1
|
Halgrain M, Schneider M, Jia S, Narcy A, Gambier E, Hincke MT, McKee MD, Réhault-Godbert S, Reznikov N. A 3D micro-computed tomography study comparing embryonic skeletal development in layer versus broiler strains of the domestic chicken. Poult Sci 2024; 103:104308. [PMID: 39316983 PMCID: PMC11462469 DOI: 10.1016/j.psj.2024.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Our objective was to analyze the effect of selection for divergent traits in the domestic chicken on embryonic skeletal development, which could affect postnatal bird welfare. Development was compared between the Ross 308 broiler line (fast growth and muscle mass accrual) and Novoponte layers (high laying rate and egg quality). In Study 1 (Initial Conditions), we characterized egg composition prior to incubation and identified the onset of embryonic skeletal mineralization in the 2 strains. In Study 2 (Developmental Dynamics), we used 3D X-ray tomographic imaging (µCT) on incubation days ED11, ED13, ED15 and ED17 to track skeletal maturation trajectories as a pseudo-time series. Results showed that Ross 308 embryos, which are heavier than Novoponte embryos, possess higher levels of yolk nutrients including phosphorus and calcium, but lower eggshell mineral content, than Novoponte embryos. Skeletal mineralization started synchronously in both strains, on ED11. The higher mineral ion content in the larger yolk of Ross 308 eggs compared to Novoponte eggs may partly explain why skeletal mineralization in Ross 308 embryos advances faster: using µCT, we show that the mandible and tibiotarsi in Ross 308 embryos are larger at ED11 and ED13 compared with Novoponte embryos. However, Novoponte embryos catch up from this initial lag in mineralization by ED15. The timing of the Novoponte acceleration coincides with the functional activation of the chorioallantoic membrane in releasing calcium from the inner eggshell. This correlates with a decrease in eggshell thickness from ED11 to ED17 in Novoponte eggs, which was not observed during Ross 308 incubation. To conclude, while some temporal discrepancies exist in early skeletal development between the embryos of Ross 308 and Novoponte strains, overall prenatal skeletal maturation seems to be robustly regulated. Despite selection for antagonist production traits, layer and broiler prehatch skeletal morphology ultimately synchronizes. Practically, since the extent of skeletal maturity equalizes between strains towards the end of incubation, refinements of farming practices, postnatal environment, and diet should be considered for improving domestic fowl welfare.
Collapse
Affiliation(s)
| | - Maris Schneider
- Department of Anthropology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Shumeng Jia
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Agnès Narcy
- INRAE, Université de Tours, BOA, 3780 Nouzilly, France
| | - Eric Gambier
- INRAE, Université de Tours, BOA, 3780 Nouzilly, France
| | - Maxwell T Hincke
- Departments of Innovation in Medical Education, and Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario K1H 8M5, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A1G1, Canada
| | | | - Natalie Reznikov
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A1G1, Canada.
| |
Collapse
|
2
|
Shbailat SJ, Aslan IO. The Expression of Proteases and the Oligopeptide Transporter PepT1 in the Yolk Sac Membrane, Proventriculus, and Small Intestine During the Development of Anas platyrhynchos domestica Embryo. BIOLOGY 2024; 13:989. [PMID: 39765655 PMCID: PMC11726728 DOI: 10.3390/biology13120989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The role of the yolk sac membrane (YSM) and digestive tract in the processing of egg yolk proteins during embryogenesis is unexplored in the duck Anas platyrhynchos domestica. Here, we investigated in the duck embryo the function of the YSM, proventriculus, and small intestine in protein digestion and uptake. We tested the expression of aminopeptidase N (APN) and the oligopeptide transporter PepT1 as well as the expression of cathepsin B (CTSB) and cathepsin D (CTSD) lysosomal genes in the YSM during incubation days 12, 14, 16-18, 20, 22, 24, 26, and 28 (the day of hatch). Also, we examined embryonic duck pepsinogen (EDPg) expression in the proventriculus and APN and PepT1 expression in the small intestine. In the YSM, CTSD expression was weak compared to that of CTSB, and the expression of CTSB, APN, and PepT1 reached its maximum on day 24 and decreased afterwards. In the proventriculus, EDPg expression peaked on days 17 to 20 and decreased thereafter. The APN and PepT1 expression levels were highest in the jejunum and ileum and reached their maximum on day 28. Our results suggest that the YSM plays a role in the degradation and uptake of the peptides that are digested by the activated yolk proteases, and it also functions in the lysosomal digestion of yolk lipoproteins. Furthermore, the proventriculus is possibly involved in the digestion of yolk proteins. Finally, the jejunum and ileum appear to be the primary sites for peptide digestion and absorption at the end of the incubation.
Collapse
Affiliation(s)
- Seba Jamal Shbailat
- Department of Biology and Biotechnology, Faculty of Science, Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | | |
Collapse
|
3
|
Vaccaro LA, Herring K, Wilson A, England E, Smith AL, Ellestad LE. Dynamic changes in insulin-like growth factor binding protein expression occur between embryonic and early post-hatch development in broiler chickens. Poult Sci 2024; 103:104174. [PMID: 39197338 PMCID: PMC11398635 DOI: 10.1016/j.psj.2024.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2024] [Revised: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Somatotropic gene expression has been altered by genetic selection, and developmental changes in insulin-like growth factor (IGF) and IGF binding protein (IGFBP) expression may contribute to rapid growth and muscle accretion in commercial broilers. The objective of this study was to evaluate changes in somatotropic axis activity between embryonic day (e) 12 and post-hatch day (d) 21. Liver and breast muscle (pectoralis major) were collected to measure gene expression, and blood was collected post-hatch to measure circulating IGFs. Liver IGF1 rose rapidly post-hatch and, in muscle, IGF1 exhibited a dynamic expression pattern. Levels decreased from e14 to e20, returned to e14 levels at d3, decreased again at d10, and stayed low thereafter. In both tissues, mRNA levels of several IGFBPs changed between embryogenesis and post-hatch. Liver IGFBP2 increased between e12 and e20, returned to e12 levels on d1, and remained low. Conversely, liver IGFBP4 expression was greater post-hatch than during embryogenesis. Expression of select IGFBPs was depressed in liver during the peri-hatch period. Liver IGFBP1, IGFBP3, IGFBP5, and IGFBP7 mRNA levels all decreased around this time and returned to embryonic levels by d3. In breast muscle, expression of both IGFBP2 and IGFBP4 was reduced after hatch. Circulating insulin-like growth factor IGF1 and IGF2 levels did not change between hatch and d21. These data suggest that post-hatch IGF effects are likely modulated by target tissue IGFR1 and IGFBP expression rather than changes in circulating hormone levels, with promotion or restriction of IGF-receptor binding regulating growth. Downregulation of several IGFBPs synthesized in the liver may facilitate the metabolic transition from utilizing yolk lipids to dietary carbohydrates. Several IGFBPs produced in breast muscle appear to have growth-promotive effects during embryogenesis but restrict growth of this tissue after hatch, as their post-hatch downregulation could facilitate local IGF signaling. These developmental gene expression patterns suggest that somatotropic hormonal signaling regulating growth and muscle accretion might be controlled through differential actions of IGFBPs and provide a basis for future functional studies.
Collapse
Affiliation(s)
- Lauren A Vaccaro
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Kyle Herring
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Abigail Wilson
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Emma England
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Addison L Smith
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Li H, Zhang X, Wang X, Wu Q, Zheng W, Liu C, Wei S, Zuo X, Xiao W, Ye H, Wang W, Yang L, Zhu Y. The developmental pattern related to fatty acid uptake and oxidation in the yolk sac membrane and jejunum during embryogenesis in Muscovy duck. Poult Sci 2024; 103:103929. [PMID: 38943802 PMCID: PMC11261488 DOI: 10.1016/j.psj.2024.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
This study aimed to investigate the developmental change of body growth and gene expression related to fatty acid uptake and oxidation in the yolk sac membrane (YSM) and jejunum during embryogenesis in Muscovy ducks. The weights of embryos and yolk sac (YS) (5 embryos per replicate, n = 6) were recorded on embryonic days (E)16, E19, E22, E25, E28, E31, and the day of hatch (DOH). The fat and fatty acid contents in YSM, jejunal histology, and gene expression related to fatty acid metabolism in YSM and jejunum were determined in each sampling time. Among the nonlinear models, the maximum growth is estimated at 2.83 (E22.5), 2.67 (E22.1), and 2.60 (E21.3) g/d using logistic, Gompertz, and Von Bertalanffy models, respectively. The weight of YS, and ether extract-free YS as well as the amounts of fat and fatty acids in YS decreased (P < 0.05) linearly, whereas the villus height, crypt depth, villus height/crypt depth, and musculature thickness in jejunum increased (P < 0.05) linearly during embryogenesis. The mRNA expression of CD36, SLC27A4, and FABP1 related to fatty acid uptake as well as the mRNA and protein expressions of PPARα and CPT1 related to fatty acid oxidation increased in a quadratic manner (P < 0.05) in both YS and jejunum, and the maximum values were achieved during E25 to E28. In conclusion, the maximum growth rate of Muscovy duck embryos was estimated at 2.60 to 2.83 g/d on E21.3 to E23.5, while the accumulations of lipid and fatty acid in YS were decreased in association with the increased absorptive area of morphological structures in jejunum. The gene and protein expression involved in fatty acid metabolism displayed a similar enhancement pattern between YSM and jejunum during E25 to E28, suggesting that fatty acid utilization could be strengthened to meet the energy demand for embryonic development.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiufen Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiaowen Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Shi Wei
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | | | - Hui Ye
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China; Woman Biotechnology Co, Ltd, Guangzhou, 510000 China.
| |
Collapse
|
5
|
Gupta V, Goel A, Ncho CM, Jeong CM, Choi YH. Neonatal α-Ketoglutaric Acid Gavage May Potentially Alleviate Acute Heat Stress by Modulating Hepatic Heat Shock Protein 90 and Improving Blood Antioxidant Status of Broilers. Animals (Basel) 2024; 14:2243. [PMID: 39123769 PMCID: PMC11310969 DOI: 10.3390/ani14152243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the effect of neonatal α-ketoglutaric acid (AKG) gavage feeding on broilers. The first experiment was conducted to determine the effect of AKG on day-old broilers. A total of seventy-two-day-old Ross 308 broiler chicks were divided into four treatment groups: (i) Two groups of chicks with gavage feeding of 0.6 mL of distilled water (DDW) for four consecutive days (CON); (ii) chicks fed with 0.6 mL of 0.1% AKG dissolved in DDW on the day of hatch (AL) followed by 0.2%, 0.3%, and 0.4% for three consecutive days; and (iii) chicks fed with 0.6 mL of 0.2% AKG dissolved in DDW on the day of hatch (AH) followed by 0.4%, 0.6%, and 0.8% for three consecutive days. Twenty-four hours after the first gavage feeding, six birds per treatment were slaughtered to study the organ development. Chicks fed with AKG showed higher absolute (p = 0.015) and relative (p = 0.037) weights of the gizzard. The AH group had higher absolute (p = 0.012) and relative (p = 0.035) heart weights. The second experiment was carried out to determine the effect of AKG on 15-day-old broilers under acute heat stress (AHS) for 3.5 h at 33 ± 1 °C. Forty-eight birds (12 per treatment) were raised until 15 days of age, divided into four treatments with equal numbers (n = 12), and given one of the following four treatments: (i) CON group reared at standard temperature (25 ± 1 °C) (CON-NT); (ii) CON group subjected to AHS (33 ± 1 °C) for 3.5 h (CON-HT); (iii) AL group subjected to AHS (33 ± 1 °C) for 3.5 h (AL-HT); and (iv) AH group subjected to AHS (33 ± 1 °C) for 3.5 h (AH-HT). There was a significant reduction in the change in BW (ΔBW, p = 0.005), an increase in the final rectal temperature (RTf) (p = 0.001), and a decreased final body weight (BWf) for all the treatments under AHS. Further, AHS led to an increased expression of hepatic heat shock protein (HSP)70 (p = 0.009), nicotinamide adenine dinucleotide phosphate hydrogen oxidase (NOX)1 (p = 0.006), and NOX4 (p = 0.001), while nuclear factor erythroid 2-related factor (NRF2), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase 1 (GPX1) remained significantly unaffected. Hepatic expression of HSP90 decreased in the AL-HT treatment as compared to CON-HT (p = 0.008). Plasma antioxidant status measured by malondialdehyde (MDA) concentration and antioxidant balance (AB) improved linearly (p = 0.001) as the concentration of AKG increased. Neonatal gavage feeding of AKG could potentially alleviate heat stress in broilers by enhancing plasma antioxidant levels and modulating HSP90 expression in the liver.
Collapse
Affiliation(s)
- Vaishali Gupta
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Akshat Goel
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chris Major Ncho
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Chae-Mi Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yang-Ho Choi
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (V.G.); (A.G.); (C.M.N.); (C.-M.J.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Thanabalan A, Dreger R, Kiarie EG. Significance of successive feeding of sources of n-3 fatty acids to broiler breeders and their progeny on growth performance, intestinal lesion scores, lymphoid organs weight and plasma immunoglobulin A in broiler chickens challenged with Eimeria. Poult Sci 2024; 103:103796. [PMID: 38776857 PMCID: PMC11141267 DOI: 10.1016/j.psj.2024.103796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The study examined the effects of successive feeding of sources of n-3 PUFA to broiler breeders (BB) and their progeny in broiler chickens challenged with Eimeria. The BB were fed: 1) control (CON), corn-soybean meal diet, 2) CON + 1 % microalgae (DMA), as a source of DHA and 3) CON + 2.50% co-extruded full fat flaxseed (FFF), as a source of ALA. Eggs were hatched at 34, 44, and 54 wk of age. Posthatch treatments (BB-progeny) were: CON-CON, DMA-CON, FFF-CON, DMA-DMA and FFF-FFF with diets formulated for starter (d 1-10) and grower/finisher (d 11-42) phases. All chicks were orally challenged with Eimeria (E. acervulina and E. maxima) on d 10. Relative to CON, DMA and FFF increased concentration of n-3 PUFA by ≥ 2-fold in hatching eggs and progeny diets. There were no (P > 0.05) interactions between treatment and BB age on d 0 to 10 growth. In general, BB age affected (P < 0.05) growth performance throughout the study. In the starter phase, successive exposure to DHA and ALA improved FCR over CON-CON (P < 0.01). The interaction between treatment and BB age in grower/finisher was such that DHA exposure to younger BB resulted in poor growth performance (P < 0.05) relative to exposure to older BB. In contrast, exposure to ALA had similar (P > 0.05) growth performance irrespective of BB age. Moreover, successive exposure to ALA resulted in higher BWG, breast weight and lower FCR compared to successive exposure to DHA (P < 0.05). There were no (P > 0.05) interactions between treatment and BB age on the intestinal lesion scores, lymphoid organ weights and concentration of plasma immunoglobulin A (IgA). Successive exposure to DHA resulted in higher (P = 0.006) jejunal lesion scores than CON-CON birds. The results showed that successive exposure of DHA and ALA improved FCR relative to non-exposed birds in the starter phase. However, responses in the grower/finisher phase depended on n-3 PUFA type, with birds on successive ALA exposure supporting better growth and breast yield than birds on successive DHA exposure.
Collapse
Affiliation(s)
| | | | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
7
|
Yu J, Fu R, Buhe A, Xu B. Quercetin attenuates lipopolysaccharide-induced hepatic inflammation by modulating autophagy and necroptosis. Poult Sci 2024; 103:103719. [PMID: 38603936 PMCID: PMC11017357 DOI: 10.1016/j.psj.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Lipopolysaccharide (LPS) from Gram-negative bacteria initially induces liver inflammation with proinflammatory cytokines expressions. However, the underlying hepatoprotective mechanism of quercetin on LPS-induced hepatic inflammation remains unclear. Specific pathogen-free chicken embryos (n = 120) were allocated control vehicle, PBS with or without ethanol vehicle, LPS (125 ng/egg) with or without quercetin treatment (10, 20, or 40 nmol/egg, respectively), quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated abovementioned solutions via the allantoic cavity. At embryonic d 19, the livers of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, and immunohistochemistry investigation. We found that the liver presented inflammatory response (heterophils infiltration) after LPS induction. The LPS-induced mRNA expressions of inflammation-related factors (TLR4, TNFα, IL-1β, IL-10, IL-6, MYD88, NF-κB1, p38, and MMP3) were upregulated after LPS induction when compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. Quercetin significantly decreased the immunopositivity to TLR4 and MMP3 in the treatment group when compared with the LPS group. Quercetin could significantly downregulate the mRNA expressions of autophagy-related genes (ATG5, ATG7, Beclin-1, LC3A, and LC3B) and necroptosis-related genes (Fas, Bcl-2, Drp1, and RIPK1) after LPS induction. Quercetin significantly decreased the immunopositivity to LC3 in the treatment group when compared with the LPS group; meanwhile, quercetin significantly decreased the protein expressions of LC3-I, LC3-II, and the rate of LC3-II/LC3-I. In conclusions, quercetin can alleviate hepatic inflammation induced by LPS through modulating autophagy and necroptosis.
Collapse
Affiliation(s)
- Jinhai Yu
- Camellia Research Institute, The Innovation Institute of Agricultural Technology, Department of Life Science, Shangrao Normal University, Shangrao 334001, China.
| | - Rong Fu
- Department of Literature and Media, Shangrao Normal University, Shangrao 334001, China
| | - Amin Buhe
- Department of Cancer Surgery, Beijing Shijitan Hospital Affiliated with Capital Medical University, Beijing 100038, China
| | - Bing Xu
- Camellia Research Institute, The Innovation Institute of Agricultural Technology, Department of Life Science, Shangrao Normal University, Shangrao 334001, China
| |
Collapse
|
8
|
Zhao Z, Yang H, Wang Z, Ai Z, Yang R, Wang Z, Wang T, Fu K, Zhang Y. Metabolomics analysis of the yolk of Zhijin white goose during the embryogenesis based on LC-MS/MS. PLoS One 2024; 19:e0297429. [PMID: 38335168 PMCID: PMC10857567 DOI: 10.1371/journal.pone.0297429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
The egg yolk of the goose is rich in lipids, proteins and minerals, which is the main source of nutrition during the goose embryogenesis. Actually, the magnitude and variety of nutrients in yolk are dynamically changed to satisfy the nutritional requirements of different growth and development periods. The yolk sac membrane (YSM) plays a role in metabolizing and absorbing nutrients from the yolk, which are then consumed by the embryo or extra-fetal tissues. Therefore, identification of metabolites in egg yolk can help to reveal nutrient requirement in goose embryo. In this research, to explore the metabolite changes in egg yolk at embryonic day (E) 7, E12, E18, E23, and E28, we performed the assay using ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The findings showed that E7 and E12, E23 and E28 were grouped together, while E18 was significantly separated from other groups, indicating the changes of egg yolk development and metabolism. In total, 1472 metabolites were identified in the egg yolk of Zhijin white goose, and 636 differential metabolites (DMs) were screened, among which 264 were upregulated and 372 were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DMs were enriched in the biosynthesis and metabolism of amino acids, digestion and absorption of protein, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, phosphotransferase system (PTS), mineral absorption, cholesterol metabolism and pyrimidine metabolism. Our study may provide new ideas for improving prehatch embryonic health and nutrition.
Collapse
Affiliation(s)
- Zhonglong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Hong Yang
- Bijie City Animal Husbandry Station, Bijie, Guizhou, People’s Republic of China
| | - Zhiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Zhaobi Ai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Runqian Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Tiansong Wang
- Agricultural College, Tongren Polytechnic College, Tongren, Guizhou, People’s Republic of China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| | - Yong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, People’s Republic of China
| |
Collapse
|
9
|
Harders EP, Agustin M, Paitz RT. Avian extraembryonic membranes respond to yolk corticosterone early in development. Biol Open 2024; 13:bio060131. [PMID: 38156650 PMCID: PMC10836647 DOI: 10.1242/bio.060131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
During times of maternal stress, developing embryos can be exposed to elevated levels of glucocorticoids, which can affect development and permanently alter offspring phenotype. In placental species, the placenta mediates fetal exposure to maternal glucocorticoids via metabolism, yet the placenta itself responds to glucocorticoids to regulate offspring growth and development. In oviparous species, maternal glucocorticoids can be deposited into the egg yolk and are metabolized early in development. This metabolism is mediated by the extraembryonic membranes, but it is unknown if the extraembryonic membranes also respond to maternal glucocorticoids in a way comparable to the placenta. In this study, we quantified the expression of acyl-CoA thioesterase 13 (Acot13) as an initial marker of the membrane's response to corticosterone in chicken (Gallus gallus) eggs. Acot13 regulates fatty acid processing in the embryo, to potentially regulate resource availability during development. We addressed the following questions using Acot13 expression: 1) Do the extraembryonic membranes respond to yolk corticosterone early in development? 2) Is the response to corticosterone dependent on the dose of corticosterone? 3) What is the duration of the response to corticosterone? 4) Does a metabolite of corticosterone (5β-corticosterone) elicit the same response as corticosterone? We found that corticosterone significantly induces the expression of Acot13 on day four of development and that expression of Acot13 increases with the dose of corticosterone. Further, we found expression of Acot13 is significantly elevated by corticosterone on days four and six of development compared to oil treated eggs, but not on days eight and ten. Although this response is transient, it occurs during a critical period of development and could initiate a cascade of events that ultimately alter offspring phenotype. Finally, we found that 5β-corticosterone does not increase the expression of Acot13, indicating that metabolism inactivates corticosterone. Ultimately, this study provides insight into the mechanisms underlying how maternally deposited glucocorticoids can affect embryonic development.
Collapse
Affiliation(s)
- Emily P. Harders
- Illinois State University, School of Biological Sciences, Campus Box 4120, Normal, IL 61790, USA
| | - Mitch Agustin
- Illinois State University, School of Biological Sciences, Campus Box 4120, Normal, IL 61790, USA
| | - Ryan T. Paitz
- Illinois State University, School of Biological Sciences, Campus Box 4120, Normal, IL 61790, USA
| |
Collapse
|
10
|
Li S, Wang Y, Guo S, Li X, Han G, Zhou Z, Li C. Embryo thermal manipulation modifies development and hepatic lipid metabolism in post-hatch layer-type chicks. J Anim Sci 2024; 102:skae242. [PMID: 39164212 PMCID: PMC11391616 DOI: 10.1093/jas/skae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024] Open
Abstract
Incubation temperature is a crucial environmental factor affecting embryonic development and chick quality. Metabolism during the embryonic stage, particularly liver lipid metabolism, is essential for the growth and development of poultry. This study aimed to investigate the effects of embryo thermal manipulation with high (TMH, 39.5 °C, 65% RH, 8 h/d) and low (TML, 20 °C, 65% RH, 1 h/d) temperatures during 8th to 15th embryonic age on hatching performance and liver lipid metabolism in layer chicks. Additionally, the duration of TM effects was evaluated through a short-term feeding trial. The results indicated that TMH accelerated the hatching process without significantly affecting hatchability and growth performance. In contrast, TML delayed hatching time and significantly reduced hatchability and chick quality. After hatching, TML also increased residual yolk weight and reduced the relative liver weight in relation to body weight and yolk-free body mass. Moreover, lipid droplets in the liver were stained with Oil Red O, and the lipid content in the liver and serum was further detected. TMH had no significant impact on triglyceride (TG) and total-cholesterol (TCHO) content in the liver and serum but upregulated the expression of lipogenesis-related genes ACC, Fas, and Fatp1 compared to the TML group. Conversely, TML significantly reduced liver TG content, enhanced lipoprotein lipase (LPL) activity, and promoted the expression of lipid oxidation-related genes CPT-1, PGC-1α, and PPARα. At 7 d of age, liver LPL activity was significantly increased in the TMH group. However, there were no significant changes in the content of TG and TCHO in the liver and the expression of lipid metabolism-related genes in the TML group. Overall, these results indicate that embryonic TM alters hatching performance and liver lipid metabolism in layer chicks. TML reduces TG content by increasing liver lipid oxidation capacity. However, this effect is not long-lasting, as the influence of TM diminishes as the chicks develop.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyan Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Siyu Guo
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guofeng Han
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zilin Zhou
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Such N, Schermann K, Pál L, Menyhárt L, Farkas V, Csitári G, Kiss B, Tewelde KG, Dublecz K. The Hatching Time of Broiler Chickens Modifies Not Only the Production Traits but Also the Early Bacteriota Development of the Ceca. Animals (Basel) 2023; 13:2712. [PMID: 37684976 PMCID: PMC10487082 DOI: 10.3390/ani13172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
This trial was carried out to find out the effects of the parent flock and hatching time of broiler chickens on the production traits and bacteriota development of animals. Two sets of 730 hatching eggs were collected from two different parent flocks with ages of 25 and 50 weeks. In the hatchery, both groups were divided into two subgroups: those hatched during the first 10 and the subsequent 10 h of the hatching window. A feeding trial was carried out afterwards, using the four treatments in six replicate floor pens and feeding commercial starter, grower, and finisher diets that contained all the nutrients according to the breeder's recommendations. The day-old chickens of the older parent flock and those hatched later were heavier, and this advantage remained until the end of the production period. The different ages and origins of the parent flocks failed to modify the microbiological parameters of the chicken's ceca; however, the hatching time significantly influenced the different bacteriota diversity indices: the late-hatched chickens showed higher Bacteroidetes and lower Firmicutes and Actinobacteria abundances at day 11. These treatments resulted in differences in the main families, Ruminococcaceae, Lactobacillaceae, and Bacteroidaceae. These differences could not be found at day 39.
Collapse
Affiliation(s)
- Nikoletta Such
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Kornél Schermann
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - László Pál
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - László Menyhárt
- Institute of Technology, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary;
| | - Valéria Farkas
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Gábor Csitári
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Brigitta Kiss
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Kesete Goitom Tewelde
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák Ferenc Street 16, 8360 Keszthely, Hungary; (N.S.); (K.S.); (L.P.); (V.F.); (G.C.); (B.K.); (K.G.T.)
| |
Collapse
|
12
|
Petit A, Tesseraud S, Beauclercq S, Nadal-Desbarats L, Cailleau-Audouin E, Réhault-Godbert S, Berri C, Le Bihan-Duval E, Métayer-Coustard S. Allantoic fluid metabolome reveals specific metabolic signatures in chicken lines different for their muscle glycogen content. Sci Rep 2023; 13:8867. [PMID: 37258592 DOI: 10.1038/s41598-023-35652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
Nutrient availability in eggs can affect early metabolic orientation in birds. In chickens divergently selected on the Pectoralis major ultimate pH, a proxy for muscle glycogen stores, characterization of the yolk and amniotic fluid revealed a different nutritional environment. The present study aimed to assess indicators of embryo metabolism in pHu lines (pHu+ and pHu-) using allantoic fluids (compartment storing nitrogenous waste products and metabolites), collected at days 10, 14 and 17 of embryogenesis and characterized by 1H-NMR spectroscopy. Analysis of metabolic profiles revealed a significant stage effect, with an enrichment in metabolites at the end of incubation, and an increase in interindividual variability during development. OPLS-DA analysis discriminated the two lines. The allantoic fluid of pHu- was richer in carbohydrates, intermediates of purine metabolism and derivatives of tryptophan-histidine metabolism, while formate, branched-chain amino acids, Krebs cycle intermediates and metabolites from different catabolic pathways were more abundant in pHu+. In conclusion, the characterization of the main nutrient sources for embryos and now allantoic fluids provided an overview of the in ovo nutritional environment of pHu lines. Moreover, this study revealed the establishment, as early as day 10 of embryo development, of specific metabolic signatures in the allantoic fluid of pHu+ and pHu- lines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cécile Berri
- INRAE, Université de Tours, BOA, 37380, Nouzilly, France
| | | | | |
Collapse
|
13
|
Fortuna R, Paquet M, Biard C, Élard L, Ferreira AC, Leroux-Coyaux M, Parenteau C, Silva LR, Théron F, Covas R, Doutrelant C. Egg components and offspring survival vary with group size and laying order in a cooperative breeder. Oecologia 2023; 202:129-142. [PMID: 37148378 DOI: 10.1007/s00442-023-05379-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Prenatal resource allocation to offspring can be influenced by maternal environment and offspring value, and affect offspring survival. An important pathway for flexible maternal allocation is via egg components such as nutrients and hormones. In cooperative breeders, females with helpers may increase resource allocation to eggs-'differential allocation'-or reduce it-'load-lightening'. Yet, helper effects on egg composition have been poorly studied. Moreover, it is unknown how helpers' presence modulates laying order effects on egg content and survival. Here, we investigated how maternal allocation varied with group size and laying order in the cooperatively breeding sociable weaver (Philetairus socius). We estimated interactive effects of helpers and laying order on allocation to egg mass, yolk nutrients-yolk mass, proteins, lipids, carotenoids, vitamin A and vitamin E-and hormones-testosterone, androstenedione, and corticosterone. Results concurred with the 'differential allocation' predictions. Females with more helpers produced later-laid eggs with heavier yolks and more lipids, and laid eggs overall richer in lipids. Proteins, antioxidants, and hormones were not found to vary with helper number. We then analyzed how helper number modulated laying order effects on survival. Females with more helpers did not specifically produce later-laid eggs with higher survival, but eggs laid by females with more helpers were overall more likely to fledge. These findings show that some egg components (yolk mass, lipids) can positively vary according to females' breeding group size, which may improve offspring fitness.
Collapse
Affiliation(s)
- Rita Fortuna
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, 34293, Montpellier, France.
- Centre for Biodiversity Dynamics, Institutt for Biologi, NTNU, Trondheim, Norway.
| | - Matthieu Paquet
- Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, 75007, Uppsala, Sweden
- Institute of Mathematics of Bordeaux, University of Bordeaux, CNRS, Bordeaux INP, Talence, France
| | - Clotilde Biard
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Écologie et des Sciences de l'Environnement de Paris, IEES, 75005, Paris, France
| | - Loïc Élard
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Écologie et des Sciences de l'Environnement de Paris, IEES, 75005, Paris, France
| | - André C Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, 34293, Montpellier, France
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mathieu Leroux-Coyaux
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Écologie et des Sciences de l'Environnement de Paris, IEES, 75005, Paris, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - Liliana R Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Franck Théron
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, 34293, Montpellier, France
| | - Rita Covas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- DST-NRF Centre of Excellence, FitzPatrick Institute, University of Cape Town, Cape Town, South Africa
| | - Claire Doutrelant
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, 34293, Montpellier, France
- DST-NRF Centre of Excellence, FitzPatrick Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
van Emous R. Effects of feeding strategies during lay on broiler breeder production performance, eggshell quality, incubation traits, and behavior. Poult Sci 2023; 102:102630. [PMID: 37146406 DOI: 10.1016/j.psj.2023.102630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
An experiment was conducted to investigate the effects of a standard diet twice a day or split-feeding in broiler breeders on production performance, eggshell quality, incubation traits, and behavior. A total of 720 Ross 308 female breeders (45 weeks of age [WOA]) and 24 males (25 WOA) were randomly placed in 24 floor pens. The birds followed 3 feeding strategies: 1) Standard breeder diet fed once a day (100% at 0730 h) (CON), 2) Standard breeder diet fed twice a day (50% at 0730 h and 50% at 1600 h) (TAD), and 3) Split-feeding fed twice a day, with a morning (0730 h) and afternoon (1600 h) diet (SF). The morning diet contained more energy, protein, and phosphorus (P) and less calcium (Ca) than the control and afternoon diets. The afternoon diet had lower energy, protein, and P and higher Ca content than the control and morning diets. The TAD and SF birds tended to have a lower water intake (P = 0.055) and water-to-feed ratio (P = 0.054) compared to the CON birds. A 2.1% points higher hen-day egg production was found for the SF birds compared to the CON birds (P = 0.063), whereas the TAD birds did not differ from the other treatments. No differences were found for egg weight, eggshell quality, fertility, embryonic mortality, or average feather cover. A tendency toward a higher albumen percentage (P = 0.060) and lower yolk percentage (P = 0.069) was found for the TAD birds compared to the SF birds. The albumen-to-yolk ratio was higher (P = 0.022) for the TAD birds than for the CON and SF birds. Due to the twice-a-day feed distribution, the TAD and SF birds showed considerably different behavioral patterns than the de CON birds. In conclusion, twice-a-day feeding decreases the water intake and water-to-feed ratio, whereas split-feeding tended to an improved egg production in broiler breeders. However, no effects were observed on eggshell quality and incubation traits, whereas the behavioral patterns of the birds fed twice a day differed considerably with potential better welfare.
Collapse
|
15
|
Chen J, Wu YC, Chen JK, Zhu XJ, Merkler D, Liao CH, Han Q. Elongases of Long-Chain Fatty Acids ELO2 and ELO9 Are Involved in Cuticle Formation and Function in Fecundity in the Yellow Fever Mosquito, Aedes aegypti. INSECTS 2023; 14:189. [PMID: 36835758 PMCID: PMC9961117 DOI: 10.3390/insects14020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Long-chain fatty acid elongases (ELOs) play important roles in the metabolism of fatty acids in insects. In this study, the genes for two elongases from Aedes aegypti were identified, AeELO2 and AeELO9. Quantitative real time PCR showed that AeELO2 and AeELO9 are expressed at all developmental stages and some body parts, but with different expression patterns. RNAi-mediated knockdown of AeELO2 and AeELO9 was performed to investigate their roles in the development, growth, osmotic balance, and cold tolerance of Ae. aegypti. Knockdown of AeELO2 slowed larval growth and development by causing molting abnormalities. Additionally, 33% ± 3.3% of adults died during oviposition, accompanied by an abnormal extension of cuticles in AeELO2-dsRNA knockdown mosquitos. Knockdown of AeEL09 resulted in abnormal balance of cuticular osmotic pressure and a reduction in egg production. The maximal mRNAs of AeELO2 and AeELO9 were detected in eggs at 72 h after oviposition. Moreover, AeELO2 knockdown reduced the egg hatching rates and AeELO9 knockdown larvae did not develop well. In summary, AeELO2 is involved in larval molting and growth, and its knockdown affects the flexibility and elasticity of adult mosquito cuticles. AeELO9 regulates cold tolerance, osmotic balance, and egg development in Ae. aegypti.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Yu-Chen Wu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Jiu-Kai Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Xiao-Jing Zhu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - David Merkler
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Cheng-Hong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life Sciences, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Dayan J, Melkman-Zehavi T, Reicher N, Braun U, Inhuber V, Mabjeesh SJ, Halevy O, Uni Z. Supply and demand of creatine and glycogen in broiler chicken embryos. Front Physiol 2023; 14:1079638. [PMID: 36760526 PMCID: PMC9902709 DOI: 10.3389/fphys.2023.1079638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Optimal embryonic development and growth of meat-type chickens (broilers) rely on incubation conditions (oxygen, heat, and humidity), on nutrients and on energy resources within the egg. Throughout incubation and according to the embryo's energy balance, the main energy storage molecules (creatine and glycogen) are continuously utilized and synthesized, mainly in the embryonic liver, breast muscle, and the extraembryonic yolk sac (YS) tissue. During the last phase of incubation, as the embryo nears hatching, dynamic changes in energy metabolism occur. These changes may affect embryonic survival, hatchlings' uniformity, quality and post hatch performance of broilers, hence, being of great importance to poultry production. Here, we followed the dynamics of creatine and glycogen from embryonic day (E) 11 until hatch and up to chick placement at the farm. We showed that creatine is stored mainly in the breast muscle while glycogen is stored mainly in the YS tissue. Analysis of creatine synthesis genes revealed their expression in the liver, kidney, YS tissue and in the breast muscle, suggesting a full synthesis capacity in these tissues. Expression analysis of genes involved in gluconeogenesis, glycogenesis, and glycogenolysis, revealed that glycogen metabolism is most active in the liver. Nevertheless, due to the relatively large size of the breast muscle and YS tissue, their contribution to glycogen metabolism in embryos is valuable. Towards hatch, post E19, creatine levels in all tissues increased while glycogen levels dramatically decreased and reached low levels at hatch and at chick placement. This proves the utmost importance of creatine in energy supply to late-term embryos and hatchlings.
Collapse
Affiliation(s)
- Jonathan Dayan
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Melkman-Zehavi
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Reicher
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Sameer J. Mabjeesh
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Halevy
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zehava Uni
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Zehava Uni,
| |
Collapse
|
17
|
Khalil MM, Abdollahi MR, Zaefarian F, Chrystal PV, Ravindran V. Broiler Age Influences the Apparent Metabolizable Energy of Soybean Meal and Canola Meal. Animals (Basel) 2023; 13:ani13020219. [PMID: 36670759 PMCID: PMC9855009 DOI: 10.3390/ani13020219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The effects of broiler age on the apparent metabolizable energy (AME) and nitrogen-corrected AME (AMEn) of soybean meal (SBM) and canola meal (CM) were examined. A corn-SBM basal diet was developed, and two test diets were formulated by substituting (w/w) 300 g/kg of the basal diet with SBM or CM. Six groups of broiler chickens, aged 1−7, 8−14, 15−21, 22−28, 29−35 or 36−42 d post-hatch, were utilized. Each diet, in pellet form, was randomly allocated to six replicate cages in each age group. Except for the 1−7 d age group, the birds were fed a starter (d 1−21) and/or a finisher (d 22−35) diet prior to the introduction of the experimental diets. The number of birds per cage was 10 (d 1−7), 8 (d 8−14) and 6 (d 15−42). The AME and AMEn of SBM and CM were determined by total excreta collection. The data for each protein source were subjected to orthogonal polynomial contrasts using the General Linear Models procedure. Bird age decreased the retention of dry matter quadratically (p < 0.001) for both SBM and CM. The retention of nitrogen decreased linearly (p < 0.001) with the advancing age of broilers for SBM and CM. The AMEn of SBM and CM decreased quadratically (p < 0.001) as the birds grew older. The highest AMEn was observed during week 1 for both SBM and CM, then declined until week 3, followed by increases thereafter. The current results showed that the age of broiler chickens influenced the AMEn of SBM and CM and supported the use of age-dependent AMEn of feed ingredients in diet formulations.
Collapse
Affiliation(s)
- Mahmoud M. Khalil
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Mohammad Reza Abdollahi
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Faegheh Zaefarian
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | | | - Velmurugu Ravindran
- Monogastric Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
- Correspondence: ; Tel.: +64-2-70240350
| |
Collapse
|
18
|
Chen Z, Qu X, Feng C, Guo B, Zhu H, Yan L. Monochromatic Green Light Stimulation during Incubation Alters Hepatic Glucose Metabolism That Improves Embryonic Development in Yangzhou Goose Eggs. Int J Mol Sci 2022; 24:ijms24010405. [PMID: 36613849 PMCID: PMC9820358 DOI: 10.3390/ijms24010405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The influence of monochromatic green light stimulation on hatching performance and embryo development has been studied in chickens, but not geese. The liver has crucial functions in the regulation of energy metabolism during embryogenesis, but its involvement in green light transduction is still unidentified. We aimed to determine the influence of monochromatic green light on Yangzhou goose hatching performance and embryo development. We also investigated the metabolomics and transcriptomic responses of the embryonic liver to green light to determine the underlying molecular mechanisms. Eggs were incubated under either 12 h of monochromatic green light/dark (12 L:12D) cycles or 24 h of darkness (0G:24D). Green light promoted embryonic development and hatching performance, also affected the expression of myogenic regulatory factors associated with muscle development. It also shortened hatching time and elevated plasma levels of growth hormone and insulin-like growth factor-1. Metabolomics and transcriptomic results revealed differentially expressed genes and metabolites with enhanced gluconeogenesis/glycolysis and increased plasma glucose and pyruvate levels under green light. Hence, the growth-promoting effect possibly through regulating energy metabolism in the liver and myogenic regulatory factors in muscle. Our findings provide important and novel insights into the mechanisms underlying the beneficial effects of green light on goose embryos.
Collapse
Affiliation(s)
- Zhe Chen
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Qu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Binbin Guo
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
19
|
Wallace SJ, de Solla SR, Langlois VS. Phenology of the transcriptome coincides with the physiology of double-crested cormorant embryonic development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101029. [PMID: 36302318 DOI: 10.1016/j.cbd.2022.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022]
Abstract
The rigorous timing of the dynamic transcriptome within the embryo has to be well orchestrated for normal development. Identifying the phenology of the transcriptome along with the physiology of embryonic development in birds may suggest periods of increased sensitivity to contaminant exposure depending on the contaminant's mechanism of action. Double-crested cormorants (Nannopterum auritum, formerly Phalacrocorax auritus) are commonly used in ecotoxicological studies, but relatively little is known about their functional transcriptome profile in early development. In this study, we tracked the phenology of the transcriptome during N. auritum embryogenesis. Fresh eggs were collected from a reference site and artificially incubated from collection until four days prior to hatching. Embryos were periodically sampled throughout incubation for a total of seven time points. A custom microarray was designed for cormorants (over 14,000 probes) and used for transcriptome analysis in whole body (days 5, 8) and liver tissue (days 12, 14, 16, 20, 24). Three main developmental periods (early, mid, and late incubation) were identified with differentially expressed genes, gene sets, and pathways within and between each developmental transition. Overall, the timing of differentially expressed genes and enriched pathways corresponded to previously documented changes in morphology, neurology, or physiology during avian embryonic development. Targeted investigation of a subset of genes involved in endogenous and xenobiotic metabolism (e.g., cytochrome P450 cyp1a, cyp1b1, superoxide dismutase 1 sod1) were expressed in a pattern similar to reported endogenous compound levels. These data can provide insights on normal embryonic development in an ecologically relevant species without any environmental contaminant exposure.
Collapse
Affiliation(s)
- Sarah J Wallace
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada. https://twitter.com/@sjwallace06
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|
20
|
Folate inhibits lipid deposition via the autophagy pathway in chicken hepatocytes. Poult Sci 2022; 102:102363. [PMID: 36525749 PMCID: PMC9791176 DOI: 10.1016/j.psj.2022.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Excessive fat deposition affects the efficiency and quality of broiler meat production. To understand the molecular mechanism underlying abdominal fat content of broiler lines under divergent selection, we have attempted multiple genetics and genomics methods previously. However, the molecular mechanism of hepatic fat deposition remains largely unknown. On broiler lines divergently selected for abdominal fat content, we performed integrated mRNA and lncRNA sequencing on liver tissues. Key genes and signaling pathways related to the biosynthesis, elongation and metabolism of fatty acids, metabolic pathways, and folate biosynthesis were revealed. Then, primary hepatocytes (sex determined) were isolated and cultured, and treatment concentrations of folate and palmitic acid were optimized. Expression profiling on primary hepatocytes treated by folate and/or palmitic acid revealed that folic acid inhibited lipid deposition in a sex-dependent way, through regulating transcriptional and protein levels of genes related to DNA methylation, lipid metabolism (mTOR/SREBP-1c/PI3K), and autophagy (LAMP2/ATG5) pathways. Taken together, folate could interfere with hepatic lipid deposition possibly through the involvement of the autophagy pathway in broilers.
Collapse
|
21
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
22
|
Hicks JA, Pike BE, Liu HC. Alterations in hepatic mitotic and cell cycle transcriptional networks during the metabolic switch in broiler chicks. Front Physiol 2022; 13:1020870. [PMID: 36353371 PMCID: PMC9639855 DOI: 10.3389/fphys.2022.1020870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2024] Open
Abstract
During embryonic life, chicks mainly derive energy from hepatic oxidation of yolk lipids. After hatch, chicks must rely on carbohydrate-rich feed to obtain energy. This requires an abrupt and intensive switch of metabolic processes, particularly in the liver. We recently identified a number of transcriptional and post-transcriptional regulatory networks that work concordantly to tune metabolic processes during the metabolic switch. Here, we used delayed feeding post-hatch (48 h) to impede the metabolic switch in broilers. We used RNA-seq to identify hepatic transcriptome differences between late stage embryos (E18) and two-day-old chicks (D2), which were either fed-from-hatch (FED) or not fed (DLY). Between FED and E18, 2,430 genes were differentially expressed (fold-change≥ 2; FDR p-value 0.05), of these 1,237 were downregulated in FED birds and 1,193 were upregulated. Between DLY and E18, 1979 genes were differentially expressed, of these 1,043 were downregulated and 936 were upregulated in DLY birds. Between DLY and FED, 880 genes were differentially expressed, of these 543 were downregulated and 337 were upregulated in DLY birds. We found that in addition to disturbances in a number of metabolic pathways, unfed chicks had a widespread suppression of gene networks associated with cell proliferation, cell cycle progression and mitosis. Expression patterns suggest that hepatocytes of delayed-fed birds have abnormal mitosis and increased polyploidization. This suggests that post-hatch feed consumption maintains the rate and integrity of liver growth immediately, which in turn, likely helps facilitate the appropriate programming of hepatic metabolic networks.
Collapse
Affiliation(s)
| | | | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
23
|
Cherian G. Hatching egg polyunsaturated fatty acids and the broiler chick. J Anim Sci Biotechnol 2022; 13:98. [PMID: 36117183 PMCID: PMC9484210 DOI: 10.1186/s40104-022-00757-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Transgenerational effects of certain nutrients such as essential fatty acids are gaining increased attention in the field of human medicine and animal sciences as a new tool to improve health and animal performance during perinatal life. Omega-3 (n-3) and omega-6 (n-6) fatty acids are denoted by the position of the first double bond from methyl end of the hydrocarbon chain. Alpha-linolenic acid (18:3 n-3) and linoleic acid (18:2 n-6) are essential n-3 and n-6 fatty acids and cannot be synthesized by the vertebrates including chickens. Alpha-linolenic acid and linoleic acid are the parent fatty acids of long chain (> 20–22C) n-3 and n-6 polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (20:5 n-3, EPA), docosapentaenoic acid (22:5 n-3/or 22:5 n-6, DPA), docosahexaenoic acid (22:6 n-3, DHA) and arachidonic acid (20:4 n-6). As components of cell membrane phospholipids, PUFA serves as precursors of eicosanoids, act as ligands for membrane receptors and transcription factors that regulate gene expression and are pivotal for normal chick growth and development. Considering the role of egg lipids as the sole source of essential fatty acids to the hatchling, dietary deficiencies or inadequate in ovo supply may have repercussions in tissue PUFA incorporation, lipid metabolism, chick growth and development during pre and early post-hatch period. This review focus on studies showing how maternal dietary n-3 or n-6 fatty acids can lead to remodeling of long chain n-3 and n-6 PUFA in the hatching egg and progeny chick tissue phospholipid molecular species and its impact on chick growth and PUFA metabolism during early life.
Collapse
|
24
|
Ács V, Áprily S, Nagy J, Kacsala L, Tossenberger J, Szeli NK, Halas V. Multiple Effects of Egg Weight, in Ovo Carbohydrates, and Sex of Birds on Posthatch Performance in Broilers. Vet Sci 2022; 9:vetsci9090491. [PMID: 36136707 PMCID: PMC9501470 DOI: 10.3390/vetsci9090491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Chickens raised for their meat (Gallus gallus domesticus) tend to have a critical phase of life right after hatching due to the management of modern production systems. Early nutrition strategies such as in ovo intervention can be an alternative means to support growth and gut health by compensating for the energy deficit after pipping out of the egg. In the current study, 1200 Ross 308 eggs were used to examine the effects of a complex carbohydrate solution of disaccharides and glucose applied in ovo on hatchability, the hatching time of different-sized eggs, and the development, performance, and carcass characteristics of broilers of both sexes. The eggs were divided into three treatment groups: intact (NT), in ovo saline (ioS), and in ovo carbohydrate mixture (ioCH). The incubation protocol was performed according to the recommendations of Aviagen (2019), and the in ovo process was carried out on day 17 by manually injecting 0.5 mL of the solutions into the amniotic fluid. After hatching, the birds were kept in floor pens until day 35 and fed ad libitum in a three-phase feeding program. Body weight, average daily weight gain, feed intake and conversion, and carcass characteristics were measured during the trial. In ovo carbohydrates reduced hatchability by 15%, while growth performance and the weight of thigh and breast muscle were enhanced significantly (p < 0.05) compared with ioS as a possible outcome of carbohydrate-to-muscle satellite cell proliferation and protein accumulation. However, further study is needed to refine the in ovo carbohydrate supplementation method to minimize the mortality of embryos during hatching.
Collapse
Affiliation(s)
- Virág Ács
- MTA-MATE Mycotoxins in the Food Chain Research Group, 7400 Kaposvár, Hungary
- Department of Farm Animal Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, 7400 Kaposvár, Hungary
- Correspondence:
| | - Szilvia Áprily
- Department of Precision Farming and Animal Biotechnology, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, 7400 Kaposvár, Hungary
| | | | - László Kacsala
- Department of Farm Animal Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, 7400 Kaposvár, Hungary
| | - János Tossenberger
- Department of Farm Animal Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, 7400 Kaposvár, Hungary
| | - Nóra Katalin Szeli
- Department of Farm Animal Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, 7400 Kaposvár, Hungary
| | - Veronika Halas
- Department of Farm Animal Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, 7400 Kaposvár, Hungary
| |
Collapse
|
25
|
Jia M, Xiao Y, Zhang C, Jiang T, Huang Y, Gao J, Li Y, Zhou L. Mitoxantrone alleviates hepatic steatosis induced by high-fat diet in broilers. Biochem Biophys Res Commun 2022; 627:52-59. [PMID: 36007336 DOI: 10.1016/j.bbrc.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a common nutritional metabolic disease in poultry that seriously compromises the health of chickens and reduces the economic benefits of the industry. In this study, we investigated the therapeutic effect of mitoxantrone (MTX) on hepatic steatosis in broilers. We constructed a steatosis cell model in vitro by adding oleic acid and palmitic acid to chicken hepatocytes (LMH cells), to examine influence of MTX on fat deposition on LMH cells. To determine the effects of MTX on hepatic steatosis in broiler livers in vivo, broilers were fed a high-fat diet to establish a fatty liver model. Our data show that MTX reduced the triglyceride (TG) levels and total cholesterol levels in LMH cells. In the MAFLD chick model, MTX decreased mRNA abundance of hepatic-lipid-synthesis-related gene such as FASN and increased mRNA abundance of fatty-acid-β-oxidation-related genes such as CPT1, PPARα, and reduced hepatic TG levels. MTX also reduced serum lipid and the percentage of abdominal fat. These results suggest that MTX improves hepatic steatosis in broilers as well as reduces circulating lipid levels and fat accumulation in broilers. Our work provides a promising therapeutic strategy for MAFLD and excessive fat accumulation in broiler chickens.
Collapse
Affiliation(s)
- Mengting Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, PR China
| | - Yang Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, PR China
| | - Caiyong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, PR China
| | - Tianyu Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, PR China
| | - Yuxin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, PR China
| | - Jiayi Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, PR China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, PR China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, 530004, PR China.
| |
Collapse
|
26
|
Pani P, Bal NC. Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows. Biol Rev Camb Philos Soc 2022; 97:2106-2126. [PMID: 35899483 DOI: 10.1111/brv.12885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Avian cold adaptation is hallmarked by innovative strategies of both heat conservation and thermogenesis. While minimizing heat loss can reduce the thermogenic demands of body temperature maintenance, it cannot eliminate the requirement for thermogenesis. Shivering and non-shivering thermogenesis (NST) are the two synergistic mechanisms contributing to endothermy. Birds are of particular interest in studies of NST as they lack brown adipose tissue (BAT), the major organ of NST in mammals. Critical analysis of the existing literature on avian strategies of cold adaptation suggests that skeletal muscle is the principal site of NST. Despite recent progress, isolating the mechanisms involved in avian muscle NST has been difficult as shivering and NST co-exist with its primary locomotory function. Herein, we re-evaluate various proposed molecular bases of avian skeletal muscle NST. Experimental evidence suggests that sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) and ryanodine receptor 1 (RyR1) are key in avian muscle NST, through their mediation of futile Ca2+ cycling and thermogenesis. More recent studies have shown that SERCA regulation by sarcolipin (SLN) facilitates muscle NST in mammals; however, its role in birds is unclear. Ca2+ signalling in the muscle seems to be common to contraction, shivering and NST, but elucidating its roles will require more precise measurement of local Ca2+ levels inside avian myofibres. The endocrine control of avian muscle NST is still poorly defined. A better understanding of the mechanistic details of avian muscle NST will provide insights into the roles of these processes in regulatory thermogenesis, which could further inform our understanding of the evolution of endothermy among vertebrates.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
27
|
Vik AM, Tsuchida S, Kobayashi A, Akiba Y, Harafuji M, Ushida K. Japanese rock ptarmigan displays high levels of polyunsaturated fatty acid in egg yolk compared to chicken and quail. J Vet Med Sci 2022; 84:1221-1224. [PMID: 35858822 PMCID: PMC9523293 DOI: 10.1292/jvms.22-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Egg yolk from captive and wild Japanese rock ptarmigan were analyzed for fatty acid composition. Compared to commercially reared poultry species, the ptarmigan yolk samples displayed higher
level of polyunsaturated fatty acids as opposed to monounsaturated fatty acids. The difference between the commercial controls and ptarmigan were larger than the difference between groups of
ptarmigan, indicating that the fatty acid profile of Japanese rock ptarmigan might be partly attributed to genetic factors rather than feed, despite wild and captive birds having vastly
different diets, and captive birds having been artificially bred for several generations.
Collapse
Affiliation(s)
- Anne Marit Vik
- College of Bioscience and Biotechnology, Chubu University
| | | | - Atsushi Kobayashi
- Shin-etsu Nature Conservation Office Ministry of the Environment, Ministry of Environment
| | - Yuki Akiba
- Toyama Municipal Family Park Zoo.,Executive Committee of Conservation, Japanese Association of Zoos and Aquariums
| | | | | |
Collapse
|
28
|
Persistent organic pollutants and mercury in a colony of Antarctic seabirds: higher concentrations in 1998, 2001, and 2003 compared to 2014 to 2016. Polar Biol 2022. [DOI: 10.1007/s00300-022-03065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
AbstractOver decades, persistent organic pollutants (POPs) and trace metals like mercury (Hg) have reached the remotest areas of the world such as Antarctica by atmospheric transport. Once deposited in polar areas, low temperatures, and limited solar radiation lead to long environmental residence times, allowing the toxic substances to accumulate in biota. We investigated the load of polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDTs) and metabolites (DDEs, DDDs) in embryos from failed eggs of the smallest seabird breeding in Antarctica, the Wilson's storm-petrel (Oceanites oceanicus) at King George Island (Isla 25 de Mayo). We compared samples of different developmental stages collected in 2001, 2003, and 2014 to 2016 to investigate changes in pollutant concentrations over time. We detected eight PCBs including the dioxin-like (dl) congeners PCB 105 and 118 (ΣPCBs: 59-3403 ng g−1 ww) as well as 4,4’-DDE, and 4,4’-DDD (ΣDDX: 19-1035 ng g−1 ww) in the embryos. Samples from the years 2001 and 2003 showed higher concentrations of PCBs than those from 2014 to 2016. Concentrations of DDX was similar in both time intervals. Furthermore, we determined Hg concentrations in egg membranes from 1998 to 2003, and 2014 to 2016. Similar to PCBs, Hg in egg membranes were higher in 1998 than in 2003, and higher in 2003 than in the years 2014 to 2016, suggesting a slow recovery of the pelagic Antarctic environment from the detected legacy pollutants. Embryos showed an increase in pollutant concentrations within the last third of their development. This finding indicates that contaminant concentrations may differ among developmental stages, and it should be taken into account in analyses on toxic impact during embryogenesis.
Collapse
|
29
|
Karageçili MR, Babacanoğlu E. Influence of in-ovo vitamin E and ascorbic acid injections on chick development, hatching performance and antioxidant content in different tissues of newly-hatched quail chicks. Br Poult Sci 2022; 63:840-846. [PMID: 35786116 DOI: 10.1080/00071668.2022.2094221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
Abstract
This study determined the influence of in ovo (IO) vitamin E and ascorbic acid injections on hatching performance, chick development, and antioxidant content of different tissues in day-old quail chicks. The experiment compared a control group (C: non-injection group) and injection groups, which had the yolk sac injected with 3.75 mg α- tocopherol (T1), or had the amniotic sac injected with 0.9% saline solution (T2), 2.5 mg ascorbic acid containing 0.9% saline solution (T3), and 2.5 mg ascorbic acid solution (T4), respectively.Mean relative asymmetry (RA) of bilateral lengths increased in the T2, T3 and T4 groups, whereas it decreased in the T1 group compared to C. The highest total carotene content in the residual yolk sac (RYS) was seen for the T1 group, which was significantly higher compared to T2, T3, and T4 groups. The highest total carotene concentration in liver was in the T1 group.The concentrations of delta-tocopherol, gamma-tocopherol and total vitamin E in RYS tissue were significantly higher in the T1 group than T2, T3, and T4 groups. Alpha-tocopherol and total vitamin E levels in the liver were significantly higher in the T2 and T4 groups than C.In ovo injections of vitamin E and ascorbic acid to different embryonic sacs caused antioxidant-specific effects on developmental stability of bilateral traits, RYS absorption, concentrations of total carotene and derivatives of vitamin E in newly-hatched quail chicks.
Collapse
Affiliation(s)
| | - E Babacanoğlu
- Department of Animal Science, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
30
|
Surugihalli C, Farley LS, Beckford RC, Kamkrathok B, Liu HC, Muralidaran V, Patel K, Porter TE, Sunny NE. Remodeling of Hepatocyte Mitochondrial Metabolism and De Novo Lipogenesis During the Embryonic-to-Neonatal Transition in Chickens. Front Physiol 2022; 13:870451. [PMID: 35530509 PMCID: PMC9068877 DOI: 10.3389/fphys.2022.870451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2022] [Accepted: 03/28/2022] [Indexed: 11/14/2022] Open
Abstract
Embryonic-to-neonatal development in chicken is characterized by high rates of lipid oxidation in the late-term embryonic liver and high rates of de novo lipogenesis in the neonatal liver. This rapid remodeling of hepatic mitochondrial and cytoplasmic networks occurs without symptoms of hepatocellular stress. Our objective was to characterize the metabolic phenotype of the embryonic and neonatal liver and explore whether these metabolic signatures are preserved in primary cultured hepatocytes. Plasma and liver metabolites were profiled using mass spectrometry based metabolomics on embryonic day 18 (ed18) and neonatal day 3 (nd3). Hepatocytes from ed18 and nd3 were isolated and cultured, and treated with insulin, glucagon, growth hormone and corticosterone to define hormonal responsiveness and determine their impacts on mitochondrial metabolism and lipogenesis. Metabolic profiling illustrated the clear transition from the embryonic liver relying on lipid oxidation to the neonatal liver upregulating de novo lipogenesis. This metabolic phenotype was conserved in the isolated hepatocytes from the embryos and the neonates. Cultured hepatocytes from the neonatal liver also maintained a robust response to insulin and glucagon, as evidenced by their contradictory effects on lipid oxidation and lipogenesis. In summary, primary hepatocytes from the embryonic and neonatal chicken could be a valuable tool to investigate mechanisms regulating hepatic mitochondrial metabolism and de novo lipogenesis.
Collapse
Affiliation(s)
- Chaitra Surugihalli
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Linda S Farley
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Ronique C Beckford
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Boonyarit Kamkrathok
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Hsiao-Ching Liu
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Vaishna Muralidaran
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Kruti Patel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Nishanth E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|
31
|
Heijmans J, Duijster M, Gerrits W, Kemp B, Kwakkel R, van den Brand H. Impact of growth curve and dietary energy-to-protein ratio of broiler breeders on egg quality and egg composition. Poult Sci 2022; 101:101946. [PMID: 35671619 PMCID: PMC9168161 DOI: 10.1016/j.psj.2022.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/04/2022] Open
Abstract
Egg characteristics have an impact on embryonic development and post-hatch performance of broilers. The impact of growth curve (GC) and dietary energy-to-protein ratio of broiler breeder hens on egg characteristics was investigated. At hatch, 1,536 pullets were randomly allotted to 24 pens in a 2 × 4 factorial dose-response design with 2 GC (standard growth curve = SGC or elevated growth curve = EGC (+ 15%)) and 4 diets, differing in energy-to-protein ratio (defined as 96%, 100%, 104% and 108% AMEn diet). Feed allocation per treatment was adapted weekly to achieve the targeted GC and to achieve pair-gain of breeders within each GC. Breeders on an EGC produced larger eggs (∆ = 2.3 g; P < 0.001) compared to breeders on a SGC. An exponential regression curve, with age (wk) of the breeders, was fitted to describe the impact of GC and dietary energy-to-protein ratio on egg composition. Yolk weight was 0.8 g higher for eggs from EGC breeders than from SGC breeders (a−108.1*0.907Age, where a was 22.1 and 22.9 for SGC and EGC, respectively; R2 = 0.97; P<0.001). An interaction between GC and dietary energy-to-protein ratio on albumen weight was observed (P = 0.04). Dietary energy-to-protein ratio did not affect albumen weight in SGC breeders (42.7−56.2*0.934Age; R2 = 0.89), but for EGC breeders, a higher dietary energy-to-protein ratio resulted in a 0.9 g lower albumen weight from 96% AMEn to 108% AMEn (a−62.9*0.926Age, where a was 43.4, 43.2, 42.8, and 42.5 for 96% AMEn, 100% AMEn, 104% AMEn, and 108% AMEn, respectively; R2 = 0.86). Albumen DM content decreased linearly with an increased dietary energy-to-protein ratio, but this was more profound in EGC breeders (β = −0.03 %/% AMEn) than in SGC breeders (β = −0.01 %/% AMEn; P = 0.03). Overall, it can be concluded that an EGC for breeders led to larger eggs with a more yolk and albumen, whereas dietary energy-to-protein ratio had minor effects on egg composition.
Collapse
|
32
|
Maternal lipid profile in pregnancy and embryonic size: a population-based prospective cohort study. BMC Pregnancy Childbirth 2022; 22:333. [PMID: 35436866 PMCID: PMC9016996 DOI: 10.1186/s12884-022-04647-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Lipids are crucial for fetal growth and development. Maternal lipid concentrations are associated with fetal growth in the second and third trimester of pregnancy and with birth outcomes. However, it is unknown if this association starts early in pregnancy or arises later during fetal development. The aim of this study was to investigate the association between the maternal lipid profile in early pregnancy and embryonic size. Methods We included 1474 women from the Generation R Study, a population based prospective birth cohort. Both embryonic size and the maternal lipid profile were measured between 10 weeks + 1 day and 13 weeks + 6 days gestational age. The maternal lipid profile was defined as total cholesterol, triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), remnant cholesterol, non-high-density (non-HDL-c) lipoprotein cholesterol concentrations and the triglycerides/high-density lipoprotein (TG/HDL-c) ratio. Additionally, maternal glucose concentrations were assessed. Embryonic size was assessed using crown-rump length (CRL) measurements. Associations were studied with linear regression models, adjusted for confounding factors: maternal age, pre-pregnancy body mass index (BMI), parity, educational level, ethnicity, smoking and folic acid supplement use. Results Triglycerides and remnant cholesterol concentrations are positively associated with embryonic size (fully adjusted models, 0.17 SDS CRL: 95% CI 0.03; 0.30, and 0.17 SDS: 95% CI 0.04; 0.31 per 1 MoM increase, respectively). These associations were not present in women with normal weight (triglycerides and remnant cholesterol: fully adjusted model, 0.44 SDS: 95% CI 0.15; 0.72). Associations between maternal lipid concentrations and embryonic size were not attenuated after adjustment for glucose concentrations. Total cholesterol, HDL-c, LDL-c, non-HDL-c concentrations and the TG/HDL-c ratio were not associated with embryonic size. Conclusions Higher triglycerides and remnant cholesterol concentrations in early pregnancy are associated with increased embryonic size, most notably in overweight women. Trial registration The study protocol has been approved by the Medical Ethics Committee of the Erasmus University Medical Centre (Erasmus MC), Rotterdam (MEC-2007-413). Written informed consent was obtained from all participants. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04647-6.
Collapse
|
33
|
Li F, Yang C, Xie Y, Gao X, Zhang Y, Ning H, Liu G, Chen Z, Shan A. Maternal nutrition altered embryonic <i>MYOD1</i>, <i>MYF5</i> and <i>MYF6</i> gene expression in genetically fat and lean lines of chickens. Anim Biosci 2022; 35:1223-1234. [PMID: 35240030 PMCID: PMC9262732 DOI: 10.5713/ab.21.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2021] [Accepted: 01/29/2022] [Indexed: 11/27/2022] Open
|
34
|
Smythe TA, Su G, Bergman Å, Letcher RJ. Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna: A review. ENVIRONMENT INTERNATIONAL 2022; 161:107097. [PMID: 35134713 DOI: 10.1016/j.envint.2022.107097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Over the past few decades, production trends of the flame retardant (FR) industry, and specifically for brominated FRs (BFRs), is for the replacement of banned and regulated compounds with more highly brominated, higher molecular weight compounds including oligomeric and polymeric compounds. Chemical, biological, and environmental stability of BFRs has received some attention over the years but knowledge is currently lacking in the transformation potential and metabolism of replacement emerging or novel BFRs (E/NBFRs). For articles published since 2015, a systematic search strategy reviewed the existing literature on the direct (e.g., in vitro or in vivo) non-human BFR metabolism in fauna (animals). Of the 51 papers reviewed, and of the 75 known environmental BFRs, PBDEs were by far the most widely studied, followed by HBCDDs and TBBPA. Experimental protocols between studies showed large disparities in exposure or incubation times, age, sex, depuration periods, and of the absence of active controls used in in vitro experiments. Species selection emphasized non-standard test animals and/or field-collected animals making comparisons difficult. For in vitro studies, confounding variables were generally not taken into consideration (e.g., season and time of day of collection, pollution point-sources or human settlements). As of 2021 there remains essentially no information on the fate and metabolic pathways or kinetics for 30 of the 75 environmentally relevant E/BFRs. Regardless, there are clear species-specific and BFR-specific differences in metabolism and metabolite formation (e.g. BDE congeners and HBCDD isomers). Future in vitro and in vivo metabolism/biotransformation research on E/NBFRs is required to better understand their bioaccumulation and fate in exposed organisms. Also, studies should be conducted on well characterized lab (e.g., laboratory rodents, zebrafish) and commonly collected wildlife species used as captive models (crucian carp, Japanese quail, zebra finches and polar bears).
Collapse
Affiliation(s)
- Tristan A Smythe
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Guanyong Su
- School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Åke Bergman
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
35
|
Yu YJ, Li ZR, Zhu Y, Li LZ, Zhang LH, Xiang MD, Zeng EY. Significance of biotransformation and excretion on the enantioselective bioaccumulation of hexabromocyclododecane (HBCDD) in laying hens and developing chicken embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126749. [PMID: 34390953 DOI: 10.1016/j.jhazmat.2021.126749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/14/2021] [Revised: 07/07/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Although (-)-α-hexabromocyclododecane (HBCDD) and (+)-γ-HBCDD are preferentially enriched in chickens, the key factors contributing to their selective bioaccumulation in hens and their potential biotransformation in developing chicken embryos remain unclear. Herein, in vivo and in ovo exposure experiments using hens and fertilized eggs were conducted to investigate the absorption, excretion, and biotransformation of HBCDDs in chickens. γ-HBCDD (76%) exhibited a higher absorption efficiency than α- (22%) and β- (69%) HBCDDs. However, α-HBCDD was dominant in hen tissues, although γ-HBCDD accounted for >75% in the spiked feed. Moreover, chicken embryos biotransformed approximately 9.5% and 11.7% of absorbed α- and γ-HBCDDs, respectively, implying that diastereomer-selective elimination causes the predominance of α-HBCDD in hens. The concentration and enantiomer fraction (EF) of α-HBCDD in laid eggs were significantly positively correlated, suggesting enantioselective elimination. The EFs of α- and γ-HBCDDs varied between feces from the exposure and depuration periods, indicating the preferred excretion of (+)-α- and (-)-γ-HBCDDs. Furthermore, the enantioselective biotransformation of (-)-γ-HBCDD was confirmed in developing chicken embryos. These results show that excretion and biotransformation contribute to the diastereomer- and enantiomer-selective bioaccumulation of HBCDDs in chickens; The results may improve our understanding of the environmental fate and ecological risks of HBCDDs in biota.
Collapse
Affiliation(s)
- Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zong-Rui Li
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yu Zhu
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Environmental and Chemical Engineering, Xi' an Polytechnic University, Xi' an 710048, China
| | - Liang-Zhong Li
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Luo-Hong Zhang
- School of Environmental and Chemical Engineering, Xi' an Polytechnic University, Xi' an 710048, China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
36
|
Shbailat SJ, Aslan IO, El-sallaq MMO. Cysteine and Aspartic Proteases Underlie the Digestion of Egg Yolk Proteins during the Development of Columba livia domestica Embryo. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2022-1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - IO Aslan
- The Hashemite University, Jordan
| | | |
Collapse
|
37
|
Sun H, Chen Z, Ma C, Lian L, Zhao Z, Niu S, Xu L, Sun J. Effects of maternal dietary energy restriction on laying performance, embryonic development, and lipid Metabolism in broilers. Anim Biosci 2021; 35:698-710. [PMID: 34727634 PMCID: PMC9065775 DOI: 10.5713/ab.21.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The objective of this study was to investigate the effects of different degrees of maternal dietary energy restriction on lipid deposition in embryonic tissues during the medium laying period (37 to 39 weeks) in Arbor Acres (AA) broiler breeders. Methods A single factor design was adopted, and 400 AA broiler breeders (20 weeks of age) with a similar weight were randomly allocated into four groups. The birds in the control group were fed a corn-soybean meal based diet, and those in trial groups were fed diets with 80%, 70%, and 50% energy levels of the basal diet. Incubated eggs from the medium laying period were collected. Samples of developing embryos at various stages were prepared for composition analysis. Results The embryo weight in the 80% energy group was higher than those of the other groups on embryonic day (E) 13, but at 21 E, they were significantly decreased with decreasing energy intake of the broiler breeders (p<0.05). Additionally, the levels of crude fat in tissues in the restriction groups were significantly decreased (p<0.05). The long axis and area of adipocytes in breast muscle, thigh muscle and the liver were significantly decreased (p<0.05) at 21 E in the 80%, 70%, and 50% energy groups. Conclusion The effects of the 80% maternal dietary energy restriction energy affects egg production performance, egg quality, and nutrient deposition in egg weights, which then directly impacts on the developmental process of embryos, especially on fat utilization and deposition.
Collapse
Affiliation(s)
- Hao Sun
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Zhihui Chen
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Chenzhan Ma
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Lina Lian
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Zeyu Zhao
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Shupeng Niu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Liangmei Xu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jinhua Sun
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Tung CT, Lin HJ, Lin CW, Mersmann HJ, Ding ST. The role of dynamin in absorbing lipids into endodermal epithelial cells of yolk sac membranes during embryonic development in Japanese quail. Poult Sci 2021; 100:101470. [PMID: 34624771 PMCID: PMC8503669 DOI: 10.1016/j.psj.2021.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2020] [Revised: 05/10/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Endodermal epithelial cells (EECs) within the yolk sac membrane (YSM) of avian embryos are responsible for the absorption and utilization of lipids. The lipids in the yolk are mostly composed of very low density lipoprotein (VLDL), uptake mainly depends on clathrin-mediated endocytosis (CME). The CME relies on vesicle formation through the regulation of dynamin (DNM). However, it is still unclear whether DNMs participate in avian embryonic development. We examined mRNA expression levels of several genes involved in lipid transportation and utilization in YSM during Japanese quail embryonic development using qPCR. The mRNA levels of DNM1 and DNM3 were elevated at incubation d 8 and 10 before the increase of SOAT1, CIDEA, CIDEC, and APOB mRNA's. The elevated gene expression suggested the increased demand for DNM activity might be prior to cholesteryl ester production, lipid storage, and VLDL transport. Hinted by the result, we further investigated the role of DNMs in the embryonic development of Japanese quail. A DNM inhibitor, dynasore, was injected into fertilized eggs at incubation d 3. At incubation d 10, the dynasore-injected embryo showed increased embryonic lethality compared to control groups. Thus, the activity of DNMs was essential for the embryonic development of Japanese quail. The activities of DNMs were also verified by the absorptions of fluorescent VLDL (DiI-yVLDL) in EECs. Fluorescent signals in EECs were decreased significantly after treatment with dynasore. Finally, EECs were pretreated with S-Nitroso-L-glutathione (GSNO), a DNM activator, for 30 min; this increased the uptake of DiI-yVLDL. In conclusion, DNMs serve a critical role in mediating lipid absorption in YSM. The activity of DNMs was an integral part of development in Japanese quail. Our results suggest enhancing lipid transportation through an increase of DNM activity may improve avian embryonic development.
Collapse
Affiliation(s)
- Cheng-Ting Tung
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Han-Jen Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Chiao-Wei Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Harry John Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C.; Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan, R.O.C..
| |
Collapse
|
39
|
Zhang Y, Zhang N, Liu L, Wang Y, Xing J, Li X. Transcriptome Analysis of Effects of Folic Acid Supplement on Gene Expression in Liver of Broiler Chickens. Front Vet Sci 2021; 8:686609. [PMID: 34604366 PMCID: PMC8481781 DOI: 10.3389/fvets.2021.686609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/27/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Folic acid is a water-soluble B vitamin, and plays an important role in regulating gene expression and methylation. The liver is the major site of lipid biosynthesis in the chicken. Nevertheless, how gene expression and regulatory networks are affected by folic acid in liver of broilers are poorly understood. This paper conducted the RNA-seq technology on the liver of broilers under folic acid challenge investigation. First, 405 differentially expressed genes (DEGs), including 157 significantly upregulated and 248 downregulated, were detected between the control group (C) and the 5 mg folic acid group (M). Second, 68 upregulated DEGs and 142 downregulated DEGs were determined between C group and 10 mg folic acid group (H). Third, there were 165 upregulated genes and 179 downregulated genes between M and H groups. Of these DEGs, 903 DEGs were successfully annotated in the public databases. The functional classification based on GO and KEEGG showed that “general function prediction only” represented the largest functional classes, “cell cycle” (C vs. M; M vs. H), and “neuroactive ligand-receptor interaction” (C vs. H) were the highest unique sequences among three groups. SNP analysis indicated that numbers of C, M and H groups were 145,450, 146,131, and 123,004, respectively. Total new predicted alternative splicing events in C, M, and H groups were 9,521, 9,328, and 8,929, respectively. A protein-protein interaction (PPI) network was constructed, and the top 10 hub genes were evaluated among three groups. The results of real time PCR indicated that mRNA abundance of PPARγ and FAS in abdominal fat of M and H groups were reduced compared with the C group (P < 0.05). Ultramicroscopy results showed that folic acid could reduce lipid droplets in livers from chickens. Finally, contents of LPL, PPARγ, and FAS in abdominal fat were decreased with the folic acid supplmented diets (P < 0.01). These findings reveal the effects of folic acid supplemention on gene expression in liver of broilers, which can provide information for understanding the molecular mechanisms of folic acid regulating liver lipid metabolism.
Collapse
Affiliation(s)
- Yujie Zhang
- School of Life Sciences, Linyi University, Linyi, China
| | - Ningbo Zhang
- School of Agriculture and Forestry Sciences, Linyi University, Linyi, China
| | - Lin Liu
- School of Pharmacy, Linyi University, Linyi, China
| | - Yan Wang
- School of Life Sciences, Linyi University, Linyi, China
| | - Jinyi Xing
- School of Life Sciences, Linyi University, Linyi, China
| | - Xiuling Li
- School of Life Sciences, Linyi University, Linyi, China
| |
Collapse
|
40
|
Kim M, Voy BH. Fighting Fat With Fat: n-3 Polyunsaturated Fatty Acids and Adipose Deposition in Broiler Chickens. Front Physiol 2021; 12:755317. [PMID: 34658934 PMCID: PMC8511411 DOI: 10.3389/fphys.2021.755317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Modern broiler chickens are incredibly efficient, but they accumulate more adipose tissue than is physiologically necessary due to inadvertent consequences of selection for rapid growth. Accumulation of excess adipose tissue wastes feed in birds raised for market, and it compromises well-being in broiler-breeders. Studies driven by the obesity epidemic in humans demonstrate that the fatty acid profile of the diet influences adipose tissue growth and metabolism in ways that can be manipulated to reduce fat accretion. Omega-3 polyunsaturated fatty acids (n-3 PUFA) can inhibit adipocyte differentiation, induce fatty acid oxidation, and enhance energy expenditure, all of which can counteract the accretion of excess adipose tissue. This mini-review summarizes efforts to counteract the tendency for fat accretion in broilers by enriching the diet in n-3 PUFA.
Collapse
Affiliation(s)
| | - Brynn H. Voy
- Department of Animal Science, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
41
|
Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals (Basel) 2021; 11:ani11102795. [PMID: 34679817 PMCID: PMC8532940 DOI: 10.3390/ani11102795] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The first week after hatch is the most challenging period in the life of broilers. The digestive tract of the newly hatched chick is immature and must undergo dramatic changes before it can efficiently digest and absorb nutrients. The gut is the vital organ where nutrient digestion and absorption take place. Ontogenic changes that accompany improved digestion and absorption include increased secretion of digestive enzymes, increase in the gut absorptive surface area, and enhanced nutrient transporters. The obvious limiting factors are the secretion and activities of digestive enzymes, and the surface area for absorption. These limitations are overcome as the birds grow older, with concurrent improvements in nutrient utilization. In addition, substantial changes also take place in the physical and functional development of the immune system and intestinal microbial ecology. However, the focus of the current review was on nutrition-related challenges and nutritional approaches to assist the chick during this highly demanding period. Abstract Because the intestine is the primary nutrient supply organ, early development of digestive function in newly hatched chick will enable it to better utilize nutrients, grow efficiently, and achieve the genetic potential of contemporary broilers. Published data on the growth and digestive function of the gastrointestinal tract in neonatal poultry were reviewed. Several potential strategies to improve digestive tract growth and function in newly hatched chick are available and the options include breeder nutrition, in ovo feeding, early access to feed and water, special pre-starter diets, judicious use of feed additives, and early programming.
Collapse
|
42
|
L-Leucine In Ovo Administration Causes Growth Retardation and Modifies Specific Amino Acid Metabolism in Broiler Embryos. J Poult Sci 2021; 58:163-170. [PMID: 34447280 PMCID: PMC8371536 DOI: 10.2141/jpsa.0200086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
L-Leucine (L-Leu) in ovo administration was demonstrated to afford thermotolerance and modified amino acids metabolism in post-hatched broiler chicks under heat stress. This study aimed to investigate the changes in embryonic growth and amino acid metabolism after in ovo injection of L-Leu. Fertilized broiler eggs were subjected to in ovo injection of sterile water or L-Leu on embryonic day (ED) 7. The weight of embryos and yolk sacs were measured on ED 12, 14, 16, and 18. Plasma and livers were collected on ED 14 and 18 for free amino acid analysis. The weight and relative weight of embryos were significantly lowered by in ovo administration of L-Leu, but those of yolk sacs were not altered. Moreover, L-Leu in ovo injection significantly reduced the plasma proline concentration during embryogenesis and increased the plasma concentrations of tyrosine (Tyr) and lysine (Lys) in ED 18. Hepatic Lys concentration was also significantly increased by L-Leu in ovo injection. Interestingly, Leu concentrations in the plasma and liver were not affected by L-Leu administration. These results indicated that in ovo administered L-Leu was metabolized before ED 14 and affected embryonic growth and amino acid metabolism during embryogenesis.
Collapse
|
43
|
Effects of riboflavin deficiency on the lipid metabolism of duck breeders and duck embryos. Poult Sci 2021; 100:101342. [PMID: 34438327 PMCID: PMC8383102 DOI: 10.1016/j.psj.2021.101342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effects of dietary riboflavin deficiency (RD) on the lipid metabolism of duck breeders and duck embryos. A total of 40 female 40-wk-old white Pekin duck breeders were randomly divided into 2 groups, received either RD diet (1.48 mg riboflavin/kg) or control diet (16.48 mg riboflavin/kg, CON) for 14 wk. Each group consisted of 20 duck breeders (10 replicates per group, 2 birds per replicate), and all experiment birds were single-caged. At the end of the experiment, reproductive performance, hepatic riboflavin, hepatic flavin mononucleotide (FMN), hepatic flavin adenine dinucleotide (FAD), hepatic morphology, hepatic lipid contents, and hepatic protein expression of duck breeders and duck embryos were measured. The results showed that the RD had no effect on egg production and egg fertility but reduced egg hatchability, duck embryo weight, hepatic riboflavin, FMN, and FAD status compared to results obtained in the CON group (all P < 0.05). Livers from RD ducks presented enlarged lipid droplets, excessive accumulation of total lipids, triglycerides, and free fatty acids (all P < 0.05). In addition to excessive lipids accumulation, medium-chain specific acyl-CoA dehydrogenase expression was downregulated (P < 0.05), and short-chain specific acyl-CoA dehydrogenase expression was upregulated in maternal and embryonic livers (P < 0.05). RD did not affect maternal hepatic acyl-CoA dehydrogenase family member 9 (ACAD9) expression, but duck embryonic hepatic ACAD9 expression was reduced in the RD group (P < 0.05). Collectively, dietary RD conditioned lower egg hatchability and inhibited the development of duck embryos. Increased accumulation of lipids, both maternal and embryo, was impaired due to the reduced flavin protein expression, which caused inhibition of hepatic lipids utilization. These findings suggest that abnormal duck embryonic growth and low hatchability caused by RD might be associated with disorders of lipid metabolism in maternal as well as embryos.
Collapse
|
44
|
Guo B, Yan L, Lei M, Dai Z, Shi Z. Wider Angle Egg Turning during Incubation Enhances Yolk Utilization and Promotes Goose Embryo Development. Animals (Basel) 2021; 11:2485. [PMID: 34573451 PMCID: PMC8466811 DOI: 10.3390/ani11092485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/21/2022] Open
Abstract
We aimed to investigate how wide-angle turning of eggs during incubation affected yolk utilization and the associated molecular mechanism, along with improved goose embryonic development. In total, 1152 eggs (mean weight: 143.33 ± 5.43 g) were divided equally and incubated in two commercial incubators with tray turning angles adjusted differently, to either 50° or 70°. Following incubation under the standard temperature and humidity level, turning eggs by 70° increased embryonic days 22 (E22), embryo mass, gosling weight at hatching, and egg hatchability, but reduced E22 yolk mass compared with those after turning eggs by 50°. Lipidomic analyses of the yolk revealed that egg turning at 70° reduced the concentrations of 17 of 1132 detected total lipids, including diglycerides, triglycerides, and phospholipids. Furthermore, the 70° egg turning upregulated the expression of genes related to lipolysis and fat digestion enzymes, such as lipase, cathepsin B, and prosaposin, as well as apolipoprotein B, apolipoprotein A4, very low-density lipoprotein receptor, low-density lipoprotein receptor-related protein 2, and thrombospondin receptor, which are genes involved in lipid transportation. Thus, a 70° egg turning angle during incubation enhances yolk utilization through the upregulation of lipolysis and fat digestion-related gene expression, thereby promoting embryonic development and improving egg hatchability and gosling quality.
Collapse
Affiliation(s)
| | | | | | | | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (B.G.); (L.Y.); (M.L.); (Z.D.)
| |
Collapse
|
45
|
Mentesana L, Andersson MN, Casagrande S, Goymann W, Isaksson C, Hau M. Natural variation in yolk fatty acids, but not androgens, predicts offspring fitness in a wild bird. Front Zool 2021; 18:38. [PMID: 34353328 PMCID: PMC8340462 DOI: 10.1186/s12983-021-00422-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Accepted: 07/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In egg-laying animals, mothers can influence the developmental environment and thus the phenotype of their offspring by secreting various substances into the egg yolk. In birds, recent studies have demonstrated that different yolk substances can interactively affect offspring phenotype, but the implications of such effects for offspring fitness and phenotype in natural populations have remained unclear. We measured natural variation in the content of 31 yolk components known to shape offspring phenotypes including steroid hormones, antioxidants and fatty acids in eggs of free-living great tits (Parus major) during two breeding seasons. We tested for relationships between yolk component groupings and offspring fitness and phenotypes. RESULTS Variation in hatchling and fledgling numbers was primarily explained by yolk fatty acids (including saturated, mono- and polyunsaturated fatty acids) - but not by androgen hormones and carotenoids, components previously considered to be major determinants of offspring phenotype. Fatty acids were also better predictors of variation in nestling oxidative status and size than androgens and carotenoids. CONCLUSIONS Our results suggest that fatty acids are important yolk substances that contribute to shaping offspring fitness and phenotype in free-living populations. Since polyunsaturated fatty acids cannot be produced de novo by the mother, but have to be obtained from the diet, these findings highlight potential mechanisms (e.g., weather, habitat quality, foraging ability) through which environmental variation may shape maternal effects and consequences for offspring. Our study represents an important first step towards unraveling interactive effects of multiple yolk substances on offspring fitness and phenotypes in free-living populations. It provides the basis for future experiments that will establish the pathways by which yolk components, singly and/or interactively, mediate maternal effects in natural populations.
Collapse
Affiliation(s)
- Lucia Mentesana
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.
| | - Martin N Andersson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Stefania Casagrande
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - Wolfgang Goymann
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany
| | - Caroline Isaksson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Michaela Hau
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319, Seewiesen, Germany.,University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| |
Collapse
|
46
|
Fatty acid profile in the breast and thigh muscles of the slow- and fast-growing birds under the same management system. Trop Anim Health Prod 2021; 53:409. [PMID: 34292417 DOI: 10.1007/s11250-021-02777-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2021] [Accepted: 05/15/2021] [Indexed: 10/20/2022]
Abstract
The aim of the study was to assess the effect of feeding the same diet to different breeds of chickens and at different ages on fatty acid (FA) composition of the breast and thigh muscles. A total of 150 chickens comprising 50 each of red jungle fowl (RJ) and village chicken (VC), the slow-growing birds, and the commercial broiler (CB), fast-growing birds, were used for this study. Ten chickens from each breed were serially euthanized at days 1, 10, 20, 56, and 120 post hatch, and pectoralis major and bicep femoris were harvested to represent the breast and thigh muscles respectively. It was revealed that the breast muscle concentrations of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and total polyunsaturated fatty acids (PUFA) are significantly different (p<0.05) among the breeds. Also, the FA composition of breast and thigh muscles among RJ, VC, and CB at various ages studied varied significantly (p<0.05) but without a definite pattern. The composition of MUFA was lower, but that of PUFA was higher in the RJ and VC than in the CB breast muscles. Within the breeds, the composition of total MUFA decreased, while that of PUFA increased with age. The total MUFA and PUFA showed no significant difference (p>0.05) between the breast and thigh muscles at different ages evaluated. This study suggests that slow-growing birds (RJ and VC) might be better sources of desirable FA than the fast-growing birds, CB.
Collapse
|
47
|
Oliveira GDS, Nascimento ST, dos Santos VM, Lima Dallago BS. Spraying Hatching Eggs with Clove Essential Oil Does Not Compromise the Quality of Embryos and One-Day-Old Chicks or Broiler Performance. Animals (Basel) 2021; 11:ani11072045. [PMID: 34359173 PMCID: PMC8300194 DOI: 10.3390/ani11072045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Studies on natural sanitizers for potentially safe hatching of eggs are essential. In this context, the objective of this study was to evaluate whether sanitizing hatching eggs with clove essential oil in the preincubation phase affects broiler performance (body weight, body weight gain, feed consumption, feed conversion ratio, and survivability). Furthermore, the effects of the oil on the hatch window and quality of embryos and one-day-old chicks were investigated. In this study, clove essential oil did not compromise the quality of the birds or the post-hatch performance. Abstract The objective of this study was to evaluate whether sanitizing hatching eggs with clove essential oil in the preincubation phase affects broiler performance and influences the hatch window and quality of embryos and one-day-old chicks. Hatching eggs (n = 1280; mean weight = 58.64 ± 0.49 g) from a batch of 37-week-old broiler breeder hens of the CPK (Pesadão Vermelho) lineage were randomly distributed into four treatments in the preincubation phase. The treatments consisted of three different sanitization procedures (spraying with grain alcohol, spraying with clove essential oil, and fumigation with paraformaldehyde) and a control treatment (nonsanitized). The lengths of the embryos and one-day-old chicks (one of the parameters used to assess bird quality) were not significantly different among the treatments, with means of 15.30 ± 1.41 and 18.37 ± 0.76 mm, respectively. Body weight, body weight gain, feed consumption, and feed conversion rate in different rearing periods did not differ significantly among the treatments. However, there was a significant difference in the percentage of survivability during the initial period (1 to 28 days) among the treatments. In conclusion, clove essential oil treatment did not negatively affect the quality of embryos and one-day-old chicks or the performance of broilers.
Collapse
Affiliation(s)
- Gabriel da Silva Oliveira
- Faculty of Agronomy and Veterinary Medicine (FAV), University of Brasília, Brasília 70.910-900, Brazil; (G.d.S.O.); (S.T.N.); (B.S.L.D.)
| | - Sheila Tavares Nascimento
- Faculty of Agronomy and Veterinary Medicine (FAV), University of Brasília, Brasília 70.910-900, Brazil; (G.d.S.O.); (S.T.N.); (B.S.L.D.)
| | - Vinícius Machado dos Santos
- Laboratory of Poultry Science, Campus Planaltina—Federal Institute of Brasília, Brasília 73.380-900, Brazil
- Correspondence: ; Tel.: +55-(61)-98366-5661
| | - Bruno Stéfano Lima Dallago
- Faculty of Agronomy and Veterinary Medicine (FAV), University of Brasília, Brasília 70.910-900, Brazil; (G.d.S.O.); (S.T.N.); (B.S.L.D.)
| |
Collapse
|
48
|
Meng Y, Qiu N, Mine Y, Keast R. Comparative Lipidomics of Chick Yolk Sac during the Embryogenesis Provides Insight into Understanding the Development-Related Lipid Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7467-7477. [PMID: 34159787 DOI: 10.1021/acs.jafc.1c01728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Yolk sac (YS, include the yolk content) at different chick embryogenesis stages possesses varying lipid distributions, which are nutrition-influencing factors for the health of an early embryo and a later adult. YS lipids can substantially influence embryogenesis metabolism, but a comprehensive understanding of lipid's influence remains unknown. Herein, the effects of embryogenesis on lipid profiling of chick YS were investigated by UHPLC-MS/MS-based lipidomics. A total of 2231 lipid species across 57 subclasses were identified in the YS, and 1011 lipids were significantly different (P < 0.05) at the incubation days of 0, 7, 13, and 18. Specifically, phosphocholine and phosphatidylglycerol in late-stage embryogenesis potentially assist with prehatching gas exchange and infection resistance in the environment after lung respiration. In addition, the accumulated lysophosphatidylcholine at day 18 may induce apoptosis and disturb the membrane structure of YS to enable better absorption by the embryo abdomen. The decreased cardiolipin in late embryogenesis may be due to transportation to the embryo and integration into the mitochondrial membrane to accelerate energy metabolism for the rapidly developing embryo after day 13. Therefore, this study demonstrated the lipid profile alteration of the developing YS, providing theoretical guidance for researching the developmental origins of health and disease.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Russell Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
49
|
Thanabalan A, Kiarie EG. Influence of Feeding Omega-3 Polyunsaturated Fatty Acids to Broiler Breeders on Indices of Immunocompetence, Gastrointestinal, and Skeletal Development in Broiler Chickens. Front Vet Sci 2021; 8:653152. [PMID: 34262961 PMCID: PMC8273488 DOI: 10.3389/fvets.2021.653152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
Modern broiler chickens are associated with rapid growth rates and superior feed efficiency. However, they are also susceptible to physiological and metabolic disorders (e.g., skin lesions, lameness, sudden death, enteric diseases, myopathies) that exert substantial economic losses to producers. This is further exacerbated by consumer pressure and mandated cessation of production practices such as indiscriminate use of antimicrobial growth promoters. Manipulation of broiler breeder (BB) nutrition and management can influence chick quality, robustness, and resilience to stressors in the production environment. The present review examines the role of feeding BB functional polyunsaturated omega-3 fatty acids (n-3 PUFA) and subsequent impact on the indices of immunocompetence, skeletal, and gastrointestinal (GIT) development in broiler chickens. Research in mammalian and avian models led evidence that perinatal feeding of long chain n-3 PUFA such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) engender transgenerational effects through regulation of a variety of biological processes including development of vital organs such as skeleton, brain and GIT. It is shown that feeding poultry breeders n-3 PUFA decreases inflammatory states and enriches hatching eggs with n-3 PUFA and immunoglobulins. Further evidence also shows that after 15 days of incubation, chicken embryos preferentially utilize long chain n-3 PUFA-critical for optimal cell, tissues, and organ development. Enrichment of n-3 PUFA in newly hatchling tissues reduce proinflammatory eicosanoids with consequences of enhanced bone mineralization. Dietary n-3 PUFA also modulates breeder GIT microbiota with consequences of microbial colonization and succession in chicks. As well, research shows that feeding poultry breeders n-3 PUFA bolsters progeny immunocompetence through enhanced passive immunity and antibody titres against routine vaccination. In conclusion, it appears that chicks may benefit from the incorporation of n-3 PUFA in the breeder diets; however, little attention is paid to fatty acids composition in breeder nutrition. We also highlight gaps in knowledge and future research perspectives.
Collapse
Affiliation(s)
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
50
|
Hicks JA, Liu HC. Centennial Review: Metabolic microRNA - shifting gears in the regulation of metabolic pathways in poultry. Poult Sci 2021; 100:100856. [PMID: 33652542 PMCID: PMC7936154 DOI: 10.1016/j.psj.2020.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023] Open
Abstract
Over 20 yr ago, a small noncoding class of RNA termed microRNA (miRNA) that was able to recognize sequences in mRNAs and inhibit their translation was discovered in Caenorhabditis elegans. In the intervening years, miRNA have been discovered in most eukaryotes and are now known to regulate the majority of protein-coding genes. It has been discovered that disruption of miRNA function often leads to the development of pathological conditions. One physiological system under extensive miRNA-mediated regulation is metabolism. Metabolism is one of the most dynamic of biological networks within multiple organs, including the liver, muscle, and adipose tissue, working in concert to respond to ever-changing nutritional cues and energy demands. Therefore, it is not surprising that miRNA regulate virtually all aspects of eukaryotic metabolism and have been linked to metabolic disorders, such as obesity, fatty liver diseases, and diabetes, just to name a few. Chickens, and birds in general, face their own unique metabolic challenges, particularly after hatching, when their metabolism must completely transform from using lipid-rich yolk to carbohydrate-rich feed as fuel in a very short period of time. Furthermore, commercial poultry breeds have undergone extensive selection over the last century for more desirable production traits, which has resulted in numerous metabolic consequences. Here, we review the current knowledge of miRNA-mediated regulation of metabolic development and function in chickens.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|