD11b(+), CD38(+), CD11a(+hi), CD45RA(+hi), and CD45RO(-), the expression of CD11c and CD57 being heterogeneous and variable. Recently activated NK-cells, herein corresponding to NK-cells from patients with acute viral infections, displayed a pattern of expression of CD2/CD7 similar to that referred to above, but they typically showed higher levels of CD11a, CD38, and HLA-DR, as well as downregulation of CD11b and CD45RA, accompanied in some cases by coexpression of CD45RO; in addition, these NK-cells were CD11c(+) and CD57(-/+lo). Late-activated NK-cells, represented by NK-cells present in patients with chronic infections and tumors, converted into a CD2(+hi)/CD7(-/+lo) immunophenotype and expressed heterogeneously low levels of CD38 and CD11b; moreover, they were CD57(+) and CD11c(-/+). At this stage, most NK-cells had already reverted into their original CD45RA(+)/CD45RO(-)/HLA-DR(-) phenotype. In summary, we show that the patterns of expression of CD2/CD7, CD57/CD11c, CD38/CD11b, CD45RA/CD45RO, and CD11a/HLA-DR may help us to define the immunophenotypic profiles associated with early and late NK-cell activation phases in 'in vivo' models.
Collapse
Affiliation(s)
- Margarida Lima
- Service of Clinical Hematology, Hospital Geral de Santo António, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
12
|
Piñeiro A, Begoña Bugia M, Pilar Arias M, Cordero OJ, Nogueira M. Identification of receptors for prothymosin alpha on human lymphocytes. Biol Chem 2001; 382:1473-82. [PMID: 11727831 DOI: 10.1515/bc.2001.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prothymosin alpha (ProTalpha) is a highly conserved and widely distributed protein whose physiological functions remain elusive. In previous work we identified high and low affinity-binding sites for ProTalpha in lymphoid cells. Here we demonstrate, by affinity cross-linking and affinity chromatography, the existence of three binding partners (31, 29, and 19 kDa) for ProTalpha in the membrane of PHA-activated lymphoblasts. These surface molecules possess the expected affinity and specificity for a ProTalpha receptor. Examination of the expression of this complex of molecules by flow cytometry reveals that they bind ProTalpha in a specific and saturable way. In addition, the distribution of the receptor on the cell surface was studied by fluorescence microscopy; a cap-like structure at one of the poles of the cells was identified. These results represent a new and promising approach in the research on ProTalpha, opening the way toward the understanding of the molecular mechanism of action of this protein.
Collapse
Affiliation(s)
- A Piñeiro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
13
|
Abstract
Prothymosin alpha (ProTalpha) is a highly acidic and small protein of only 111 amino acids with an unusual primary structure. One would expected it to play an essential role in the organism, as it has a wide distribution and is high conserved among mammals, yet its exact function remains elusive. Despite the number of effects described for ProTalpha, intracellular and extracellular, none are accepted as its physiological role. Furthermore, many other aspects of its biology still remain obscure. In this review, we discuss the structural properties, location, gene family, functions and immunomodulatory activities of and cellular receptors for ProTalpha. These topics are addressed in an attempt to reconcile opposing outlooks while emphasizing those points where scant investigations do exist. We have also re-evaluated some previous results in light of the structural properties of ProTalpha and have found that molecular mimetism could be the underlying basis. This molecular mimicry hypothesis provides a clue that must not be overlooked for a realistic appraisal of future results.
Collapse
Affiliation(s)
- A Piñeiro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela. 15706, Santiago de Compostela, Spain
| | | | | |
Collapse
|
14
|
Dumont C, Déas O, Mollereau B, Hebib C, Giovino-Barry V, Bernard A, Hirsch F, Charpentier B, Senik A. Potent Apoptotic Signaling and Subsequent Unresponsiveness Induced by a Single CD2 mAb (BTI-322) in Activated Human Peripheral T Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.8.3797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Manipulation of CD2 molecules with CD2 mAb pairs has been shown to deliver apoptotic signals to activated mature T cells. We show that BTI-322, a CD2 mAb directed at a peculiar epitope of CD2, can trigger on its own the apoptotic death of IL-2-activated peripheral T cells and of OKT3-stimulated T cells, contrasting in this respect with a series of other mouse or rat CD2 mAb. F(ab′)2 fragments were as potent as the whole Ab. BTI-322-induced apoptosis proceeded in a few hours and was independent of the Fas/Fas ligand system. Less than 5 ng/ml of BTI-322, added at the begining of culture, were able to eliminate within 4 days most CD3+ cells from OKT3- and IL-2-stimulated lymphocytes, the only cells remaining being CD16+CD2− NK cells. T cell proliferative responses induced by a mitogenic CD2 mAb pair or by PHA-P (which mainly binds to CD2) were not inhibited by BTI-322. In this case, the apoptotic effect was successfully counteracted by simultaneous enhancement of T cell divisions. Thus, the killing effect of BTI-322 was most effective when T cells were exclusively stimulated through the CD3/TCR complex. Apoptosis of the responding T cells may explain why T cells recovered from a primary MLC performed in the presence of BTI-322 responded to third party cells but not to the primary stimulatory cells. These data constitute the rational basis for the use of BTI-322 for inducing tolerance in human allotransplantation.
Collapse
Affiliation(s)
- Céline Dumont
- *Centre National de Recherche Scientifique, UPR 420, Villejuif, France
| | - Olivier Déas
- *Centre National de Recherche Scientifique, UPR 420, Villejuif, France
| | | | - Chafika Hebib
- *Centre National de Recherche Scientifique, UPR 420, Villejuif, France
| | | | - Alain Bernard
- †Institut National de la Santé et de la Recherche Médicale, U343, Hôpital de l’Archet, Nice, France; and
| | - François Hirsch
- *Centre National de Recherche Scientifique, UPR 420, Villejuif, France
| | | | - Anna Senik
- *Centre National de Recherche Scientifique, UPR 420, Villejuif, France
| |
Collapse
|
15
|
Cordero OJ, Sarandeses CS, Nogueira M. Binding of 125I-prothymosin alpha to lymphoblasts through the non-thymosin alpha 1 sequence. Life Sci 1996; 58:1757-70. [PMID: 8637400 DOI: 10.1016/0024-3205(96)00157-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The important immunological activities of Thymosin alpha 1 (T alpha 1), a peptide derived from the thymus, led to its use in combination therapies in cancer patients. Prothymosin alpha (ProT alpha) is a highly acidic polypeptide, first isolated as the putative precursor of T alpha 1. However ProT alpha is now known to be more immunoreactive than T alpha 1 in certain in vivo and in vitro assays. Recent results indicate that ProT alpha may be useful to design future therapeutic interventions in cancer patients if the mechanisms underlying these effects are puzzled out. With this in mind, we radiolabeled ProT alpha to obtain a high specific activity and a high biological activity for 125I-ProT alpha. Moreover, we also obtained autoantibodies exhibiting high titers and an unique specificity for anti-ProT alpha and anti-T alpha 1. With both tools we studied the presence of binding sites for ProT alpha on the surface of lymphoblast cells. We conclude that ProT alpha binds through the non-T alpha 1 sequence.
Collapse
Affiliation(s)
- O J Cordero
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|