1
|
Hermans E, Devreese M, Zeitlinger M, Dhont E, Verougstraete N, Colman R, Vande Walle J, De Paepe P, De Cock PA. Microdialysis as a safe and feasible method to study target-site piperacillin-tazobactam disposition in septic piglets and children. Int J Antimicrob Agents 2023; 62:106970. [PMID: 37716576 DOI: 10.1016/j.ijantimicag.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVES Knowledge on the tissue penetration of piperacillin-tazobactam in children with sepsis is lacking. In this study, the feasibility and performance of microdialysis experiments were explored in septic piglets and children as part of a translational research project. METHODS Multiple-day microdialysis investigations were performed in muscle tissue of 22 piglets (of which 11 were septic) and 6 children with sepsis. An in vitro experiment preceded the (pre)clinical trials to derive optimal experimental settings and calibration technique. Linear mixed-effects models quantified the impact of sepsis on relative recovery (RR) and intercatheter, interindividual, interoccasion, and residual variability. RESULTS In vivo microdialysis was well tolerated in piglets and children, with no significant adverse events reported. Using identical experimental settings, lower RR values were recorded in healthy and septic piglets (range: piperacillin, 17.2-29.1% and tazobactam, 23.5-29.1%) compared with the in vitro experiment (piperacillin, 43.3% and tazobactam, 55.3%), and there were unacceptably low values in children with sepsis (<10%). As a result, methodological changes were made in the pediatric trial. Realistic tissue concentration-time curves were derived in piglets and children. In piglets, sepsis reduced the RR. The greatest contributors to RR variability were residual (>40%) and interoccasion (>30%) variability. The internal standard method was the preferred calibration technique in both piglets and children. CONCLUSIONS Microdialysis is a safe and applicable method for the measurement of tissue drug concentrations in piglets and children. This study demonstrated the impact of experimental settings, sepsis, and target population on individual RR.
Collapse
Affiliation(s)
- Eline Hermans
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Department of Pediatrics, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Evelyn Dhont
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pediatric Intensive Care, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Roos Colman
- Biostatistics Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Johan Vande Walle
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pediatric Nephrology, SafePeDrug, Erknet center, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Peter De Paepe
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Emergency Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Pieter A De Cock
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pediatric Intensive Care, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pharmacy, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Avalos MP, Guzman AS, Garcia-Keller C, Mongi-Bragato B, Esparza MA, Rigoni D, Sanchez MA, Calfa GD, Bollati FA, Cancela LM. Impairment of glutamate homeostasis in the nucleus accumbens core underpins cross-sensitization to cocaine following chronic restraint stress. Front Physiol 2022; 13:896268. [PMID: 36091376 PMCID: PMC9462460 DOI: 10.3389/fphys.2022.896268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Though the facilitating influence of stress on drug abuse is well documented, the mechanisms underlying this interaction have yet to be fully elucidated. The present study explores the neurobiological mechanisms underpinning the sensitized response to the psychomotor-stimulating effects of cocaine following chronic restraint stress (CRS), emphasizing the differential contribution of both subcompartments of the nucleus accumbens (NA), the core (NAcore) and shell (NAshell), to this phenomenon. Adult male Wistar rats were restrained for 2 h/day for 7 days and, 2 weeks after the last stress exposure (day 21), all animals were randomly assigned to behavioral, biochemical or neurochemical tests. Our results demonstrated that the enduring CRS-induced increase in psychostimulant response to cocaine was paralleled by an increase of extracellular dopamine levels in the NAcore, but not the NAshell, greater than that observed in the non-stress group. Furthermore, we found that CRS induced an impairment of glutamate homeostasis in the NAcore, but not the NAshell. Its hallmarks were increased basal extracellular glutamate concentrations driven by a CRS-induced downregulation of GLT-1, blunted glutamate levels in response to cocaine and postsynaptic structural remodeling in pre-stressed animals. In addition, ceftriaxone, a known GLT-1 enhancer, prevented the CRS-induced GLT-1 downregulation, increased basal extracellular glutamate concentrations and changes in structural plasticity in the NAcore as well as behavioral cross-sensitization to cocaine, emphasizing the biological importance of GLT-1 in the comorbidity between chronic stress exposure and drug abuse. A future perspective concerning the paramount relevance of the stress-induced disruption of glutamate homeostasis as a vulnerability factor to the development of stress and substance use disorders during early life or adulthood of descendants is provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Flavia A. Bollati
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M. Cancela
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Dahchour A, Ward RJ. Changes in Brain Dopamine Extracellular Concentration after Ethanol Administration; Rat Microdialysis Studies. Alcohol Alcohol 2021; 57:165-175. [PMID: 34693981 DOI: 10.1093/alcalc/agab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The purpose of this review is to evaluate microdialysis studies where alterations in the dopaminergic system have been evaluated after different intoxication states, in animals showing preference or not for alcohol, as well as during alcohol withdrawal. METHODS Ethanol administration induces varying alterations in dopamine microdialysate concentrations, thereby modulating the functional output of the dopaminergic system. RESULTS Administration of low doses of ethanol, intraperitoneally, intravenously, orally or directly into the nucleus accumbens, NAc, increases mesolimbic dopamine, transmission, as shown by increases in dopamine content. Chronic alcohol administration to rats, which show alcohol-dependent behaviour, induced little change in basal dopamine microdialysis content. In contrast, reduced basal dopamine content occurred after ethanol withdrawal, which might be the stimulus to induce alcohol cravings and consumption. Intermittent alcohol consumption did not identify any consistent changes in dopamine transmission. Animals which have been selectively or genetically bred for alcohol preference did not show consistent changes in basal dopamine content although, exhibited a significant ethanol-evoked dopamine response by comparison to non-preference animals. CONCLUSIONS Microdialysis has provided valuable information about ethanol-evoked dopamine release in the different animal models of alcohol abuse. Acute ethanol administration increases dopamine transmission in the rat NAc whereas chronic ethanol consumption shows variable results which might reflect whether the rat is prior to or experiencing ethanol withdrawal. Ethanol withdrawal significantly decreases the extracellular dopamine content. Such changes in dopamine surges will contribute to both drug dependence, e.g. susceptibility to drug withdrawal, and addiction, by compromising the ability to react to normal dopamine fluctuations.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Department of Biology, Faculty of Sciences, Clinical Neurosciences Laboratory, Faulty of medicine and Pharmacy. Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Roberta J Ward
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
4
|
Moreno M, Azocar V, Vergés A, Fuentealba JA. High impulsive choice is accompanied by an increase in dopamine release in rat dorsolateral striatum. Behav Brain Res 2021; 405:113199. [PMID: 33636234 DOI: 10.1016/j.bbr.2021.113199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/05/2023]
Abstract
Dopamine neurotransmission has been consistently associated with individual differences in impulsive choice. Clinical and preclinical evidence suggests that low striatal dopamine D2 signaling predisposes to engage in impulsive behaviors. Although dopamine D2 signaling controls dopamine (DA) extracellular levels, the relationship between striatal dopamine extracellular levels and impulsive choice remains poorly understood. Using quantitative microdialysis, we investigated whether extracellular DA levels in rat dorsolateral striatum (DLS) correlates with preference for an immediate small reward or for a delayed larger reward. Rats were tested in a delay-discounting task and classified as high impulsive (HI) or low impulsive (LI) according to the area under the discounting curve (AUC). No-net flux microdialysis experiments, assessing basal DA release, DA-uptake, and DA extracellular concentration (DA Cext), were carried out in dorsolateral striatum (DLS) of urethane-anesthetized rats. Rats classified as HI showed a higher DA release compared with LI rats. Differences in DLS DA-uptake and DA Cext were non-significant. Importantly, a significant negative correlation was observed between AUC and DA release, indicating that the lower the AUC, the higher the DLS DA release. This finding shows that DA release is augmented in the DLS of rats classified as HI, suggesting that a hyper-activated nigro-striatal pathway contributes to impulsive choice.
Collapse
Affiliation(s)
- Macarena Moreno
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victor Azocar
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alvaro Vergés
- Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Antonio Fuentealba
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Pérez-Valenzuela EJ, Andrés Coke ME, Grace AA, Fuentealba Evans JA. Adolescent Exposure to WIN 55212-2 Render the Nigrostriatal Dopaminergic Pathway Activated During Adulthood. Int J Neuropsychopharmacol 2020; 23:626-637. [PMID: 32710782 PMCID: PMC7710918 DOI: 10.1093/ijnp/pyaa053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND During adolescence, neuronal circuits exhibit plasticity in response to physiological changes and to adapt to environmental events. Nigrostriatal dopaminergic pathways are in constant flux during development. Evidence suggests a relationship between early use of cannabinoids and psychiatric disorders characterized by altered dopaminergic systems, such as schizophrenia and addiction. However, the impact of adolescent exposure to cannabinoids on nigrostriatal dopaminergic pathways in adulthood remains unclear. The aim of this research was to determine the effects of repeated activation of cannabinoid receptors during adolescence on dopaminergic activity of nigrostriatal pathways and the mechanisms underlying this impact during adulthood. METHODS Male Sprague-Dawley rats were treated with 1.2 mg/kg WIN 55212-2 daily from postnatal day 40 to 65. Then no-net flux microdialysis of dopamine in the dorsolateral striatum, electrophysiological recording of dopaminergic neuronal activity, and microdialysis measures of gamma-aminobutyric acid (GABA) and glutamate in substantia nigra par compacta were carried out during adulthood (postnatal days 72-78). RESULTS Repeated activation of cannabinoid receptors during adolescence increased the release of dopamine in dorsolateral striatum accompanied by increased population activity of dopamine neurons and decreased extracellular GABA levels in substantia nigra par compacta in adulthood. Furthermore, perfusion of bicuculline, a GABAa antagonist, into the ventral pallidum reversed the increased dopamine neuron population activity in substantia nigra par compacta induced by adolescent cannabinoid exposure. CONCLUSIONS These results suggest that adolescent exposure to cannabinoid agonists produces disinhibition of nigrostriatal dopamine transmission during adulthood mediated by decreased GABAergic input from the ventral pallidum.
Collapse
Affiliation(s)
- Enzo Javier Pérez-Valenzuela
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile,Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - María Estela Andrés Coke
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry, and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - José Antonio Fuentealba Evans
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile,Correspondence: José Antonio Fuentealba, PhD, Department of Pharmacy, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile ()
| |
Collapse
|
6
|
Pérez-Valenzuela E, Castillo-Faúndez R, Fuentealba J. Comparing dopaminergic dynamics in the dorsolateral striatum between adolescent and adult rats: Effect of an acute dose of WIN55212-2. Brain Res 2019; 1719:235-242. [DOI: 10.1016/j.brainres.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022]
|
7
|
Azocar VH, Sepúlveda G, Ruiz C, Aguilera C, Andrés ME, Fuentealba JA. The blocking of kappa‐opioid receptor reverses the changes in dorsolateral striatum dopamine dynamics during the amphetamine sensitization. J Neurochem 2018; 148:348-358. [DOI: 10.1111/jnc.14612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Victor Hugo Azocar
- Department of Pharmacy and Interdisciplinary Center of Neuroscience Pontificia Universidad Catolica de Chile Santiago Chile
| | - Gladys Sepúlveda
- Department of Pharmacy and Interdisciplinary Center of Neuroscience Pontificia Universidad Catolica de Chile Santiago Chile
| | - Catalina Ruiz
- Department of Pharmacy and Interdisciplinary Center of Neuroscience Pontificia Universidad Catolica de Chile Santiago Chile
| | - Consuelo Aguilera
- Department of Pharmacy and Interdisciplinary Center of Neuroscience Pontificia Universidad Catolica de Chile Santiago Chile
| | - Maria Estela Andrés
- Department of Cellular and Molecular Biology Faculty of Biological Science Pontificia Universidad Católica de Chile Santiago Chile
| | - José Antonio Fuentealba
- Department of Pharmacy and Interdisciplinary Center of Neuroscience Pontificia Universidad Catolica de Chile Santiago Chile
| |
Collapse
|
8
|
Johnson JA, Rodeberg NT, Wightman RM. Measurement of Basal Neurotransmitter Levels Using Convolution-Based Nonfaradaic Current Removal. Anal Chem 2018; 90:7181-7189. [PMID: 29806450 PMCID: PMC6011837 DOI: 10.1021/acs.analchem.7b04682] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Fast-scan
cyclic voltammetry permits robust subsecond measurements
of in vivo neurotransmitter dynamics, resulting in
its established use in elucidating these species’ roles in
the actions of behaving animals. However, the technique’s limitations,
namely the need for digital background subtraction for analytical
signal resolution, have restricted the information obtainable largely
to that about phasic neurotransmitter release on the second-to-minute
time scale. The study of basal levels of neurotransmitters and their
dynamics requires a means of isolating the portion of the background
current arising from neurotransmitter redox reactions. Previously,
we reported on the use of a convolution-based method for prediction
of the resistive-capacitive portion of the carbon-fiber microelectrode
background signal, to improve the information content of background-subtracted
data. Here we evaluated this approach for direct analytical signal
isolation. First, protocol modifications (i.e., applied waveform and
carbon-fiber type) were optimized to permit simplification of the
interfering background current to components that are convolution-predictable.
It was found that the use of holding potentials of at least 0.0 V,
as well as the use of pitch-based carbon fibers, improved the agreement
between convolution predictions and the observed background. Subsequently,
it was shown that measurements of basal dopamine concentrations are
possible with careful control of the electrode state. Successful use
of this approach for measurement of in vivo basal
dopamine levels is demonstrated, suggesting the approach may serve
as a useful tool in expanding the capabilities of fast-scan cyclic
voltammetry.
Collapse
|
9
|
Mabrouk OS, Han JL, Wong JMT, Akil H, Kennedy RT, Flagel SB. The in Vivo Neurochemical Profile of Selectively Bred High-Responder and Low-Responder Rats Reveals Baseline, Cocaine-Evoked, and Novelty-Evoked Differences in Monoaminergic Systems. ACS Chem Neurosci 2018; 9:715-724. [PMID: 29161023 PMCID: PMC5906149 DOI: 10.1021/acschemneuro.7b00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Relative to bred low-responder (bLR) rats, bred high-responder (bHR) rats have an exaggerated locomotor response to a novel environment, take more risks, are more impulsive, and more likely to exhibit compulsive drug-seeking behaviors. These phenotypic differences in addiction-related behaviors and temperament have previously been associated with differences in neurotransmitter signaling, including the mesolimbic dopamine system. In this study, we applied advanced in vivo microdialysis sampling in the nucleus accumbens of bHRs and bLRs to assess differences in basal and stimulated neurochemical efflux more broadly. We used liquid chromatography-mass spectrometry measurements of dialysate samples to quantify a panel of 17 neurochemicals, including dopamine, norepinephrine, serotonin, histamine, glutamate, GABA, acetylcholine, adenosine, DOPAC, 3-MT, HVA, 5-HIAA, normetanephrine, taurine, serine, aspartate, and glycine. We also applied a stable isotope labeling technique to assess absolute baseline concentrations of dopamine and norepinephrine in the nucleus accumbens. Finally, we investigated the role of norepinephrine tone in the nucleus accumbens on the bHR phenotype. Our findings show that bHRs have elevated basal and cocaine-evoked dopamine and norepinephrine levels in the nucleus accumbens compared to those of bLRs. Furthermore, norepinephrine signaling in the nucleus accumbens appeared to be an important contributor to the bHR phenotype because bilateral perfusion of the α1 adrenergic receptor antagonist terazosin (10 μM) into the nucleus accumbens abolished the response of bHRs to novelty. These findings are the first to demonstrate a role for norepinephrine in the bHR phenotype. They reveal a positive relationship between dopamine and norepinephrine signaling in the nucleus accumbens in mediating the exaggerated response to novelty and point to norepinephrine signaling as a potential target in the treatment of impulse control disorders.
Collapse
Affiliation(s)
- Omar S. Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - John L. Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | | | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
GABA Uptake Inhibition Reduces In Vivo Extraction Fraction in the Ventral Tegmental Area of Long Evans Rats Measured by Quantitative Microdialysis Under Transient Conditions. Neurochem Res 2017; 43:306-315. [PMID: 29127598 DOI: 10.1007/s11064-017-2424-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/17/2017] [Accepted: 10/21/2017] [Indexed: 10/18/2022]
Abstract
Inhibitory signaling in the ventral tegmental area (VTA) is involved in the mechanism of action for many drugs of abuse. Although drugs of abuse have been shown to alter extracellular γ-aminobutyric acid (GABA) concentration in the VTA, knowledge on how uptake mechanisms are regulated in vivo is limited. Quantitative (no-net-flux) microdialysis is commonly used to examine the extracellular concentration and clearance of monoamine neurotransmitters, however it is unclear whether this method is sensitive to changes in clearance for amino acid neurotransmitters such as GABA. The purpose of this study was to determine whether changes in GABA uptake are reflected by in vivo extraction fraction within the VTA. Using quantitative (no-net-flux) microdialysis adapted for transient conditions, we examined the effects of local perfusion with the GABA uptake inhibitor, nipecotic acid, in the VTA of Long Evans rats. Basal extracellular GABA concentration and in vivo extraction fraction were 44.4 ± 1.9 nM (x-intercepts from 4 baseline regressions using a total of 24 rats) and 0.19 ± 0.01 (slopes from 4 baseline regressions using a total of 24 rats), respectively. Nipecotic acid (50 μM) significantly increased extracellular GABA concentration to 170 ± 4 nM and reduced in vivo extraction fraction to 0.112 ± 0.003. Extraction fraction returned to baseline following removal of nipecotic acid from the perfusate. Conventional microdialysis substantially underestimated the increase of extracellular GABA concentration due to nipecotic acid perfusion compared with that obtained from the quantitative analysis. Together, these results show that inhibiting GABA uptake mechanisms within the VTA alters in vivo extraction fraction measured using microdialysis and that in vivo extraction fraction may be an indirect measure of GABA clearance.
Collapse
|
11
|
Hammarlund-Udenaes M. Microdialysis as an Important Technique in Systems Pharmacology—a Historical and Methodological Review. AAPS JOURNAL 2017; 19:1294-1303. [DOI: 10.1208/s12248-017-0108-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/01/2017] [Indexed: 01/03/2023]
|
12
|
Prolyl Oligopeptidase Regulates Dopamine Transporter Phosphorylation in the Nigrostriatal Pathway of Mouse. Mol Neurobiol 2016; 55:470-482. [PMID: 27966077 DOI: 10.1007/s12035-016-0339-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
Alpha-synuclein is the main component of Lewy bodies, a histopathological finding of Parkinson's disease. Prolyl oligopeptidase (PREP) is a serine protease that binds to α-synuclein and accelerates its aggregation in vitro. PREP enzyme inhibitors have been shown to block the α-synuclein aggregation process in vitro and in cellular models, and also to enhance the clearance of α-synuclein aggregates in transgenic mouse models. Moreover, PREP inhibitors have induced alterations in dopamine and metabolite levels, and dopamine transporter immunoreactivity in the nigrostriatal tissue. In this study, we characterized the role of PREP in the nigrostriatal dopaminergic and GABAergic systems of wild-type C57Bl/6 and PREP knockout mice, and the effects of PREP overexpression on these systems. Extracellular concentrations of dopamine and protein levels of phosphorylated dopamine transporter were increased and dopamine reuptake was decreased in the striatum of PREP knockout mice, suggesting increased internalization of dopamine transporter from the presynaptic membrane. Furthermore, PREP overexpression increased the level of dopamine transporters in the nigrostriatal tissue but decreased phosphorylated dopamine transporters in the striatum in wild-type mice. Our results suggest that PREP regulates the function of dopamine transporter, possibly by controlling the phosphorylation and transport of dopamine transporter into the striatum or synaptic membrane.
Collapse
|
13
|
Zestos AG, Mikelman SR, Kennedy RT, Gnegy ME. PKCβ Inhibitors Attenuate Amphetamine-Stimulated Dopamine Efflux. ACS Chem Neurosci 2016; 7:757-66. [PMID: 26996926 DOI: 10.1021/acschemneuro.6b00028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amphetamine abuse afflicts over 13 million people, and there is currently no universally accepted treatment for amphetamine addiction. Amphetamine serves as a substrate for the dopamine transporter and reverses the transporter to cause an increase in extracellular dopamine. Activation of the beta subunit of protein kinase C (PKCβ) enhances extracellular dopamine in the presence of amphetamine by facilitating the reverse transport of dopamine and internalizing the D2 autoreceptor. We previously demonstrated that PKCβ inhibitors block amphetamine-stimulated dopamine efflux in synaptosomes from rat striatum in vitro. In this study, we utilized in vivo microdialysis in live, behaving rats to assess the effect of the PKCβ inhibitors, enzastaurin and ruboxistaurin, on amphetamine-stimulated locomotion and increases in monoamines and their metabolites. A 30 min perfusion of the nucleus accumbens core with 1 μM enzastaurin or 1 μM ruboxistaurin reduced efflux of dopamine and its metabolite 3-methoxytyramine induced by amphetamine by approximately 50%. The inhibitors also significantly reduced amphetamine-stimulated extracellular levels of norepinephrine. The stimulation of locomotor behavior by amphetamine, measured simultaneously with the analytes, was comparably reduced by the PKCβ inhibitors. Using a stable isotope label retrodialysis procedure, we determined that ruboxistaurin had no effect on basal levels of dopamine, norepinephrine, glutamate, or GABA. In addition, normal uptake function through the dopamine transporter was unaltered by the PKCβ inhibitors, as measured in rat synaptosomes. Our results support the utility of using PKCβ inhibitors to reduce the effects of amphetamine.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
- Department
of Chemistry, University of Michigan, 9300 North University Avenue, Ann Arbor, Michigan 48105, United States
| | - Sarah R. Mikelman
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
| | - Robert T. Kennedy
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
- Department
of Chemistry, University of Michigan, 9300 North University Avenue, Ann Arbor, Michigan 48105, United States
| | - Margaret E. Gnegy
- Department
of Pharmacology, University of Michigan, 2301 MSRB III, 1150 W. Medical Center
Drive, Ann Arbor, Michigan 48109-5632, United States
| |
Collapse
|
14
|
Pati D, Kelly K, Stennett B, Frazier CJ, Knackstedt LA. Alcohol consumption increases basal extracellular glutamate in the nucleus accumbens core of Sprague-Dawley rats without increasing spontaneous glutamate release. Eur J Neurosci 2016; 44:1896-905. [PMID: 27207718 DOI: 10.1111/ejn.13284] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
Glutamate neurotransmission in the nucleus accumbens core (NAc) mediates ethanol consumption. Previous studies using non-contingent and voluntary alcohol administration in inbred rodents have reported increased basal extracellular glutamate levels in the NAc. Here, we assessed basal glutamate levels in the NAc following intermittent alcohol consumption in male Sprague-Dawley rats that had access to ethanol for 7 weeks on alternating days. We found increased basal NAc glutamate at 24 h withdrawal from ethanol and thus sought to identify the source of this glutamate. To do so, we employed a combination of microdialysis, slice electrophysiology and western blotting. Reverse dialysis of the voltage-gated sodium channel blocker tetrodotoxin did not affect glutamate levels in either group. Electrophysiological recordings in slices made after 24 h withdrawal revealed a decrease in spontaneous excitatory postsynaptic current (sEPSC) frequency relative to controls, with no change in sEPSC amplitude. No change in metabotropic glutamate receptor 2/3 (mGlu2/3) function was detected as bath application of the mGlu2/3 agonist LY379268 decreased spontaneous and miniature EPSC frequency in slices from both control and ethanol-consuming rats. The increase in basal glutamate was not associated with changes in the surface expression of GLT-1, however, a decrease in slope of the no-net-flux dialysis function was observed following ethanol consumption, indicating a potential decrease in glutamate reuptake. Taken together, these findings indicate that the increase in basal extracellular glutamate occurring after chronic ethanol consumption is not mediated by an increase in action potential-dependent glutamate release or a failure of mGlu2/3 autoreceptors to regulate such release.
Collapse
Affiliation(s)
- Dipanwita Pati
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Kyle Kelly
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Bethany Stennett
- Psychology Department, University of Florida, PO Box 112250, Gainesville, FL, 332611, USA
| | - Charles J Frazier
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Lori A Knackstedt
- Psychology Department, University of Florida, PO Box 112250, Gainesville, FL, 332611, USA
| |
Collapse
|
15
|
Atcherley CW, Wood KM, Parent KL, Hashemi P, Heien ML. The coaction of tonic and phasic dopamine dynamics. Chem Commun (Camb) 2015; 51:2235-8. [PMID: 25249291 DOI: 10.1039/c4cc06165a] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tonic neurochemical dopamine activity underlies many brain functions; however a consensus on this important concentration has not yet been reached. In this work, we introduce in vivo fast-scan controlled-adsorption voltammetry to report tonic dopamine concentrations (90 ± 9 nM) and the dopamine diffusion coefficient (1.05 ± 0.09 × 10(-6) cm(2) s(-1)) in the mouse brain.
Collapse
Affiliation(s)
- Christopher W Atcherley
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
The mass transport or flux of neurochemicals in the brain and how this flux affects chemical measurements and their interpretation is reviewed. For all endogenous neurochemicals found in the brain, the flux of each of these neurochemicals exists between sources that produce them and the sites that consume them all within μm distances. Principles of convective-diffusion are reviewed with a significant emphasis on the tortuous paths and discrete point sources and sinks. The fundamentals of the primary methods of detection, microelectrodes and microdialysis sampling of brain neurochemicals are included in the review. Special attention is paid to the change in the natural flux of the neurochemicals caused by implantation and consumption at microelectrodes and uptake by microdialysis. The detection of oxygen, nitric oxide, glucose, lactate, and glutamate, and catecholamines by both methods are examined and where possible the two techniques (electrochemical vs. microdialysis) are compared. Non-invasive imaging methods: magnetic resonance, isotopic fluorine MRI, electron paramagnetic resonance, and positron emission tomography are also used for different measurements of the above-mentioned solutes and these are briefly reviewed. Although more sophisticated, the imaging techniques are unable to track neurochemical flux on short time scales, and lack spatial resolution. Where possible, determinations of flux using imaging are compared to the more classical techniques of microdialysis and microelectrodes.
Collapse
Affiliation(s)
- David W Paul
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | | |
Collapse
|
17
|
Jaquins-Gerstl A, Michael AC. A review of the effects of FSCV and microdialysis measurements on dopamine release in the surrounding tissue. Analyst 2015; 140:3696-708. [PMID: 25876757 PMCID: PMC4437820 DOI: 10.1039/c4an02065k] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microdialysis is commonly used in neuroscience to obtain information about the concentration of substances, including neurotransmitters such as dopamine (DA), in the extracellular space (ECS) of the brain. Measuring DA concentrations in the ECS with in vivo microdialysis and/or voltammetry is a mainstay of investigations into both normal and pathological function of central DA systems. Although both techniques are instrumental in understanding brain chemistry each has its shortcomings. The objective of this review is to characterize some of the tissue and DA differences associated with each technique in vivo. Much of this work will focus on immunohistochemical and microelectrode measurements of DA in the tissue next to the microdialysis probe and mitigating the response to the damage caused by probe implantation.
Collapse
|
18
|
Griffin WC, Ramachandra VS, Knackstedt LA, Becker HC. Repeated cycles of chronic intermittent ethanol exposure increases basal glutamate in the nucleus accumbens of mice without affecting glutamate transport. Front Pharmacol 2015; 6:27. [PMID: 25755641 PMCID: PMC4337330 DOI: 10.3389/fphar.2015.00027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/02/2015] [Indexed: 11/28/2022] Open
Abstract
Repeated cycles of chronic intermittent ethanol (CIE) exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc) is significantly elevated in ethanol-dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na+-dependent and Na+-independent conditions to determine whether the function of excitatory amino acid transporters (also known as system XAG) or of system Xc– (glial cysteine–glutamate exchanger) was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (approximately twofold) in the NAc of CIE exposed mice (i.e., ethanol-dependent) compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na+-dependent nor Na+-independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical–striatal pathways underlies the increases in extracellular glutamate found in the ethanol-dependent mice.
Collapse
Affiliation(s)
- William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina , Charleston, SC, USA
| | - Vorani S Ramachandra
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina , Charleston, SC, USA
| | - Lori A Knackstedt
- Department of Psychology, University of Florida , Gainesville, FL, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina , Charleston, SC, USA ; Department of Neurosciences, Medical University of South Carolina , Charleston, SC, USA ; Ralph H. Johnson VA Medical Center , Charleston, SC, USA
| |
Collapse
|
19
|
Anderzhanova E, Wotjak CT. Brain microdialysis and its applications in experimental neurochemistry. Cell Tissue Res 2014; 354:27-39. [PMID: 24022232 DOI: 10.1007/s00441-013-1709-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/19/2013] [Indexed: 12/20/2022]
Abstract
Abstract Microdialysis is one of the most powerful neurochemistry techniques, which allows the monitoring of changes in the extracellular content of endogenous and exogenous substances in the brain of living animals. The strength as well as wide applicability of this experimental approach are based on the bulk theory of brain neurotransmission. This methodological review introduces basic principles of chemical neurotransmission and emphasizes the difference in neurotransmission types.Clear understanding of their significance and degree of engagement in regulation of physiological processes is an ultimate prerequisite not only for choosing an appropriate method of monitoring for interneuronal communication via chemical messengers but also for accurate data interpretation. The focus on the processes of synthesis/metabolism, receptor interaction/neuronal signaling or the behavioral relevance of neurochemical events sculpts the experiment design. Brain microdialysis is an important method for examining changes in the content of any substances, irrespective of their origin, in living animals. This article compares contemporary approaches and techniques that are used for monitoring neurotransmission (including in vivo brain microdialysis, voltammetric methods, etc). We highlight practical aspects of microdialysis experiments in particular to those researchers who are seeking to increase the repertoire of their experimental techniques with brain microdialysis.
Collapse
|
20
|
Unger EL, Bianco LE, Jones BC, Allen RP, Earley CJ. Low brain iron effects and reversibility on striatal dopamine dynamics. Exp Neurol 2014; 261:462-8. [PMID: 24999026 DOI: 10.1016/j.expneurol.2014.06.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/09/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022]
Abstract
Iron deficiency (ID) in rodents leads to decreased ventral midbrain (VMB) iron concentrations and to changes in the dopamine (DA) system that mimic many of the dopaminergic changes seen in RLS patient where low substantia nigra iron is a known pathology of the disease. The ID-rodent model, therefore, has been used to explore the effects that low VMB iron can have on striatal DA dynamics with the hopes of better understanding the nature of iron-dopamine interaction in Restless Legs Syndrome (RLS). Using a post-weaning, diet-induced, ID condition in rats, the No-Net-Flux microdialysis technique was used to examine the effect of ID on striatal DA dynamics and it reversibility with acute infusion of physiological concentrations of iron into the VMB. This study replicated prior findings by showing that the ID condition is associated with increased extracellular striatal DA, reduced striatal DA uptake, and blunted DA-2-receptor-agonist feedback enhancement of striatal DA uptake. Despite the increase in extracellular striatal DA, intracellular striatal DA, as determined in tissue homogenates, was decrease in the ID rat. The study's key finding was that an infusion of physiological concentrations of iron into the VMB reversed the ID-induced increase in extracellular striatal DA and the ID-induced decrease in intracellular striatal DA but had no effect on the ID-induced changes in DA uptake or on the blunted DA-uptake response to quinpirole. In summary, the ID-rodent model provides highly reproducible changes in striatal DA dynamics that remarkably parallel dopaminergic changes seen in RLS patients. Some but not all of these ID-induced changes in striatal DA dynamics were reversible with physiological increases in VMB iron. The small changes in VMB iron induced by iron infusion likely represent biologically relevant changes in the non-transferrin-bound labile iron pool and may mimic circadian-dependent changes that have been found in VBM extracellular iron.
Collapse
Affiliation(s)
- Erica L Unger
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Laura E Bianco
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Byron C Jones
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard P Allen
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
21
|
Ash ES, Heal DJ, Clare Stanford S. Contrasting changes in extracellular dopamine and glutamate along the rostrocaudal axis of the anterior cingulate cortex of the rat following an acute d-amphetamine or dopamine challenge. Neuropharmacology 2014; 87:180-7. [PMID: 24747182 PMCID: PMC4226319 DOI: 10.1016/j.neuropharm.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/07/2014] [Accepted: 04/02/2014] [Indexed: 11/26/2022]
Abstract
There is evidence for functional specificity of subregions along the rostrocaudal axis of the anterior cingulate cortex (ACC). The subregion-specific distribution of dopaminergic afferents and glutamatergic efferents along the ACC make these obvious candidates for coding such regional responses. We investigated this possibility using microdialysis in freely-moving rats to compare changes in extracellular dopamine and glutamate in the rostral (‘rACC': Cg1 and Cg3 (prelimbic area)) and caudal (‘cACC’: Cg1 and Cg2) ACC induced by systemic or local administration of d-amphetamine. Systemic administration of d-amphetamine (3 mg/kg, i.p.) caused a transient increase in extracellular dopamine in the rACC, but an apparent increase in the cACC of the same animals was less clearly defined. Local infusion of d-amphetamine increased dopamine efflux in the rACC, only. Glutamate efflux in the rACC was increased by local infusion of dopamine (5–50 μM), which had negligible effect in the cACC, but only systemic administration of d-amphetamine increased glutamate efflux and only in the cACC. The asymmetry in the neurochemical responses within the rACC and cACC, to the same experimental challenges, could help explain why different subregions are recruited in the response to specific environmental and somatosensory stimuli and should be taken into account when studying the regulation of neurotransmission in the ACC. This article is part of the Special Issue entitled ‘CNS Stimulants’. Dopamine and glutamate efflux in two anterior cingulate subregions were compared. Responses to d-amphetamine depended on subregion and route of drug administration. These findings could help explain the disparate roles of the two subregions.
Collapse
Affiliation(s)
- Elizabeth S Ash
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - David J Heal
- RenaSci Ltd., Pennyfoot Street, Nottingham NG1 1GF, UK
| | - S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Birbeck JA, Khalid M, Mathews TA. Potentiated striatal dopamine release leads to hyperdopaminergia in female brain-derived neurotrophic factor heterozygous mice. ACS Chem Neurosci 2014; 5:275-81. [PMID: 24517838 DOI: 10.1021/cn400157b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The goal of this study was to determine whether a reduction in brain-derived neurotrophic factor (BDNF) levels in female mice leads to dopaminergic system dysregulation. Through a series of in vivo brain microdialysis and slice voltammetry experiments, we discerned that female BDNF heterozygous (BDNF(+/-)) mice are hyperdopaminergic, similar to their male BDNF(+/-) counterparts. Zero-net flux microdialysis results showed that female BDNF(+/-) mice had increased striatal extracellular dopamine levels, while stimulated regional release by high potassium concentrations potentiated dopamine release through vesicular-mediated depolarization. Using the complementary technique of fast scan cyclic voltammetry, electrical stimulation evoked greater dopamine release in the female BDNF(+/-) mice, whereas dopamine uptake remained unchanged relative to that of female wildtype mice. Following psychostimulant methamphetamine administration, female BDNF(+/-) mice showed potentiated dopamine release compared to their wildtype counterparts. Taken together, these dopamine release impairments in female mice appear to result in a hyperdopaminergic phenotype without concomitant alterations in dopamine uptake.
Collapse
Affiliation(s)
- Johnna A. Birbeck
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Madiha Khalid
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tiffany A. Mathews
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
23
|
Hershey ND, Kennedy RT. In vivo calibration of microdialysis using infusion of stable-isotope labeled neurotransmitters. ACS Chem Neurosci 2013; 4:729-36. [PMID: 23374073 PMCID: PMC3656751 DOI: 10.1021/cn300199m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/12/2013] [Indexed: 11/29/2022] Open
Abstract
In vivo calibration of microdialysis probes is required for interpreting measured concentrations. The most popular method of in vivo calibration is no-net-flux (NNF), which requires infusing several concentrations of neurotransmitters to determine in vivo recoveries (extraction fraction or Ed) and extracellular concentrations. A new method for in vivo calibration of microdialysis of neurotransmitters using glutamate (GLU) and dopamine (DA) as model analytes is reported. (13)C6-DA and (13)C5-GLU were perfused through microdialysis probes as internal calibrators. Using liquid chromatography with mass spectrometry, it was possible to distinguish the (13)C-forms from the endogenous forms of each neurotransmitter. Ed was directly calculated by measuring the loss of the (13)C-forms during infusion. The measured endogenous (12)C forms of the neurotransmitters could be corrected for Ed to give calibrated extracellular concentrations in vivo. Retrodialysis of stable-isotope-labeled (SIL) neurotransmitters gave Ed and extracellular concentrations of (13)C5-GLU and (13)C6-DA that matched no-net-flux measurements; however, the values were obtained in a fraction of time because no added measurements were required to obtain the calibration. Ed was reduced during uptake inhibition for GLU and DA when measured by SIL retrodialysis. Because Ed is directly measured at each microdialysis fraction, it was possible to monitor changes in Ed under transient conditions created by systemic injection of uptake inhibitors. The results show that DA and GLU concentrations are underestimated by as much as 50% if not corrected for Ed during uptake inhibition. SIL retrodialysis provides equivalent information to NNF at much reduced time and animal use.
Collapse
Affiliation(s)
- Neil D. Hershey
- Department of Chemistry and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109,
United States
| | - Robert T. Kennedy
- Department of Chemistry and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109,
United States
| |
Collapse
|
24
|
Chaurasia CS, Müller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange ECM, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BWY, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H. AAPS-FDA Workshop White Paper: Microdialysis Principles, Application, and Regulatory Perspectives. J Clin Pharmacol 2013; 47:589-603. [PMID: 17442685 DOI: 10.1177/0091270006299091] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chandra S Chaurasia
- Division of Bioequivalence, Office of Generic Drugs, Food and Drug Administration, Room 1360/HFD-650, 7520 Standish Place, Rockville, MD 20855, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ceftriaxone normalizes nucleus accumbens synaptic transmission, glutamate transport, and export following cocaine self-administration and extinction training. J Neurosci 2012; 32:12406-10. [PMID: 22956831 DOI: 10.1523/jneurosci.1976-12.2012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Decreased basal glutamate levels are observed in the rat nucleus accumbens (NA) core following cocaine self-administration. This disruption of glutamate homeostasis arises from a reduction in the export of glutamate via system x(C)(-) and is accompanied by a decrease in expression of xCT, the catalytic subunit of system x(C)(-). A second hallmark of disrupted homeostasis is a decrease in expression and function of the major glutamate transporter, GLT-1. We have previously shown that chronic treatment with the antibiotic ceftriaxone restores xCT and GLT-1 expression following cocaine self-administration and attenuates both cue- and cocaine-primed reinstatement. Here we used a (3)H-glutamate uptake assay and microdialysis to test the hypothesis that ceftriaxone restores the function of both GLT-1 and xCT (glutamate reuptake and export, respectively) in the NA core following cocaine self-administration. We also used electrophysiology to investigate the ability of ceftriaxone to normalize measures of synaptic plasticity following cocaine. We found that 5 d of ceftriaxone treatment following cocaine self-administration restores basal glutamate levels in the accumbens core, likely through an upregulation of system x(C)(-) function. We also found that ceftriaxone restores glutamate reuptake and attenuates the increase in synaptically released glutamate that accompanies cocaine-primed reinstatement. Ceftriaxone also reversed the cocaine-induced synaptic potentiation in the accumbens core, evidenced by normalized spontaneous EPSC amplitude and frequency and evoked EPSC amplitude. These data indicate that ceftriaxone normalizes multiple aspects of glutamate homeostasis following cocaine self-administration and thus holds the potential to reduce relapse in human cocaine addicts.
Collapse
|
26
|
Wang Y, Michael AC. Microdialysis probes alter presynaptic regulation of dopamine terminals in rat striatum. J Neurosci Methods 2012; 208:34-9. [PMID: 22546476 DOI: 10.1016/j.jneumeth.2012.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
The insertion of microdialysis probes into the rat striatum disrupts dopaminergic activity near the probe track. The present study suggests that a substantial fraction of DA terminals near the probe track (200 μm) survive the probe implantation itself but that the surviving terminals experience altered presynaptic inhibition. We found that probe implantation did not just alter the amplitude of evoked dopamine responses recorded by voltammetry, but also changed their temporal profile in a fashion similar to that previously observed by quinpirole, an agonist of dopamine D2 autoreceptors. Altered presynaptic inhibition is supported by a hypersensitivity of evoked dopamine responses recorded near to microdialysis probes to raclopride, a D2 antagonist. Further, we found that evoked dopamine release was also hypersensitive to a final dose of the dopamine transporter inhibitor, nomifensine.
Collapse
Affiliation(s)
- Yuexiang Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | | |
Collapse
|
27
|
Bosse KE, Maina FK, Birbeck JA, France MM, Roberts JJP, Colombo ML, Mathews TA. Aberrant striatal dopamine transmitter dynamics in brain-derived neurotrophic factor-deficient mice. J Neurochem 2011; 120:385-95. [PMID: 21988371 DOI: 10.1111/j.1471-4159.2011.07531.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) modulates the synaptic transmission of several monoaminergic neuronal systems, including forebrain dopamine-containing neurons. Recent evidence shows a strong correlation between neuropsychiatric disorders and BDNF hypofunction. The aim of the present study was to characterize the effect of low endogenous levels of BDNF on dopamine system function in the caudate-putamen using heterozygous BDNF (BDNF(+/-) ) mice. Apparent extracellular dopamine levels in the caudate-putamen, determined by quantitative microdialysis, were significantly elevated in BDNF(+/-) mice compared with wildtype controls (12 vs. 5 nM, respectively). BDNF(+/-) mice also had a potentiated increase in dopamine levels following potassium (120 mM)-stimulation (10-fold) relative to wildtype controls (6-fold). Slice fast-scan cyclic voltammetry revealed that BDNF(+/-) mice had reductions in both electrically evoked dopamine release and dopamine uptake rates in the caudate-putamen. Superfusion of BDNF led to partial recovery of the electrically stimulated dopamine release response in BDNF(+/-) mice. Conversely, tissue accumulation of L-3,4-dihydroxyphenylalanine, extracellular levels of dopamine metabolites, and spontaneous locomotor activity were unaltered. Together, this study indicates that endogenous BDNF influences dopamine system homeostasis by regulating the release and uptake dynamics of pre-synaptic dopamine transmission.
Collapse
Affiliation(s)
- Kelly E Bosse
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Jaquins-Gerstl A, Shu Z, Zhang J, Liu Y, Weber SG, Michael AC. Effect of dexamethasone on gliosis, ischemia, and dopamine extraction during microdialysis sampling in brain tissue. Anal Chem 2011; 83:7662-7. [PMID: 21859125 PMCID: PMC3193568 DOI: 10.1021/ac200782h] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microdialysis sampling of the brain is an analytical technique with numerous applications in neuroscience and the neurointensive care of brain-injured human patients. Even so, implanting microdialysis probes into brain tissue causes a penetration injury that triggers gliosis (the activation and proliferation of glial cells) and ischemia (the interruption of blood flow). Thus, the probe samples injured tissue. Mitigating the effects of the penetration injury might refine the technique. The synthetic glucocorticoid dexamethasone is a potent anti-inflammatory and immunosuppressant substance. We performed microdialysis in the rat brain for 5 days, with and without dexamethasone in the perfusion fluid (10 μM for the first 24 h and 2 μM thereafter). On the first and fourth day of the perfusion, we performed dopamine no-net-flux measurements. On the fifth day, we sectioned and stained the brain tissue and examined it by fluorescence microscopy. Although dexamethasone profoundly inhibited gliosis and ischemia around the probe tracks it had only modest effects on dopamine no-net-flux results. These findings show that dexamethasone is highly effective at suppressing gliosis and ischemia but is limited in its neuroprotective activity.
Collapse
Affiliation(s)
- Andrea Jaquins-Gerstl
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Zhan Shu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jing Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Yansheng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
29
|
Lam HA, Wu N, Cely I, Kelly RL, Hean S, Richter F, Magen I, Cepeda C, Ackerson LC, Walwyn W, Masliah E, Chesselet MF, Levine MS, Maidment NT. Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human α-synuclein. J Neurosci Res 2011; 89:1091-102. [PMID: 21488084 DOI: 10.1002/jnr.22611] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/09/2011] [Indexed: 12/13/2022]
Abstract
Overexpression or mutation of α-synuclein (α-Syn), a protein associated with presynaptic vesicles, causes familial forms of Parkinson's disease in humans and is also associated with sporadic forms of the disease. We used in vivo microdialysis, tissue content analysis, behavioral assessment, and whole-cell patch clamp recordings from striatal medium-sized spiny neurons (MSSNs) in slices to examine dopamine transmission and dopaminergic modulation of corticostriatal synaptic function in mice overexpressing human wild-type α-Syn under the Thy1 promoter (α-Syn mice). Tonic striatal extracellular dopamine and 3-methoxytyramine levels were elevated in α-Syn mice at 6 months of age, prior to any reduction in total striatal tissue content, and were accompanied by an increase in open-field activity. Dopamine clearance and amphetamine-induced dopamine efflux were unchanged. The frequency of MSSN spontaneous excitatory postsynaptic currents (sEPSCs) was lower in α-Syn mice. Amphetamine reduced sEPSC frequency in wild types (WTs) but produced no effect in α-Syn mice. Furthermore, whereas quinpirole reduced and sulpiride increased sEPSC frequency in WT mice, they produced the opposite effects in α-Syn mice. These observations indicate that overexpression of α-Syn alters dopamine efflux and D2 receptor modulation of corticostriatal glutamate release at a young age. At 14 months of age, the α-Syn mice presented with significantly lower striatal tissue dopamine and tyrosine hydroxylase content relative to WT littermates, accompanied by an L-DOPA-reversible sensory motor deficit. Together, these data further validate this transgenic mouse line as a slowly progressing model of Parkinson's disease and provide evidence for early dopamine synaptic dysfunction prior to loss of striatal dopamine.
Collapse
Affiliation(s)
- Hoa A Lam
- Hatos Center, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Eibl JK, Abdallah Z, Ross GM. Zinc-metallothionein: a potential mediator of antioxidant defence mechanisms in response to dopamine-induced stress. Can J Physiol Pharmacol 2011; 88:305-12. [PMID: 20393595 DOI: 10.1139/y10-022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Clinically, Parkinson's disease (PD) is a neurodegenerative disorder characterized by the development of tremors and rigidity that is found primarily in patients over the age of 50. At the cellular level, it is clear that the pathology of PD results from the progressive loss of dopaminergic neurons in the substantia nigra. Several lines of evidence have implicated oxidative stress as a contributing factor to the depletion of dopaminergic neurons in PD. Under conditions of oxidative stress, the neurotransmitter dopamine can be oxidized to form neurotoxic quinone and semiquinone products. While dopaquinones are known to be extremely reactive towards sulfhydryl groups of many cellular substrates, mounting evidence suggests that their toxic effects can be quenched by intrinsic antioxidant mechanisms (e.g., glutathione). However, to respond appropriately to differing levels of oxidative stress, cells require a mechanism to regulate an appropriate response. This manuscript proposes metallothionein as a major cellular sensor of oxidized dopamine stress and metallothionein-mediated Zn2+ mobilization as an effecter signal that is used by the cell to manage oxidized dopamine as an intrinsic neurotoxin.
Collapse
Affiliation(s)
- Joseph K Eibl
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | | | | |
Collapse
|
31
|
Good CH, Hoffman AF, Hoffer BJ, Chefer VI, Shippenberg TS, Bäckman CM, Larsson NG, Olson L, Gellhaar S, Galter D, Lupica CR. Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson's disease. FASEB J 2011; 25:1333-44. [PMID: 21233488 DOI: 10.1096/fj.10-173625] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Parkinson's disease (PD) involves progressive loss of nigrostriatal dopamine (DA) neurons over an extended period of time. Mitochondrial damage may lead to PD, and neurotoxins affecting mitochondria are widely used to produce degeneration of the nigrostriatal circuitry. Deletion of the mitochondrial transcription factor A gene (Tfam) in C57BL6 mouse DA neurons leads to a slowly progressing parkinsonian phenotype in which motor impairment is first observed at ~12 wk of age. L-DOPA treatment improves motor dysfunction in these "MitoPark" mice, but this declines when DA neuron loss is more complete. To investigate early neurobiological events potentially contributing to PD, we compared the neurochemical and electrophysiological properties of the nigrostriatal circuit in behaviorally asymptomatic 6- to 8-wk-old MitoPark mice and age-matched control littermates. Release, but not uptake of DA, was impaired in MitoPark mouse striatal brain slices, and nigral DA neurons lacked characteristic pacemaker activity compared with control mice. Also, hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel function was reduced in MitoPark DA neurons, although HCN messenger RNA was unchanged. This study demonstrates altered nigrostriatal function that precedes behavioral parkinsonian symptoms in this genetic PD model. A full understanding of these presymptomatic cellular properties may lead to more effective early treatments of PD.
Collapse
Affiliation(s)
- Cameron H Good
- Cellular Neurobiology Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Käenmäki M, Tammimäki A, Myöhänen T, Pakarinen K, Amberg C, Karayiorgou M, Gogos JA, Männistö PT. Quantitative role of COMT in dopamine clearance in the prefrontal cortex of freely moving mice. J Neurochem 2010; 114:1745-55. [PMID: 20626558 DOI: 10.1111/j.1471-4159.2010.06889.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catechol-O-methyltransferase (COMT) plays an active role in the metabolism of dopamine (DA) in the prefrontal cortex (PFC). Because of low levels of dopamine transporter (DAT), it is proposed that the majority of released DA is taken up by either norepinephrine transporter (NET) and subsequently metabolized by monoamine oxidize (MAO) or by uptake(2) (to glial cells and post-synaptic neurons) and metabolized by COMT. However, a comprehensive in vivo study of rating the mechanisms involved in DA clearance in the PFC has not been done. Here, we employ two types of microdialysis to study these pathways using DAT, NET and MAO blockers in conscious mice, with or without Comt gene disruption. In quantitative no-net-flux microdialysis, DA levels were increased by 60% in the PFC of COMT-knockout (ko) mice, but not in the striatum and nucleus accumbens. In conventional microdialysis studies, we showed that selective NET and MAO inhibition increased DA levels in the PFC of wild-type mice by two- to fourfold, an effect that was still doubled in COMT-ko mice. Inhibition of DAT had no effect on DA levels in either genotype. Therefore, we conclude that in the mouse, PFC COMT contributes about one half of the total DA clearance.
Collapse
Affiliation(s)
- Mikko Käenmäki
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Crespi F. Further Electrochemical and Behavioural Evidence of a Direct Relationship Between Central 5-HT and Cytoskeleton in the Control of Mood. Open Neurol J 2010; 4:5-14. [PMID: 20802812 PMCID: PMC2928987 DOI: 10.2174/1874205x01004010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 10/28/2009] [Accepted: 11/25/2009] [Indexed: 01/09/2023] Open
Abstract
Reduced activity of CNS serotonin is reported in unipolar depression and serotonin is the major target of recent antidepressant drugs. However, an acute depletion of serotonin in healthy individuals does not induce depressive symptoms suggesting that depression does not correlate with the serotonin system only. Neuronal plasticity (structural adaptation of neurons to functional requirements) includes synthesis of microtubular proteins such as tyrosinated isoform of α-tubulin and presence of serotonin as regulator of synaptogenesis. In depression neuronal plasticity is modified. Here, in rats submitted to a behavioural test widely used to predict the efficacy of antidepressant drugs (forced swimming test: FST) a significant decrease of both cerebral tyrosinated α-tubulin expression and serotonin levels is monitored. Moreover, treatment with para-chlorophenylalanine (PCPA, compound that specifically depletes brain serotonin) but not alpha-methyl para tyrosine (α-MPT, compound that blocks synthesis of catechols: chemicals also implicated in depression) significantly reduced tyrosinated α-tubulin. Thus, a direct relationship between serotonin and tyrosinated α-tubulin appears to be present both in “physiological” and in “pathological” states. In addition, data obtained in animals submitted to FST and/or treated with the selective serotonin reuptake inhibitor (SSRI) fluoxetine further support the interrelationship between central serotonin and cytoskeleton. These data propose that direct relationship between serotonin and tyrosinated α-tubulin could be considered within the mechanism(s) involved in the pathogenesis of depression.
Collapse
Affiliation(s)
- Francesco Crespi
- Biology Department, Neurosciences CEDD GlaxoSmithKline, Medicines Research Centre, via Fleming 4, 37135 Verona, Italy
| |
Collapse
|
34
|
Perry ML, Leinninger GM, Chen R, Luderman KD, Yang H, Gnegy ME, Myers MG, Kennedy RT. Leptin promotes dopamine transporter and tyrosine hydroxylase activity in the nucleus accumbens of Sprague-Dawley rats. J Neurochem 2010; 114:666-74. [PMID: 20412389 DOI: 10.1111/j.1471-4159.2010.06757.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adipocytes produce the hormone, leptin, in proportion to fat mass to signal the status of body energy stores to the central nervous system, thereby modulating food intake and energy homeostasis. In addition to controlling satiety, leptin suppresses the reward value of food, which is controlled by the mesolimbic dopamine (DA) system. Previous results from leptin-deficient ob/ob animals suggest that chronic leptin deficiency decreases DA content in the mesolimbic DA system, thereby decreasing the response to amphetamine (AMPH). The extent to which these alterations in the mesolimbic DA system of ob/ob animals may mirror the leptin response of normal animals has remained unclear, however. We therefore examined the potential short-term modulation of the mesolimbic DA system by leptin in normal animals. We show that 4 h of systemic leptin treatment enhances AMPH-stimulated DA efflux in the nucleus accumbens (NAc) of Sprague-Dawley rats. While acute leptin treatment increased NAc tyrosine hydroxylase activity, total tyrosine hydroxylase and DA content were unchanged at this early time point. Leptin also increased NAc DA transporter activity in the absence of changes in cell surface or total DA transporter. Thus, leptin modulates the mesolimbic DA system via multiple acute mechanisms, and increases AMPH-mediated DA efflux in normal animals.
Collapse
Affiliation(s)
- Maura L Perry
- Chemistry Department, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Moquin KF, Michael AC. Evidence for coupling between steady-state and dynamic extracellular dopamine concentrations in the rat striatum. J Neurochem 2010; 114:150-9. [PMID: 20403079 DOI: 10.1111/j.1471-4159.2010.06740.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A previous study from our laboratory demonstrated the presence within the rat striatum of dopaminergic terminals in different dynamical states, determined at least in part by the extent to which terminals are subject to autoinhibition. The present study is designed to test the hypothesis that heterogeneity in the basal tonic extracellular dopamine concentration contributes to the variable extent of autoinhibition. We probed basal extracellular dopamine concentrations using a previously demonstrated strategy that utilizes intrastriatal microinfusion of kynurenate, a substance that according to voltammetric measurements decreases extracellular dopamine from its basal concentration. In the striatum, however, we find that the response to kynurenate infusion is itself heterogeneous, allowing a broad classification of sites within the striatum as kynurenate-insensitive and kynurenate-sensitive, respectively. These newly identified kynurenate-insensitive and sensitive sites yield substantially and significantly different evoked dopamine release as measured by voltammetry during electrical stimulation of the medial forebrain bundle. Our findings confirm the hypothesis that heterogeneity in the local basal concentration of dopamine is responsible for the variable extent of autoinhibition within the striatum and support the conclusion that the steady state and dynamical components of extracellular dopamine in this brain region are coupled.
Collapse
Affiliation(s)
- Yuexiang Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
36
|
Tanaka Y, Furuyashiki T, Momiyama T, Namba H, Mizoguchi A, Mitsumori T, Kayahara T, Shichi H, Kimura K, Matsuoka T, Nawa H, Narumiya S. Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum. Eur J Neurosci 2009; 30:2338-46. [PMID: 20092576 DOI: 10.1111/j.1460-9568.2009.07021.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine (DA) is a neuromodulator that is critical for sensory-motor, cognitive and emotional functions. We previously found that mice lacking prostaglandin E receptor EP1 showed impulsive emotional behaviors accompanied by enhanced DA turnover in the frontal cortex and striatum. Given that these behavioral phenotypes were corrected by DA receptor antagonists, we hypothesized that EP1 deficiency causes a hyperdopaminergic state for its behavioral phenotype. Here we tested this hypothesis by examining the EP1 action in the nigrostriatal dopaminergic system. We first used microdialysis and found an elevated extracellular DA level in the dorsal striatum of EP1-deficient mice compared with wild-type mice. Despite the EP1 expression in the striatum, neither deficiency nor activation of EP1 altered the intrastriatal control for DA release, uptake or degradation. Immunohistochemistry revealed punctate EP1 signals apposed with dopaminergic neurons in the substantia nigra pars compacta (SNc). Many EP1 signals were colocalized with a marker for GABAergic synapses. Further, an EP1 agonist enhanced GABA(A)-mediated inhibitory inputs to SNc dopaminergic neurons in midbrain slices. Therefore, the prostaglandin E(2)-EP1 signaling directly enhances GABAergic inputs to SNc dopaminergic neurons. The lack of this EP1 action may lead to a hyperdopaminergic state of EP1-deficient mice.
Collapse
Affiliation(s)
- Yasuhiro Tanaka
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gilpin NW, Smith AD, Cole M, Weiss F, Koob GF, Richardson HN. Operant behavior and alcohol levels in blood and brain of alcohol-dependent rats. Alcohol Clin Exp Res 2009; 33:2113-23. [PMID: 19740131 PMCID: PMC2789881 DOI: 10.1111/j.1530-0277.2009.01051.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The purpose of the present investigation was to more clearly define blood-alcohol parameters associated with alcohol dependence produced by alcohol vapor inhalation and alcohol-containing liquid diet. METHODS Alcohol levels in blood and brain were compared during and after 4 hours of acute alcohol vapor exposure; also, brain-alcohol levels were assessed in alcohol-exposed (14-day alcohol vapor) and alcohol-naïve rats during and after 4 hours of acute alcohol vapor exposure. A separate group of rats were implanted with i.v. catheters, made dependent on alcohol via vapor inhalation, and tested for operant alcohol responding; blood-alcohol levels (BALs) were measured throughout operant alcohol drinking sessions during alcohol withdrawal. A final group of rats consumed an alcohol-liquid diet until they were dependent, and those rats were then tested for operant behavior at various withdrawal time points; BALs were measured at different withdrawal time points and after operant sessions. RESULTS Blood- and brain-alcohol levels responded similarly to vapor, but brain-alcohol levels peaked at a higher point and more slowly returned to zero in alcohol-naïve rats relative to alcohol-exposed rats. Alcohol vapor exposure also produced an upward shift in subsequent operant alcohol responding and resultant BALs. Rats consumed large quantities of alcohol-liquid diet, most of it during the dark cycle, sufficient to produce high blood-alcohol levels and elevated operant alcohol responding when tested during withdrawal from liquid diet. CONCLUSIONS These results emphasize that the key determinants of excessive alcohol drinking behavior are the BAL range and pattern of chronic high-dose alcohol exposure.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Committee on Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Fan X, Xu M, Hess EJ. D2 dopamine receptor subtype-mediated hyperactivity and amphetamine responses in a model of ADHD. Neurobiol Dis 2009; 37:228-36. [PMID: 19840852 DOI: 10.1016/j.nbd.2009.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/05/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022] Open
Abstract
Low doses of psychostimulants produce beneficial behavioral effects in ADHD patients but the mechanisms underlying the response are not understood. Here we use the hyperactive mouse mutant coloboma to identify D2-like dopamine receptor subtypes that mediate the hyperactivity and response to amphetamine; we have previously demonstrated that D1-like dopamine receptors are not involved. Targeted deletion of the D2, but not the D3 or the D4, dopamine receptor in coloboma mice eliminated the hyperactivity; depleting D2 dopamine receptors also restored the excess dopamine overflow that may drive the hyperactivity to normal concentrations. Similar to its effects on ADHD patients, amphetamine reduced the hyperactivity of coloboma mice. The D2 dopamine receptor-selective antagonist L-741,626, but not D3 or D4 dopamine receptor-selective antagonists, blocked the amphetamine-induced reduction in locomotor activity. Thus, the D2 dopamine receptor subtype mediates both the hyperactivity and response to amphetamine, suggesting a specific target for novel therapeutics in ADHD.
Collapse
MESH Headings
- Amphetamine/pharmacology
- Animals
- Attention Deficit Disorder with Hyperactivity/drug therapy
- Attention Deficit Disorder with Hyperactivity/physiopathology
- Benzopyrans/pharmacology
- Corpus Striatum/drug effects
- Corpus Striatum/physiopathology
- Dihydroxyphenylalanine/pharmacology
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Agents/pharmacology
- Dopamine D2 Receptor Antagonists
- Extracellular Space/metabolism
- Indoles/pharmacology
- Locomotion/drug effects
- Locomotion/physiology
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Piperidines/pharmacology
- Pyridines/pharmacology
- Pyrroles/pharmacology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/metabolism
- Receptors, Dopamine D4/antagonists & inhibitors
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/metabolism
Collapse
Affiliation(s)
- Xueliang Fan
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
39
|
Diaz-Ruiz O, Zapata A, Shan L, Zhang Y, Tomac AC, Malik N, de la Cruz F, Bäckman CM. Selective deletion of PTEN in dopamine neurons leads to trophic effects and adaptation of striatal medium spiny projecting neurons. PLoS One 2009; 4:e7027. [PMID: 19750226 PMCID: PMC2736587 DOI: 10.1371/journal.pone.0007027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 07/14/2009] [Indexed: 11/18/2022] Open
Abstract
The widespread distribution of the tumor suppressor PTEN in the nervous system suggests a role in a broad range of brain functions. PTEN negatively regulates the signaling pathways initiated by protein kinase B (Akt) thereby regulating signals for growth, proliferation and cell survival. Pten deletion in the mouse brain has revealed its role in controlling cell size and number. In this study, we used Cre-loxP technology to specifically inactivate Pten in dopamine (DA) neurons (Pten KO mice). The resulting mutant mice showed neuronal hypertrophy, and an increased number of dopaminergic neurons and fibers in the ventral mesencephalon. Interestingly, quantitative microdialysis studies in Pten KO mice revealed no alterations in basal DA extracellular levels or evoked DA release in the dorsal striatum, despite a significant increase in total DA tissue levels. Striatal dopamine receptor D1 (DRD1) and prodynorphin (PDyn) mRNA levels were significantly elevated in KO animals, suggesting an enhancement in neuronal activity associated with the striatonigral projection pathway, while dopamine receptor D2 (DRD2) and preproenkephalin (PPE) mRNA levels remained unchanged. In addition, PTEN inactivation protected DA neurons and significantly enhanced DA-dependent behavioral functions in KO mice after a progressive 6OHDA lesion. These results provide further evidence about the role of PTEN in the brain and suggest that manipulation of the PTEN/Akt signaling pathway during development may alter the basal state of dopaminergic neurotransmission and could provide a therapeutic strategy for the treatment of Parkinson's disease, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Oscar Diaz-Ruiz
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Agustin Zapata
- Behavioral Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Lufei Shan
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - YaJun Zhang
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Andreas C. Tomac
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Nasir Malik
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Fidel de la Cruz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cristina M. Bäckman
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Jaquins-Gerstl A, Michael AC. Comparison of the brain penetration injury associated with microdialysis and voltammetry. J Neurosci Methods 2009; 183:127-35. [PMID: 19559724 DOI: 10.1016/j.jneumeth.2009.06.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
Emerging evidence suggests that differences between microdialysis- and voltammetry-based estimates of extracellular dopamine in the brain might originate in the different penetration injury associated with each technique. To address this issue in a direct fashion, microdialysis probes and voltammetric microelectrodes were implanted in the rat striatum for 1, 4, or 24 h. Tissues were perfused with a suspension of fluorescently labeled nanobeads to assess blood vessels near the implant. Tissue sections (30 microm) were labeled with antibodies for PECAM, an endothelial cell marker, or GFAP, a glial marker. In non-implanted control tissue, blood vessels were reliably double-labeled with nanobeads and antiPECAM. Tissue near microdialysis probe tracks exhibited ischemia in the form of PECAM immunoreactive blood vessels devoid of nanobeads. Ischemia was most apparent after the 4-h implants. Probe tracks were surrounded by endothelial cell debris, which appeared as a diffuse halo of PECAM immunoreactivity. The halo intensity decreased with implant duration, indicative of an active wound-healing process. Consistent with this, after 24-h implants, the probe tracks were surrounded by hyperplasic and hypertrophic glia and glial processes were extending towards, and engulfing, the track. Carbon fiber microelectrodes produced a diffuse disruption of nanobead labeling but no focal disruption of blood vessels, no PECAM immunoreactive halo, and no glial activation. These findings illuminate the differences between the extent and nature of the penetration injuries associated with microdialysis and voltammetry.
Collapse
|
41
|
Ferris MJ, Frederick-Duus D, Fadel J, Mactutus CF, Booze RM. In vivo microdialysis in awake, freely moving rats demonstrates HIV-1 Tat-induced alterations in dopamine transmission. Synapse 2009; 63:181-5. [PMID: 19086089 DOI: 10.1002/syn.20594] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Individuals infected with human immunodeficiency virus (HIV) may develop neuropsychological impairment, and a modest percentage may progress to HIV-associated dementia (HAD). Research using human and nonhuman, in vitro and in vivo models, demonstrates that subcortical dopamine (DA) systems may be particularly vulnerable to HIV-induced neurodegeneration. The goal of the current investigation is to provide an understanding of the extent to which the HIV-1 protein Tat induces alterations in striatal DA transmission using in vivo brain microdialysis in awake, freely moving rats. The current study was designed to investigate Tat-induced neuronal dysfunction between 24-h and 48-h post-Tat administration, and demonstrates a reduction in evoked DA for the Tat-treated group relative to vehicle-treated group at 24 and 48 h. The Tat-induced reduction of DA overflow by 24 h suggests dysfunction of nerve terminals, and a compromised DA system in Tat-treated animals. Furthermore, the current study provides direct support for HIV-associated decline of DA function at a systemic level, helping to characterize the functional outcome of the relatively large amount of research on the molecular and behavioral levels of HIV-induced neurotoxicity. This initial study may provide additional characteristics of Tat-induced neuronal dysfunction to inform research on therapeutic intervention, and it provides a springboard for future in vivo research currently needed in the field.
Collapse
Affiliation(s)
- Mark J Ferris
- Program in Behavioral Neuroscience, Department of Psychology, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
42
|
Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. CURRENT PROTOCOLS IN NEUROSCIENCE 2009; Chapter 7:Unit7.1. [PMID: 19340812 PMCID: PMC2953244 DOI: 10.1002/0471142301.ns0701s47] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The technique of microdialysis enables sampling and collecting of small-molecular-weight substances from the interstitial space. It is a widely used method in neuroscience and is one of the few techniques available that permits quantification of neurotransmitters, peptides, and hormones in the behaving animal. More recently, it has been used in tissue preparations for quantification of neurotransmitter release. This unit provides a brief review of the history of microdialysis and its general application in the neurosciences. The authors review the theoretical principles underlying the microdialysis process, methods available for estimating extracellular concentration from dialysis samples (i.e., relative recovery), the various factors that affect the estimate of in vivo relative recovery, and the importance of determining in vivo relative recovery to data interpretation. Several areas of special note, including impact of tissue trauma on the interpretation of microdialysis results, are discussed. Step-by-step instructions for the planning and execution of conventional and quantitative microdialysis experiments are provided.
Collapse
Affiliation(s)
- Vladimir I Chefer
- Integrative Neuroscience Section, NIH/NIDA Intramural Research Program, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
43
|
The human immunodeficiency virus-1-associated protein, Tat1-86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: a no-net-flux microdialysis study. Neuroscience 2009; 159:1292-9. [PMID: 19344635 DOI: 10.1016/j.neuroscience.2009.01.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/16/2008] [Accepted: 01/14/2009] [Indexed: 02/07/2023]
Abstract
Injection drug use accounts for approximately one-third of human immunodeficiency virus (HIV) infections in the United States. HIV-associated proteins have been shown to interact with various drugs of abuse to incite concerted neurotoxicity. One common area for their interaction is the nerve terminal, including dopamine transporter (DAT) systems. However, results regarding DAT function and regulation in HIV-infection, regardless of drug use, are mixed. Thus, the present experiments were designed to explicitly control Tat and cocaine administration in an in vivo rat model in order to reconcile differences that exist in the literature to date. We examined Tat plus cocaine-induced alterations using no-net-flux microdialysis, which is sensitive to alterations in DAT function, in order to test the potential for DAT as an early mediator of HIV-induced oxidative stress and neurodegeneration in vivo. Within 5 h of intra-accumbal administration of the HIV-associated protein, Tat, we noted a significant reduction in local DAT efficiency with little change in DA overflow/release dynamics. Further, at 48 h post-Tat administration, we demonstrated a concerted effect of the HIV-protein Tat with cocaine on both uptake and release function. Finally, we discuss the extent to which DAT dysfunction may be considered a predecessor to generalized nerve terminal dysfunction. Characterization of DAT dysfunction in vivo may provide an early pharmacotherapeutic target, which in turn may prevent or attenuate downstream mediators of neurotoxicity (i.e., reactive species) to dopamine systems occurring in neuro-AIDS.
Collapse
|
44
|
Chen CF, Drew KL. Droplet-based microdialysis-Concept, theory, and design considerations. J Chromatogr A 2008; 1209:29-36. [PMID: 18814875 PMCID: PMC3796385 DOI: 10.1016/j.chroma.2008.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/27/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
Abstract
The capability of continuously sampling the extracellular fluid opens up a wide range of applications of microdialysis in biological, pharmaceutical, and clinical studies. Existing microdialysis, however, faces challenges in sampling analytes with fast clearance and limited diffusivity because sampling resolution is limited by device size. Size reduction in probes and interconnected cannulae is a promising solution to improve temporal and spatial resolution. But the back pressure produced by resistance to laminar flows will be magnified in smaller channels, raising a concern as to whether it is feasible to operate continuous perfusion for miniaturized microdialysis. We demonstrate that a 10-fold smaller channel will exhibit 100-fold larger back pressure in response to the increase in the flow rate to maintain the relative recovery. In order to overcome the foreseen back pressure issue, this paper discusses a new concept using discrete droplets instead of continuous flows to operate dialysis in a miniaturized probe. This conceptual design is referred to as droplet-based digital microdialysis, in which droplets are produced, controlled and advanced within microchannels at a rate that in theory should allow for analytes to equilibrate with the extracellular fluid under no flow conditions. Expecting that a digital droplet design will entirely eliminate back pressure by introducing air between droplets, we numerically compare the equilibration kinematics of droplets to that of continuous flow. Results suggest equilibration of low molecular weight analytes between intermittently stationary droplets and the extracellular fluid in a few seconds. Considerations in design, prototyping, calibration and quantification, and the integration with other devices are suggested.
Collapse
Affiliation(s)
- Cheng-Fu Chen
- Department of Mechanical Engineering, University of Alaska Fairbanks, P.O. Box 755905, Fairbanks, AK 99775, USA.
| | | |
Collapse
|
45
|
Mitala CM, Wang Y, Borland LM, Jung M, Shand S, Watkins S, Weber SG, Michael AC. Impact of microdialysis probes on vasculature and dopamine in the rat striatum: a combined fluorescence and voltammetric study. J Neurosci Methods 2008; 174:177-85. [PMID: 18674561 DOI: 10.1016/j.jneumeth.2008.06.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 11/25/2022]
Abstract
Measuring extracellular dopamine in the brain of living animals by means of microdialysis and/or voltammetry is a route towards understanding both normal brain function and pathology. Previous reports, however, suggest that the tissue response to implantation of devices may affect the outcome of the measurements. To address the source of the tissue response and its impact on striatal dopamine systems microdialysis probes were placed in the striatum of anesthetized rats. Images obtained by dual-label fluorescence microscopy show signs of ischemia and opening of the blood-brain barrier near the probe tracks. Opening of the blood-brain barrier was further examined by determining dialysate concentrations of carbi-DOPA, a drug that normally does not penetrate the brain. Although carbi-DOPA was recovered in brain dialysate, it did not alter dialysate dopamine levels or evoked dopamine release as measured by voltammetry near the probes. Microdialysis probes also significantly diminished the effect of intrastriatal infusion of kynurenate on extracellular dopamine levels as measured by voltammetry near the probes.
Collapse
Affiliation(s)
- Christina M Mitala
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Bianco LE, Wiesinger J, Earley CJ, Jones BC, Beard JL. Iron deficiency alters dopamine uptake and response to L-DOPA injection in Sprague–Dawley rats. J Neurochem 2008; 106:205-15. [DOI: 10.1111/j.1471-4159.2008.05358.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR, Kennedy RT, Rebec GV. Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington's disease phenotype in the R6/2 mouse. Neuroscience 2008; 153:329-37. [PMID: 18353560 DOI: 10.1016/j.neuroscience.2008.02.004] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 12/29/2022]
Abstract
The striatum, which processes cortical information for behavioral output, is a key target of Huntington's disease (HD), an autosomal dominant condition characterized by cognitive decline and progressive loss of motor control. Increasing evidence implicates deficient glutamate uptake caused by a down-regulation of GLT1, the primary astroglial glutamate transporter. To test this hypothesis, we administered ceftriaxone, a beta-lactam antibiotic known to elevate GLT1 expression (200 mg/kg, i.p., for 5 days), to symptomatic R6/2 mice, a widely studied transgenic model of HD. Relative to vehicle, ceftriaxone attenuated several HD behavioral signs: paw clasping and twitching were reduced, while motor flexibility, as measured in a plus maze, and open-field climbing were increased. Assessment of GLT1 expression in striatum confirmed a ceftriaxone-induced increase relative to vehicle. To determine if the change in behavior and GLT1 expression represented a change in striatal glutamate handling, separate groups of behaving mice were evaluated with no-net-flux microdialysis. Vehicle treatment revealed a glutamate uptake deficit in R6/2 mice relative to wild-type controls that was reversed by ceftriaxone. Vehicle-treated animals, however, did not differ in GLT1 expression, suggesting that the glutamate uptake deficit in R6/2 mice reflects dysfunctional rather than missing GLT1. Our results indicate that impaired glutamate uptake is a major factor underlying HD pathophysiology and symptomology. The glutamate uptake deficit, moreover, is present in symptomatic HD mice and reversal of this deficit by up-regulating the functional expression of GLT1 with ceftriaxone attenuates the HD phenotype.
Collapse
Affiliation(s)
- B R Miller
- Program in Neuroscience, Department of Psychological and Brain Sciences, 1101 East 10th Street, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Barbier E, Zapata A, Oh E, Liu Q, Zhu F, Undie A, Shippenberg T, Wang JB. Supersensitivity to amphetamine in protein kinase-C interacting protein/HINT1 knockout mice. Neuropsychopharmacology 2007; 32:1774-82. [PMID: 17203012 DOI: 10.1038/sj.npp.1301301] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C interacting protein/histidine triad nucleotide binding protein 1 (PKCI/HINT1) is a member of the histidine triad protein family. Although this protein is widely expressed in the mammalian brain including mesocorticolimbic and mesostriatal regions, its physiological function in CNS remains unknown. Recent microarray studies reported decreased mRNA expression of PKCI/HINT1 in the frontal cortex of individuals with schizophrenia, suggesting the possible involvement of this protein in the pathophysiology of the disease. In view of the documented link between dopamine (DA) transmission and schizophrenia, the present study used behavioral and neurochemical approaches to examine the influence of constitutive PKCI/HINT1 deletion upon: (i) basal and amphetamine (AMPH)-evoked locomotor activity; (ii) DA dynamics in the dorsal striatum, and (iii) postsynaptic DA receptor function. PKCI/HINT1(-/-) (KO) mice displayed lower spontaneous locomotion relative to wild-type (WT) controls. Acute AMPH administration significantly increased locomotor activity in WT mice; nonetheless, the effect was enhanced in KO mice. Quantitative microdialysis studies revealed no alteration in basal DA dynamics in the striatum or nucleus accumbens of KO mice. The ability of acute AMPH to increase DA levels was unaltered indicating that function in presynaptic DA neurotransmission in these regions do not underlie the behavioral phenotype of KO mice. In contrast to WT mice, systemic administration of the direct-acting DA receptor agonist apomorphine (10 mg/kg) significantly increased locomotor activity in KO mice suggesting that postsynaptic DA function is altered in these animals. These results demonstrate an important role of PKCI/HINT1 in modulating the behavioral response to AMPH. Furthermore, they indicate that the absence of this protein may be associated with dysregulation of postsynaptic DA transmission.
Collapse
Affiliation(s)
- Elisabeth Barbier
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Sarter M, Bruno JP, Parikh V. Abnormal neurotransmitter release underlying behavioral and cognitive disorders: toward concepts of dynamic and function-specific dysregulation. Neuropsychopharmacology 2007; 32:1452-61. [PMID: 17164812 DOI: 10.1038/sj.npp.1301285] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abnormalities in the regulation of neurotransmitter release and/or abnormal levels of extracellular neurotransmitter concentrations have remained core components of hypotheses on the neuronal foundations of behavioral and cognitive disorders and the symptoms of neuropsychiatric and neurodegenerative disorders. Furthermore, therapeutic drugs for the treatment of these disorders have been developed and categorized largely on the basis of their effects on neurotransmitter release and resulting receptor stimulation. This perspective stresses the theoretical and practical implications of hypotheses that address the dynamic nature of neurotransmitter dysregulation, including the multiple feedback mechanisms regulating synaptic processes, phasic and tonic components of neurotransmission, compartmentalized release, differentiation between dysregulation of basal vs activated release, and abnormal release from neuronal systems recruited by behavioral and cognitive activity. Several examples illustrate that the nature of the neurotransmitter dysregulation in animal models, including the direction of drug effects on neurotransmitter release, depends fundamentally on the state of activity of the neurotransmitter system of interest and on the behavioral and cognitive functions recruiting these systems. Evidence from evolving techniques for the measurement of neurotransmitter release at high spatial and temporal resolution is likely to advance hypotheses describing the pivotal role of neurotransmitter dysfunction in the development of essential symptoms of major neuropsychiatric disorders, and also to refine neuropharmacological mechanisms to serve as targets for new treatment approaches. The significance and usefulness of hypotheses concerning the abnormal regulation of the release of extracellular concentrations of primary messengers depend on the effective integration of emerging concepts describing the dynamic, compartmentalized, and activity-dependent characteristics of dysregulated neurotransmitter systems.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1043, USA.
| | | | | |
Collapse
|
50
|
Shou M, Ferrario CR, Schultz KN, Robinson TE, Kennedy RT. Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence. Anal Chem 2007; 78:6717-25. [PMID: 17007489 DOI: 10.1021/ac0608218] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microdialysis sampling was coupled on-line to micellar electrokinetic chromatography (MEKC) to monitor extracellular dopamine concentration in the brains of rats. Microdialysis probes were perfused at 0.3 microL/min and the dialysate mixed on-line with 6 mM naphthalene-2,3-dicarboxaldehye and 10 mM potassium cyanide pumped at 0.12 microL/min each into a reaction capillary. The reaction mixture was delivered into a flow-gated interface and separated at 90-s intervals. The MEKC separation buffer consisted of 30 mM phosphate, 6.5 mM SDS, and 2 mM HP-beta-CD at pH 7.4, and the electric field was 850 V/cm applied across a 14-cm separation distance. Analytes were detected by laser-induced fluorescence excited using the 413-nm line of a 14-mW diode-pumped laser. The detection limit for dopamine was 2 nM when sampling by dialysis. The basal dopamine concentration in dialysates collected from the striatum of anesthetized rats was 18 +/- 3 nM (n = 12). The identity of the putative dopamine peak was confirmed by showing that dopamine uptake inhibitors increased the peak and dopamine synthesis inhibitors eliminated the peak. The utility of this method for behavioral studies was demonstrated by correlating dopamine concentrations in vivo and with psychomotor behavior in freely moving rats following the intravenous administration of cocaine. Over 60 additional peaks were detected in the electropherograms, suggesting the potential for monitoring many other substances in vivo by this method.
Collapse
Affiliation(s)
- Minshan Shou
- Department of Chemistry, Neuroscience Program, Department of Psychology, and Department of Pharmacology, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|