1
|
Jeong YH, Kwon M, Shin S, Lee J, Kim KS. Biomedical Applications of CNT-Based Fibers. BIOSENSORS 2024; 14:137. [PMID: 38534244 DOI: 10.3390/bios14030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
Carbon nanotubes (CNTs) have been regarded as emerging materials in various applications. However, the range of biomedical applications is limited due to the aggregation and potential toxicity of powder-type CNTs. To overcome these issues, techniques to assemble them into various macroscopic structures, such as one-dimensional fibers, two-dimensional films, and three-dimensional aerogels, have been developed. Among them, carbon nanotube fiber (CNTF) is a one-dimensional aggregate of CNTs, which can be used to solve the potential toxicity problem of individual CNTs. Furthermore, since it has unique properties due to the one-dimensional nature of CNTs, CNTF has beneficial potential for biomedical applications. This review summarizes the biomedical applications using CNTF, such as the detection of biomolecules or signals for biosensors, strain sensors for wearable healthcare devices, and tissue engineering for regenerating human tissues. In addition, by considering the challenges and perspectives of CNTF for biomedical applications, the feasibility of CNTF in biomedical applications is discussed.
Collapse
Affiliation(s)
- Yun Ho Jeong
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangsoo Shin
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaegeun Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Shaikh UJ, Pellicano A, Schüppen A, Heinzel A, Winz OH, Herzog H, Mottaghy FM, Binkofski F. Increasing striatal dopamine release through repeated bouts of theta burst transcranial magnetic stimulation of the left dorsolateral prefrontal cortex. A 18F-desmethoxyfallypride positron emission tomography study. Front Neurosci 2024; 17:1295151. [PMID: 38304075 PMCID: PMC10833002 DOI: 10.3389/fnins.2023.1295151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/20/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction Transcranial Magnetic Stimulation (TMS) can modulate fronto-striatal connectivity in the human brain. Here Positron Emission Tomography (PET) and neuro-navigated TMS were combined to investigate the dynamics of the fronto-striatal connectivity in the human brain. Employing 18F-DesmethoxyFallypride (DMFP) - a Dopamine receptor-antagonist - the release of endogenous dopamine in the striatum in response to time-spaced repeated bouts of excitatory, intermittent theta burst stimulation (iTBS) of the Left-Dorsolateral Prefrontal Cortex (L-DLPFC) was measured. Methods 23 healthy participants underwent two PET sessions, each one with four blocks of iTBS separated by 30 minutes: sham (control) and verum (90% of individual resting motor threshold). Receptor Binding Ratios were collected for sham and verum sessions across 37 time frames (about 130 minutes) in striatal sub-regions (Caudate nucleus and Putamen). Results Verum iTBS increased the dopamine release in striatal sub-regions, relative to sham iTBS. Dopamine levels in the verum session increased progressively across the time frames until frame number 28 (approximately 85 minutes after the start of the session and after three iTBS bouts) and then essentially remained unchanged until the end of the session. Conclusion Results suggest that the short-timed iTBS protocol performed in time-spaced blocks can effectively induce a dynamic dose dependent increase in dopaminergic fronto-striatal connectivity. This scheme could provide an alternative to unpleasant and distressing, long stimulation protocols in experimental and therapeutic settings. Specifically, it was demonstrated that three repeated bouts of iTBS, spaced by short intervals, achieve larger effects than one single stimulation. This finding has implications for the planning of therapeutic interventions, for example, treatment of major depression.
Collapse
Affiliation(s)
- Usman Jawed Shaikh
- Section Clinical Cognitive Sciences, Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Andre Schüppen
- Section Clinical Cognitive Sciences, Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Interdisciplinary Center for Clinical Research – Brain Imaging Facility, University Hospital Aachen, Aachen, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Research Centre Juelich, Institute of Neuroscience and Medicine (INM-4), Juelich, Germany
| | - Oliver H. Winz
- Department of Nuclear Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Hans Herzog
- Research Centre Juelich, Institute of Neuroscience and Medicine (INM-4), Juelich, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- Juelich Aachen Research Alliance (JARA)—BRAIN, Juelich, Germany
| | - Ferdinand Binkofski
- Section Clinical Cognitive Sciences, Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Research Centre Juelich, Institute of Neuroscience and Medicine (INM-4), Juelich, Germany
- Juelich Aachen Research Alliance (JARA)—BRAIN, Juelich, Germany
| |
Collapse
|
3
|
Xia M, Agca BN, Yoshida T, Choi J, Amjad U, Bose K, Keren N, Zukerman S, Cima MJ, Graybiel AM, Schwerdt HN. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional probing of neurochemical activity in deep brain structures of rodents. Biosens Bioelectron 2023; 241:115625. [PMID: 37708685 PMCID: PMC10591823 DOI: 10.1016/j.bios.2023.115625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023]
Abstract
We developed a flexible "electrode-thread" array for recording dopamine neurochemicals from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼10 μm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single-entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single-entry insertion but only allow measurements along the axis of insertion. Horizontally configured arrays inflict separate penetrations for each individual channel. We tested functional performance of our CFET arrays in vivo for recording dopamine and for providing lateral spread to multiple distributed sites in the rat striatum. Spatial spread was further characterized in agar brain phantoms as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.
Collapse
Affiliation(s)
- Mingyi Xia
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Busra Nur Agca
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Usamma Amjad
- Department of Bioengineering, University of Pittsburgh, USA
| | - Kade Bose
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Nikol Keren
- Department of Bioengineering, University of Pittsburgh, USA
| | | | - Michael J Cima
- Koch Institute for Integrative Cancer Research and Department of Materials Science, Massachusetts Institute of Technology, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Xia M, Agca BN, Yoshida T, Choi J, Amjad U, Bose K, Keren N, Zukerman S, Cima MJ, Graybiel AM, Schwerdt HN. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional spatial profiling of neurochemical activity in deep brain structures of rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537033. [PMID: 37131810 PMCID: PMC10153108 DOI: 10.1101/2023.04.15.537033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We developed a flexible "electrode-thread" array for recording dopamine neurochemical activity from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼ 10 µm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single entry insertion but only allow measurements along the axis of insertion. Horizontally configured neurochemical recording arrays inflict separate penetrations for each individual channel (i.e., electrode). We tested functional performance of our CFET arrays in vivo for recording dopamine neurochemical dynamics and for providing lateral spread to multiple distributed sites in the striatum of rats. Spatial spread was further characterized using agar brain phantoms to measure electrode deflection as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology techniques. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Neurochemical recording operations tested here can be integrated with already widely established capabilities of CF-based electrodes to record single neuron activity and local field potentials, to enable multi-modal recording functions. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.
Collapse
Affiliation(s)
- Mingyi Xia
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Busra Nur Agca
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Tomoko Yoshida
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Usamma Amjad
- Department of Bioengineering, University of Pittsburgh
| | - Kade Bose
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Nikol Keren
- Department of Bioengineering, University of Pittsburgh
| | | | - Michael J Cima
- Koch Institute for Integrative Cancer Research and Department of Materials Science, Massachusetts Institute of Technology
| | - Ann M Graybiel
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
5
|
Meng Y, Du J, Liu N, Qiang Y, Xiao L, Lan X, Ma L, Yang J, Yu J, Lu G. Epigenetic modulation: Research progress on histone acetylation levels in major depressive disorders. J Drug Target 2023; 31:142-151. [PMID: 36112185 DOI: 10.1080/1061186x.2022.2125978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Depression is a serious mental illness and a prevalent condition with multiple aetiologies. The impact of the current therapeutic strategies is limited and the pathogenesis of the illness is not well understood. According to previous studies, depression onset is influenced by a variety of environmental and genetic factors, including chronic stress, aberrant changes in gene expression, and hereditary predisposition. Transcriptional regulation in eukaryotes is closely related to chromosome packing and is controlled by histone post-translational modifications. The development of new antidepressants may proceed along a new path with medications that target epigenetics. Histone deacetylase inhibitors (HDACis) are a class of compounds that interfere with the function of histone deacetylases (HDACs). This review explores the relationship between HDACs and depression and focuses on the current knowledge on their regulatory mechanism in depression and the potential therapeutic use of HDACis with antidepressant efficacy in preclinical research. Future research on inhibitors is also proposed and discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Juan Du
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| |
Collapse
|
6
|
Georgiev D, Christie R, Torkamani M, Song R, Limousin P, Jahanshahi M. Development and Validation of a Daily Habit Scale. Front Neurosci 2022; 16:880023. [PMID: 35873816 PMCID: PMC9298974 DOI: 10.3389/fnins.2022.880023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
Habits are defined as automatic behaviours triggered by cues and performed without awareness. They are difficult to control and mentally efficient, which contrasts with goal-directed behaviour, which is characterised by active thought, high computational effort, and the ability to modify this behaviour in response to a changing environment and contextual demands. Habits are not only defined by the frequency with which a behaviour is performed but represent a complex construct that also includes the strength and automaticity of the habitual behaviour. We report here the development and validation of a Daily Habit Scale (DHS) to assess the frequency, automaticity, and strength of daily habits in healthy individuals. Item reduction based on factor analysis resulted in a scale with 38 items grouped into eight factors explaining 52.91% of the variance. The DHS showed very good internal consistency (Cronbach alpha = 0.738) and test-retest reliability (Intraclass correlation coefficient = 0.892, p<0.001) as well as convergent and divergent reliability compared to other scales measuring habits. We found a significant effect of age, gender, anxiety, and depression on the DHS. Considering certain limitations of the DHS, such as not considering the context of performance of habits, and the absence of certain items, such as transportation use, the results of this study suggest that DHS is a reliable and valid measure of daily habits that can be used by both clinicians and researchers as a measure of daily habits.
Collapse
Affiliation(s)
- Dejan Georgiev
- Department Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Artificial Intelligence Lab, Faculty of Computer and Information Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Rosie Christie
- Department Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Mariam Torkamani
- Department Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Ruifeng Song
- Department Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Patricia Limousin
- Department Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Marjan Jahanshahi
- Department Clinical and Motor Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Prevention of Stress-Induced Depressive-like Behavior by Saffron Extract Is Associated with Modulation of Kynurenine Pathway and Monoamine Neurotransmission. Pharmaceutics 2021; 13:pharmaceutics13122155. [PMID: 34959434 PMCID: PMC8709346 DOI: 10.3390/pharmaceutics13122155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
Depressive disorders are a major public health concern. Despite currently available treatment options, their prevalence steadily increases, and a high rate of therapeutic failure is often reported, together with important antidepressant-related side effects. This highlights the need to improve existing therapeutic strategies, including by using nutritional interventions. In that context, saffron recently received particular attention for its beneficial effects on mood, although the underlying mechanisms are poorly understood. This study investigated in mice the impact of a saffron extract (Safr’Inside™; 6.25 mg/kg, per os) on acute restraint stress (ARS)-induced depressive-like behavior and related neurobiological alterations, by focusing on hypothalamic–pituitary–adrenal axis, inflammation-related metabolic pathways, and monoaminergic systems, all known to be altered by stress and involved in depressive disorder pathophysiology. When given before stress onset, Safr’Inside administration attenuated ARS-induced depressive-like behavior in the forced swim test. Importantly, it concomitantly reversed several stress-induced monoamine dysregulations and modulated the expression of key enzymes of the kynurenine pathway, likely reducing kynurenine-related neurotoxicity. These results show that saffron pretreatment prevents the development of stress-induced depressive symptoms and improves our understanding about the underlying mechanisms, which is a central issue to validate the therapeutic relevance of nutritional interventions with saffron in depressed patients.
Collapse
|
8
|
Hersey M, Hashemi P, Reagan LP. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci 2021; 55:2895-2911. [PMID: 34265868 DOI: 10.1111/ejn.15392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Psychiatric diseases, like depression, largely affect the central nervous system (CNS). While the underlying neuropathology of depressive illness remains to be elucidated, several hypotheses have been proposed as molecular underpinnings for major depressive disorder, including the monoamine hypothesis and the cytokine hypothesis. The monoamine hypothesis has been largely supported by the pharmaceuticals that target monoamine neurotransmitters as a treatment for depression. However, these antidepressants have come under scrutiny due to their limited clinical efficacy, side effects, and delayed onset of action. The more recent, cytokine hypothesis of depression is supported by the ability of immune-active agents to induce "sickness behaviour" akin to that seen with depression. However, treatments that more selectively target inflammation have yielded inconsistent antidepressive results. As such, neither of these hypotheses can fully explain depressive illness pathology, implying that the underlying neuropathological mechanisms may encompass aspects of both theories. The goal of the current review is to integrate these two well-studied hypotheses and to propose a role for histamine as a potential unifying factor that links monoamines to cytokines. Additionally, we will focus on stress-induced depression, to provide an updated perspective of depressive illness research and thereby identify new potential targets for the treatment of major depressive disorder.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Parastoo Hashemi
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina, USA.,Department of Bioengineering, Imperial College, London, UK
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
9
|
Monchaux De Oliveira C, Pourtau L, Vancassel S, Pouchieu C, Capuron L, Gaudout D, Castanon N. Saffron Extract-Induced Improvement of Depressive-Like Behavior in Mice Is Associated with Modulation of Monoaminergic Neurotransmission. Nutrients 2021; 13:nu13030904. [PMID: 33799507 PMCID: PMC8001199 DOI: 10.3390/nu13030904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Depressive disorders represent a major public health concern and display a continuously rising prevalence. Importantly, a large proportion of patients develops aversive side effects and/or does not respond properly to conventional antidepressants. These issues highlight the need to identify further therapeutic strategies, including nutritional approaches using natural plant extracts with known beneficial impacts on health. In that context, growing evidence suggests that saffron could be a particularly promising candidate. This preclinical study aimed therefore to test its antidepressant-like properties in mice and to decipher the underlying mechanisms by focusing on monoaminergic neurotransmission, due to its strong implication in mood disorders. For this purpose, the behavioral and neurobiochemical impact of a saffron extract, Safr’Inside™ (6.5 mg/kg per os) was measured in naïve mice. Saffron extract reduced depressive-like behavior in the forced swim test. This behavioral improvement was associated with neurobiological modifications, particularly changes in serotonergic and dopaminergic neurotransmission, suggesting that Safr’Inside™ may share common targets with conventional pharmacological antidepressants. This study provides useful information on the therapeutic relevance of nutritional interventions with saffron extracts to improve management of mood disorders.
Collapse
Affiliation(s)
- Camille Monchaux De Oliveira
- INRAE, Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, 33076 Bordeaux, France; (C.M.D.O.); (S.V.); (L.C.)
- Department of Life Science and Health, Nutrition and Integrative Neurobiology (NutriNeuro), Bordeaux University, UMR 1286, 33076 Bordeaux, France
- Activ’Inside, 33750 Beychac-et-Caillau, France; (L.P.); (C.P.); (D.G.)
| | - Line Pourtau
- Activ’Inside, 33750 Beychac-et-Caillau, France; (L.P.); (C.P.); (D.G.)
| | - Sylvie Vancassel
- INRAE, Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, 33076 Bordeaux, France; (C.M.D.O.); (S.V.); (L.C.)
- Department of Life Science and Health, Nutrition and Integrative Neurobiology (NutriNeuro), Bordeaux University, UMR 1286, 33076 Bordeaux, France
| | - Camille Pouchieu
- Activ’Inside, 33750 Beychac-et-Caillau, France; (L.P.); (C.P.); (D.G.)
| | - Lucile Capuron
- INRAE, Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, 33076 Bordeaux, France; (C.M.D.O.); (S.V.); (L.C.)
- Department of Life Science and Health, Nutrition and Integrative Neurobiology (NutriNeuro), Bordeaux University, UMR 1286, 33076 Bordeaux, France
| | - David Gaudout
- Activ’Inside, 33750 Beychac-et-Caillau, France; (L.P.); (C.P.); (D.G.)
| | - Nathalie Castanon
- INRAE, Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, 33076 Bordeaux, France; (C.M.D.O.); (S.V.); (L.C.)
- Department of Life Science and Health, Nutrition and Integrative Neurobiology (NutriNeuro), Bordeaux University, UMR 1286, 33076 Bordeaux, France
- Correspondence: ; Tel.: +33-5-57-57-45-05
| |
Collapse
|
10
|
Netter P, Hennig J, Munk AJ. Principles and approaches in Hans Eysenck's personality theory: Their renaissance and development in current neurochemical research on individual differences. PERSONALITY AND INDIVIDUAL DIFFERENCES 2021. [DOI: 10.1016/j.paid.2020.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Evaluation of pharmacological potentials of the aerial part of Achyranthes aspera L.: in vivo, in vitro and in silico approaches. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00528-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Qu N, He Y, Wang C, Xu P, Yang Y, Cai X, Liu H, Yu K, Pei Z, Hyseni I, Sun Z, Fukuda M, Li Y, Tian Q, Xu Y. A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia. Mol Psychiatry 2020; 25:1006-1021. [PMID: 31485012 PMCID: PMC7056580 DOI: 10.1038/s41380-019-0506-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/01/2019] [Accepted: 07/17/2019] [Indexed: 01/27/2023]
Abstract
Chronic stress causes dysregulations of mood and energy homeostasis, but the neurocircuitry underlying these alterations remain to be fully elucidated. Here we demonstrate that chronic restraint stress in mice results in hyperactivity of pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus (POMCARH neurons) associated with decreased neural activities of dopamine neurons in the ventral tegmental area (DAVTA neurons). We further revealed that POMCARH neurons project to the VTA and provide an inhibitory tone to DAVTA neurons via both direct and indirect neurotransmissions. Finally, we show that photoinhibition of the POMCARH→VTA circuit in mice increases body weight and food intake, and reduces depression-like behaviors and anhedonia in mice exposed to chronic restraint stress. Thus, our results identified a novel neurocircuitry regulating feeding and mood in response to stress.
Collapse
Affiliation(s)
- Na Qu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, 430012, Wuhan, China
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kaifan Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zhou Pei
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Ilirjana Hyseni
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, 430012, Wuhan, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, 430074, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Sun R, Delly J, Sereno E, Wong S, Chen X, Wang Y, Huang Y, Greenspan RJ. Anti-instinctive Learning Behavior Revealed by Locomotion-Triggered Mild Heat Stress in Drosophila. Front Behav Neurosci 2020; 14:41. [PMID: 32372923 PMCID: PMC7179688 DOI: 10.3389/fnbeh.2020.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
Anti-instinctive learning, an ability to modify an animal's innate behaviors in ways that go against one's innate tendency, can confer great evolutionary advantages to animals and enable them to better adapt to the changing environment. Yet, our understanding of anti-instinctive learning and its underlying mechanisms is still limited. In this work, we describe a new anti-instinctive learning behavior of fruit flies. This learning paradigm requires the fruit fly to respond to a recurring, aversive, mild heat stress by modifying its innate locomotion behavior. We found that experiencing movement-triggered mild heat stress repeatedly significantly reduced walking activity in wild type fruit flies, indicating that fruit flies are capable of anti-instinctive learning. We also report that such learning ability is reduced in dopamine 1-like receptor 1 (Dop1R1) null mutant and dopamine 2-like receptor (Dop2R) null mutant flies, suggesting that these two dopamine receptors are involved in mediating anti-instinctive learning in flies.
Collapse
Affiliation(s)
- Ruichen Sun
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| | - Joseph Delly
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Emily Sereno
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Sean Wong
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Xinyu Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yuxuan Wang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yan Huang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Ralph J. Greenspan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behav Brain Res 2019; 379:112367. [PMID: 31739001 DOI: 10.1016/j.bbr.2019.112367] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
Depression, the most prevalent psychiatric disorder, is characterized by increased negative affect (i.e. depressed mood) and reduced positive affect (i.e. anhedonia). Stress is a risk factor for depression in humans, and animal models of chronic stress are typically used to study neurobehavioral alterations relevant to depression. Common behavioral outcomes in rodent models of chronic stress include anhedonia, social dysfunction and behavioral despair. For example, chronically stressed rodents exhibit reduced reward preference, as measured by a loss of preference for sucrose solutions and time spent interacting with a novel conspecific, while also exhibiting less time struggling against inescapable stressors (e.g. forced swim, tail suspension). In both humans and rodents, anhedonia is associated with dysfunction of the dopamine (DA) system. Unlike traditional antidepressants, which are limited by inadequate efficacy and delayed therapeutic response, acute ketamine administration rapidly alleviates depressive symptoms in humans and reverses stress-induced changes in animal models. These effects are partially mediated via actions on the DA system. This review summarizes the clinical effects of ketamine, the neurobiological underpinnings of depression with a focus on DA dysfunction, as well as antidepressant effects of ketamine on depression-related endophenotypes (i.e. anhedonia, despair) and ventral tegmental area (VTA) activity in rodent models of repeated stress. Moreover, we discuss evidence regarding sex differences in ketamine's antidepressant effects, wherein females appear to be more sensitive to lower dose ketamine, as well as novel findings suggesting that ketamine has prophylactic effects with regard to protection against the neurobehavioral impact of future stressors.
Collapse
|
15
|
Dutta AK, Santra S, Harutyunyan A, Das B, Lisieski MJ, Xu L, Antonio T, Reith ME, Perrine SA. D-578, an orally active triple monoamine reuptake inhibitor, displays antidepressant and anti-PTSD like effects in rats. Eur J Pharmacol 2019; 862:172632. [DOI: 10.1016/j.ejphar.2019.172632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
|
16
|
Ye J, Cai S, Cheung WM, Tsang HWH. An East Meets West Approach to the Understanding of Emotion Dysregulation in Depression: From Perspective to Scientific Evidence. Front Psychol 2019; 10:574. [PMID: 30984060 PMCID: PMC6447656 DOI: 10.3389/fpsyg.2019.00574] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/28/2019] [Indexed: 02/05/2023] Open
Abstract
Depression, an emotion regulation disorder, is a prevalent mental illness in the world. Meanwhile, traditional Chinese medicine (TCM) has been increasingly regarded as a promising and effective alternative therapy approach for patients with depression. Despite many years of research on depression, the current understanding of the pathological mechanism of depression based on TCM theories is still in its infancy. Due to the lack of scientific evidence in the past, TCM is not fully recognized by researchers around the world. This review firstly summarizes the pathogenesis and etiology of depression in terms of both Eastern and Western medical systems. Secondly, it adopts an integrated Eastern and Western approach to propose some plausible neurophysiological pathways linking the liver, spleen, and heart functions explicated in TCM theory. The aim of this theoretical review is to bridge the knowledge gap between Eastern and Western medicine, which may better explain the pathology of depression.
Collapse
Affiliation(s)
- Jiajia Ye
- Department of Rehabilitation Assessment, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Shuhe Cai
- Department of Orthopaedic Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Wai Ming Cheung
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Hector W. H. Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
17
|
Cooper JA, Arulpragasam AR, Treadway MT. Anhedonia in depression: biological mechanisms and computational models. Curr Opin Behav Sci 2018; 22:128-135. [PMID: 29503842 DOI: 10.1016/j.cobeha.2018.01.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Anhedonia is a severe condition that describes a near-complete absence of enjoyment, motivation, and interest. A core feature of depression, clinical manifestations of anhedonia can include deficits in experiencing pleasure, approach-related motivated behavior, and learning how to match expectations to the environment. To date, the precise neurobiological mechanisms of anhedonia in major depression are still poorly understood. We have previously argued that contradictory findings and the inability to identify specific neurobiological substrates for anhedonic symptoms may result from sample heterogeneity, suboptimal methods of assessment, and the challenge of dissociating between different components of anhedonia. Recently, however, computational advances to the operationalization of psychiatric symptoms have enhanced the ability to evaluate the neurobiology of constituent elements of this symptom domain. In this paper, we review (1) advances in behavioral and computational methods of assessing reward processing and motivation and (2) the development of new self-report, neurological, and biological methods of subtyping that may be useful in future pursuits to expand our understanding of the neurobiology of anhedonia in depression.
Collapse
Affiliation(s)
| | | | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA 30322.,Department of Psychiatry, Emory School of Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
18
|
Demontis F, Serra F, Serra G. Antidepressant-induced Dopamine Receptor Dysregulation: A Valid Animal Model of Manic-Depressive Illness. Curr Neuropharmacol 2018; 15:417-423. [PMID: 28503114 PMCID: PMC5405612 DOI: 10.2174/1570159x14666160715165648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/05/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Mania seems to be associated with an increased dopamine (DA) transmission. Antidepressant treatments can induce mania in humans and potentiated DA transmission in animals, by sensitizing DA D2 receptors in the mesolimbic system. We have suggested that the sensitization of D2 receptors may be responsible of antidepressant-induced mania. This review aims to report the experimental evidence that led to the hypothesis that antidepressant-induced DA receptors dysregulation can be considered an animal model of bipolar disorder. Methods: We reviewed papers reporting preclinical and clinical studies on the role of DA in the mechanism of action of antidepressant treatments and in the patho-physiology of mood disorders. Results: A number of preclinical and clinical evidence suggests that mania could be associated with an increased DA activity, while a reduced function of this neurotransmission might underlie depression. Chronic treatment with imipramine induces a sensitization of DA D2 receptors in the mesolimbic system, followed, after drug discontinuation, by a reduced sensitivity associated with an increased immobility time in forced swimming test of depression (FST). Blockade of glutamate NMDA receptors by memantine administration prevents the imipramine effect on DA receptors sensitivity and on the FST. Conclusion: We suggest that chronic treatment with antidepressants induces a behavioural syndrome that mimics mania (the sensitization of DA receptors), followed by depression (desensitization of DA receptors and increased immobility time in the FST), i.e. an animal model of bipolar disorder. Moreover the observation that memantine prevents the “bipolar-like” behavior, suggests that the drug may have an antimanic and mood stabilizing effect. Preliminary clinical observations support this hypothesis.
Collapse
Affiliation(s)
- Francesca Demontis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Francesca Serra
- Department of General Psychology, University of Padua, Italy
| | - Gino Serra
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
19
|
Metabolic effects of light deprivation in the prefrontal cortex of rats with depression-like behavior: In vivo proton magnetic resonance spectroscopy at 7T. Brain Res 2018; 1687:95-103. [PMID: 29501652 DOI: 10.1016/j.brainres.2018.02.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Abstract
Recent evidence suggests that the glutamate system plays an important role in the pathogenesis of major depressive disorder (MDD). The aim of this study was to investigate the effects of light deprivation (LD) in the prefrontal cortex (PFC) of animals with depression-like behavior, targeting the glutamate system, using in vivo proton magnetic resonance spectroscopy (1H MRS). Male Sprague-Dawley rats were housed in constant darkness for six weeks (n = 12; LD group), while controls (n = 8) were housed under normal light cycles. The animals were assessed with forced swim tests. Point-resolved spectroscopy was used to quantify metabolite levels in the PFC. To substantiate the validity of the use of in vivo1H MRS in this study, the spectra obtained in the in vivo1H MRS, parametrically matched spectral simulation, and in vitro experiments were analyzed. The results of the spectral analyses showed that the quantification of glutamate and glutamine was not significantly affected by spectral overlaps. Thus, these results suggested that in vivo1H MRS can be used to reliably investigate the glutamate system. The results of the forced swim test showed LD-induced behavioral despairs in the animals. The levels of glutamate, myo-inositol, phosphocreatine, and total creatine were found significantly (p < 0.010) increased in the PFC of the LD animals compared with the controls. These results suggested that the LD-induced metabolic changes were consistent with the previous findings in patients with MDD and that short-echo-time in vivo1H MRS can be used to effectively measure depression-induced alterations in glutamate systems.
Collapse
|
20
|
Ishiwata S, Hattori K, Sasayama D, Teraishi T, Miyakawa T, Yokota Y, Matsumura R, Nishikawa T, Kunugi H. Cerebrospinal fluid D-serine concentrations in major depressive disorder negatively correlate with depression severity. J Affect Disord 2018; 226:155-162. [PMID: 28985587 DOI: 10.1016/j.jad.2017.09.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/09/2017] [Accepted: 09/23/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND D-serine is an endogenous co-agonist of N-methyl-D-aspartate receptor (NMDAR) and plays an important role in glutamate neurotransmission. Several studies suggested the possible involvement of D-serine related in the pathophysiology of psychiatric disorders including major depression disorders (MDD). We tried to examine whether cerebrospinal fluid (CSF) or plasma D-serine concentrations are altered in MDD and whether D-serine concentrations correlated with disease severity. METHODS 26 MDD patients and 27 healthy controls matched for age, sex and ethnicity were enrolled. We measured amino acids in these samples using by high-performance liquid chromatography with fluorometric detection. RESULTS D-serine and L-serine, precursor of D-serine, levels in CSF or plasma were not significantly different in patients of MDD compared to controls. Furthermore, a significant correlation between D-serine levels in CSF and Hamilton Depression Rating Scale (HAMD)-17 score was observed (r = -0.65, p = 0.006). Furthermore, we found a positive correlation between CSF D-serine and HVA concentrations in MDD patients (r = 0.54, p = 0.007). CSF D-serine concentrations were correlated with those of plasma in MDD (r = 0.61, p = 0.01) but not in controls. In CSF, we also confirmed a significant correlation between D-serine and L-serine levels in MDD (r = 0.72, p < 0.0001) and controls (r = 0.70, p < 0.0001). CONCLUSIONS The study has some limitations; sample size was relatively small and most patients were medicated. We revealed that CSF D-serine concentrations were correlated with depression severity and HVA concentrations and further investigation were required to reveal the effect of medication and disease heterogeneity.
Collapse
Affiliation(s)
- Sayuri Ishiwata
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | - Tomoko Miyakawa
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Yuuki Yokota
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Ryo Matsumura
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Toru Nishikawa
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan.
| |
Collapse
|
21
|
Hautzel H, Müller HW, Nikolaus S. Focus on GABAA receptor function. Nuklearmedizin 2018; 53:227-37. [DOI: 10.3413/nukmed-0647-14-03] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
SummaryImpairment of GABAA receptor function is increasingly recognized to play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD) and schizophrenia (SZ). Patients, method: We conducted a PUBMED search, which provided a total of 23 in vivo investigations with PET and SPECT, in which GABAA receptor binding in patients with the primary diagnosis of AD (n = 14, 160 patients, 172 controls), MDD (n = 2, 24 patients, 28 controls) or SZ (n = 6, 77 patients, 90 controls) was compared to healthy individuals. Results: A retrospective analysis revealed that AD, MDD and SZ differed as to both site(s) and extent(s) of GABAergic impairment. Additionally, it may be stated that, while the decline of GABAA receptor binding AD involved the whole mesolimbocortical system, in SZ it was confined to the frontal and temporal cortex. Conclusion: As GABA is known to inhibit dopamine and serotonin, GABAergic dysfunction may be associated with the disturbances of dopaminergic and serotonergic neurotransmission in neuropsychiatric disorders.
Collapse
|
22
|
Whiskey E, Taylor D. Pramipexole in unipolar and bipolar depression. PSYCHIATRIC BULLETIN 2018. [DOI: 10.1192/pb.28.12.438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aims and MethodTo review the evidence for this use of pramipexole in the treatment of unipolar and bipolar depression, a literature search on Embase and Medline was conducted in December 2003. The search was updated in July 2004. The reference sections of retrieved papers were searched for further relevant references.ResultsThere are limited data on the clinical use of pramipexole in affective disorders. Only two double-blind trials in bipolar depression and one in unipolar depression were retrieved. Most information is in the form of case reports and open studies. No dose-response relationships have been established and a wide range of doses has been employed in the reports.Clinical ImplicationsIn view of the fact that the evidence for the use of pramipexole is still limited at the time of writing, its routine clinical use cannot be recommended. The data appear promising, but further research is required to determine its role in affective disorders.
Collapse
|
23
|
Gaum PM, Gube M, Schettgen T, Putschögl FM, Kraus T, Fimm B, Lang J. Polychlorinated biphenyls and depression: cross-sectional and longitudinal investigation of a dopamine-related Neurochemical path in the German HELPcB surveillance program. Environ Health 2017; 16:106. [PMID: 29017568 PMCID: PMC5635510 DOI: 10.1186/s12940-017-0316-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/02/2017] [Indexed: 05/30/2023]
Abstract
BACKGROUND Exposure to polychlorinated biphenyls (PCBs) is associated with depressive symptomatology. A cause of depressive symptoms is a disturbance in the neurotransmitter system of dopamine (DA). Animal as well as human studies report that PCBs can influence the DA system. This study examined whether PCB-related depressive symptoms are affected by DA metabolites in humans with high PCB body burden. METHODS This study is part of the German HELPcB surveillance program (Health Effects in high Level exposure to PCB) for occupationally exposed workers and their relatives. Data was collected from 178 participants on two measurement time points (t1 and t2) with a one-year time lag in between the two time points. PCBs were analyzed in plasma via human biomonitoring and a validated questionnaire was used to identify existence and severity of depressive symptoms. As a surrogate for DA, we measured its metabolites homovanillic acid (HVA) and vanillylmandelic acid (VMA) in urine. Mediation analyses were performed to test whether the association between PCB exposure and severity of depressive symptoms is mediated by urinary concentration of DA metabolites HVA and VMA. The mediation was tested with the SPSS macro MEDIATE. RESULTS We found a significant mediation over time for lower-chlorinated, higher-chlorinated and dioxin-like PCBs. The positive association between PCB exposure with severity of depressive symptoms was mediated by the main DA metabolite HVA. At t1 a higher exposure with PCBs was associated with lower concentration in urinary HVA. A reduced HVA concentration at t1 was correlated with increased depressive symptoms severity at t2. No meditations were found for VMA. CONCLUSIONS This work indicates that the association of PCB exposure and an increase of depressive symptoms after one year is mediated by the DA metabolite HVA as a surrogate for DA. These are first steps towards finding an explanation for an underlying neurochemical pathomechanism of PCB-related depressive symptomatology.
Collapse
Affiliation(s)
- Petra Maria Gaum
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Monika Gube
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Health Office of the city and area of Aachen, Trierer Straße 1, 52070 Aachen, Germany
| | - Thomas Schettgen
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Franziska Maria Putschögl
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J 5, 68159 Mannheim, Germany
| | - Thomas Kraus
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Bruno Fimm
- Clinic for Neurology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jessica Lang
- Institute for Occupational Medicine, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
24
|
Alterations in behavioral responses to dopamine agonists in olfactory bulbectomized mice: relationship to changes in the striatal dopaminergic system. Psychopharmacology (Berl) 2016; 233:1311-22. [PMID: 26856855 DOI: 10.1007/s00213-016-4224-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Olfactory bulbectomy (OBX) in rodents is considered a putative animal model of depression. It has been reported that some abnormal behaviors observed in this animal model of depression involve dopaminergic neurons of the mesolimbic pathway. Therefore, we examined changes in the dopaminergic system in the caudate putamen (CPu), nucleus accumbens core (NAcC), and shell (NAcSh) of OBX mice and whether or not these alterations were reversed by chronic administration of imipramine. METHODS We observed climbing behavior, which is a dopamine (DA) receptor-associated behavior, to demonstrate changes in the dopaminergic system of the mesolimbic pathway, when mice were administrated either the nonselective DA agonist apomorphine only or were pre-treated with the selective D1 antagonist SCH23390, with the selective D2 antagonist sulpiride, or with the D2/D3 partial agonist aripiprazole (ARI). Moreover, we examined tyrosine hydroxylase (TH) and D1- and D2-like receptor levels in the CPu, NAcC, and NAcSh using immunohistochemistry and autoradiography. RESULTS The OBX group exhibited significantly enhanced apomorphine-induced climbing behavior, and this enhanced behavior was reversed by administration of sulpiride, ARI, and imipramine but not SCH23390. Moreover, we found a reduction in TH levels in the CPu, NAcC, and NAcSh of OBX mice and an increase in D2 receptor densities in the NAcC of OBX mice. The increased D2 receptor density observed in OBX mice was reversed by imipramine administration. CONCLUSIONS These findings reveal that OBX mice display enhanced DA receptor responsiveness, which may relate to some of the behavioral abnormalities reported in this animal model.
Collapse
|
25
|
Yin YQ, Zhang C, Wang JX, Hou J, Yang X, Qin J. Chronic caffeine treatment enhances the resilience to social defeat stress in mice. Food Funct 2016; 6:479-91. [PMID: 25474697 DOI: 10.1039/c4fo00702f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strong evidence has shown that caffeine exerts antidepressant-like effects in chronic stress situations by increasing dopamine levels. However, whether caffeine mediates the dopaminergic system and interferes with the resilience to social defeat stress in mice is unknown. The aim of this study is to investigate the role of caffeine in the behavioral responses to social defeat stress and the possible regulatory role of the dopaminergic system. Mice experienced chronic social defeat stress for 10 days. Caffeine was administered intraperitoneally before, during and after social defeat stress. The time spent in interaction zone, social interaction ratio and sucrose preference test was used to measure the social avoidance and anhedonia in mice. The results showed that chronic pretreatment with caffeine for 14 days and for 10 days during stress reversed the avoidance of social behavior and anhedonia induced by social defeat stress in mice, suggesting the enhancement of the resilience to social defeat stress induced by caffeine. However, neither the treatment with caffeine only during the social defeat stress for 10 days nor the treatment with acute caffeine after defeat stress altered the resilience to stress. Furthermore, chronic caffeine treatment did not affect the normal locomotor activity and the desperate behavior in naïve mice. Moreover, the antagonism of dopamine D1 receptor and not D2 receptor reversed the effect of caffeine on the social avoidance and depressive-like behavior. Finally, pretreatment with higher doses of caffeine did not affect the behavioral response to social defeat stress. Taken together, our findings provide new insight into the effects of caffeine on social avoidance and anhedonia in mice. In addition, our results illustrated the value of measuring changes in depressive-like behavior before and after social defeat stress to determine the potential treatment of caffeine on depression through the regulation of dopaminergic system.
Collapse
Affiliation(s)
- Yong-Qin Yin
- Department of Traditional Chinese Medicinal Chemistry, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | | | | | | | | | | |
Collapse
|
26
|
Sharma H, Santra S, Dutta A. Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? Future Med Chem 2015; 7:2385-406. [PMID: 26619226 PMCID: PMC4976848 DOI: 10.4155/fmc.15.134] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The current therapy for depression is less than ideal with remission rates of only 25-35% and a slow onset of action with other associated side effects. The persistence of anhedonia originating from depressed dopaminergic activity is one of the most treatment-resistant symptoms of depression. Therefore, it has been hypothesized that triple reuptake inhibitors (TRIs) with potency to block dopamine reuptake in addition to serotonin and norepinephrine transporters should produce higher efficacy. The current review comprehensively describes the development of TRIs and discusses the importance of evaluation of in vivo transporter occupancy of TRIs, which should correlate with efficacy in humans.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Soumava Santra
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Aloke Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
27
|
Salamone JD, Koychev I, Correa M, McGuire P. Neurobiological basis of motivational deficits in psychopathology. Eur Neuropsychopharmacol 2015; 25:1225-38. [PMID: 25435083 DOI: 10.1016/j.euroneuro.2014.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022]
Abstract
In recent years, there has been increasing emphasis on the importance of motivational symptoms in depression, schizophrenia and other disorders. The present review discusses the conceptual background related to the construct of motivation, and provides a framework that for research on both physiological and pathological aspects of motivation. Particular emphasis is placed on what is known about the neurobiological basis of activational aspects of motivation, including studies from animal models. The role of limbic/prefrontal/striatal circuitry in behavioral activation and effort-related functions is examined, and the utility of behavioral tasks of effort-based decision making as models of motivational symptoms is discussed. We also review the neurobiology of motivational symptoms in relation to psychopathology, and issues related to the language used to characterize motivational dysfunctions are considered. The literature suggests that research on the neurobiology of motivational dysfunction in psychopathology, at both clinical and preclinical levels, could inform the development of novel and more effective treatments for a range of CNS disorders.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| | - Ivan Koychev
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, DeCrespigny Park, London SE5 8AF, UK.
| | - Mercè Correa
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA; Department of Psychobiology, University Jaume I, Castelló, Spain.
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, DeCrespigny Park, London SE5 8AF, UK.
| |
Collapse
|
28
|
Abstract
Many patients with major depressive disorder (MDD) only partially respond, and some have no clinically meaningful response, to current widely used antidepressant drugs. Due to the purported role of dopamine in the pathophysiology of depression, triple-reuptake inhibitors (TRIs) that simultaneously inhibit serotonin (5-HT), norepinephrine (NE) and dopamine reuptake could be a useful addition to the armamentarium of treatments for MDD. A TRI should more effectively activate mesolimbic dopamine-related reward-networks, restore positive mood and reduce potent 5-HT reuptake blockade associated "hypodopaminergic" adverse effects of decreased libido, weight gain and "blunting" of emotions. On the other hand, dopaminergic effects raise concern over abuse liability and TRIs may have many of the cardiovascular effects associated with NET inhibition. Several clinical development programs for potential TRI antidepressants have failed to demonstrate significantly greater efficacy than placebo or standard of care. Successful late-stage clinical development of a TRI is more likely if experimental research studies in the target population of depressed patients have demonstrated target engagement that differentially and dose-dependently improves assessments of reward-network dysfunction relative to existing antidepressants. TRI treatment could be individualized on the basis of predictive markers such as the burden of decreased positive mood symptoms and/or neuroimaging evidence of reward network dysfunction. This review focuses on how the next generation of monoamine-based treatments could be efficiently developed to address unmet medical need in MDD.
Collapse
|
29
|
Ikemoto S, Yang C, Tan A. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res 2015; 290:17-31. [PMID: 25907747 DOI: 10.1016/j.bbr.2015.04.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/26/2022]
Abstract
Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA.
| | - Chen Yang
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | - Aaron Tan
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| |
Collapse
|
30
|
Kale PP, Addepalli V. Augmentation of antidepressant effects of duloxetine and bupropion by caffeine in mice. Pharmacol Biochem Behav 2014; 124:238-44. [DOI: 10.1016/j.pbb.2014.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/27/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
|
31
|
Levinstein MR, Samuels BA. Mechanisms underlying the antidepressant response and treatment resistance. Front Behav Neurosci 2014; 8:208. [PMID: 25018708 PMCID: PMC4073308 DOI: 10.3389/fnbeh.2014.00208] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 12/28/2022] Open
Abstract
Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.
Collapse
Affiliation(s)
- Marjorie R Levinstein
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, Research Foundation for Mental Hygiene, Inc. New York, NY, USA
| | - Benjamin A Samuels
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Medical Center, Research Foundation for Mental Hygiene, Inc. New York, NY, USA
| |
Collapse
|
32
|
Hyper-reactive human ventral tegmental area and aberrant mesocorticolimbic connectivity in overgeneralization of fear in generalized anxiety disorder. J Neurosci 2014; 34:5855-60. [PMID: 24760845 DOI: 10.1523/jneurosci.4868-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ventral tegmental area (VTA) has been primarily implicated in reward-motivated behavior. Recently, aberrant dopaminergic VTA signaling has also been implicated in anxiety-like behaviors in animal models. These findings, however, have yet to be extended to anxiety in humans. Here we hypothesized that clinical anxiety is linked to dysfunction of the mesocorticolimbic circuit during threat processing in humans; specifically, excessive or dysregulated activity of the mesocorticolimbic aversion circuit may be etiologically related to errors in distinguishing cues of threat versus safety, also known as "overgeneralization of fear." To test this, we recruited 32 females with generalized anxiety disorder and 25 age-matched healthy control females. We measured brain activity using fMRI while participants underwent a fear generalization task consisting of pseudo-randomly presented rectangles with systematically varying widths. A mid-sized rectangle served as a conditioned stimulus (CS; 50% electric shock probability) and rectangles with widths of CS ±20%, ±40%, and ±60% served as generalization stimuli (GS; never paired with electric shock). Healthy controls showed VTA reactivity proportional to the cue's perceptual similarity to CS (threat). In contrast, patients with generalized anxiety disorder showed heightened and less discriminating VTA reactivity to GS, a feature that was positively correlated with trait anxiety, as well as increased mesocortical and decreased mesohippocampal coupling. Our results suggest that the human VTA and the mesocorticolimbic system play a crucial role in threat processing, and that abnormalities in this system are implicated in maladaptive threat processing in clinical anxiety.
Collapse
|
33
|
Nikulina EM, Johnston CE, Wang J, Hammer RP. Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse. Neuroscience 2014; 282:122-38. [PMID: 24875178 DOI: 10.1016/j.neuroscience.2014.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/04/2014] [Accepted: 05/11/2014] [Indexed: 01/19/2023]
Abstract
This review discusses the impact of neurotrophins and other trophic factors, including fibroblast growth factor and glial cell line-derived neurotrophic factor, on mood disorders, weight regulation and drug abuse, with an emphasis on stress- and drug-induced changes in the ventral tegmental area (VTA). Neurotrophins, comprising nerve growth factor, brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 play important roles in neuronal plasticity and the development of different psychopathologies. In the VTA, most research has focused on the role of BDNF, because other neurotrophins are not found there in significant quantities. BDNF originating in the VTA provides trophic support to dopamine neurons. The diverse intracellular signaling pathways activated by BDNF may underlie precise physiological functions specific to the VTA. In general, VTA BDNF expression increases after psychostimulant exposures, and enhanced BDNF level in the VTA facilitates psychostimulant effects. The impact of VTA BDNF on the behavioral effects of psychostimulants relies primarily on its action within the mesocorticolimbic circuit. In the case of opiates, VTA BDNF expression and effects seem to be dependent on whether an animal is drug-naïve or has a history of drug use, only the latter of which is related to dopamine mechanisms. Social defeat stress that is continuous in mice or intermittent in rats increases VTA BDNF expression, and is associated with depressive and social avoidance behaviors. Intermittent social defeat stress induces persistent VTA BDNF expression that triggers psychostimulant cross-sensitization. Understanding the cellular and molecular substrates of neurotrophin effects may lead to novel therapeutic approaches for the prevention and treatment of substance use and mood disorders.
Collapse
Affiliation(s)
- E M Nikulina
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| | - C E Johnston
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA; Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - J Wang
- Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA
| | - R P Hammer
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA; Interdisciplinary Neuroscience Program, Arizona State University, Tempe, AZ, USA; Department of Pharmacology and Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
34
|
Treadway MT, Pizzagalli DA. Imaging the pathophysiology of major depressive disorder - from localist models to circuit-based analysis. BIOLOGY OF MOOD & ANXIETY DISORDERS 2014; 4:5. [PMID: 24606595 PMCID: PMC3995947 DOI: 10.1186/2045-5380-4-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023]
Abstract
The neuroimaging literature of Major Depressive Disorder (MDD) has grown substantially over the last several decades, facilitating great advances in the identification of specific brain regions, neurotransmitter systems and networks associated with depressive illness. Despite this progress, fundamental questions remain about the pathophysiology and etiology of MDD. More importantly, this body of work has yet to directly influence clinical practice. It has long been a goal for the fields of clinical psychology and psychiatry to have a means of making objective diagnoses of mental disorders. Frustratingly little movement has been achieved on this front, however, and the 'gold-standard’ of diagnostic validity and reliability remains expert consensus. In light of this challenge, the focus of the current review is to provide a critical summary of key findings from different neuroimaging approaches in MDD research, including structural, functional and neurochemical imaging studies. Following this summary, we discuss some of the current conceptual obstacles to better understanding the pathophysiology of depression, and conclude with recommendations for future neuroimaging research.
Collapse
Affiliation(s)
- Michael T Treadway
- Center for Depression Anxiety and Stress Research, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|
35
|
Polyunsaturated fatty acid associations with dopaminergic indices in major depressive disorder. Int J Neuropsychopharmacol 2014; 17:383-91. [PMID: 24300434 PMCID: PMC3956108 DOI: 10.1017/s1461145713001399] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dopaminergic function is thought to be altered in major depression and, in animal studies, is reduced in omega-3 polyunsaturated fatty acid (PUFA) deficiency states. Therefore we studied PUFAs and resting prolactin, a marker for dopaminergic tone, and cerebrospinal fluid homovanillic acid (HVA), the chief dopamine metabolite. In medication-free adults (n = 23) with DSM-IV major depressive disorder (MDD), we measured plasma phospholipid levels of omega-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the omega-6 PUFA arachidonic acid (AA), and plasma prolactin levels before and after administration of dl-fenfluramine (FEN). In a subset of patients (n = 14), cerebrospinal fluid levels of HVA and the serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were obtained through lumbar puncture. Baseline prolactin was negatively correlated with omega-3 PUFAs (logDHA, F(1,21) = 20.380, p < 0.001; logEPA, F(1,21) = 10.051, p = 0.005) and positively correlated with logAA:DHA (F(1,21) = 15.263, p = 0.001), a measure of omega-6/omega-3 balance. LogDHA was negatively correlated with CSF HVA (Spearman's ρ = -0.675, p = 0.008) but not 5-HIAA (Spearman's ρ = -0.143, p = 0.626) after controlling for sex and HVA - 5-HIAA correlation. PUFAs did not predict the magnitude of the FEN-stimulated change in prolactin, considered to be a serotonin effect. The robust relationship of omega-3 PUFAs with dopaminergic but not serotonergic indices suggests that omega-6:omega-3 balance may impact depression pathophysiology through effects on the dopaminergic system.
Collapse
|
36
|
Fabbri C, Porcelli S, Serretti A. From pharmacogenetics to pharmacogenomics: the way toward the personalization of antidepressant treatment. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2014; 59:62-75. [PMID: 24881125 PMCID: PMC4079233 DOI: 10.1177/070674371405900202] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Major depressive disorder is the most common psychiatric disorder, worldwide, yet response and remission rates are still unsatisfactory. The identification of genetic predictors of antidepressant (AD) response could provide a promising opportunity to improve current AD efficacy through the personalization of treatment. The major steps and findings along this path are reviewed together with their clinical implications and limitations. METHOD We systematically reviewed the literature through MEDLINE and Embase database searches, using any word combination of "antidepressant," "gene," "polymorphism," "pharmacogenetics," "genome-wide association study," "GWAS," "response," and "adverse drug reactions." Experimental works and reviews published until March 2012 were collected and compared. RESULTS Numerous genes pertaining to several functional systems were associated with AD response. The more robust findings were found for the following genes: solute carrier family 6 (neurotransmitter transporter), member 4; serotonin receptor 1A and 2A; brain-derived neurotrophic factor; and catechol-O-methyltransferase. Genome-wide association studies (GWASs) provided many top markers, even if none of them reached genome-wide significance. CONCLUSIONS AD pharmacogenetics have not produced any knowledge applicable to routine clinical practice yet, as results were mainly inconsistent across studies. Despite this, the rising awareness about methodological deficits of past studies could allow for the identication of more suitable strategies, such as the integration of the GWAS approach with the candidate gene approach, and innovative methodologies, such as pathway analysis and study of depressive endophenotypes.
Collapse
Affiliation(s)
- Chiara Fabbri
- Researcher, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Porcelli
- Researcher, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Professor, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Abstract
Depression causes significant morbidity in the human population. The Diathesis-Stress/Two-Hit model of depression hypothesizes that stress interacts with underlying (probably genetic) predispositions to produce a central nervous system that is primed to express psychopathology when confronted with stressful experiences later in life. Nonhuman primate (NHP) studies have been extensively utilized to test this model. NHPs are especially useful for studying effects of early experience, because many aspects of NHP infancy are similar to humans, whereas development occurs at an accelerated rate and therefore allows for more rapid assessment of experimental variables. In addition, the ability to manipulate putative risk factors, including introducing experimental stress during development, allows inference of causality not possible with human studies. This manuscript reviews experimental paradigms that have been utilized to model early adverse experience in NHPs, including peer-rearing, maternal separation, and variable foraging. It also provides examples of how this model has been used to investigate the effects of early experience on later neurobiology, physiology, and behavior associated with depression. We conclude that the NHP offers an excellent model to research mechanisms contributing to the Diathesis-Stress/Two-Hit model of depression.
Collapse
|
38
|
Fabbri C, Di Girolamo G, Serretti A. Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:487-520. [PMID: 23852853 DOI: 10.1002/ajmg.b.32184] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 06/19/2013] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is an emergent cause of personal and socio-economic burden, both for the high prevalence of the disorder and the unsatisfying response rate of the available antidepressant treatments. No reliable predictor of treatment efficacy and tolerance in the single patient is available, thus drug choice is based on a trial and error principle with poor clinical efficiency. Among modulators of treatment outcome, genetic polymorphisms are thought to explain a significant share of the inter-individual variability. The present review collected the main pharmacogenetic findings primarily about antidepressant response and secondly about antidepressant induced side effects, and discussed the main strengths and limits of both candidate and genome-wide association studies and the most promising methodological opportunities and challenges of the field. Despite clinical applications of antidepressant pharmacogenetics are not available yet, previous findings suggest that genotyping may be applied in the clinical practice. In order to reach this objective, further rigorous pharmacogenetic studies (adequate sample size, study of better defined clinical subtypes of MDD, adequate covering of the genetic variability), their combination with the results obtained through complementary methodologies (e.g., pathway analysis, epigenetics, transcriptomics, and proteomics), and finally cost-effectiveness trials are required.
Collapse
Affiliation(s)
- Chiara Fabbri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
39
|
Zhang Q, Yang H, Wang J, Li A, Zhang W, Cui X, Wang K. Effect of green tea on reward learning in healthy individuals: a randomized, double-blind, placebo-controlled pilot study. Nutr J 2013; 12:84. [PMID: 23777561 PMCID: PMC3702504 DOI: 10.1186/1475-2891-12-84] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Both clinical and preclinical studies revealed that regular intake of green tea reduced the prevalence of depressive symptoms, as well as produced antidepressant-like effects in rodents. Evidence proposed that disturbed reward learning has been associated with the development of anhedonia, a core symptom of depression. However, the relationship between green tea and reward learning is poorly investigated. Our goal was to test whether chronic treatment with green tea in healthy subjects affects the process of reward learning and subsequently regulates the depressive symptoms. METHODS Seventy-four healthy subjects participated in a double-blind, randomized placebo-controlled study with oral administration of green tea or placebo for 5weeks. We used the monetary incentive delay task to evaluate the reward learning by measurement of the response to reward trial or no-reward trial. We compared the reaction time of reward responsiveness between green tea and placebo treatment. Furthermore, we selected Montgomery-Asberg depression rating scale (MADRS) and 17-item Hamilton Rating Scale for Depression (HRSD-17) to estimate the depressive symptoms in these two groups. RESULTS The results showed chronic treatment of green tea increased reward learning compared with placebo by decreasing the reaction time in monetary incentive delay task. Moreover, participants treated with green tea showed reduced scores measured in MADRS and HRSD-17 compared with participants treated with placebo. CONCLUSIONS Our findings reveal that chronic green tea increased the reward learning and prevented the depressive symptoms. These results also raised the possibility that supplementary administration of green tea might reverse the development of depression through normalization of the reward function.
Collapse
Affiliation(s)
- Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 2013; 246:199-229. [PMID: 23644052 DOI: 10.1016/j.neuroscience.2013.04.060] [Citation(s) in RCA: 723] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/08/2013] [Accepted: 04/27/2013] [Indexed: 12/28/2022]
Abstract
Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, such as brain-derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression's development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed.
Collapse
Affiliation(s)
- J C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30306, United States.
| | | |
Collapse
|
41
|
Nichkova M, Wynveen PM, Marc DT, Huisman H, Kellermann GH. Validation of an ELISA for urinary dopamine: applications in monitoring treatment of dopamine-related disorders. J Neurochem 2013; 125:724-35. [DOI: 10.1111/jnc.12248] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/26/2022]
|
42
|
Touchette E, Chollet A, Galéra C, Fombonne E, Falissard B, Boivin M, Melchior M. Prior sleep problems predict internalising problems later in life. J Affect Disord 2012; 143:166-71. [PMID: 22858260 DOI: 10.1016/j.jad.2012.05.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/01/2012] [Accepted: 05/05/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND One possible risk marker of later internalising symptoms is poor sleep, which is a problem for up to 40% of children. The present study investigated whether prior sleep problems could predict internalising symptoms over a period of 18 years of follow-up. METHODS The study sample included 1503 French young adults from the TEMPO cohort (mean age=28.8±3.6 years) whose parents participate in the GAZEL cohort study. All TEMPO participants previously took part in a study of children's mental health and behaviour in 1991 (mean age=10.3±3.6 years) and 1999 (mean age=18.8±3.6 years). Sleep problems and internalising symptoms (depression, anxiety, somatic complaints) were assessed three times (1991, 1999, 2009) using the Achenbach System of Empirically Based Assessment (ASEBA) questionnaire. The association between sleep problems in 1991 and trajectories of internalising problems from 1991 to 2009 was tested in a multinomial logistic regression framework, controlling for sex, age, baseline temperament, behavioural problems and stressful life events, as well as family income, and parental history of depression. RESULTS We identified four trajectories of internalising symptoms: high-persistent (2.5%), high-decreasing (11.4%), low-increasing (11.6%), and low-persistent (74.5%). After controlling for covariates, compared to participants who did not have sleep problems in 1991, those who did were 4.51 times (95% CI=1.54-13.19, P=.006) more likely to have high-persistent internalising symptoms and 3.69 times (95% CI=2.00-6.82, P<.001) more likely to have high-decreasing internalising symptoms over the 18-year follow-up. LIMITATIONS Sleep problems and internalising symptoms were based on self-report questions, results should be interpreted with due caution. CONCLUSIONS Sleep problems early in life are associated with an increased likelihood of internalising symptoms that persist from childhood to adulthood.
Collapse
Affiliation(s)
- Evelyne Touchette
- CESP, INSERM U1018, Epidemiology of Occupational and Social Determinants of Health, F-94807, Villejuif, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice. J Neurosci 2012; 32:4319-29. [PMID: 22442093 DOI: 10.1523/jneurosci.5952-11.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Various kinds of stress are thought to precipitate psychiatric disorders, such as major depression. Whereas studies in rodents have suggested a critical role of medial prefrontal cortex (mPFC) in stress susceptibility, the mechanism of how stress susceptibility is determined through mPFC remains unknown. Here we show a critical role of prostaglandin E(2) (PGE(2)), a bioactive lipid derived from arachidonic acid, in repeated social defeat stress in mice. Repeated social defeat increased the PGE(2) level in the subcortical region of the brain, and mice lacking either COX-1, a prostaglandin synthase, or EP1, a PGE receptor, were impaired in induction of social avoidance by repeated social defeat. Given the reported action of EP1 that augments GABAergic inputs to midbrain dopamine neurons, we analyzed dopaminergic response upon social defeat. Analyses of c-Fos expression of VTA dopamine neurons and dopamine turnover in mPFC showed that mesocortical dopaminergic pathway is activated upon social defeat and attenuated with repetition of social defeat in wild-type mice. EP1 deficiency abolished such repeated stress-induced attenuation of mesocortical dopaminergic pathway. Blockade of dopamine D1-like receptor during social defeat restored social avoidance in EP1-deficient mice, suggesting that disinhibited dopaminergic response during social defeat blocks induction of social avoidance. Furthermore, mPFC dopaminergic lesion by local injection of 6-hydroxydopamine, which mimicked the action of EP1 during repeated stress, facilitated induction of social avoidance upon social defeat. Taken together, our data suggest that PGE(2)-EP1 signaling is critical for susceptibility to repeated social defeat stress in mice through attenuation of mesocortical dopaminergic pathway.
Collapse
|
44
|
Moses-Kolko EL, Price JC, Wisner KL, Hanusa BH, Meltzer CC, Berga SL, Grace AA, di Scalea TL, Kaye WH, Becker C, Drevets WC. Postpartum and depression status are associated with lower [[¹¹C]raclopride BP(ND) in reproductive-age women. Neuropsychopharmacology 2012; 37:1422-32. [PMID: 22257897 PMCID: PMC3327847 DOI: 10.1038/npp.2011.328] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The early postpartum period is associated with increased risk for affective and psychotic disorders. Because maternal dopaminergic reward system function is altered with perinatal status, dopaminergic system dysregulation may be an important mechanism of postpartum psychiatric disorders. Subjects included were non-postpartum healthy (n=13), postpartum healthy (n=13), non-postpartum unipolar depressed (n=10), non-postpartum bipolar depressed (n=7), postpartum unipolar (n=13), and postpartum bipolar depressed (n=7) women. Subjects underwent 60 min of [¹¹C]raclopride-positron emission tomography imaging to determine the nondisplaceable striatal D₂/₃ receptor binding potential (BP(ND)). Postpartum status and unipolar depression were associated with lower striatal D₂/₃ receptor BP(ND) in the whole striatum (p=0.05 and p=0.02, respectively) that reached a maximum of 7-8% in anteroventral striatum for postpartum status (p=0.02). Unipolar depression showed a nonsignificant trend toward being associated with 5% lower BP(ND) in dorsal striatum (p=0.06). D₂/₃ receptor BP(ND) did not differ significantly between unipolar depressed and healthy postpartum women or between bipolar and healthy subjects; however, D₂/₃ receptor BP(ND) was higher in dorsal striatal regions in bipolar relative to unipolar depressives (p=0.02). In conclusion, lower striatal D₂/₃ receptor BP(ND) in postpartum and unipolar depressed women, primarily in ventral striatum, and higher dorsal striatal D₂/₃ receptor BP(ND) in bipolar relative to unipolar depressives reveal a potential role for the dopamine (DA) system in the physiology of these states. Further studies delineating the mechanisms underlying these differences in D₂/₃ receptor BP(ND), including study of DA system responsivity to rewarding stimuli, and increasing power to assess unipolar vs bipolar-related differences, are needed to better understand the affective role of the DA system in postpartum and depressed women.
Collapse
Affiliation(s)
- Eydie L Moses-Kolko
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Julie C Price
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Katherine L Wisner
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Endocrinology and Infertility, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Barbara H Hanusa
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carolyn C Meltzer
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah L Berga
- Departments of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anthony A Grace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA,Department of Neuroscience and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Teresa Lanza di Scalea
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA,Department of Neurosciences, University of Rome Tor Vergata, Rome, Italy
| | - Walter H Kaye
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Carl Becker
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wayne C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA,Department of Psychiatry, The University of Oklahoma College of Medicine, Tulsa, OK, USA
| |
Collapse
|
45
|
Tanaka K, Furuyashiki T. [Role of prostaglandin signaling in stress and its implication in pharmaceutical development of antidepressants]. Nihon Yakurigaku Zasshi 2012; 139:152-6. [PMID: 22498678 DOI: 10.1254/fpj.139.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Nikolaus S, Hautzel H, Heinzel A, Müller HW. Key players in major and bipolar depression--a retrospective analysis of in vivo imaging studies. Behav Brain Res 2012; 232:358-90. [PMID: 22483788 DOI: 10.1016/j.bbr.2012.03.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/13/2012] [Accepted: 03/17/2012] [Indexed: 11/30/2022]
Abstract
In the present study, we evaluated the contribution of the individual synaptic constituents of all assessed neurotransmitter systems by subjecting all available in vivo imaging studies on patients with unipolar major depressive disorder (MDD) and bipolar depression (BD) to a retrospective analysis. In acute MDD, findings revealed significant increases of prefrontal and frontal DA synthesis, decreases of thalamic and midbrain SERT, increases of insular SERT, decreases of midbrain 5-HT(1A) receptors and decreases of prefrontal, frontal, occipital and cingulate 5-HT(2A) receptors, whereas, in remission, decreases of striatal D₂ receptors, midbrain SERT, frontal, parietal, temporal, occipital and cingulate 5-HT(1A) receptors and parietal 5-HT(2A) receptors were observed. In BD, findings indicated a trend towards increased striatal D₂ receptors in depression and mania, decreased striatal DA synthesis in remission and decreased frontal D₁ receptors in all three conditions. Additionally, there is some evidence that ventrostriatal and hippocampal SERT may be decreased in depression, whereas in remission and mania elevations of thalamic and midbrain SERT, respectively, were observed. Moreover, in depression, limbic 5-HT(1A) receptors were elevated, whereas in mania a decrease of both cortical and limbic 5-HT(2A) receptor binding was observed. Furthermore, in depression, prefrontal, frontal, occipital and cingulate M2 receptor binding was found to be reduced. From this, a complex pattern of dysregulations within and between neurotransmitter systems may be derived, which is likely to be causally linked not only with the subtype and duration of disease but also with the predominance of individual symptoms and with the kind and duration of pharmacological treatment(s).
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
47
|
Fedotova J. Effects of stimulation and blockade of d(2) receptor on depression-like behavior in ovariectomized female rats. ISRN PHARMACOLOGY 2012; 2012:305645. [PMID: 22530139 PMCID: PMC3317004 DOI: 10.5402/2012/305645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/21/2011] [Indexed: 11/24/2022]
Abstract
The aim of the present study was to explore the hedonic effects of D2 receptor agonist, quinpirole and D2 receptor antagonist, and sulpiride alone or in combination with a low dose of 17β-E2-estradiol (17β-E2) in the adult ovariectomized female rats (OVX). OVX rats of Wistar strain were used in all experiments. Two weeks after surgery rats were chronically treated with vehicle, a low dose of 17β-E2 (5.0 μg/rat), quinpirole (0.1 mg/kg), sulpiride (10.0 mg/kg), quinpirole plus 17β-E2, or sulpiride plus 17β-E2 for 14 days before the forced swimming test. We found that sulpiride significantly decreased immobility time in the OVX females. A combination of sulpiride with a low dose of 17β-E2 induced more profound decrease of immobility time in the OVX rats compared to the rats treated with sulpiride alone. On the contrary, quinpirole failed to modify depression-like behavior in the OVX rats. In addition, quinpirole significantly blocked the antidepressant-like effect of 17β-E2 in OVX rats. Thus, the D2 receptor antagonist sulpiride alone or in combination with a low dose of 17β-E2 exerted antidepressant-like effect in OVX female rats, while the D2 receptor agonist quinpirole produced depressant-like profile on OVX rats.
Collapse
Affiliation(s)
- Julia Fedotova
- Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology of the Russian Academy of Science, 6 Emb. Makarova, 199034 St. Petersburg, Russia
| |
Collapse
|
48
|
Schulte-Herbrüggen O, Vogt MA, Hörtnagl H, Gass P, Hellweg R. Pramipexole is active in depression tests and modulates monoaminergic transmission, but not brain levels of BDNF in mice. Eur J Pharmacol 2011; 677:77-86. [PMID: 22206815 DOI: 10.1016/j.ejphar.2011.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/28/2011] [Accepted: 12/07/2011] [Indexed: 12/20/2022]
Abstract
The dopamine D(2)/D(3) receptor agonist pramipexole exerts antidepressive capacities in patients with Parkinson's disease with little evidence for patients with affective diseases only. Little is known about the neurobiological basis of these antidepressive effects. In this study, C57BL/6N mice received acute or chronic (3 weeks) treatment with pramipexole in different dosages (0.1, 0.3, 1, and 3mg/kg b.w.) and imipramine or saline serving as positive and negative controls. To characterize antidepressant-like effects mice underwent behavioral characterization. In a second experiment dosages of pramipexole shown to be effective were used and candidate brain regions including hippocampus, frontal cortex and striatum were analyzed for levels of 5-hydroxytryptamine (5-HT), noradrenaline and dopamine and their metabolites as well as brain-derived neurotrophic factor (BDNF) to investigate possible neurochemical correlates of behavioral changes. Whereas acute treatment with pramipexole resulted in antidepressive-like effects in the Porsolt Forced Swim Test, Novel Cage Test, Openfield Test and Dark-light-Box Test and a tendency but insignificant effect in the Tail Suspension Test, chronic treatment did not show significant effects in any of the behavioral analyses. Neurochemical analyses revealed a highly significant effect on dopaminergic metabolites in the striatum as well as a moderate transient modulation of the serotonergic system in the hippocampus. BDNF levels were not affected by any dosage and treatment regime in any brain region investigated. In conclusion, the present data substantiate antidepressive effects of pramipexole and indicate a contribution of the dopaminergic and serotonergic metabolism in these effects, but argue against an eminent role of BDNF.
Collapse
Affiliation(s)
- Olaf Schulte-Herbrüggen
- Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Campus Charité Mitte, Berlin, Germany
| | | | | | | | | |
Collapse
|
49
|
Alcaro A, Panksepp J. The SEEKING mind: Primal neuro-affective substrates for appetitive incentive states and their pathological dynamics in addictions and depression. Neurosci Biobehav Rev 2011; 35:1805-20. [DOI: 10.1016/j.neubiorev.2011.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 01/25/2023]
|
50
|
Liu J, Perez SM, Zhang W, Lodge DJ, Lu XY. Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol Psychiatry 2011; 16:1024-38. [PMID: 21483433 PMCID: PMC3432580 DOI: 10.1038/mp.2011.36] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The leptin receptor (Lepr) is expressed on midbrain dopamine neurons. However, the specific role of Lepr signaling in dopamine neurons remains to be clarified. In the present study, we generated a line of conditional knockout mice lacking functional Lepr selectively on dopamine neurons (Lepr(DAT-Cre)). These mice exhibit normal body weight and feeding. Behaviorally, Lepr(DAT-Cre) mice display an anxiogenic-like phenotype in the elevated plus-maze, light-dark box, social interaction and novelty-suppressed feeding tests. Depression-related behaviors, as assessed by chronic stress-induced anhedonia, forced swim and tail-suspension tests, were not affected by deletion of Lepr in dopamine neurons. In vivo electrophysiological recordings of dopamine neurons in the ventral tegmental area revealed an increase in burst firing in Lepr(DAT-Cre) mice. Moreover, blockade of D1-dependent dopamine transmission in the central amygdala by local microinjection of the D1 antagonist SCH23390 attenuated the anxiogenic phenotype of Lepr(DAT-Cre) mice. These findings suggest that Lepr signaling in midbrain dopamine neurons has a crucial role for the expression of anxiety and for the dopamine modulation of amygdala function.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Stephanie M. Perez
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Wei Zhang
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Daniel J. Lodge
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|