1
|
Weng PW, Liu CH, Jheng PR, Chiang CC, Chen YT, Rethi L, Hsieh YSY, Chuang AEY. Spermatozoon-propelled microcellular submarines combining innate magnetic hyperthermia with derived nanotherapies for thrombolysis and ischemia mitigation. J Nanobiotechnology 2024; 22:470. [PMID: 39118029 PMCID: PMC11308583 DOI: 10.1186/s12951-024-02716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Thrombotic cardiovascular diseases are a prevalent factor contributing to both physical impairment and mortality. Thrombolysis and ischemic mitigation have emerged as leading contemporary therapeutic approaches for addressing the consequences of ischemic injury and reperfusion damage. Herein, an innovative cellular-cloaked spermatozoon-driven microcellular submarine (SPCS), comprised of multimodal motifs, was designed to integrate nano-assembly thrombolytics with an immunomodulatory ability derived from innate magnetic hyperthermia. Rheotaxis-based navigation was utilized to home to and cross the clot barrier, and finally accumulate in ischemic vascular organs, where the thrombolytic motif was "switched-on" by the action of thrombus magnetic red blood cell-driven magnetic hyperthermia. In a murine model, the SPCS system combining innate magnetic hyperthermia demonstrated the capacity to augment delivery efficacy, produce nanotherapeutic outcomes, exhibit potent thrombolytic activity, and ameliorate ischemic tissue damage. These findings underscore the multifaceted potential of our designed approach, offering both thrombolytic and ischemia-mitigating effects. Given its extended therapeutic effects and thrombus-targeting capability, this biocompatible SPCS system holds promise as an innovative therapeutic agent for enhancing efficacy and preventing risks after managing thrombosis.
Collapse
Affiliation(s)
- Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Chia-Che Chiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology, and Health, KTH Royal Institute of Technology, Alba Nova University Centre, Stockholm, SE106 91, Sweden
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 23561, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Zhang Y, Hu J, Zhang X, Liang M, Wang X, Gan D, Li J, Lu X, Wan J, Feng S, Lu X. Protein Signature Differentiating Neutrophils and Myeloid-Derived Suppressor Cells Determined Using a Human Isogenic Cell Line Model and Protein Profiling. Cells 2024; 13:795. [PMID: 38786019 PMCID: PMC11119164 DOI: 10.3390/cells13100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14-CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature ("cluster 6") that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.Z.); (M.L.); (X.W.); (X.L.)
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jin Hu
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China; (J.H.); (S.F.)
| | - Xiashiyao Zhang
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (X.Z.); (J.W.)
| | - Minzhi Liang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.Z.); (M.L.); (X.W.); (X.L.)
| | - Xuechun Wang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.Z.); (M.L.); (X.W.); (X.L.)
| | - Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA; (D.G.); (J.L.)
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA; (D.G.); (J.L.)
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.Z.); (M.L.); (X.W.); (X.L.)
| | - Jun Wan
- Department of BioHealth Informatics, Luddy School of Informatics, Computing, and Engineering, Indiana University Indianapolis, Indianapolis, IN 46202, USA; (X.Z.); (J.W.)
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China; (J.H.); (S.F.)
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; (Y.Z.); (M.L.); (X.W.); (X.L.)
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46556, USA
| |
Collapse
|
3
|
Lim CK, Efthymios M, Tan W, Autio MI, Tiang Z, Li PY, Foo RSY. Dimethyl sulfoxide (DMSO) enhances direct cardiac reprogramming by inhibiting the bromodomain of coactivators CBP/p300. J Mol Cell Cardiol 2021; 160:15-26. [PMID: 34146546 DOI: 10.1016/j.yjmcc.2021.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/01/2022]
Abstract
AIMS Direct cardiac reprogramming represents an attractive way to reversing heart damage caused by myocardial infarction because it removes fibroblasts, while also generating new functional cardiomyocytes. Yet, the main hurdle for bringing this technique to the clinic is the lack of efficacy with current reprogramming protocols. Here, we describe our unexpected discovery that DMSO is capable of significantly augmenting direct cardiac reprogramming in vitro. METHODS AND RESULTS Upon induction with cardiac transcription factors- Gata4, Hand2, Mef2c and Tbx5 (GHMT), the treatment of mouse embryonic fibroblasts (MEFs) with 1% DMSO induced ~5 fold increase in Myh6-mCherry+ cells, and significantly upregulated global expression of cardiac genes, including Myh6, Ttn, Nppa, Myh7 and Ryr2. RNA-seq confirmed upregulation of cardiac gene programmes and downregulation of extracellular matrix-related genes. Treatment of TGF-β1, DMSO, or SB431542, and the combination thereof, revealed that DMSO most likely targets a separate but parallel pathway other than TGF-β signalling. Subsequent experiments using small molecule screening revealed that DMSO enhances direct cardiac reprogramming through inhibition of the CBP/p300 bromodomain, and not its acetyltransferase property. CONCLUSION In conclusion, our work points to a direct molecular target of DMSO, which can be used for augmenting GHMT-induced direct cardiac reprogramming and possibly other cell fate conversion processes.
Collapse
Affiliation(s)
- Choon Kiat Lim
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; NUS Graduate School of Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 117456, Singapore
| | - Motakis Efthymios
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Wilson Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Matias Ilmari Autio
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Zenia Tiang
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Peter Yiqing Li
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore; Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
| |
Collapse
|
4
|
Wei F, Zhao L, Jing Y. Mechanisms underlying dimethyl sulfoxide-induced cellular migration in human normal hepatic cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103489. [PMID: 32911099 DOI: 10.1016/j.etap.2020.103489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Numerous studies have reported that low-dose dimethyl sulfoxide (DMSO, <1.5%, v/v) can interfere with various cellular processes, such as cell proliferation, differentiation, apoptosis, and cycle. By contrast, minimal information is available about the effect of low-dose DMSO on cell migration. Here, we report the effect of DMSO (0.0005%-0.5%, v/v) on cellular migration in human normal hepatic L02 cells. We used the Cell Counting Kit-8 assay to measure cell viability, scratch wound healing assay to observe cellular migration, flow cytometry to analyze cell cycle and death pattern, reverse transcription quantitative polymerase chain reaction to evaluate mRNA expression, and Western blot to detect protein levels. After treatment with 0.0005% (v/v) DMSO, more cells entered S phase arrest, the MMP1/TIMP1 ratio increased, and HSP27 expression was elevated. After treatment with 0.1% (v/v) DMSO, more cells entered G0/G1 phase arrest, the MMP2/TIMP2 ratio increased, the p-p38 and p-Smad3 signaling pathways were activated, and neuropilin-1 expression was elevated. These results showed that cells migrate when their MMP1/TIMP1 and MMP2/TIMP2 ratios are imbalanced. Such migration is modulated by the p38/HSP27 signaling pathway and TGF-β/Smad3 dependent signaling pathway.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
5
|
Effects of DMSO on the Pluripotency of Cultured Mouse Embryonic Stem Cells (mESCs). Stem Cells Int 2020; 2020:8835353. [PMID: 33123203 PMCID: PMC7584961 DOI: 10.1155/2020/8835353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
DMSO is a commonly used solvent in biological studies, as it is an amphipathic molecule soluble in both aqueous and organic media. For that reason, it is the vehicle of choice for several water-insoluble substances used in research. At the molecular and cellular level, DMSO is a hydrogen-bound disrupter, an intercellular electrical uncoupler, and a cryoprotectant, among other properties. Importantly, DMSO often has overlooked side effects. In stem cell research, the literature is scarce, but there are reports on the effect of DMSO in human embryoid body differentiation and on human pluripotent stem cell priming towards differentiation, via modulation of cell cycle. However, in mouse embryonic stem cell (mESC) culture, there is almost no available information. Taking into consideration the almost ubiquitous use of DMSO in experiments involving mESCs, we aimed to understand the effect of very low doses of DMSO (0.0001%-0.2%), usually used to introduce pharmacological inhibitors/modulators, in mESCs cultured in two different media (2i and FBS-based media). Our results show that in the E14Tg2a mESC line used in this study, even the smallest concentration of DMSO had minor effects on the total number of cells in serum-cultured mESCs. However, these effects could not be explained by alterations in cell cycle or apoptosis. Furthermore, DMSO did not affect pluripotency or differentiation potential. All things considered, and although control experiments should be carried out in each cell line that is used, it is reasonable to conclude that DMSO at the concentrations used here has a minimal effect on this particular mESC line.
Collapse
|
6
|
Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15:1463-1491. [PMID: 32342730 DOI: 10.2217/rme-2019-0145] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Collapse
Affiliation(s)
- Maooz Awan
- Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK
| | - Iryna Buriak
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Julie Kerby
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK
| | - Pavel Mericka
- Tissue Bank, University Hospital Hradec Kralové, Czech Republic
| | - Alexander Petrenko
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Yuri Petrenko
- Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olena Rogulska
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Alexandra Stolzing
- University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ
- Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China
- Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Lin GJ, Wu CH, Yu CC, Lin JR, Liu XD, Chen YW, Chang HM, Hong ZJ, Cheng CP, Sytwu HK, Huang SH. Adoptive transfer of DMSO-induced regulatory T cells exhibits a similar preventive effect compared to an in vivo DMSO treatment for chemical-induced experimental encapsulating peritoneal sclerosis in mice. Toxicol Appl Pharmacol 2019; 378:114641. [PMID: 31254568 DOI: 10.1016/j.taap.2019.114641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Abstract
Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). This disease leads to intestinal obstruction with or without peritonitis. The imbalance between the populations of Th17 and regulatory T (Treg) cells (higher Th17 cells and lower Treg cells) is part of the pathogenesis of EPS formation. We demonstrated that dimethyl sulfoxide (DMSO) effectively inhibited autoimmune diabetes recurrence in the islet transplantation of NOD mice via the induction of the differentiation of Treg cells. In this study, we investigated the therapeutic potential of DMSO in the inhibition of EPS formation by a mouse model. Under DMSO treatment, the thickening of the parietal and visceral peritoneum was significantly reduced. The populations of CD4, CD8, and IFN-γ-producing CD4 and CD8 T cells were decreased. The populations of IL-4-producing CD4 T lymphocytes, IL-10-producing CD4 T lymphocytes, CD4 CD69 T lymphocytes and Treg lymphocytes were increased. The expression levels of the cytokines IFN-γ, IL-17a, TNF-α and IL-23, in ascites, were significantly decreased following the DMSO treatment. Furthermore, the differentiation of Treg cells was induced by DMSO from naïve CD4 T cells in vitro, and these cells were adoptively transferred into the EPS mice and significantly prevented EPS formation, exhibiting a comparable effect to the in vivo DMSO treatment. We also demonstrated that the differentiation of Treg cells by DMSO occurred via the activation of STAT5 by its epigenetic effect, without altering the PI3K-AKT-mTOR or Raf-ERK pathways. Our results demonstrated, for the first time, that in vivo DMSO treatment suppresses EPS formation in a mouse model. Furthermore, the adoptive transfer of Treg cells that were differentiated from naïve CD4 T cells by an in vitro DMSO treatment exhibited a similar effect to the in vivo DMSO treatment for the prevention of EPS formation.
Collapse
Affiliation(s)
- Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Hsiung Wu
- Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China
| | - Chiao-Chi Yu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Jeng-Rong Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Xiao-Dong Liu
- Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hao-Ming Chang
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Zhi-Jie Hong
- Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Pi Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, Republic of China; Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shing-Hwa Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China; Department of General Surgery, En Chu Kong Hospital, New Taipei, Taiwan, Republic of China; Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
8
|
Osman AMM, Al-Harthy SE, Mohamed RM, Huwait EA, Al-Kreathy HM, Alkhaled M, Sayed-Ahme MM. Dimethyl Sulfoxide Potentiates the Anticancer Activity of Cisplatin Against the Growth of Lung Cancer Cells. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.586.592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Diomede F, Zini N, Pizzicannella J, Merciaro I, Pizzicannella G, D’Orazio M, Piattelli A, Trubiani O. 5-Aza Exposure Improves Reprogramming Process Through Embryoid Body Formation in Human Gingival Stem Cells. Front Genet 2018; 9:419. [PMID: 30349553 PMCID: PMC6186780 DOI: 10.3389/fgene.2018.00419] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Embryoid bodies (EBs) are three-dimensional aggregates formed by pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells. They are used as an in vitro model to evaluate early extraembryonic tissue formation and differentiation process. In the adult organisms, cell differentiation is controlled and realized through the epigenetic regulation of gene expression, which consists of various mechanisms including DNA methylation. One demethylating agent is represented by 5-Azacytidine (5-Aza), considered able to induce epigenetic changes through gene derepression. Human gingival mesenchymal stem cells (hGMSCs), an easily accessible stem cells population, migrated from neural crest. They are particularly apt as an in vitro study model in regenerative medicine and in systemic diseases. The ability of 5-Aza treatment to induce hGMSCs toward a dedifferentiation stage and in particular versus EBs formation was investigated. For this purpose hGMSCs were treated for 48 h with 5-Aza (5 μM). After treatment, hGMSCs are organized as round 3D structures (EBs-hGMSCs). At light and transmission electron microscopy, the cells at the periphery of EBs-hGMSCs appear elongated, while ribbon-shaped cells and smaller cells with irregular shape surrounded by extracellular matrix were present in the center. By RT-PCR, EBs-hGMSCs expressed specific transcription markers related to the three germ layers as MAP-2, PAX-6 (ectoderm), MSX-1, Flk-1 (mesoderm), GATA-4, and GATA-6 (endoderm). Moreover, in EB-hGMSCs the overexpression of DNMT1 and ACH3 other than the down regulation of p21 was detectable. Immunofluorescence staining also showed a positivity for specific etodermal and mesodermal markers. In conclusion, 5-Aza was able to induce the direct conversion of adult hGMSCs into cells of three embryonic lineages: endoderm, ectoderm, and mesoderm, suggesting their possible application in autologous cell therapy for clinical organ repair.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, D’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Nicoletta Zini
- CNR-National Research Council of Italy, IGM, Bologna, Italy
- IRCCS, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, D’Annunzio University of Chieti-Pescara, Chieti, Italy
| | | | - Monica D’Orazio
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, D’Annunzio University of Chieti-Pescara, Chieti, Italy
- Chair of Biomaterials Engineering, Catholic University of San Antonio of Murcia (UCAM), Murcia, Spain
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, D’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Furness S, Hare DL, Kourakis A, Turnley AM, Wookey PJ. A novel ligand of calcitonin receptor reveals a potential new sensor that modulates programmed cell death. Cell Death Discov 2016; 2:16062. [PMID: 27777788 PMCID: PMC5056446 DOI: 10.1038/cddiscovery.2016.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022] Open
Abstract
We have discovered that the accumulation of an anti-calcitonin receptor (anti-CTR) antibody conjugated to a fluorophore (mAb2C4:AF568) provides a robust signal for cells undergoing apoptotic programmed cell death (PCD). PCD is an absolute requirement for normal development of metazoan organisms. PCD is a hallmark of common diseases such as cardiovascular disease and tissue rejection in graft versus host pathologies, and chemotherapeutics work by increasing PCD. This robust signal or high fluorescent events were verified by confocal microscopy and flow cytometry in several cell lines and a primary culture in which PCD had been induced. In Jurkat cells, GBM-L2 and MG63 cells, the percentage undergoing PCD that were positive for both mAb2C4:AF568 and annexin V ranged between 70 and >90%. In MG63 cells induced for the preapoptotic cell stress response (PACSR), the normal expression of α-tubulin, a key structural component of the cytoskeleton, and accumulation of mAb2C4:AF568 were mutually exclusive. Our data support a model in which CTR is upregulated during PACSR and recycles to the plasma membrane with apoptosis. In cells committed to apoptosis (α-tubulin negative), there is accumulation of the CTR-ligand mAb2C4:AF568 generating a high fluorescent event. The reagent mAb2C4:AF568 effectively identifies a novel event linked to apoptosis.
Collapse
Affiliation(s)
- Sgb Furness
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Science, 381 Royal Parade, Parkville, Victoria 3052, Australia; Department of Pharmacology, Monash University, Wellington Road, Clayton, Parkville, Victoria 3800, Australia
| | - D L Hare
- Department of Medicine, University of Melbourne, Austin Health , Level 7, Lance Townsend Building, Studley Road, Heidelberg, Victoria 3084, Australia
| | - A Kourakis
- Department of Medicine, University of Melbourne, Austin Health , Level 7, Lance Townsend Building, Studley Road, Heidelberg, Victoria 3084, Australia
| | - A M Turnley
- Department of Anatomy and Neuroscience, Melbourne Brain Centre, University of Melbourne , Royal Parade, Parkville, Victoria 3010, Australia
| | - P J Wookey
- Department of Medicine, University of Melbourne, Austin Health , Level 7, Lance Townsend Building, Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
11
|
Trubiani O, Salvolini E, Staffolani R, Di Primio R, Mazzanti L. DMSO Modifies Structural and Functional Properties of RPMI-8402 Cells by Promoting Programmed Cell Death. Int J Immunopathol Pharmacol 2016; 16:253-9. [PMID: 14611729 DOI: 10.1177/039463200301600311] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Apoptosis in lymphoid cells can be induced in different ways depending on cell type and acquired signal. Biochemical modifications occur at an early phase of cell death while at late times the typical morphological features of apoptosis can be visualized. The aim of this study is to verify by multiparametric analyses the plasma membrane fluidity, the intracellular Ca2+ concentration and the nitric oxide synthase (NOS) activity during cell death progression induced by DMSO treatment. The RPMI-8402 human pre-T lymphoblastoid cell line was induced to cell death by DMSO. Analyses rescued at early times of treatment prove a substantial modification of plasma membrane fluidity associated with an increase of intracellular Ca2+. Moreover, these modifications are associated with an up regulation of NOS activity. Our results are consistent with the hypothesis that programmed cell death can be induced by up regulation of the intracellular Ca2+ associated with an increase of cell membrane fluidity. The apoptotic mechanisms seem to involve not only membrane damage and increased intracellular calcium levels but also production of nitric oxide.
Collapse
Affiliation(s)
- O Trubiani
- Dipartimento di Scienze Odontostomatologiche, University of Chieti, Italy
| | | | | | | | | |
Collapse
|
12
|
Osman AMM, Alqahtani AA, Damanhouri ZA, Al-Harthy SE, ElShal MF, Ramadan WS, Kamel F, Osman MAM, Khan LM. Dimethylsulfoxide excerbates cisplatin-induced cytotoxicity in Ehrlich ascites carcinoma cells. Cancer Cell Int 2015; 15:104. [PMID: 26516314 PMCID: PMC4625967 DOI: 10.1186/s12935-015-0258-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 10/14/2015] [Indexed: 01/21/2023] Open
Abstract
Background Cisplatin (CIS) is a potent antineoplastic agent with high therapeutic efficacy against many kinds of tumors. Its use is limited by its nephrotoxicity. The aim of this work was to minimize cisplatin effective dose and the possible reduction of
its severe side effects. The present study was designed to assess the role of sulfur containing agent dimethyl sulfoxide (DMSO) on sensitization of mammary carcinoma, Ehrlich ascites carcinoma (EAC), to the action of cisplatin and at the same time the possible protective effect against cisplatin induced nephrotoxicity in experimental animals. Methods To evaluate these effects we have explored the cisplatin effect on the survival time of tumor-bearing animals, tumor weight, cisplatin cellular uptake, apoptosis induction and cell cycle distribution and renal function in presence and absence of DMSO. Results Cisplatin at dose of 4.5 mg/kg increased the mean survival time of tumor bearing mice to 37 days compared with tumor bearing control mice. Pretreatment of tumor bearing mice with DMSO 50 % (2 ml/kg equal to 1 gm/kg) 2 h. before cisplatin showed a significant increase in their mean survival time 43 days compared to cisplatin treated animals. DMSO pretreatment retained rat’s serum urea and creatinine levels to normal compared to animals treated with cisplatin alone. Conclusion DMSO pretreatment enhanced the cytotoxic activity of cisplatin against the growth of EAC in vivo and showed protective effects against cisplatin-induce nephrotoxicity.
Collapse
Affiliation(s)
- Abdel-Moneim M Osman
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia ; Pharmacology Unit, National Cancer Institute, Cairo University, Giza, Egypt
| | - Ali A Alqahtani
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zoheir A Damanhouri
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameer E Al-Harthy
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F ElShal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia ; Molecular Biology Department, Genetic Engineering and Biotechniology Department, Minoufia University, Minoufia, Egypt
| | - Wafaa S Ramadan
- Anatomy Department, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Fatemah Kamel
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Lateef M Khan
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Parody R, Caballero D, Márquez-Malaver FJ, Vázquez L, Saldaña R, Madrigal MD, Calderón C, Carrillo E, Lopez-Corral L, Espigado I, Carmona M, López-Villar O, Pérez-Simón JA. To freeze or not to freeze peripheral blood stem cells prior to allogeneic transplantation from matched related donors. Eur J Haematol 2013; 91:448-55. [PMID: 23710624 DOI: 10.1111/ejh.12140] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The standard practice in allogeneic stem cell transplant (alloSCT) is to infuse peripheral blood stem cells (PBSC) the same day or the day after collection once the patient has received conditioning regimen. To obtain and freeze PBSC prior to SCT would be desirable to get a better logistic and to confirm the quality of the product. Unfortunately, studies comparing both approaches are lacking. AIM In this retrospective study, we analyze the impact of using fresh (N: 107) or previously frozen PBSC (N: 224) on overall outcomes among patients consecutively undergoing alloPBSCT from a matched related donor. RESULTS Granulocyte engraftment (>500/mcl × 3 days) was faster in the frozen group (14 vs. 16 days, respectively; P = 0.001), while no significant differences on platelet recovery were observed. Patients receiving frozen PBSC had a higher incidence of global acute graft-versus-host disease (aGVHD) (63 vs. 44%, P < 0.001) mostly involving skin and had an earlier onset (13 vs. 30 days, P < 0.001). Response to first-line treatment with corticoids was similar in both groups. No statistically significant differences were found regarding overall chronic GVHD (58 vs. 66%) nor global survival (44 vs 48%), disease-free survival (39 vs. 33%), non-relapse mortality (24 vs. 16% at 1 year), and relapse rates in the frozen vs. fresh group, respectively. CONCLUSIONS Infusion of previously frozen stem cells may achieve similar overall outcomes compared to fresh infusion, allowing to program donor apheresis and transplantation. However, cryopreservation might influence on the different pattern of aGVHD, issue that deserves further studies.
Collapse
Affiliation(s)
- Rocío Parody
- Instituto de Biomedicina de Sevilla (IBIS) Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee HH, Sung MH. The neutrophil elastase mutant affects viability and differentiation of the human monocytic THP-1 cell. Cell Biochem Funct 2012; 31:305-11. [PMID: 22996420 DOI: 10.1002/cbf.2900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 12/17/2022]
Abstract
Deficiency in neutrophils (neutropenia) caused by mutations in neutrophil elastase (NE, ELA2) has been extensively investigated. Monocytes and neutrophils are derived from a common myeloid progenitor; therefore, ELA2 mutations can also influence monocyte development. These effects have not been well described. In this study, we used the human monocytic THP-1, to carry the human wild-type and G185R mutant ELA2 gene. Growth, death, differentiation and BiP expression were evaluated in the two stable cell lines and in the wild-type THP-1 cells. Exogenous wild-type ELA2 markedly increased THP-1 differentiation, whereas G185R ELA2 was incompetent to promote THP-1 differentiation in response to all-trans retinoic acid (ATRA). Indeed, during differentiation induced by ATRA, G185R cell line showed significant cell death. Also, up-regulated BiP expression accompanied cell death in the G185R cells, suggesting that the overexpression of G185R elastase increases apoptosis through an unfolded protein response. The G185R cells treated with lithium chloride (LiCl; a Wnt signalling activator) displayed higher BiP expression but similar cell viability compared with THP1 and HNEwt/THP1 cells treated with LiCl. This suggested that Wnt signalling might increase cellular tolerance to endoplasmic reticulum stress, enabling mutant monocyte survival.
Collapse
Affiliation(s)
- Hu-Hui Lee
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan.
| | | |
Collapse
|
15
|
Ramachandran H, Laux J, Moldovan I, Caspell R, Lehmann PV, Subbramanian RA. Optimal thawing of cryopreserved peripheral blood mononuclear cells for use in high-throughput human immune monitoring studies. Cells 2012; 1:313-24. [PMID: 24710478 PMCID: PMC3901099 DOI: 10.3390/cells1030313] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 11/20/2022] Open
Abstract
Cryopreserved peripheral blood mononuclear cells (PBMC) constitute an important component of immune monitoring studies as they allow for efficient batch- testing of samples as well as for the validation and extension of original studies in the future. In this study, we systematically test the permutations of PBMC thawing practices commonly employed in the field and identify conditions that are high and low risk for the viability of PBMC and their functionality in downstream ELISPOT assays. The study identifies the addition of ice-chilled washing media to thawed cells at the same temperature as being a high risk practice, as it yields significantly lower viability and functionality of recovered PBMC when compared to warming the cryovials to 37 °C and adding a warm washing medium. We found thawed PBMC in cryovials could be kept up to 30 minutes at 37 °C in the presence of DMSO before commencement of washing, which surprisingly identifies exposure to DMSO as a low risk step during the thawing process. This latter finding is of considerable practical relevance since it permits batch-thawing of PBMC in high-throughput immune monitoring environments.
Collapse
Affiliation(s)
| | - Jessica Laux
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | - Ioana Moldovan
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | | | - Paul V Lehmann
- Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| | | |
Collapse
|
16
|
Choresca CH, Koo OJ, Hong SG, Oh HJ, Gomez DK, Kim JH, Lee BC, Park SC. Effect of dimethyl sulfoxide on cell cycle synchronization of goldfish caudal fin derived fibroblasts cells. Reprod Domest Anim 2011; 45:e73-7. [PMID: 19788515 DOI: 10.1111/j.1439-0531.2009.01525.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have previously been conducted regarding cell cycle synchronization in mammalian somatic cells. However, limited work has been performed on the control of cell cycle stages in the somatic cells of fish. The aim of this study was to determine the cell cycle arresting effects of several dimethyl sulfoxide (DMSO) concentrations for different times on different cell cycle stages of goldfish caudal fin-derived fibroblasts. Results demonstrated that the cycling cells or control group (68.29%) yields significantly higher (p < 0.05) arrest in G0/G1 phase compared with the group treated for 24 h with different concentrations (0.5%, 1.0% or 1.5%) of DMSO (64.88%, 65.70%, 64.22% respectively). The cell cycle synchronization in the treatment of cells with 1.0% DMSO at 48 h (81.14%) was significantly higher than that in the groups treated for 24 h (76.82%) and the control group (77.90%). Observations showed that treatment of DMSO resulted in an increase in the proportion of cells at G0/G1 phase for 48 h of culture. However, high levels of apoptotic cells can be detected after 48 h of culture treated with 1% concentration of DMSO.
Collapse
Affiliation(s)
- C H Choresca
- Laboratory of Aquatic Animal Medicine, Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul Brain Korea 21 Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Koiri RK, Trigun SK. Dimethyl sulfoxide activates tumor necrosis factorα-p53 mediated apoptosis and down regulates d-fructose-6-phosphate-2-kinase and lactate dehydrogenase-5 in Dalton's lymphoma in vivo. Leuk Res 2011; 35:950-6. [DOI: 10.1016/j.leukres.2010.12.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/20/2010] [Accepted: 12/29/2010] [Indexed: 11/29/2022]
|
18
|
DMSO modulates the pathway of apoptosis triggering. Cell Mol Biol Lett 2011; 16:328-41. [PMID: 21442445 PMCID: PMC6275930 DOI: 10.2478/s11658-011-0007-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/07/2011] [Indexed: 12/16/2022] Open
Abstract
We demonstrate here that distribution of caspase-9 influences the pathway of apoptosis triggering, since caspase-9 is activated efficiently only when it is distributed solely in the cytosol. Caspase-9 moves to the nuclei in a response to cell stress during isolation of primary hepatocytes; this is called preapoptotic cell stress response. The dimethyl sulfoxide (DMSO) treatment cannot prevent the migration of caspase-9 into the nuclei when it is added to primary hepatocytes immediately after isolation; however, it can trigger redistribution of caspase-9 from the nuclei into the cytosol when added 1 day post-isolation. This redistribution is temporary, since caspase-9 returns to the nuclei within 48 hours of DMSO treatment. Thereafter, some caspase-9 is retained in the nuclei of DMSO-treated hepatocytes for longer than in the nuclei of untreated hepatocytes. By measuring caspase activities, we demonstrate that the addition of DMSO to cell culture medium can temporarily normalize the susceptibility of hepatocytes for apoptosis triggering through the intrinsic pathway. DMSO contributes also to the prolonged pathway inactivation, i.e., by extending preapoptotic cell stress response. We propose that DMSO extends the survival of primary hepatocytes by modulating preapoptotic cell stress response, which could be exploited for extending the lifespan of other primary cell cultures.
Collapse
|
19
|
Intravesical dimethyl sulfoxide inhibits acute and chronic bladder inflammation in transgenic experimental autoimmune cystitis models. J Biomed Biotechnol 2010; 2011:937061. [PMID: 21113298 PMCID: PMC2989383 DOI: 10.1155/2011/937061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/20/2010] [Indexed: 02/08/2023] Open
Abstract
New animal models are greatly needed in interstitial cystitis/painful bladder syndrome (IC/PBS) research. We recently developed a novel transgenic cystitis model (URO-OVA mice) that mimics certain key aspects of IC/PBS pathophysiology. This paper aimed to determine whether URO-OVA cystitis model was responsive to intravesical dimethyl sulfoxide (DMSO) and if so identify the mechanisms of DMSO action. URO-OVA mice developed acute cystitis upon adoptive transfer of OVA-specific OT-I splenocytes. Compared to PBS-treated bladders, the bladders treated with 50% DMSO exhibited markedly reduced bladder histopathology and expression of various inflammatory factor mRNAs. Intravesical DMSO treatment also effectively inhibited bladder inflammation in a spontaneous chronic cystitis model (URO-OVA/OT-I mice). Studies further revealed that DMSO could impair effector T cells in a dose-dependent manner in vitro. Taken together, our results suggest that intravesical DMSO improves the bladder histopathology of IC/PBS patients because of its ability to interfere with multiple inflammatory and bladder cell types.
Collapse
|
20
|
Larini A, Bianchi L, Bocci V. Effect of 4-hydroxynonenal on Antioxidant Capacity and Apoptosis Induction in Jurkat T Cells. Free Radic Res 2009; 38:509-16. [PMID: 15293559 DOI: 10.1080/10715760410001684649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
4-Hydroxynonenal (HNE) is one of the major end products of lipid peroxidation and may have either physiological or pathological significance regulating cell proliferation. We studied some biochemical effects of HNE, at various concentrations (0.1-100 microM), on Jurkat T cells incubated thereafter for 24, 48 and 72 h. HNE at low concentrations significantly enhanced the proliferation index, whereas at higher concentrations progressively blocked cell proliferation. Caspase 3 activity increased significantly at HNE concentrations between 1 and 10 microM and decreased at higher concentrations. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) increased progressively with HNE concentrations, particularly GSH-Px. Glucose-6-phosphate dehydrogenase (G6PDH) showed a different pattern, increasing at low HNE (1-5 microM) concentrations and rapidly declined thereafter. These results show that HNE may induce growth inhibition of Jurkat T cells and regulate the activity of typical antioxidant enzymes. Furthermore, the protective effect of doubling the foetal calf serum still points out the risk that cultured cells undergo oxidative stress during incubation.
Collapse
Affiliation(s)
- A Larini
- Department of Physiology, University of Siena, Via A. Moro, 53100 Siena, Italy
| | | | | |
Collapse
|
21
|
Hanslick JL, Lau K, Noguchi KK, Olney JW, Zorumski CF, Mennerick S, Farber NB. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol Dis 2009; 34:1-10. [PMID: 19100327 PMCID: PMC2682536 DOI: 10.1016/j.nbd.2008.11.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/06/2008] [Accepted: 11/17/2008] [Indexed: 01/18/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is a solvent that is routinely used as a cryopreservative in allogous bone marrow and organ transplantation. We exposed C57Bl/6 mice of varying postnatal ages (P0-P30) to DMSO in order to study whether DMSO could produce apoptotic degeneration in the developing CNS. DMSO produced widespread apoptosis in the developing mouse brain at all ages tested. Damage was greatest at P7. Significant elevations above the background rate of apoptosis occurred at the lowest dose tested, 0.3 ml/kg. In an in vitro rat hippocampal culture preparation, DMSO produced neuronal loss at concentrations of 0.5% and 1.0%. The ability of DMSO to damage neurons in dissociated cultures indicates that the toxicity likely results from a direct cellular effect. Because children, who undergo bone marrow transplantation, are routinely exposed to DMSO at doses higher than 0.3 ml/kg, there is concern that DMSO might be producing similar damage in human children.
Collapse
Affiliation(s)
- Jennifer L. Hanslick
- Department of Psychiatry, Washington University, Saint Louis, Missouri
- Department of Pediatrics, Washington University, Saint Louis, Missouri
| | - Karen Lau
- Department of Psychiatry, Washington University, Saint Louis, Missouri
| | - Kevin K. Noguchi
- Department of Psychiatry, Washington University, Saint Louis, Missouri
| | - John W. Olney
- Department of Psychiatry, Washington University, Saint Louis, Missouri
| | | | - Steven Mennerick
- Department of Psychiatry, Washington University, Saint Louis, Missouri
| | - Nuri B. Farber
- Department of Psychiatry, Washington University, Saint Louis, Missouri
| |
Collapse
|
22
|
Aita K, Irie H, Tanuma Y, Toida S, Okuma Y, Mori S, Shiga J. Apoptosis in murine lymphoid organs following intraperitoneal administration of dimethyl sulfoxide (DMSO). Exp Mol Pathol 2005; 79:265-71. [PMID: 16154562 DOI: 10.1016/j.yexmp.2005.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
A significant increase in lymphocyte apoptosis was detected by the TUNEL method in the thymus, spleen, and Peyer's patches (PP) following intraperitoneal (i.p.) administration of dimethyl sulfoxide (DMSO) (treatment, n = 47; control, n = 8). Interestingly, administration of low doses of DMSO caused apoptosis in only the PP, and suggested that i.p. administration of DMSO induced apoptosis for each lymphoid organ in a dose dependent manner. Moreover, in the early stage during the apoptotic change, a characteristic localization of lymphocytes undergoing apoptosis was observed. Briefly, early apoptosis occurred predominantly in the cortical mid-zone of the thymus, white pulp of the spleen, and germinal centers of PP. With increased time following administration, however, lymphocytes throughout lymphoid tissues, independent of characteristic localization during the early stage, seemed to undergo apoptosis, resulting in the severe loss of lymphocytes. In fact, the relative spleen weight significantly decreased at 24 h following DMSO administration (n = 7; P < 0.001 versus 8 control mice). Taken together, these results showed for the first time that the in vivo administration of DMSO to mice caused apoptosis in lymphoid organs, and also demonstrated that the apoptotic behavior varied between different lymphoid organs.
Collapse
Affiliation(s)
- Kiyoshi Aita
- Department of Pathology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Trubiani O, Salvolini E, Santoleri F, D'Arcangelo C, Spoto G, Primio RD, Mazzanti L. Changes of Plasma Membrane Properties in a Human Pre-T Cell Line Undergoing Apoptosis. J Membr Biol 2005; 204:77-84. [PMID: 16151703 DOI: 10.1007/s00232-005-0748-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 04/19/2005] [Indexed: 10/25/2022]
Abstract
A variety of cellular functions are modulated by the physical properties of the cell membrane, and the modification of intracellular transfer, resulting from loss of membrane integrity, may contribute toward setting the cell onto the pathway of apoptosis. Apoptosis in lymphoid cells can be induced in different ways and biochemical modifications occur at an early phase of cell death, while the morphological features of apoptosis are evident later. We previously reported that DMSO is an efficient apoptosis-inducing factor in the human RPMI-8402 pre-T cell line. The aim of the present study was to verify the effect of DMSO on the plasma membrane fluidity, the intracellular calcium concentration and the phosphodiesterase activity in DMSO-induced apoptosis. Our results show a modification of membrane fluidity associated with an increase of intracellular Ca(2+) concentration. Moreover, we demonstrate that these modifications are related to a decrease in the phosphodiesterase (PDE) activity. The correlation between the proceedings of added DMSO and the induction of apoptosis will provide significant information regarding the first part of the apoptotic process.
Collapse
Affiliation(s)
- O Trubiani
- Dipartimento di Scienze Odontostomatologiche, Università "G. D'Annunzio", Via dei Vestini 32, Chieti 66013, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Di Pietrantonio F, Di Matteo E, Di Nicola M, Trubiani O, Di Primio R, Serra E, Spoto G. Cyclase and phosphodiesterase activity on pre-T lymphoid human cells, treated with dimethyl sulfoxide (DMSO). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1241-4. [PMID: 15571237 DOI: 10.1081/ncn-200027501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our aim is to estimate the role of the DMSO on pre-T lymphoid human cells, we have searched the cyclase and phosphodiesterase activity. We have studied the GTPspecific cyclase (G-Case) and have observed an analogous course to that one of the cAMP-PDE, where, in both cases, the differences ratio is approximately 5. For the cyclase activity values it has been found that cAMP neo formed is undeterminable in these cells, for the controls and the treated samples.
Collapse
Affiliation(s)
- F Di Pietrantonio
- Department of Applied Sciences of Oral and Dental Diseases, University G. D'Annunzio, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Trubiani O, Pieri C, Rapino M, Di Primio R. The c-myc gene regulates the polyamine pathway in DMSO-induced apoptosis. Cell Prolif 2003; 32:119-29. [PMID: 10535358 PMCID: PMC6726326 DOI: 10.1046/j.1365-2184.1999.32230119.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is accepted that apoptosis is a gene-controlled process of cellular self-destruction. It occurs during physiological regulation and in pathological situations in the life of a cell. In the immune system, several different intracellular and extracellular factors have been associated with the induction of apoptosis, and the final responses depend on the cell system and the acquired signals. In lymphoid cells, dexamethasone-induced apoptosis is associated with c-myc downregulation in cells that remain in G0-G1 until the point of death. Ornithine decarboxylase (ODC), a key enzyme involved in polyamine biosynthesis, is regulated by c-myc, which is a transcriptional activator implicated not only in the control of cell proliferation and differentiation but also in programmed cell death. As dimethylsulphoxide (DMSO) induces apoptosis in the RPMI-8402 human pre-T cell line, the present study analysed the involvement of the c-myc proto-oncogene and polyamine pathway as mediators of apoptosis. Cell growth, programmed cell death, c-myc expression, ODC activity and intracellular polyamine content were detected after DMSO and difluoromethylornithine (DFMO) treatment. DMSO-treated cells exhibit a decrease in ODC activity and polyamine levels associated with cell growth arrest and programmed cell death induction. The expression of c-myc proto-oncogene, as its mRNA or protein, is specifically down-regulated. DFMO, a well defined polyamine biosynthesis inhibitor, completely blocks ODC activity, resulting in growth inhibition but not apoptosis. Moreover, in these samples no evidence of changes of c-myc expression were found. The results obtained suggest that, in RPMI-8402 cells, DMSO provokes a c-myc-dependent decrease of ODC activity followed by a depletion of intracellular polyamine levels, associated with programmed cell death and cell growth arrest.
Collapse
Affiliation(s)
- O Trubiani
- Dipartimento di Scienze Odontostomatologiche, Università di Chieti, Italy
| | | | | | | |
Collapse
|
26
|
Trubiani O, Guarnieri S, Paganelli R, Di Primio R. Involvement of caspace-3 in the cleavage of terminal transferase. Int J Immunopathol Pharmacol 2002; 15:201-208. [PMID: 12575920 DOI: 10.1177/039463200201500306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the in vivo role of caspase-3 in Terminal Transferase metabolism DMSO-treated RPMI-8402, a human pre-T cell line was used. In DMSO treated samples (3)H-dGTP incorporation and TdT phosphorylation occurs after 4 hours of treatment. After 8 hours cells undergo TdT proteolysis in addition to its inactivation. The cleavage of TdT into 32- and 58-KDa proteolytic fragments occurred simultaneously with the activation of Caspase-3, but preceded changes associated with the apoptotic process described after 48 hours of treatment. The Caspase-3 peptide inhibitor V, used as a specific inhibitor, prevented TdT proteolysis prolonging its activity and rescued cells from apoptosis. Our experiments suggest that TdT is a nuclear substrate for Caspase-3, the main apoptotic effector protease in many cell types, and that the cleavage of TdT represents a primary step in a signal cascade leading to pre-T cell apoptosis.
Collapse
Affiliation(s)
- O. Trubiani
- Dip. Scienze Odontostomatologiche, Università "G. D'Annunzio", Chieti, Italy
| | | | | | | |
Collapse
|
27
|
Liu J, Yoshikawa H, Nakajima Y, Tasaka K. Involvement of mitochondrial permeability transition and caspase-9 activation in dimethyl sulfoxide-induced apoptosis of EL-4 lymphoma cells. Int Immunopharmacol 2001; 1:63-74. [PMID: 11367518 DOI: 10.1016/s1567-5769(00)00016-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We observed that dimethyl sulfoxide (DMSO) induced apoptotic changes in the EL-4 murine lymphoma cell line and that effect was dependent on the concentration and time period. Incubating cells over a period of 18 h, 2.5% DMSO was found to induce sub-G1 peak in DNA histograms analyzed by flowcytometer and nucleosomal ladder formation in DNA gel electrophoresis. We also found down-regulation of Bcl-2, collapse of mitochondrial membrane potential (delta psi m) occurred following DMSO treatment, and release of cytochrome c from the mitochondria to cytosol. These observations suggest that DMSO converted its pro-apoptotic signal at the mitochondria. In the involvement of caspases, caspase-9 and -3, but not caspase-8, were found to be activated responding to DMSO treatment. Inhibitory experiments demonstrated that caspase cascade of mitochondrial apoptotic pathway was indispensable for DMSO-induced apoptosis. In the caspase cascade, caspase-9 was an upstream initiator and its primary signal could be transduced and amplified by caspase-3, -6 and -7. Kinetic study of these data showed mitochondrial dysfunction and caspase activation occurred at 12 h and apoptotic change of nuclear DNA at 18 h, providing another support for the transduction of DMSO pro-apoptotic signal via the mitochondrial pathway.
Collapse
Affiliation(s)
- J Liu
- Department of Parasitology and Immunology, Yamanashi Medical University, Yamanashi 409-3898, Japan
| | | | | | | |
Collapse
|
28
|
Stine KC, Warren BA, Saylors RL, Becton DL. KRN5500 induces apoptosis (PCD) of myeloid leukemia cell lines and patient blasts. Leuk Res 2000; 24:741-9. [PMID: 10978778 DOI: 10.1016/s0145-2126(00)00040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to determine if KRN5500, a spicamycin derivative with a unique acyl tail, would induce programmed cell death (PCD) of myeloid leukemia cell lines and cryopreserved leukemic blasts from newly diagnosed children with acute leukemia (AL). Cells were incubated with varying concentrations (0-5 ng/ml) of KRN5500 and the percent PCD determined using a modified in situ end labeling (ISEL) technique with Klenow fragment. The percent PCD was calculated using the formula: Percent PCD (% PCD)=[number of apoptotic cells/(viable cells+apoptotic cells)]x100. DMSO (0.30% w/v) was added to the cells in culture as the positive control for PCD; the negative control was media or albumin. KRN5500 increased the amount of PCD significantly in all five of the tested cell lines; U937 41+/-1.8%, KG1a 40+/-0.3%, HEL 14+/-2.2%, HL-60 41+/-0. 9%, K562 36+/-2% (mean PCD+/-SD). Patient blasts exposed to KRN5500 had an increase in PCD when exposed to 2 ng/ml of agent from 2 to 8 h; acute myeloid leukemia patients 7.5+/-0.5% at 2 h to 43.5+/-1.6% at 8 h, and acute lymphocytic leukemia patients rose from 12.4+/-3.8% at 2 h to 29.9+/-11.6% after 8 h (mean+/-SE). Overall the PCD for the patient samples was 3.7 versus 28+/-4% at 2 and 8 h, respectively. PCD was proportional to the dose of KRN5500 and incubation time. Further pre-clinical and clinical studies are required.
Collapse
Affiliation(s)
- K C Stine
- Department of Pediatrics, University of Arkansas for Medical Sciences at Arkansas Children's Hospital, 800 Marshall St., Little Rock, AR 72202, USA.
| | | | | | | |
Collapse
|
29
|
Avery B, Greve T. Effects of ethanol and dimethylsulphoxide on nuclear and cytoplasmic maturation of bovine cumulus-oocyte complexes. Mol Reprod Dev 2000; 55:438-45. [PMID: 10694752 DOI: 10.1002/(sici)1098-2795(200004)55:4<438::aid-mrd12>3.0.co;2-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The influence of small doses of ethanol or dimethylsulphoxide (DMSO) on in vitro maturation (IVM) of bovine cumulus-oocyte complexes (COC) was examined, either after spontanous maturation or after inhibition of meiosis with 6-dimethylaminopurine (6-DMAP) or 3-isobutyl-1-methylxanthine (IBMX). Subsequent to IVM for 23 hr in semidefined serum-free Earle's TCM199 medium, nuclear maturation was assessed cytogenetically, while the combined cytoplasmic and nuclear maturation was measured indirectly by the oocytes' ability to undergo fertilization and further embryonic development. Embryo development was followed until the blastocyst stages at day 9 after insemination. Neither spontanous nuclear maturation nor cleavage was compromised by IVM in </=1% (v/v) ethanol or </=1% (v/v) DMSO, nor was the frequency of polyspermy altered. However, IVM in 0.3% or 1% (v/v) ethanol or in 0.4 or 1% (v/v) DMSO negatively affected blastocyst formation, compared to 0% in the control groups (22% and 23% vs. 34%, P < 0.0001, and 29% and 22% vs. 34%, P < 0.01, respectively), whereas the speed of blastocyst formation, assessed as the D7/D9 blastocyst proportion, was not compromised. In oocytes meiotically inhibited with 2 mM 6-DMAP, the presence of ethanol (0. 5%, 1%, and 2% [v/v]) induced germinal vesicle breakdown in a dose-dependent manner (32%, 45%, and 68%, vs. 22%, P < 0.0001), however, the oocytes exhibited no further meiotic progression. In oocytes inhibited with 1 and 2 mM IBMX, the presence of ethanol (0. 5%, 1%, and 2% [v/v]) significantly (P < 0.05) enhanced the inhibitory effect in a dose-dependent manner by reducing the proportion of the mature (AI-MII) stages (77%, 68%, and 56% vs. 79%, and 33%, 29%, and 18% vs. 39%, respectively). It is concluded that even small doses of ethanol or DMSO can cause profound negative effects on bovine in vitro maturation and subsequent embryo development.
Collapse
Affiliation(s)
- B Avery
- Department of Clinical Studies, Reproduction, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
| | | |
Collapse
|
30
|
Taddeo B, Nickoloff BJ, Foreman KE. Caspase inhibitor blocks human immunodeficiency virus 1-induced T-cell death without enhancement of HIV-1 replication and dimethyl sulfoxide increases HIV-1 replication without influencing T-cell survival. Arch Pathol Lab Med 2000; 124:240-5. [PMID: 10656733 DOI: 10.5858/2000-124-0240-cibhiv] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To determine the relationship, if any, between reagents that modulate survival of T-cells and replication of human immunodeficiency virus 1 (HIV-1) and to determine the effects of the solvent dimethyl sulfoxide (DMSO) and drugs such as cyclosporin A and all-trans retinoic acid on HIV-1 replication. DESIGN To first establish the direct effects of solvent alone (ie, DMSO) at various concentrations on HIV-1 replication, followed by the ability of various compounds such as the caspase inhibitor N-benzyloxycarbonyl-val-ala-asp-fluoromethylketone (z-VAD-fmk), cyclosporin A, and all-trans retinoic acid on HIV-1 replication. Next, to determine if HIV-1 induces T-cell apoptosis using TUNEL (TdT-mediated dUTP-biotin nick end-labeling) assays and DNA fragmentation and poly-(ADP-ribose)-polymerase (PARP) cleavage, and then to examine how the various compounds influence T-cell survival after HIV-1 exposure. METHODS The human T-cell line, CEM cells, were exposed to HIV(IIIB) and viral replication monitored using reverse transcription assays at 3, 6, and 9 days following infection. Cells were pretreated with various compounds dissolved in DMSO over a wide range of concentrations, and DMSO itself was also examined. T-cell death and apoptosis were assessed using TUNEL staining to detect 3'-OH DNA strand breaks and agarose gel electrophoresis to detect DNA fragmentation (laddering). Furthermore, PARP cleavage implicated in the apoptotic process was also examined. RESULTS At very low levels, such as 0.002%, DMSO itself appears to enhance HIV-1 replication at 6 and 9 days after infection. At low levels of cyclosporin A, such as 0.01 microgram/mL, HIV-1 replication was further enhanced above the solvent effect, but at 1 microgram/mL, cyclosporin A strongly inhibited HIV-1 replication. Retinoic acid between 0.01 and 1 microgram/mL did not influence HIV-1 replication. In addition, a discrepancy was noted in that HIV-1-infected T-cells were TUNEL positive, indicating DNA strand breaks; however, more complete DNA fragmentation was not detected nor was PARP cleavage identified. The induction of TUNEL positivity was blocked by the caspase inhibitor z-VAD-fmk but not by DMSO or cyclosporin A. Even though z-VAD-fmk blocked the appearance of TUNEL-positive T-cells, there was not a consistently observed increase in HIV-1 replication. CONCLUSION Low levels of DMSO and cyclosporin A can enhance HIV-1 replication in CEM cells. At higher levels, cyclosporin A inhibits HIV-1 replication with no significant effects by all-trans retinoic acid. No evidence for classic apoptosis was detected in CEM cells after HIV-1 infection, although DNA strand breaks may be present as revealed by TUNEL positivity. There was no correlation between levels of HIV-1 replication and T-cell survival or death. The mechanism of T-cell death after HIV-1 infection requires further study, and investigators who add compounds dissolved in DMSO must include controls to carefully examine the direct effects of even trace levels of this solvent on HIV-1 replication.
Collapse
Affiliation(s)
- B Taddeo
- Department of Pathology, Skin Cancer Research Laboratories, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | |
Collapse
|
31
|
Hilbert SL, Luna RE, Zhang J, Wang Y, Hopkins RA, Yu ZX, Ferrans VJ. Allograft heart valves: the role of apoptosis-mediated cell loss. J Thorac Cardiovasc Surg 1999; 117:454-62. [PMID: 10047647 DOI: 10.1016/s0022-5223(99)70324-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether apoptosis of endothelial and connective tissue cells is responsible for the loss of cellularity observed in implanted aortic allograft valves. METHODS Fresh (n = 6) and cryopreserved (n = 4) aortic allograft valves were retrieved at 2 days to 20 weeks after implantation in an ovine model. Sections of these valves were studied with the use of histologic and electron microscopic methods, nick end-labeling and dual immunostaining for factor VIII-related antigen and proliferating cell nuclear antigen, followed by counterstaining for DNA and laser scanning confocal fluorescence microscopic observation. RESULTS The endothelial cells and cusp connective tissue cells of implanted valvular allografts showed loss of proliferating cell nuclear antigen (indicative of cessation of mitotic activity) and evidence of apoptosis (nick end labeling). The latter was manifested by nuclear condensation and pyknosis, positive nick end labeling, and formation of intra- and extracellular apoptotic bodies derived from the fragmentation of apoptotic cells. These changes began to develop at 2 days after implantation, peaking at 10 to 14 days, and became complete by 20 weeks, at which time the valves had the typical acellular morphologic features of allografts implanted for long periods of time. CONCLUSIONS Apoptosis occurs in endothelial cells and cuspal connective tissue cells of implanted allografts and appears to be a cause of their loss of cellularity. This apoptosis may be related to various factors, including immunologic and chemical injury, and hypoxia during valve processing and reperfusion injury at the time of implantation.
Collapse
Affiliation(s)
- S L Hilbert
- Center for Devices and Radiographical Health, Food and Drug Administration, Rockville, Md, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Trubiani O, Rapino M, Pieri C, Di Primio R. Phorbol ester synergizes the dimethyl sulfoxide-dependent programmed cell death through diacylglycerol increment. CANCER DETECTION AND PREVENTION 1998; 22:463-9. [PMID: 9727628 DOI: 10.1046/j.1525-1500.1998.00035.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of cell proliferation or cell death by extracellular factors are the most intensely studied subjects in cell biology. Many conceptual problems remain to be clarified concerning the mechanisms that regulate the programmed cell death. In this work, we focus our attention on the possible role of protein kinase C activation during dimethyl sulfoxide (DMSO)-induced cell death. The present results suggest that the frequency of DMSO-dependent apoptosis of RPMI 8402 thymic lymphoma cells is increased by phorbol ester acetate supplementation. Enhancement of apoptosis can be abolished by cotreatment with the bisindolylmaleimide, a specific PKC inhibitor. The association between PMA and DMSO treatment provokes an early activation of an intracellular signaling mechanism that results, via sustained diacylglycerol elevation, in a possible long-term PKC activation.
Collapse
Affiliation(s)
- O Trubiani
- Istituto di Morfologia Umana Normale, Università di Chieti, Italy
| | | | | | | |
Collapse
|