1
|
Santos-Cruz LF, Ramírez-Cruz BG, García-Salomé M, Olvera-Romero ZY, Hernández-Luis F, Hernández-Portilla LB, Durán-Díaz Á, Dueñas-García IE, Castañeda-Partida L, Piedra-Ibarra E, Mendoza-Martínez C, Heres-Pulido ME. Genotoxicity assessment of four novel quinazoline-derived trypanocidal agents in the Drosophila wing somatic mutation and recombination test. Mutagenesis 2021; 35:299-310. [PMID: 31793639 DOI: 10.1093/mutage/gez042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/01/2019] [Indexed: 12/29/2022] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, has increased in the world due to migration, travelling and climate change; at present, the principal problem is that common trypanocidal agents have resulted in toxic or inconvenient side effects. We tested for genotoxicity in the standard (ST) and high bioactivation (HB) crosses of Drosophila wing somatic mutation and recombination test, four novel trypanocidal agents derived from 2, 4, 6-triaminquinazoline (TAQ): 2,4-diamino-6 nitro-1,3 diazonaftalene (S-1QN2-1), 2,4-diacetamino-6-amino 1,3 diazonaftalene (D-1), N6-(4,methoxybenzyl)quinazoline-2,4,6-triamine (GHPM) and N6-[4-(trifluoromethoxy)benzyl]quinazoline-2,4,6-triamine (GHPMF) at 1.9, 3.9, 7.9 and 15 µM, respectively. Also, high-pressure liquid chromatography (HPLC) analysis was run to determine the remanence of either drug in flare, and Oregon R(R)-flare flies emerged from treated larvae. S-1QN2-1 showed genotoxicity only in the ST cross, increasing the small, large and total spot frequencies at all concentrations and twin spots only at 1.9 µM; D-1 and GHPM showed significant increments of large spots only at 15 µM in the ST cross; GHPMF was not genotoxic at any concentration or either cross. In the mwh clones accumulated distribution frequencies analysis, associated with disrupted cell division, S-1QN2-1 caused alterations in the ST cross at all concentrations but only at 15 µM in the HB cross; D-1 caused alterations at 3.9, 7.9 and 15 µM in the ST cross and at 1.9 and 15 µM in the HB cross; GHPM caused alterations at 7.9 and 15 µM in the ST cross and also at 1.9, 3.9 and 7.9 µM in the HB cross; GHPMF caused those alterations at all concentrations in the ST cross and at 1.9, 3.9 and 7.9 µM in the HB cross. The HPLC results indicated no traces of either agent in the flare and Oregon R(R)-flare flies. We conclude that S-1QN2-1 is clearly genotoxic, D-1 and GHPM have an unclear genotoxicity and GHPMF was not genotoxic; all quinazoline derivatives disrupted cell division. GHPMF is a good candidate to be tested in other genotoxicity and cytotoxic bioassays. The differences in the genotoxic activity of these trypanocidal agents are correlated with differences in their chemical structure.
Collapse
Affiliation(s)
- Luis Felipe Santos-Cruz
- Genetics Toxicology, Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - Bertha Guadalupe Ramírez-Cruz
- Genetics Toxicology, Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - Miguel García-Salomé
- Genetics Toxicology, Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - Zaira Yuriria Olvera-Romero
- Genetics Toxicology, Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - Francisco Hernández-Luis
- Pharmacy Department, Chemistry Faculty, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Barbo Hernández-Portilla
- Biogeochemistry, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - Ángel Durán-Díaz
- Mathematics, Biology, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - Irma Elena Dueñas-García
- Genetics Toxicology, Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - Laura Castañeda-Partida
- Genetics Toxicology, Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - Elías Piedra-Ibarra
- Plant Physiology, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios N° 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| | - César Mendoza-Martínez
- Pharmacy Department, Chemistry Faculty, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Eugenia Heres-Pulido
- Genetics Toxicology, Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
2
|
Experimental chemotherapy and approaches to drug discovery for Trypanosoma cruzi infection. ADVANCES IN PARASITOLOGY 2011; 75:89-119. [PMID: 21820553 DOI: 10.1016/b978-0-12-385863-4.00005-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the 100 years since the discovery of Chagas disease, only two drugs have been developed and introduced into clinical practice, and these drugs were introduced over 40 years ago. The tools of drug discovery have improved dramatically in the interim; however, this has not translated into new drugs for Chagas disease. This has been largely because the main practitioners of drug discovery are pharmaceutical companies who are not financially motivated to invest in Chagas disease and other "orphan" diseases. As a result, it has largely been up to academic groups to bring drug candidates through the discovery pipeline and to clinical trials. The difficulty with drug discovery in academia has been the challenge of bringing together the diverse expertise in biology, chemistry, and pharmacology in concerted efforts towards a common goal of developing therapeutics. Funding is often inadequate, but lack of coordination amongst academic investigators with different expertise has also contributed to the slow progress. The purpose of this chapter is to provide an overview of approaches that can be accomplished in academic settings for preclinical drug discovery for Chagas disease. The chapter addresses methods of drug screening against Trypanosoma cruzi cultures and in animal models and includes general topics on compound selection, testing for drug-like properties (including oral bioavailability), investigating the pharmacokinetics and toxicity of compounds, and finally providing parameters to help with triaging compounds.
Collapse
|
3
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom.
| | | | | | | |
Collapse
|
4
|
Franco CCS, Castro-Prado J, Rosada LJ, Sant'Anna JR, Castro-Prado MAA. Mitotic recombination: a genotoxic effect of the antidepressant citalopram in Aspergillus nidulans. Exp Biol Med (Maywood) 2010; 235:1257-62. [PMID: 20851831 DOI: 10.1258/ebm.2010.010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report evaluates the potential of the antidepressant drug citalopram to induce homozygotization of genes previously present in a heterozygous condition, by homologous recombination. In order to address this question, a heterozygous diploid strain of the filamentous fungus Aspergillus nidulans and the homozygotization assay were utilized. Non-cytotoxic concentrations of citalopram (50, 75 and 100 μmol/L) showed a strong recombinogenic effect in A. nidulans, inducing homozygosis of the diploid strain's nutritional markers. The genetic markers exhibited homozygotization index (HI) rates higher than 2.0 and significantly different from HI control ones. Since citalopram has been previously characterized as a DNA synthesis inhibitor, the recombinogenic potential of this antidepressant in A. nidulans may be associated with the recombinational repair of citalopram-induced DNA strand breaks.
Collapse
Affiliation(s)
- Claudinéia C S Franco
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| | - Juliana Castro-Prado
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| | - Lúcia J Rosada
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| | - Juliane R Sant'Anna
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| | - Marialba A A Castro-Prado
- Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco H67. Maringá, Paraná 87020-900, Brazil
| |
Collapse
|
5
|
Genotoxicity revaluation of three commercial nitroheterocyclic drugs: nifurtimox, benznidazole, and metronidazole. J Parasitol Res 2009; 2009:463575. [PMID: 20981287 PMCID: PMC2963127 DOI: 10.1155/2009/463575] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/09/2009] [Accepted: 08/03/2009] [Indexed: 12/28/2022] Open
Abstract
Nitroheterocyclic compounds are widely used as therapeutic agents against a variety of protozoan and bacterial infections. However, the literature on these compounds, suspected of being carcinogens, is widely controversial. In this study, cytotoxic and genotoxic potential of three drugs, Nifurtimox (NFX), Benznidazole (BNZ), and Metronidazole (MTZ) was re-evaluated by different assays. Only NFX reduces survival rate in actively proliferating cells. The compounds are more active for base-pair substitution than frameshift induction in Salmonella; NFX and BNZ are more mutagenic than MTZ; they are widely dependent from nitroreduction whereas microsomal fraction S9 weakly affects the mutagenic potential. Comet assay detects BNZ- and NFX-induced DNA damage at doses in the range of therapeutically treated patient plasma concentration; BNZ seems to mainly act through ROS generation whereas a dose-dependent mechanism of DNA damaging is suggested for NFX. The lack of effects on mammalian cells for MTZ is confirmed also in MN assay whereas MN induction is observed for NFX and BNZ. The effects of MTZ, that shows comparatively low reduction potential, seem to be strictly dependent on anaerobic/hypoxic conditions. Both NFX and BNZ may not only lead to cellular damage of the infective agent but also interact with the DNA of mammalian cells.
Collapse
|
6
|
Buschini A, Giordani F, de Albuquerque CN, Pellacani C, Pelosi G, Rossi C, Zucchi TMAD, Poli P. Trypanocidal nitroimidazole derivatives: Relationships among chemical structure and genotoxic activity. Biochem Pharmacol 2007; 73:1537-47. [PMID: 17291457 DOI: 10.1016/j.bcp.2007.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/17/2007] [Accepted: 01/17/2007] [Indexed: 11/22/2022]
Abstract
Human American trypanosomiasis is resurgent in Latin Americans, and new drugs are urgently required as current medications suffer from a number of drawbacks. Some nitroheterocycles have been demonstrated to exert a potent activity against trypanosomes. However, host toxicity issues halted their development as trypanocides. As part of the efforts to develop new compounds in order to treat parasitic infections, it is important to define their structure-activity relationship. In this study, 5-nitromegazol and two of its analogues, 4-nitromegazol, and 1-methyl-5-nitro-2-imidazolecarboxaldehyde 5-nitroimidazole-thiosemicarbazone, were tested and compared for in vitro induction of DNA damage in human leukocytes by the comet assay, performed at different pHs to better identify the types of damage. Specific oxidatively generated damage to DNA was also measured by using the comet assay with endonucleases. DNA damage was found in 5-nitromegazol-treated cells: oxidative stress appeared as the main source of DNA damage. 4-Nitromegazol did not produce any significant effect, thus confirming that 4-nitroimidazoles isomers have no important biological activity. The 5-nitroimidazole-thiosemicarbazone induced DNA damage with a higher efficiency than 5-nitromegazol. The central role in the reduction process played by the acidic hydrazine proton present in the thiosemicarbazone group but not in the cyclic (thiadiazole) form can contribute to rationalise our results. Given its versatility, thiosemicarbazone moiety could be involved in different reactions with nitrogenous bases (nucleophilic and/or electrophilic attacks).
Collapse
Affiliation(s)
- Annamaria Buschini
- Dipartimento di Genetica, Biologia dei Microrganismi, Antropologia, Evoluzione, Università di Parma, Parco Area delle Scienze, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kaneshima EN, Castro-Prado MAAD. Benznidazole-induced genotoxicity in diploid cells of Aspergillus nidulans. Mem Inst Oswaldo Cruz 2005; 100:325-9. [PMID: 16113877 DOI: 10.1590/s0074-02762005000300020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genotoxic effects of benznidazole were studied by the induction of homozygosis of genes previously present in heterozygous. UT448//A757 diploid strain was used in the benznidazole's recombinagenesis test. Although toxic effects on growth of colonies were not observed, 75 and 100 microM benznidazole induced an increasing of mitotic recombination events in diploid strain. Results were related to the induction of chromosomal breaks by the antiparasitic drug.
Collapse
Affiliation(s)
- Edilson N Kaneshima
- Departamento de Análises Clínicas, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
| | | |
Collapse
|
8
|
Mersch-Sundermann V, Knasmüller S, Wu XJ, Darroudi F, Kassie F. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 2004; 198:329-40. [PMID: 15138059 DOI: 10.1016/j.tox.2004.02.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this paper, we reviewed the data on the use of HepG2 cells to detect cytoprotective, antigenotoxic and cogenotoxic agents. Owing to their intact and inducible phase I and phase II enzymes, HepG2 cells are able to activate and detoxify xenobiotics and therefore reflect the metabolism of xenobiotics in the human body better than other metabolically incompetent cells used in conventional in vitro assays. Several dietary and non-dietary agents were found to be protective against different groups of cytotoxic and DNA-damaging xenobiotics in HepG2 cells and the mechanism of protection includes scavenging of electrophiles, reactive oxygen species and peroxides, inhibition of phase I activating enzymes, induction of phase II detoxifying enzymes and interactions with DNA-repair and/or replication processes. Additionally, certain non-mutagenic substances were found to enhance the effect of genotoxic agents in HepG2 cells by increasing the metabolic activation of the latter. In conclusion, HepG2 cells are of great relevance to detect cytotoxic and genotoxic substances and by extension cytoprotective, antigenotoxic and cogenotoxic agents.
Collapse
Affiliation(s)
- Volker Mersch-Sundermann
- Institute of Indoor and Environmental Toxicology, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen, Germany.
| | | | | | | | | |
Collapse
|
9
|
Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998; 402:185-202. [PMID: 9675276 DOI: 10.1016/s0027-5107(97)00297-2] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human hepatoma line (Hep G2) has retained the activities of various phase I and phase II enzymes which play a crucial role in the activation/detoxification of genotoxic procarcinogens and reflect the metabolism of such compounds in vivo better than experimental models with metabolically incompetent cells and exogenous activation mixtures. In the last years, methodologies have been developed which enable the detection of genotoxic effects in Hep G2 cells. Appropriate endpoints are the induction of 6-TGr mutants, of micronuclei and of comets (single cell gel electrophoresis assay). It has been demonstrated that various classes of environmental carcinogens such as nitrosamines, aflatoxins, aromatic and heterocyclic amines and polycyclic aromatic hydrocarbons can be detected in genotoxicity assays with Hep G2 cells. Furthermore, it has been shown that these assays can distinguish between structurally related carcinogens and non-carcinogens, and positive results have been obtained with rodent carcinogens (such as safrole and hexamethylphosphoramide) which give false negative results in conventional in vitro assays with rat liver homogenates. Hep G2 cells have also been used in antimutagenicity studies and can identify mechanisms not detected in conventional in vitro systems such as induction of detoxifying enzymes, inactivation of endogenously formed DNA-reactive metabolites and intracellular inhibition of activating enzymes.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Tumor Biology and Cancer Research, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jurado J, Pueyo C. Role of classical nitroreductase and O-acetyltransferase on the mutagenicity of nifurtimox and eight derivatives in Salmonella typhimurium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1995; 26:86-93. [PMID: 7641712 DOI: 10.1002/em.2850260113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This study investigates the mutagenicity of nifurtimox (NFX) and eight analogues in Salmonella typhimurium indicator strains that possess different levels of classical nitroreductase or O-acetyltransferase activities. The NFX analogues tested replace the 3-methyl-4-yl-tetrahydro-1,4-thiazine-1,1-dioxide group of the parent compound with the following other groups: indazol-1-yl (1G); pyrazol-1-yl (1B); benzimidazol-1-yl (1E); 1,2,4-triazol-4-yl (1D); 1-methyl-3-methylthio-1,2,4-triazol-4-yl-5-thione (1I); 3,5-bis(methylthio)-1,2,4-triazol-4-yl (1H); 1-adamantyl (ADA); and 4,6-diphenylpyridin-1-yl-2-one (1K). In the genetic backgrounds of the standard Ames tester strains TA98 and TA100, these bacteria combine the L-arabinose resistance forward mutation assay (Ara test) with a deficiency or overproduction of either nitroreduction or O-acetylation. The Ara test revealed, in agreement with previous findings, important differences between TA98 and TA100 and demonstrated, moreover, that these genetic differences are of significance in mutagenicity testing with nitrofuran compounds. The Ara test also indicated dissimilarities between the metabolic activation of NFX and its analogues, these compounds being classified in three different groups according to their mutagenicity toward strain BA14 (genetic background of TA98) and its derivatives. The first group included analogues (1G, 1E, 1I, and ADA) that showed similar mutagenic potency in all bacterial strains. These compounds are considered not to be substrates for both classical nitroreductase and O-acetyltransferase. The second group included compounds (analogues 1B and 1K, and the reference drug NFX) with increased mutagenicity toward the strain overproducing the classical nitroreductase, and/or reduced mutagenicity toward the corresponding deficient bacteria. These compounds are considered to be activated by the classical nitroreductase. The third group (analogues 1D and 1H) was activated by bacterial O-acetyltransferase, and consequently showed increased and decreased mutagenicity with the particular overproducer or deficient bacterial strain, as compared to their isogenic parentals. Previous reports have pointed out interest in NFX analogue 1H as a promising candidate for the replacement of NFX. The present study further enhances the putative interest of compound 1H, based on the different metabolic activation pathway exhibited by this analogue as compared to the parental drug, NFX.
Collapse
Affiliation(s)
- J Jurado
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Spain
| | | |
Collapse
|