1
|
Kamishina H, Cheeseman JA, Farese JP, Milner RJ, Clemmons RM. Migration and differentiation of canine bone marrow stromal cells transplanted into the developing mouse brain. J Vet Med Sci 2009; 72:353-6. [PMID: 19952514 DOI: 10.1292/jvms.09-0353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate whether canine bone marrow stromal cells (BMSCs) can migrate and adopt neural phenotypes in the developing mouse brain we transplanted fluorescently labeled BMSCs into the lateral ventricle of immunocompromised neonatal mice. Most fibroblasts, used as a control, and BMSCs isolated from adult dogs remained around the injection site and exhibited a spindle-shaped appearance. A small number of BMSCs from young dogs were found in the subventricular zone, rostral migratory stream, and olfactory bulbs, and retained expression of neuron marker. Our findings suggest that BMSCs isolated from adult dogs have limited ability of migration and differentiation toward neural cells in the developing brain. Bone marrow of young dogs may contain a primitive stem cell population with neural differentiation capacity.
Collapse
Affiliation(s)
- Hiroaki Kamishina
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610-0126, USA.
| | | | | | | | | |
Collapse
|
2
|
Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2005; 24:1054-64. [PMID: 16322639 DOI: 10.1634/stemcells.2005-0370] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reports of neural transdifferentiation of mesenchymal stem cells (MSCs) suggest the possibility that these cells may serve as a source for stem cell-based regenerative medicine to treat neurological disorders. However, some recent studies controvert previous reports of MSC neurogenecity. In the current study, we evaluate the neural differentiation potential of mouse bone marrow-derived MSCs. Surprisingly, we found that MSCs spontaneously express certain neuronal phenotype markers in culture, in the absence of specialized induction reagents. A previously published neural induction protocol that elevates cytoplasmic cyclic AMP does not upregulate neuron-specific protein expression significantly in MSCs but does significantly increase expression of the astrocyte-specific glial fibrillary acidic protein. Finally, when grafted into the lateral ventricles of neonatal mouse brain, MSCs migrate extensively and differentiate into olfactory bulb granule cells and periventricular astrocytes, without evidence of cell fusion. These results indicate that MSCs may be "primed" toward a neural fate by the constitutive expression of neuronal antigens and that they seem to respond with an appropriate neural pattern of differentiation when exposed to the environment of the developing brain.
Collapse
Affiliation(s)
- Jie Deng
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, USA
| | | | | | | | | |
Collapse
|
3
|
Marler KJM, Kozma R, Ahmed S, Dong JM, Hall C, Lim L. Outgrowth of neurites from NIE-115 neuroblastoma cells is prevented on repulsive substrates through the action of PAK. Mol Cell Biol 2005; 25:5226-41. [PMID: 15923637 PMCID: PMC1140584 DOI: 10.1128/mcb.25.12.5226-5241.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the central nervous system (CNS), damaged axons are inhibited from regeneration by glial scars, where secreted chondroitin sulfate proteoglycan (CSPG) and tenascin repulse outgrowth of neurites, the forerunners of axons and dendrites. During differentiation, these molecules are thought to form boundaries for guiding neurons to their correct targets. In neuroblastoma NIE-115 cells, outgrowth of neurites on laminin could be induced by serum starvation or inhibition of RhoA by Clostridium botulinum C3 toxin. The outgrowing neurites avoided crossing onto the repulsive substrate CSPG or tenascin. This avoidance response was partially overcome on expression of membrane-targeted and kinase-inactive forms of PAK. In these cells, the endogenous PAK isoforms colocalized with actin in distinctive sites, alphaPAK in the cell center as small clusters and along the neurite shaft and betaPAK and gammaPAK in areas with membrane ruffles and filopodia, respectively. When isoform-specific N-terminal PAK sequences were introduced to interfere with PAK function, substantially more neurites crossed onto CSPG when cells contained a gammaPAK-derived peptide but not the corresponding alphaPAK- or betaPAK-derived peptide. Thus, while neurite outgrowth can be promoted by RhoA inhibition, overcoming the accompanying repulsive guidance response will require modulation of PAK activity. These results have therapeutic implications for CNS repair processes.
Collapse
Affiliation(s)
- Katharine J M Marler
- Department of Molecular Neuroscience, Institute of Neurology, University College London, 1 Wakefield St., London WC1N 1PJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
4
|
Gates MA, Coupe VM, Torres EM, Fricker-Gates RA, Dunnett SB. Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur J Neurosci 2004; 19:831-44. [PMID: 15009130 DOI: 10.1111/j.1460-9568.2004.03213.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying cellular and molecular mechanisms that direct the formation of circuits during development is thought to be the key to reconstructing circuitry lost in adulthood to neurodegenerative disorders or common traumatic injuries. Here we have tested whether brain regions situated in and around the developing nigro-striatal pathway have particular chemoattractive or chemorepulsive effects on mesencephalic dopamine axons, and whether these effects are temporally restricted. Mesencephalic explants from embryonic day (E)12 rats were either cultured alone or with coexplants from the embryonic, postnatal or adult medial forebrain bundle region (MFB), striatum, cortex, brain stem or thalamus. Statistical analysis of axon growth responses revealed a potent chemoattraction to the early embryonic MFB (i.e. E12-15) that diminished (temporally) in concert with the emergence of chemoattraction to the striatum in the late embryonic period (i.e. E19+). Repulsive responses by dopaminergic axons were obvious in cocultures with embryonic brain stem and cortex, however, there was no effect by the thalamus. Such results suggest that the nigro-striatal circuit is formed via spatially and temporally distributed chemoattractive and chemorepulsive elements that: (i) orientate the circuit in a rostral direction (via brain stem repulsion); (ii) initiate outgrowth (via MFB attraction); (iii) prevent growth beyond the target region (via cortical repulsion); and (iv) facilitate target innervation (via striatal chemoattraction). Subsequent studies will focus on identifying genes responsible for these events so that their products may be exploited to increase the integration of neuronal transplants to the mature brain, or provide a means to (re)establish the nigro-striatal circuit in vivo.
Collapse
Affiliation(s)
- Monte A Gates
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3US, UK.
| | | | | | | | | |
Collapse
|
5
|
Tsai ES, Haraldson SJ, Baratta J, Lander AD, Yu J, Robertson RT. Basal forebrain cholinergic cell attachment and neurite outgrowth on organotypic slice cultures of hippocampal formation. Neuroscience 2003; 115:815-27. [PMID: 12435420 DOI: 10.1016/s0306-4522(02)00460-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Distributions of somata and neurites of cholinergic neurons were studied after seeding dissociated cells onto organotypic slice cultures. Slice cultures were made from hippocampal formation and adjacent cortical regions from rats or mice. Dissociated cell suspensions of basal forebrain tissue from rat or mouse fetuses were seeded onto the slice cultures. Combined cultures were maintained for 1-21 days in vitro. Cultures processed for acetylcholinesterase (AChE) histochemistry demonstrated non-random patterns of cholinergic cells and their neurites. Labeled cells appeared most frequently in the molecular layer of the dentate gyrus, and in the deeper layers of cortical regions adjacent to the hippocampus. Neurites extending from these labeled cells appeared to target the dentate molecular layer and the cortical subplate layer. By 4 days in vitro, AChE-positive basal forebrain cells display several short and thick neurites that appear to be dendrites, and one long process that appears to be an axon. By 5 days in vitro, dendrites are well developed; by 7 days the presumed axon has extended widely over the cortical target zone. These neurites are maintained through 3 weeks in culture. Distributions of cells varied with the age of the slice. AChE-labeled cells were not seen overlying hippocampal tissue when dissociated cells were seeded on slice cultures made from day 0 rats, but a few labeled cells were seen when seeded on slices from day 2 rats. Clear non-random patterns of labeled cells and neurite outgrowth were seen on slice cultures from day 5 or older pups. The non-random distribution seen with AChE-positive neurons was not seen using other techniques that labeled all cells (non-selective fluorescent labels) or all neurons; these techniques resulted in labeled cells scattered apparently homogenously across the slice culture.These studies demonstrate a non-random pattern of attachment or differentiation of basal forebrain cholinergic neurons when these cells are seeded onto cultured cortical slices; this pattern mimics the normal patterns of basal forebrain cholinergic projections to these cortical regions. These data suggest that the factors that normally guide basal forebrain-derived cholinergic axons to their target cells in vivo are present and detectable in this model system.
Collapse
Affiliation(s)
- E S Tsai
- Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine, CA 92697-1280, USA
| | | | | | | | | | | |
Collapse
|
6
|
Macé K, Saxod R, Feuerstein C, Sadoul R, Hemming FJ. Chondroitin and keratan sulfates have opposing effects on attachment and outgrowth of ventral mesencephalic explants in culture. J Neurosci Res 2002; 70:46-56. [PMID: 12237863 DOI: 10.1002/jnr.10381] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During rat brain development, striatal proteoglycan (PG) expression shows specific spatio-temporal modifications suggesting a possible role in the guidance of its dopaminergic afferents. The effects of individual glycosaminoglycans (GAGs) on dopaminergic (DA) neuronal adhesion and outgrowth were therefore studied. We tested the behavior of dissociated embryonic rat mesencephalic cells cultivated on substrate-bound GAGs. Neuronal attachment was very limited and quantitative morphometry revealed variations in DA fiber outgrowth depending on the type and the concentration of GAG used. Next, we developed a cryoculture system to examine how neurons react toward GAGs expressed in situ. Rat brain slices from different developmental stages were used as substrates for embryonic mesencephalic explants. Preferential regions of adherence and outgrowth were observed: the striatum was found to be the most permissive, whereas the cortex was inhibitory. Western blotting experiments confirmed quantitative and qualitative changes in chondroitin sulfate (neurocan, phosphacan) and keratan sulfate (KS) containing PGs in these substrates and enzymatic digestion of GAGs before cryoculture revealed a substantial involvement of PGs in DA neuron adhesion and outgrowth. In particular, CSPGs seemed to mediate the permissive effect of the striatum, whereas KS confers an inhibitory effect to the cortex. PGs may thus be important for limiting midbrain projections to the striatum during development and for maintaining topography in the adult.
Collapse
Affiliation(s)
- K Macé
- Neurodégénérescence et Plasticité, CHU de Grenoble, Université Joseph Fourier, Pavillon de Neurologie, Grenoble, France.
| | | | | | | | | |
Collapse
|
7
|
Meiners S, Mercado ML, Geller HM. The multi-domain structure of extracellular matrix molecules: implications for nervous system regeneration. PROGRESS IN BRAIN RESEARCH 2001; 128:23-31. [PMID: 11105666 DOI: 10.1016/s0079-6123(00)28004-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S Meiners
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | |
Collapse
|
8
|
Abstract
Tenascin-C has been implicated in regulation of both neurite outgrowth and neurite guidance. We have shown previously that a particular region of tenascin-C has powerful neurite outgrowth-promoting actions in vitro. This region consists of the alternatively spliced fibronectin type-III (FN-III) repeats A-D and is abbreviated fnA-D. The purpose of this study was to investigate whether fnA-D also provides neurite guidance cues and whether the same or different sequences mediate outgrowth and guidance. We developed an assay to quantify neurite behavior at sharp substrate boundaries and found that neurites demonstrated a strong preference for fnA-D when given a choice at a poly-L-lysine-fnA-D interface, even when fnA-D was intermingled with otherwise repellant molecules. Furthermore, neurites preferred cells that overexpressed the largest but not the smallest tenascin-C splice variant when given a choice between control cells and cells transfected with tenascin-C. The permissive guidance cues of large tenascin-C expressed by cells were mapped to fnA-D. Using a combination of recombinant proteins corresponding to specific alternatively spliced FN-III domains and monoclonal antibodies against neurite outgrowth-promoting sites, we demonstrated that neurite outgrowth and guidance were facilitated by distinct sequences within fnA-D. Hence, neurite outgrowth and neurite guidance mediated by the alternatively spliced region of tenascin-C are separable events that can be independently regulated.
Collapse
|
9
|
Steindler DA, Kukekov VG, Thomas LB, Fillmore H, Suslov O, Scheffler B, O'Brien TF, Kusakabe M, Laywell ED. Boundary molecules during brain development, injury, and persistent neurogenesis--in vivo and in vitro studies. PROGRESS IN BRAIN RESEARCH 1999; 117:179-96. [PMID: 9932409 DOI: 10.1016/s0079-6123(08)64016-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- D A Steindler
- Department of Anatomy & Neurobiology, University of Tennessee, Memphis, College of Medicine, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Geisert EE, Seo H, Sullivan CD, Yang LJ, Grefe A. A novel approach to identify proteins associated with the inhibition of neurite growth. J Neurosci Methods 1998; 79:21-9. [PMID: 9531456 DOI: 10.1016/s0165-0270(97)00154-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the present study, a novel combination of techniques was used to identify the genes that may be involved in the lack of axonal regeneration in the mammalian adult central nervous system (CNS). The key features of this approach are: (1) a functional assay that can be affected by antibody perturbation; (2) increased specificity of the polyclonal antiserum by adsorption; (3) the expression cloning of the genes from a lambdagt11 library; (4) amplification of the insert cDNA by PCR; and (5) the direct cycle sequencing of PCR products. In this culture assay system, neurons were plated directly on sections of the rat CNS. This assay system could be used to demonstrate the lack of neuronal attachment to or neurite extension over myelinated regions of the CNS (white matter). This prohibitive nature of the CNS sections could be masked by a rabbit polyclonal antiserum directed against rat CNS white matter. This data indicates that the anti-white matter antiserum recognizes and neutralizes inhibitory molecules on the surface of the sections. Making the assumption that the prohibitive antigen is associated with the cell membrane, the antiserum was adsorbed against a soluble protein fraction of the adult rat brain. This adsorption significantly increased the specificity of the antiserum as demonstrated by immunoblot methods. The adsorbed antiserum was then used to screen the cDNA library of the adult rat brain. The present report describes this novel combination of techniques allowing one to go from a functional tissue culture assay system to defining the molecular basis for the cellular interactions.
Collapse
Affiliation(s)
- E E Geisert
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA.
| | | | | | | | | |
Collapse
|
11
|
Robertson RT, Baratta J, Kageyama GH, Ha DH, Yu J. Specificity of attachment and neurite outgrowth of dissociated basal forebrain cholinergic neurons seeded on to organotypic slice cultures of forebrain. Neuroscience 1997; 80:741-52. [PMID: 9276490 DOI: 10.1016/s0306-4522(97)00067-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Development and differentiation of basal forebrain-derived cholinergic neurons were studied using a new technique that combines dissociated cell cultures with organotypic slice cultures. Slices of cerebral cortex or entire forebrain hemispheres were taken from early postnatal rat pups and maintained as organotypic cultures on membranes. Dissociated cell suspensions of basal forebrain tissue, taken from rat or mouse fetuses at gestational day 15-17, were seeded on to the slice cultures. Combined cultures were maintained for two to 14 days in vitro. Cultures processed for acetylcholinesterase histochemical staining demonstrated that stained neurons display regional variation in attachment to the slice, with most attachment occurring on cortex and with no detectable attachment on the caudate-putamen. Regional differences in attachment occur between cortical areas, with medial (cingulate) cortex showing much denser cell attachment than lateral (parietal) cortex, and across cortical layers, with layer I and deep layers showing more attachment than middle cortical layers. Similar patterns were observed on slices from rat brain irrespective of whether rat or mouse dissociated cells were used. Tyrosine hydroxylase-stained dissociated cells from ventral midbrain displayed a different pattern of attachment, with prominent attachment to the caudate putamen and less apparent specificity of regional and cortical laminar attachment. Little evidence of neurite outgrowth occurred during the first two days in vitro, but by four days, acetylcholinesterase-positive basal forebrain cells displayed several short and thick neurites that appeared to be dendrites, and one long process that appeared to be an axon. By seven days in vitro, dendrites are well developed and the presumed axon has extended branches over wide areas of cortex. These studies revealed several different types of cell-tissue interaction. The degree of cell growth and differentiation ranged from robust growth when dissociated cells were seeded on to slice cultures of normal target tissue, to apparently no attachment or growth when cells were seeded on to non-target tissue. This combined technique appears to be a useful method for studies of specificity of cell attachment and patterns of neurite outgrowth.
Collapse
Affiliation(s)
- R T Robertson
- Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine 92697-1275, U.S.A
| | | | | | | | | |
Collapse
|
12
|
Chondroitin sulfate proteoglycan and tenascin in the wounded adult mouse neostriatum in vitro: dopamine neuron attachment and process outgrowth. J Neurosci 1997. [PMID: 8987827 DOI: 10.1523/jneurosci.16-24-08005.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular matrix (ECM) molecules, including chondroitin-4 or chondroitin-6 sulfate proteoglycans (CSPGs) and tenascin, are upregulated in and around wounds and transplants to the adult CNS. In the present study, striatal wounds from adult mice were used in a novel in vitro paradigm to assess the effects of these wound-associated molecules on embryonic dopamine cell attachment and neurite outgrowth. Light and electron microscopic immunocytochemistry studies have shown that astroglial scar constituents persist in cultured explants for at least 1 week in vitro, and despite the loss of neurons from adult striatal explants, there is a retention of certain structural features suggesting that the wound explant-neuron coplant is a viable model for analysis of graft-scar interactions. Explants from the wounded striatum taken at different times after a penetrating injury in vivo were used as substrates for embryonic ventral mesencephalon neurons that were plated on their surfaces. Dopamine cell attachment is increased significantly in relation to the expression of both CSPG and tenascin. The increase in neuronal attachment in this paradigm, however, is accompanied by a postlesion survival time-dependent significant decrease in neuritic growth from these cells. In vitro ECM antibody treatment suggests that CSPG may be responsible for heightened dopamine cell attachment and that tenascin simultaneously may support cell attachment while inhibiting neurite growth. The present study offers a new approach for the in vitro analysis of cell and molecular interactions after brain injury and brain grafting, in essence acting as a nigrostriatal transplant-in-a-dish.
Collapse
|