1
|
Caro-Ramírez JY, Bazán LO, Piro OE, Echeverría GA, Jori K, Mizrahi M, Franca CA, Lambrisca ML, Bustos JA, Laino CH, Varcalcel M, Salado C, Naso LG, Williams PAM, Ferrer EG. Exploring Zn(II)-Acetyl l-carnitine complex for simultaneous management of depression, chronic pain, and neuroprotection. J Inorg Biochem 2025; 267:112857. [PMID: 39987894 DOI: 10.1016/j.jinorgbio.2025.112857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Acetyl-l-carnitine (ALC) is synthesized in the brain, liver, and kidneys and plays crucial roles in energy metabolism, acetylcholine production, protein synthesis, and neuronal protection, contributing to its antidepressant and neuroprotective properties. Zinc, a vital biometal, is essential for depression and neuroprotection, exhibiting antidepressive effects alone or combined with classical antidepressants. The pharmacological benefits of metal coordination complexes often result from synergistic or additive effects. In this study, we present a novel multifunctional zinc complex, Zn(ALC)Cl2(H2O), which crystallizes in the monoclinic chiral space group P21, featuring a distorted tetrahedral Zn(II) environment. This new compound demonstrates significantly higher antidepressant activity, reducing immobility in the forced swimming test by 54 % compared to commercial ALC. Additionally, it exhibits in vivo antinociceptive properties, increases latency time, and proves effective in a diabetic neuropathy model by preventing the glucose-induced decrease in intracellular GSH levels. In vitro studies indicate that the complex can cross the blood-brain barrier and offer neuroprotection against glutamate-induced excitotoxicity and oxygen-glucose deprivation, with a drug classification of 10 versus 5 for ALC. Furthermore, under astrocytosis conditions, the Zn complex neutralizes the toxic effects of TGFβ-treated astrocytes. These findings highlight Zn(ALC)Cl2(H2O) as a promising candidate for treating depression and neurodegenerative diseases.
Collapse
Affiliation(s)
- Janetsi Y Caro-Ramírez
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962, (B1900AVV), 1900 La Plata, Argentina
| | - Leandro O Bazán
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962, (B1900AVV), 1900 La Plata, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Khalil Jori
- INIFTA. Fac. de Cs. Exactas, Universidad Nacional de La Plata - CONICET Diagonal, 113 y Calle 64, 1900 La Plata, Buenos Aires, Argentina
| | - Martín Mizrahi
- INIFTA. Fac. de Cs. Exactas, Universidad Nacional de La Plata - CONICET Diagonal, 113 y Calle 64, 1900 La Plata, Buenos Aires, Argentina
| | - Carlos A Franca
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962, (B1900AVV), 1900 La Plata, Argentina
| | - María Luz Lambrisca
- Instituto de Biotecnología del CENIIT-UNLaR (Centro de Investigación e Innovación Tecnológica), Av Luis Vernet y Apostol Felipe, 5300, La Rioja, Argentina
| | - Joaquín A Bustos
- Instituto de Biotecnología del CENIIT-UNLaR (Centro de Investigación e Innovación Tecnológica), Av Luis Vernet y Apostol Felipe, 5300, La Rioja, Argentina
| | - Carlos H Laino
- Instituto de Biotecnología del CENIIT-UNLaR (Centro de Investigación e Innovación Tecnológica), Av Luis Vernet y Apostol Felipe, 5300, La Rioja, Argentina
| | - María Varcalcel
- Innoprot SL, Edificio 502- P1- Parque Tecnológico, 48160 Derio, Spain
| | - Clarisa Salado
- Innoprot SL, Edificio 502- P1- Parque Tecnológico, 48160 Derio, Spain
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962, (B1900AVV), 1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962, (B1900AVV), 1900 La Plata, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP- Asoc CICPBA)-Departamento de Química- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 entre 60 y 64, C.C.962, (B1900AVV), 1900 La Plata, Argentina.
| |
Collapse
|
2
|
Ait Tayeb AEK, Colle R, El-Asmar K, Chappell K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Plasma acetyl-l-carnitine and l-carnitine in major depressive episodes: a case-control study before and after treatment. Psychol Med 2023; 53:2307-2316. [PMID: 35115069 DOI: 10.1017/s003329172100413x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is the main cause of disability worldwide, its outcome is poor, and its underlying mechanisms deserve a better understanding. Recently, peripheral acetyl-l-carnitine (ALC) has been shown to be lower in patients with major depressive episodes (MDEs) than in controls. l-Carnitine is involved in mitochondrial function and ALC is its short-chain acetyl-ester. Our first aim was to compare the plasma levels of l-carnitine and ALC, and the l-carnitine/ALC ratio in patients with a current MDE and healthy controls (HCs). Our second aim was to assess their changes after antidepressant treatment. METHODS l-Carnitine and ALC levels and the carnitine/ALC ratio were measured in 460 patients with an MDE in a context of MDD and in 893 HCs. Depressed patients were re-assessed after 3 and 6 months of antidepressant treatment for biology and clinical outcome. RESULTS As compared to HC, depressed patients had lower ALC levels (p < 0.00001), higher l-carnitine levels (p < 0.00001) and higher l-carnitine/ALC ratios (p < 0.00001). ALC levels increased [coefficient: 0.18; 95% confidence interval (CI) 0.12-0.24; p < 0.00001], and l-carnitine levels (coefficient: -0.58; 95% CI -0.75 to -0.41; p < 0.00001) and l-carnitine/ALC ratios (coefficient: -0.41; 95% CI -0.47 to -0.34; p < 0.00001), decreased after treatment. These parameters were completely restored after 6 months of antidepressant. Moreover, the baseline l-carnitine/ALC ratio predicted remission after 3 months of treatment (odds ratio = 1.14; 95% CI 1.03-1.27; p = 0.015). CONCLUSIONS Our data suggest a decreased mitochondrial metabolism of l-carnitine into ALC during MDE. This decreased mitochondrial metabolism is restored after a 6-month antidepressant treatment. Moreover, the magnitude of mitochondrial dysfunction may predict remission after 3 months of antidepressant treatment. New strategies targeting mitochondria should be explored to improve treatments of MDD.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
| | - Cécile Acquaviva-Bourdain
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM, Faculté de Pharmacie, Univ Paris-Saclay, Châtenay-Malabry, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Centre de Recherche Clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre F-94275, France
| |
Collapse
|
3
|
Latham LE, Wang C, Patterson TA, Slikker W, Liu F. Neuroprotective Effects of Carnitine and Its Potential Application to Ameliorate Neurotoxicity. Chem Res Toxicol 2021; 34:1208-1222. [PMID: 33570912 DOI: 10.1021/acs.chemrestox.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carnitine is an essential metabolite that is absorbed from the diet and synthesized in the kidney, liver, and brain. It ferries fatty acids across the mitochondrial membrane to undergo β-oxidation. Carnitine has been studied as a therapy or protective agent for many neurological diseases and neurotoxicity (e.g., prolonged anesthetic exposure-induced developmental neurotoxicity in preclinical models). Preclinical and clinical data support the notion that carnitine or acetyl carnitine may improve a patient's quality of life through increased mitochondrial respiration, release of neurotransmitters, and global gene expression changes, showing the potential of carnitine beyond its approved use to treat primary and secondary carnitine deficiency. In this review, we summarize the beneficial effects of carnitine or acetyl carnitine on the central nervous system, highlighting protective effects against neurotoxicity-induced damage caused by various chemicals and encouraging a thorough evaluation of carnitine use as a therapy for patients suffering from neurotoxicant exposure.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Tucker A Patterson
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - William Slikker
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| |
Collapse
|
4
|
Cherix A, Larrieu T, Grosse J, Rodrigues J, McEwen B, Nasca C, Gruetter R, Sandi C. Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine. eLife 2020; 9:50631. [PMID: 31922486 PMCID: PMC6970538 DOI: 10.7554/elife.50631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that hierarchical status provides vulnerability to develop stress-induced depression. Energy metabolic changes in the nucleus accumbens (NAc) were recently related to hierarchical status and vulnerability to develop depression-like behavior. Acetyl-L-carnitine (LAC), a mitochondria-boosting supplement, has shown promising antidepressant-like effects opening therapeutic opportunities for restoring energy balance in depressed patients. We investigated the metabolic impact in the NAc of antidepressant LAC treatment in chronically-stressed mice using 1H-magnetic resonance spectroscopy (1H-MRS). High rank, but not low rank, mice, as assessed with the tube test, showed behavioral vulnerability to stress, supporting a higher susceptibility of high social rank mice to develop depressive-like behaviors. High rank mice also showed reduced levels of several energy-related metabolites in the NAc that were counteracted by LAC treatment. Therefore, we reveal a metabolic signature in the NAc for antidepressant-like effects of LAC in vulnerable mice characterized by restoration of stress-induced neuroenergetics alterations and lipid function.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Larrieu
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - João Rodrigues
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruce McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
| | - Carla Nasca
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Dome P, Tombor L, Lazary J, Gonda X, Rihmer Z. Natural health products, dietary minerals and over-the-counter medications as add-on therapies to antidepressants in the treatment of major depressive disorder: a review. Brain Res Bull 2019; 146:51-78. [DOI: 10.1016/j.brainresbull.2018.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/04/2018] [Accepted: 12/26/2018] [Indexed: 12/23/2022]
|
6
|
Ponomareva EV. [The use of acetyl-L-carnitine in gerontological practice]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:81-86. [PMID: 28980618 DOI: 10.17116/jnevro20171176281-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An analysis of literature data on the acetyl-L-carnitine treatment in gerontological practice is performed. This review describes the range of biochemical activity and mechanism of action of the drug. The profile and specificity of acetyl-L-carnitine action and the possibility of combining nicergoline with other drugs is discussed. The results of preclinical and clinical studies on the application of acetyl-L-carnitine in the world medical practice are analyzed. The analysis of the studies demonstrates the high efficacy and a broad spectrum of acetyl-L-carnitine treatment.
Collapse
Affiliation(s)
- E V Ponomareva
- Federal State Budgetary Scientific Institution 'Mental Health Research Center', Moscow, Russia
| |
Collapse
|
7
|
Wang W, Lu Y, Xue Z, Li C, Wang C, Zhao X, Zhang J, Wei X, Chen X, Cui W, Wang Q, Zhou W. Rapid-acting antidepressant-like effects of acetyl-l-carnitine mediated by PI3K/AKT/BDNF/VGF signaling pathway in mice. Neuroscience 2015; 285:281-91. [DOI: 10.1016/j.neuroscience.2014.11.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
|
8
|
A review of current evidence for acetyl-l-carnitine in the treatment of depression. J Psychiatr Res 2014; 53:30-7. [PMID: 24607292 DOI: 10.1016/j.jpsychires.2014.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/24/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
Despite numerous antidepressants available, many patients with depression do not achieve adequate response rendering needs for novel antidepressants with different mechanism of actions. Acetyl-l-carnitine (ALC) is a potential antidepressant with novel mechanism of action because of its diverse functions related with neuroplasticity. Animal and cellular models suggest that ALC's neuroplasiticity effect, membrane modulation, and neurotransmitter regulation may play an important role in treatment of depression. Four randomized clinical studies (RCT) demonstrated the superior efficacy of ALC over placebo (PBO) in patients with depression. Two RCTs showed its superior efficacy over PBO in dysthymic disorder, and 2 other RCTs showed that it is equally effective as fluoxetine and amisulpride in treatment of dysthymic disorder. ALC was also effective in improving depressive symptoms in patients with fibromyalgia and minimal hepatic encephalopathy. It was also found to be equally tolerable to PBO and better tolerable than fluoxetine and amisulpride. In conclusion, ALC may be potentially effective and tolerable next treatment option with novel action mechanisms for patients with depression, in particular older population and patients with comorbid medical conditions who are vulnerable to adverse events from antidepressants. However, more clinical trial data with adequately-powered, well-designed and advanced methodology will be mandatory to conclude whether ALC as a monotherapy or augmentation agent may be efficacious and clinically beneficial for depression.
Collapse
|
9
|
L-Acetylcarnitine in dysthymic disorder in elderly patients: a double-blind, multicenter, controlled randomized study vs. fluoxetine. Eur Neuropsychopharmacol 2013; 23:1219-25. [PMID: 23428336 DOI: 10.1016/j.euroneuro.2012.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022]
Abstract
INTRODUCTION L-Acetylcarnitine (LAC), the acetyl ester of carnitine naturally present in the central nervous system and involved in several neural pathways, has been demonstrated to be active in various animal experimental models resembling some features of human depression. The aim of the study is to verify whether LAC can have an antidepressant action in a population of elderly patients with dysthymic disorder in comparison with a traditional antidepressant such as fluoxetine. METHODS Multicentric, double-blind, double-dummy, controlled, randomized study based on a observation period of 7 weeks. 80 patients with DSM-IV diagnosis of dysthymic disorder were enrolled in the study and subdivided into 2 groups. Group A patients received LAC plus placebo; group B patients received fluoxetine 20 mg/die plus placebo. Clinical assessment was performed through several psychometric scales at 6 different moments. RESULTS Group A patients showed a statistically significant improvement in the following scales: HAM-D, HAM-A, BDI and Touluse Pieron Test. Comparison between the two groups, A and B, generally showed very similar clinical progression. DISCUSSION The results obtained with LAC and fluoxetine were equivalent. As the subjects in this study were of senile age, it is possible to hypothesize that the LAC positive effect on mood could be associated with improvement in subjective cognitive symptomatology. The difference in the latency time of clinical response (1 week of LAC treatment, compared with the 2 weeks' latency time with fluoxetine) suggests the existence of different mechanisms of action possibly in relation to the activation of rapid support processes of neuronal activity.
Collapse
|
10
|
The activation of α1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:39-50. [PMID: 23357536 DOI: 10.1016/j.pnpbp.2013.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 01/08/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
Abstract
The antidepressant-like activity of creatine in the tail suspension test (TST) was demonstrated previously by our group. In this study we investigated the involvement of the noradrenergic system in the antidepressant-like effect of creatine in the mouse TST. In the first set of experiments, creatine administered by i.c.v. route (1 μg/site) decreased the immobility time in the TST, suggesting the central effect of this compound. The anti-immobility effect of peripheral administration of creatine (1 mg/kg, p.o.) was prevented by the pretreatment of mice with α-methyl-p-tyrosine (100 mg/kg, i.p., inhibitor of tyrosine hydroxylase), prazosin (1 mg/kg, i.p., α1-adrenoceptor antagonist), but not by yohimbine (1 mg/kg, i.p., α2-adrenoceptor antagonist). Creatine (0.01 mg/kg, subeffective dose) in combination with subeffective doses of amitriptyline (1 mg/kg, p.o., tricyclic antidepressant), imipramine (0.1 mg/kg, p.o., tricyclic antidepressant), reboxetine (2 mg/kg, p.o., selective noradrenaline reuptake inhibitor) or phenylephrine (0.4 μg/site, i.c.v., α1-adrenoceptor agonist) reduced the immobility time in the TST as compared with either drug alone. These results indicate that the antidepressant-like effect of creatine is likely mediated by an activation of α1-adrenoceptor and that creatine produces synergistic effects in the TST with antidepressants that modulate noradrenaline transporter, suggesting that an improvement in the response to the antidepressant therapy may occur when creatine is combined with these antidepressants. Furthermore, the synergistic effect of creatine (0.01 mg/kg, p.o.) and reboxetine (2 mg/kg, p.o.) combination was abolished by the α1-adrenoceptor antagonist prazosin, indicating that the antidepressant-like effect of combined therapy is likely mediated by an activation of α1-adrenoceptor.
Collapse
|
11
|
Cunha MP, Pazini FL, Oliveira Á, Machado DG, Rodrigues ALS. Evidence for the involvement of 5-HT1A receptor in the acute antidepressant-like effect of creatine in mice. Brain Res Bull 2013; 95:61-9. [PMID: 23352985 DOI: 10.1016/j.brainresbull.2013.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/09/2012] [Accepted: 01/14/2013] [Indexed: 02/07/2023]
Abstract
Creatine was previously shown to produce an antidepressant-like effect in the tail suspension test through a modulation of the dopaminergic system. In this study, the mechanisms underlying its antidepressant-like effect were further evaluated by investigating the involvement of the serotonergic system in its effect. The anti-immobility effect of creatine (1mg/kg) was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100mg/kg, i.p., for 4 consecutive days, an inhibitor of serotonin (5-HT) synthesis). Creatine (0.01 mg/kg, sub-effective dose) in combination with sub-effective doses of WAY100635 (0.1mg/kg, s.c., a 5-HT1A receptor antagonist), 8-OH-DPAT (0.1mg/kg, i.p., a 5-HT1A receptor agonist) or selective serotonin reuptake inhibitors fluoxetine (5mg/kg, p.o.), paroxetine (0.1mg/kg, p.o.), citalopram (0.1mg/kg, p.o.) and sertraline (3mg/kg, p.o.) reduced the immobility time in the tail suspension test as compared with either drug alone. These results indicate that the antidepressant-like effect of creatine is likely mediated by an interaction with 5-HT1A receptors. Of note, the present results also indicate that creatine improves the effectiveness of the selective serotonin reuptake inhibitors, a finding that may have therapeutic implications for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
12
|
Hoefer ME, Voskanian SJ, Koob GF, Pulvirenti L. Effects of terguride, ropinirole, and acetyl-l-carnitine on methamphetamine withdrawal in the rat. Pharmacol Biochem Behav 2006; 83:403-9. [PMID: 16647107 DOI: 10.1016/j.pbb.2006.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 02/26/2006] [Accepted: 02/28/2006] [Indexed: 11/30/2022]
Abstract
Withdrawal from psychostimulants, including methamphetamine, induces a depressive state associated with lethargy, dysphoria, hyperphagia and psychomotor retardation. Previous work with repeated administration of amphetamine in rats has shown that amphetamine withdrawal produces decreased motivation to work for a non-drug reward, and this withdrawal is reversed by administration of a dopamine partial agonist. The purpose of the present study was to examine decreased motivation to work for a non-drug reward during methamphetamine withdrawal and explore the effects of a dopamine agonist, dopamine partial agonist, and indirect monoamine agonist on methamphetamine withdrawal. During withdrawal from repeated methamphetamine administration, rats showed reduced responding for a sweet solution in a progressive-ratio schedule of reinforcement, and this effect was significantly more pronounced than previously observed with amphetamine. Repeated systemic treatment with the dopamine partial agonist terguride (0.2 and 0.4 mg/kg, i.p., twice daily), the full dopamine agonist ropinirole (1 mg/kg, i.p., twice daily), and acetyl-L-carnitine (60 and 100 mg/kg, i.p.), a compound with a potential antidepressant effect, during methamphetamine withdrawal restored responding for the sweet solution, suggesting that these drugs may represent potential therapeutic strategies for the treatment of methamphetamine addiction during the withdrawal phase.
Collapse
Affiliation(s)
- Michael E Hoefer
- Molecular and Integrative Neurosciences Department, SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
13
|
Ghelardini C, Galeotti N, Calvani M, Mosconi L, Nicolai R, Bartolini A. Acetyl-l-carnitine induces muscarinic antinocieption in mice and rats. Neuropharmacology 2002; 43:1180-7. [PMID: 12504925 DOI: 10.1016/s0028-3908(02)00225-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The analgesic activity of acetyl-L-carnitine (ALCAR) in neuropathic pain is well established. By contrast, its potential efficacy in the relief of acute pain has not been reported. The antinociceptive effect of ALCAR was, therefore, examined in the mouse hot-plate and abdominal constriction tests, and in the rat paw-pressure test. ALCAR (100 mg kg(-1) s.c. twice daily for seven days) produced an increase of the pain threshold in both mice and rats. ALCAR was also able to reverse hyperalgesia induced by kainic acid and NMDA administration in the mouse hot-plate test. The antinociception produced by ALCAR was prevented by the unselective muscarinic antagonist atropine, the M(1) selective antagonists pirenzepine and S-(-)-ET126, and by the choline uptake inhibitor hemicholinium-3 (HC-3). By contrast the analgesic effect of ALCAR was not prevented by the opioid antagonist naloxone, the GABA(B) antagonist CGP 35348, the monoamine synthesis inhibitor (alpha)-methyl-p-tyrosine, and the Gi-protein inactivator pertussis toxin. Moreover, ALCAR antinociception was abolished by pretreament with an antisense oligonucleotide (aODN) against the M(1) receptor subtype, administered at the dose of 2 nmol per single i.c.v injection. On the basis of the above data, it can be postulated that ALCAR exerted an antinociceptive effect mediated by a central indirect cholinergic mechanism. In the antinociceptive dose-range, ALCAR did not impair mouse performance evaluated by the rota-rod and hole-board tests.
Collapse
Affiliation(s)
- Carla Ghelardini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G Pieraccini 6, I-50139, Florence, Italy.
| | | | | | | | | | | |
Collapse
|