1
|
Oliveira JT, Yanick C, Wein N, Gomez Limia CE. Neuron-Schwann cell interactions in peripheral nervous system homeostasis, disease, and preclinical treatment. Front Cell Neurosci 2023; 17:1248922. [PMID: 37900588 PMCID: PMC10600466 DOI: 10.3389/fncel.2023.1248922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Schwann cells (SCs) have a critical role in the peripheral nervous system. These cells are able to support axons during homeostasis and after injury. However, mutations in genes associated with the SCs repair program or myelination result in dysfunctional SCs. Several neuropathies such as Charcot-Marie-Tooth (CMT) disease, diabetic neuropathy and Guillain-Barré syndrome show abnormal SC functions and an impaired regeneration process. Thus, understanding SCs-axon interaction and the nerve environment in the context of homeostasis as well as post-injury and disease onset is necessary. Several neurotrophic factors, cytokines, and regulators of signaling pathways associated with proliferation, survival and regeneration are involved in this process. Preclinical studies have focused on the discovery of therapeutic targets for peripheral neuropathies and injuries. To study the effect of new therapeutic targets, modeling neuropathies and peripheral nerve injuries (PNIs) in vitro and in vivo are useful tools. Furthermore, several in vitro protocols have been designed using SCs and neuron cell lines to evaluate these targets in the regeneration process. SCs lines have been used to generate effective myelinating SCs without success. Alternative options have been investigated using direct conversion from somatic cells to SCs or SCs derived from pluripotent stem cells to generate functional SCs. This review will go over the advantages of these systems and the problems associated with them. In addition, there have been challenges in establishing adequate and reproducible protocols in vitro to recapitulate repair SC-neuron interactions observed in vivo. So, we also discuss the mechanisms of repair SCs-axon interactions in the context of peripheral neuropathies and nerve injury (PNI) in vitro and in vivo. Finally, we summarize current preclinical studies evaluating transgenes, drug, and novel compounds with translational potential into clinical studies.
Collapse
Affiliation(s)
| | | | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
2
|
Elfarnawany A, Dehghani F. Time- and Concentration-Dependent Adverse Effects of Paclitaxel on Non-Neuronal Cells in Rat Primary Dorsal Root Ganglia. TOXICS 2023; 11:581. [PMID: 37505547 PMCID: PMC10385404 DOI: 10.3390/toxics11070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
Paclitaxel is a chemotherapeutic agent used to treat a wide range of malignant tumors. Although it has anti-tumoral properties, paclitaxel also shows significant adverse effects on the peripheral nervous system, causing peripheral neuropathy. Paclitaxel has previously been shown to exert direct neurotoxic effects on primary DRG neurons. However, little is known about paclitaxel's effects on non-neuronal DRG cells. They provide mechanical and metabolic support and influence neuronal signaling. In the present study, paclitaxel effects on primary DRG non-neuronal cells were analyzed and their concentration or/and time dependence investigated. DRGs of Wister rats (6-8 weeks old) were isolated, and non-neuronal cell populations were separated by the density gradient centrifugation method. Different concentrations of Paclitaxel (0.01 µM-10 µM) were tested on cell viability by MTT assay, cell death by lactate dehydrogenase (LDH) assay, and propidium iodide (PI) assay, as well as cell proliferation by Bromodeoxyuridine (BrdU) assay at 24 h, 48 h, and 72 h post-treatment. Furthermore, phenotypic effects have been investigated by using immunofluorescence techniques. Paclitaxel exhibited several toxicological effects on non-neuronal cells, including a reduction in cell viability, an increase in cell death, and an inhibition of cell proliferation. These effects were concentration- and time-dependent. Cellular and nuclear changes such as shrinkage, swelling of cell bodies, nuclear condensation, chromatin fragmentation, retraction, and a loss in processes were observed. Paclitaxel showed adverse effects on primary DRG non-neuronal cells, which might have adverse functional consequences on sensory neurons of the DRG, asking for consideration in the management of peripheral neuropathy.
Collapse
Affiliation(s)
- Amira Elfarnawany
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany
| |
Collapse
|
3
|
Yao R, Murtaza M, Velasquez JT, Todorovic M, Rayfield A, Ekberg J, Barton M, St John J. Olfactory Ensheathing Cells for Spinal Cord Injury: Sniffing Out the Issues. Cell Transplant 2018; 27:879-889. [PMID: 29882418 PMCID: PMC6050914 DOI: 10.1177/0963689718779353] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Olfactory ensheathing cells (OECs) are glia reported to sustain the continuous axon extension and successful topographic targeting of the olfactory receptor neurons responsible for the sense of smell (olfaction). Due to this distinctive property, OECs have been trialed in human cell transplant therapies to assist in the repair of central nervous system injuries, particularly those of the spinal cord. Though many studies have reported neurological improvement, the therapy remains inconsistent and requires further improvement. Much of this variability stems from differing olfactory cell populations prior to transplantation into the injury site. While some studies have used purified cells, others have used unpurified transplants. Although both preparations have merits and faults, the latter increases the variability between transplants received by recipients. Without a robust purification procedure in OEC transplantation therapies, the full potential of OECs for spinal cord injury may not be realised.
Collapse
Affiliation(s)
- R Yao
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Murtaza
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J Tello Velasquez
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Todorovic
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - A Rayfield
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J Ekberg
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - M Barton
- 2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| | - J St John
- 1 Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.,2 Menzies Health Institute Queensland, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Ishii T, Kawakami E, Endo K, Misawa H, Watabe K. Myelinating cocultures of rodent stem cell line-derived neurons and immortalized Schwann cells. Neuropathology 2017; 37:475-481. [PMID: 28707715 DOI: 10.1111/neup.12397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022]
Abstract
Myelination is one of the most remarkable biological events in the neuron-glia interactions for the development of the mammalian nervous system. To elucidate molecular mechanisms of cell-to-cell interactions in myelin synthesis in vitro, establishment of the myelinating system in cocultures of continuous neuronal and glial cell lines are desirable. In the present study, we performed co-culture experiments using rat neural stem cell-derived neurons or mouse embryonic stem (ES) cell-derived motoneurons with immortalized rat IFRS1 Schwann cells to establish myelinating cultures between these cell lines. Differentiated neurons derived from an adult rat neural stem cell line 1464R or motoneurons derived from a mouse ES cell line NCH4.3, were mixed with IFRS1 Schwann cells, plated, and maintained in serum-free F12 medium with B27 supplement, ascorbic acid, and glial cell line-derived neurotrophic factor. Myelin formation was demonstrated by electron microscopy at 4 weeks in cocultures of 1464R-derived neurons or NCH4.3-derived motoneurons with IFRS1 Schwann cells. These in vitro coculture systems utilizing the rodent stable stem and Schwann cell lines can be useful in studies of peripheral nerve development and regeneration.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.,Department of Pharmacology, Keio University Faculty of Pharmacy, Minato, Tokyo, Japan
| | - Emiko Kawakami
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kentaro Endo
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Hidemi Misawa
- Department of Pharmacology, Keio University Faculty of Pharmacy, Minato, Tokyo, Japan
| | - Kazuhiko Watabe
- Laboratory for Neurodegenerative Pathology, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan.,Department of Medical Technology (Neuropathology), Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan
| |
Collapse
|
5
|
Myelination in coculture of established neuronal and Schwann cell lines. Histochem Cell Biol 2012; 137:829-39. [DOI: 10.1007/s00418-012-0934-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2012] [Indexed: 12/31/2022]
|
6
|
Abstract
Satellite glial cells (SGCs) are specialized cells that form a tight sheath around neurons in sensory ganglia. In recent years, there is increasing interest in SGCs and they have been studied in both intact ganglia and in tissue culture. Here we studied phenotypic changes in SGCs in cultured trigeminal ganglia from adult mice, containing both neurons and SGCs, using phase optics, immunohistochemistry and time-lapse photography. Cultures were followed for up to 14 days. After isolation virtually every sensory neuron is ensheathed by SGCs, as in the intact ganglia. After one day in culture, SGCs begin to migrate away from their parent neurons, but in most cases the neurons still retain an intact glial cover. At later times in culture, there is a massive migration of SGCs away from the neurons and they undergo clear morphological changes, and at 7 days they become spindle-shaped. At one day in culture SGCs express the glial marker glutamine synthetase, and also the purinergic receptor P2X7. From day 2 in culture the glutamine synthetase expression is greatly diminished, whereas that of P2X7 is largely unchanged. We conclude that SGCs retain most of their characteristics for about 24 h after culturing, but undergo major phenotypic changes at later times.
Collapse
|
7
|
Sango K, Yanagisawa H, Kawakami E, Takaku S, Ajiki K, Watabe K. Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions. J Neurosci Res 2011; 89:898-908. [DOI: 10.1002/jnr.22605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/15/2010] [Accepted: 01/11/2011] [Indexed: 01/17/2023]
|
8
|
Jain MP, Choi AO, Neibert KD, Maysinger D. Probing and preventing quantum dot-induced cytotoxicity with multimodal α-lipoic acid in multiple dimensions of the peripheral nervous system. Nanomedicine (Lond) 2009; 4:277-90. [DOI: 10.2217/nnm.09.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: Toxicity of nanoparticles developed for biomedical applications is extensively debated as no uniform guidelines are available for studying nanomaterial safety, resulting in conflicting data obtained from different cell types. This study demonstrates the varied toxicity of a selected type of nanoparticle, cadmium telluride quantum dots (QDs), in three increasingly complex cell models of the peripheral nervous system. Materials & methods: QD-induced cytotoxicity was assessed via cell viability assays and biomarkers of subcellular damage in PC12 cells and mixed primary dispersed dorsal root ganglia (DRG) cultures. Morphological analysis of neurite outgrowth was used to determine the viability of axotomized DRG explant cultures. Results & discussion: Cadmium telluride QDs and their core metals exert different degrees of toxicity in the three cell models, the primary dispersed DRGs being the most susceptible. α-lipoic acid is an effective, multimodal, cytoprotective agent that can act as an antioxidant, metal chelator and QD-surface modifier in these cell systems. Conclusion: Complex multicellular model systems, along with homogenous cell models, should be utilized in standard screening and monitoring procedures for evaluating nanomaterial safety.
Collapse
Affiliation(s)
- Manasi P Jain
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC H3G 1Y6, Canada
| | - Angela O Choi
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC H3G 1Y6, Canada
| | - Kevin D Neibert
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC H3G 1Y6, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, McIntyre Medical Sciences Building, Room 1314, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
9
|
Kawaja MD, Boyd JG, Smithson LJ, Jahed A, Doucette R. Technical Strategies to Isolate Olfactory Ensheathing Cells for Intraspinal Implantation. J Neurotrauma 2009; 26:155-77. [DOI: 10.1089/neu.2008.0709] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael D. Kawaja
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - J. Gordon Boyd
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
| | - Laura J. Smithson
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Ali Jahed
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Canada
| | - Ron Doucette
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada
- Cameco MS Neuroscience Research Center, City Hospital, Saskatoon, Canada
| |
Collapse
|
10
|
Abstract
Current cancer therapies are based on the ability to inhibit the growth of rapidly dividing cells, the majority of which constitute the tumor. Although for decades, sporadic literature has posited the existence of cancer stem cells (CSCs), only recently has this type of cell been isolated and characterized from solid tumors. Like stem cells from their normal counterpart, CSCs are a rare population that can reconstitute a new tumor with similar composition and phenotype to the tumor of origin. These CSCs represent a small subset of the original tumor, grow indefinitely in vitro, and can form tumors in animals from a very few cells. The cells are slow cycling, capable of self-renewal and give rise to daughter cells that are either self-renewing and pluripotent or transit amplifying, and terminally differentiated. Thus far, CSCs have been isolated from only a small number of tumor types. In most instances, the cells are obtained using selection of, and enrichment for, cells with prospectively identified cell surface markers (Al-Hajj M, et al., 2003). This yields a very limited number of cells, and in many cases these cells cannot be cultured. There is a need for a method for isolation, purification, and expansion of stem cells from a greater spectrum of tumors. There is also evidence for "...a link between normal stem cell regulation and the control of cancer stem cells" (NCI Think Tanks in Cancer Biology, Executive Summary of the Tumor Stem Cell and Self-renewal Genes Think Tank1). We present here a strategy for the isolation and establishment of tumor cell lines that represent a minority of cells in the original tumor. They have the ability to grow indefinitely in vitro, form tumors in mice from less than 100 cells, and share many of the growth requirements and cell surface antigens of normal tissue stem cells from which they may arise.
Collapse
Affiliation(s)
- Penelope E Roberts
- Raven Bio-technologies, Inc., South San Francisco, California 94080, USA
| |
Collapse
|
11
|
Culture of Pluripotent Neural Epithelial Progenitor Cells from E9 Rat Embryo. Methods Cell Biol 2008. [DOI: 10.1016/s0091-679x(08)00009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Saravanan K, Büssow H, Weiler N, Gieselmann V, Franken S. A spontaneously immortalized Schwann cell line to study the molecular aspects of metachromatic leukodystrophy. J Neurosci Methods 2007; 161:223-33. [PMID: 17204333 DOI: 10.1016/j.jneumeth.2006.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 11/16/2006] [Accepted: 11/19/2006] [Indexed: 11/29/2022]
Abstract
The arylsulfatase A (ASA)-deficient mouse is a murine model of human metachromatic leukodystrophy (MLD) caused by a genetic defect in the ASA gene. Deficiency of ASA causes accumulation of cerebroside-3-sulfate (sulfatide) in visceral organs and in the central and peripheral nervous system, which subsequently causes demyelination in these areas. To investigate further the cellular pathomechanism of MLD, we established spontaneously immortalized Schwann cell lines from ASA-deficient mice. Cells showed marked sulfatide storage in the late endosomal/lysosomal compartment. This sulfatide accumulation can be further increased by external treatment with sulfatide using a lipid based transfection reagent as a cargo. The accumulated sulfatide was degraded in response to ASA treatment and first examination revealed that alteration on the molecular level found in ASA-deficient mice can also be observed in the presented cell culture model. Hence, these cells could be a suitable model to study MLD at a molecular level.
Collapse
Affiliation(s)
- Karumbayaram Saravanan
- Institut für Physiologische Chemie, Rheinische Friedrich-Wilhelms-Universität, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
13
|
Komiyama T, Nakao Y, Toyama Y, Asou H, Vacanti CA, Vacanti MP. A novel technique to isolate adult Schwann cells for an artificial nerve conduit. J Neurosci Methods 2003; 122:195-200. [PMID: 12573478 DOI: 10.1016/s0165-0270(02)00320-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The use of an artificial nerve conduit containing viable Schwann cells (SCs) is one of the most promising approaches to repair nerve injuries. Obtaining a large number of viable SCs in a short period is demanded for the clinical use of this technique. However, the previous methods using mitogens are not clinically acceptable, and other methods that do not require mitogens, failed to isolate adult SCs effectively or required a long period of time. In this study, we have developed a novel technique to isolate SCs from adult rat peripheral nerves for an artificial nerve conduit without mitogens, which has produced a total number of 1.21 x 10(5) cells per mg, with an average purity of 93.0+/-0.58% at 21 days in vitro. The Bottenstein-Sato (BS) medium used in this study, had originally been developed for oligodendrocyte culture, but here it is shown to have an effect on SC proliferation and survival. By changing fetal bovine serum (FBS) concentrations from 0 to 10% serially, SCs could be isolated maximally from the predegenerated nerves while suppressing fibroblast overgrowth. The combination of this technique and the altered medium promoted the migration and proliferation of SCs selectively by utilizing the supporting cells of SCs instead of discarding them by changing the culture dishes and media.
Collapse
Affiliation(s)
- Takatsugu Komiyama
- Center for Tissue Engineering, University of Massachusetts Medical School, 55 Lake Ave, North, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lanlua P, Decorti F, Gangula PR, Chung K, Taglialatela G, Yallampalli C. Female steroid hormones modulate receptors for nerve growth factor in rat dorsal root ganglia. Biol Reprod 2001; 64:331-8. [PMID: 11133691 DOI: 10.1095/biolreprod64.1.331] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a vasodilatory peptide, and it is primarily synthesized in dorsal root ganglia (DRG). Plasma CGRP levels increase during pregnancy and with steroid hormones, and nerve growth factor (NGF) stimulates calcitonin/CGRP promoter and CGRP synthesis in DRG. We previously showed that CGRP levels in DRG were stimulated with steroid hormone treatments in vivo but not in vitro. Thus, the stimulation of CGRP by these hormones may be indirect through the upregulation of NGF effects. We hypothesized that the female sex steroid hormones upregulate NGF receptors, trkA and p75(NTR), in DRG. We examined the effects of 17 beta-estradiol (E(2)) and progesterone (P(4)) on NGF receptors in DRG obtained from ovariectomized (ovx) rats. Groups of 4 ovx rats were injected s.c. with 5 microg E(2), 4 mg P(4), or 5 microg E(2) + 4 mg P(4) in 0.2 ml sesame oil or injected with oil only and were killed at 6, 24, and 48 h. In addition, ovx rats were also injected s.c. with varying doses (0.2, 1.0, 5.0, 25 microg) of E(2) (0.5, 1.5, 4, 10 mg) P(4), and (5 microg) E(2) + (0.5, 1.5, 4.0, 10 mg) P(4) in 0.2 ml sesame oil, or vehicle, and killed at 6 (for E(2)) or 24 (for P(4) and E(2) + P(4)) h. Furthermore, groups of ovx rats were also killed at 12 and 24 h; 3 and 7 days; 2, 4, and 6 wk after ovariectomy. The DRGs were collected from all groups and then processed for Western immunoblotting to examine both trkA and p75(NTR) levels. Estradiol increased trkA at 6 h but not p75(NTR). Progesterone caused upregulation of trkA and p75(NTR) at 6 and 24 h. 17 beta-Estradiol + P(4) increased trkA at 6 and 24 h and p75(NTR) at all time points examined. One microgram of E(2) increased trkA but did not affect p75(NTR) levels. Progesterone at 4 and 10 mg upregulated trkA but only 10 mg P(4) increased p75(NTR). Five micrograms of E(2) coinjected with P(4) at 1.5 and 4 mg increased trkA, while p75(NTR) receptor was upregulated when coinjected with P(4) at 1.5 to 10 mg. The ovariectomy caused a decrease in trkA receptors compared to proestrus rats, and these decreases were significant by 6 wk, but surprisingly p75(NTR) increased at 2 wk after ovariectomy. 17 beta-Estradiol increased trkA but not p75(NTR) receptors in DRG, whereas P(4) caused increases in both trkA and p75(NTR) in DRG. In addition, the combination of these steroid hormones had more effect on both receptors than either hormone alone. Thus, we concluded that high levels of female steroid hormones such as those due to pregnancy or hormonal replacement therapy could increase NGF receptor expression in DRG that carry more NGF to elevate the CGRP synthesis in these groups. We suggested that the regulation of NGF receptors by ovarian steroids may underlie steroidal regulation of other factors such as CGRP.
Collapse
Affiliation(s)
- P Lanlua
- Department of Obstetrics and Gynecology and Anatomy and Neuroscience, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|
15
|
Althaus HH, Richter-Landsberg C. Glial cells as targets and producers of neurotrophins. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:203-77. [PMID: 10761118 DOI: 10.1016/s0074-7696(00)97005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cells fulfill important tasks within the neural network of the central and peripheral nervous systems. The synthesis and secretion of various polypeptidic factors (cytokines) and a number of receptors, with which glial cells are equipped, allow them to communicate with their environment. Evidence has accumulated during recent years that neurotrophins play an important role not only for neurons but also for glial cells. This brief update of some morphological, immunocytochemical, and biochemical characteristics of glial cell lineages conveys our present knowledge about glial cells as targets and producers of neurotrophins under normal and pathological conditions. The chapter discusses the presence of neurotrophin receptors on glial cells, glial cells as producers of neurotrophins, signaling pathways downstream Trk and p75NTR, and the significance of neurotrophins and their receptors for glial cells during development, in cell death and survival, and in neurological disorders.
Collapse
Affiliation(s)
- H H Althaus
- AG Neural Regeneration, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
16
|
Stephan JP, Roberts PE, Bald L, Lee J, Gu Q, Devaux B, Mather JP. Selective cloning of cell surface proteins involved in organ development: epithelial glycoprotein is involved in normal epithelial differentiation. Endocrinology 1999; 140:5841-54. [PMID: 10579350 DOI: 10.1210/endo.140.12.7196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coordinating the activities of neighboring cells during development in multicellular organisms requires complex cellular interactions involving secreted, cell surface, and extracellular matrix components. Although most cloning efforts have concentrated on secreted molecules, recent work has emphasized the importance of membrane-bound molecules during development. To identify developmental genes, we raised antibodies to normal embryonic pancreatic epithelial cell surface proteins. These antibodies were characterized and used to clone the genes coding for the proteins by a panning strategy. Using this approach, we cloned the rat homologue of the mouse epithelial glycoprotein (EGP). Our immunohistochemistry data, describing the expression of EGP during rat development, as well as our in vitro data, looking at the effect of the anti-EGP antibody and the extracellular domain of EGP on embryonic pancreatic epithelial cell number and volume, strongly suggest a role for EGP during pancreatic development.
Collapse
Affiliation(s)
- J P Stephan
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California 94080-4990, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gao WQ, Shinsky N, Ingle G, Beck K, Elias KA, Powell-Braxton L. IGF-I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF-I treatment. JOURNAL OF NEUROBIOLOGY 1999; 39:142-52. [PMID: 10213459 DOI: 10.1002/(sici)1097-4695(199904)39:1<142::aid-neu11>3.0.co;2-h] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although insulin-like growth factor-I (IGF-I) can act as a neurotrophic factor for peripheral neurons in vitro and in vivo following injury, the role IGF-I plays during normal development and functioning of the peripheral nervous system is unclear. Here, we report that transgenic mice with reduced levels (two genotypes: heterozygous Igf1+/- or homozygous insertional mutant Igf1m/m) or totally lacking IGF-I (homozygous Igf1-/-) show a decrease in motor and sensory nerve conduction velocities in vivo. In addition, A-fiber responses in isolated peroneal nerves from Igf1+/- and Igf1-/- mice are impaired. The nerve function impairment is most profound in Igf1-/- mice. Histopathology of the peroneal nerves in Igf1-/- mice demonstrates a shift to smaller axonal diameters but maintains the same total number of myelinated fibers as Igf1+/+ mice. Comparisons of myelin thickness with axonal diameter indicate that there is no significant reduction in peripheral nerve myelination in IGF-I-deficient mice. In addition, in Igf1m/m mice with very low serum levels of IGF-I, replacement therapy with exogenous recombinant hIGF-I restores both motor and sensory nerve conduction velocities. These findings demonstrate not only that IGF-I serves an important role in the growth and development of the peripheral nervous system, but also that systemic IGF-I treatment can enhance nerve function in IGF-I-deficient adult mice.
Collapse
Affiliation(s)
- W Q Gao
- Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Beginning with an introduction of the Schwann cell itself, this chapter provides detailed methodology for growing pure Schwann cells of rat and human origin in serum-free medium without complicated cell purification schemes. Section II lists the essential preexperiment preparations such as materials, instruments, tissue culture medium, and solutions. Section III begins with the procedure for the dissection of embryonic dorsal root ganglia (DRG) from E14-E15 rat embryos, neonatal rats, and adult rats with diagrams; methods for enzymatic dissociation of the DRGs and the initiation of primary culture follow. A description of primary cultures with photographs is also provided for comparison. This section ends with a protocol for and results expected of serial passaging of rat Schwann cells. Section IV carefully describes the culture of Schwann cells from human adult nerve biopsy, a procedure that produces a thousandfold expansion of human Schwann cells within a month from initial plating. In the last section, basic immunocytochemistry as well as advanced in vitro remyelination techniques are provided for biochemical and functional characterization of Schwann cell cultures.
Collapse
Affiliation(s)
- R Li
- Signal Pharmaceuticals, Inc., San Diego, California 92121, USA
| |
Collapse
|
19
|
Li R, Gao WQ, Mather JP. Multiple factors control the proliferation and differentiation of rat early embryonic (day 9) neuroepithelial cells. Endocrine 1996; 5:205-17. [PMID: 21153113 DOI: 10.1007/bf02738708] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/1996] [Revised: 07/11/1996] [Accepted: 07/12/1996] [Indexed: 01/02/2023]
Abstract
The proliferation and differentiation of neural precursor cells is largely controlled by environmental factors. By providing the factors that favor the proliferation or suppress the differentiation of this cell type, we isolated and expanded an early neuroepithelial pre-differentiated cell type from E9 rat neural plate in serum-free medium. This has led to the establishment of a neural epithelial precursor (NEP) cell line. The NEP cell's properties are substantially different from those of cell lines previously derived from neural tissue at later stages of development. Initial selection and survival of this cell type requires a factor secreted by an embryonic Schwann (nrESC) cell line. Continued passage of these cells requires cell-cell contact for both survival and growth. Neural cell differentiation can be induced in this nestin positive precursor cell line by bFGF and forskolin. General neuronal markers, as well as cortical neuron-specific protein kinase C isozyme, and accumulation of glutamate and aspartate were induced in most cells. Choline acetyl-transferase was also induced in a small number of cells. When implanted into neonatal rat brain, the NEP cell line gave rise to several distinct neuronal and glial phenotypes in different regions of the brain including cerebellar cortex and hippocampus.
Collapse
Affiliation(s)
- R Li
- Cell Biology, Genetech, 460 Point San Bruno Blvd., 94080, South San Francisco, CA
| | | | | |
Collapse
|