1
|
Haas CA, Bach A, Heimrich B, Linke R, Otten U, Frotscher M. Axotomy-induced c-JUN expression in young medial septal neurons is regulated by nerve growth factor. Neuroscience 1998; 87:831-44. [PMID: 9759971 DOI: 10.1016/s0306-4522(98)00188-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present study we investigated the axotomy-induced expression of the proto-oncogene c-jun in young rat medial septal neurons and its regulation by nerve growth factor. First, medial septal neurons were retrogradely labelled by Fast Blue injection into the hippocampus at postnatal day 1 (P1). Rats of different developmental ages (P6, P9, P14, P21, P28 and P42) were then subjected to bilateral fimbria-fornix transection resulting in the axotomy of septohippocampal projection neurons. After the lesion, c-JUN immunoreactivity was observed in the nuclei of axotomized medial septal neurons of all stages examined, suggesting that c-JUN induction is an age-independent feature of axotomized medial septal neurons. Double immunolabelling for choline acetyltransferase and c-JUN or parvalbumin and c-JUN, respectively, revealed that both cholinergic and GABAergic septohippocampal projection neurons express c-JUN after axotomy. In addition, a co-localization of immunostaining for c-JUN and the neuropeptide galanin was found after lesion, as both proteins were induced in the same medial septal neurons following fimbria-fornix transection. Next, the regulation of c-JUN expression in axotomized medial septal neurons was studied in organotypic cultures of the medial septum. Axotomized medial septal neurons in culture did not express c-JUN in contrast to the in vivo situation. With the concept that nerve growth factor suppresses c-JUN expression, slice cultures of the medial septum were treated with antibodies against nerve growth factor. This treatment caused a dose-dependent increase in c-JUN-positive cells in these slice cultures. Simultaneous addition of nerve growth factor and antibodies against nerve growth factor resulted in the reversal of this effect. These data suggest an age-independent induction of c-JUN in axotomized medial septal neurons and its regulation by nerve growth factor.
Collapse
Affiliation(s)
- C A Haas
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro. J Neurosci 1998. [PMID: 9698326 DOI: 10.1523/jneurosci.18-16-06349.1998] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In neonatal hippocampal slices, recurrent spontaneous giant depolarizing potentials (GDPs) provide neuronal synchronized firing and Ca2+ oscillations. To investigate the possible role of GDPs in the synchronization of neuronal activity in intact neonatal limbic structures, we used multiple simultaneous electrophysiological recordings in the recently described preparation of intact neonatal septohippocampal complex in vitro. Combined whole-cell (in single or pairs of cells) and extracellular field recordings (one to five simultaneous recording sites) from the CA3 hippocampal region and various parts of the septum indicated that spontaneous GDPs, which can be initiated anywhere along the longitudinal hippocampal axis, are most often initiated in the septal poles of hippocampus and propagate to medial septum and temporal poles of both hippocampi simultaneously. GDPs were abolished in the medial septum but not in the hippocampus after surgical separation of both structures, suggesting hippocampal origin of GDPs. The preferential septotemporal orientation of GDP propagation observed in the intact hippocampus was associated with a corresponding gradient of GDP frequency in isolated portions of hippocampus. Accordingly, most GDPs propagated in the septotemporal direction in both septal and temporal hippocampal isolated halves, and whereas GDP frequency remained similar in the septal part of hippocampus after its surgical isolation, it progressively decreased in more temporally isolated portions of the hippocampus. Because GDPs provide most of the synaptic drive of neonatal neurons, they may modulate the development of neuronal connections in the immature limbic system.
Collapse
|
3
|
Takahashi LK, Goh CS. Glucocorticoid facilitation of cholinergic development in the rat hippocampus. Neuroscience 1998; 83:1145-53. [PMID: 9502253 DOI: 10.1016/s0306-4522(97)00472-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of endogenous glucocorticoids in facilitating the postnatal innervation of septohippocampal cholinergic projections was examined. Septohippocampal cholinergic innervation was determined using two methods. One method involved measuring the optical density of acetylcholinesterase, a marker of cholinergic fibres in the hippocampus. In the other method, acetylcholinesterase-positive fibre counts were made in the hippocampus. Both methods revealed that 14-day-old rats adrenalectomized at 10 days of age have significantly lower densities of acetylcholinesterase in the hippocampal dentate gyrus molecular layer and in the regio inferior when compared to sham-operated control rats. This reduction in hippocampal acetylcholinesterase did not occur when 10-day-old adrenalectomized rats were either injected daily with exogenous corticosterone (0.3 mg/100 g body weight) or when adrenalectomy was conducted at later postnatal ages. In addition, unlike the developing hippocampus, the basolateral nucleus of the amygdala, which is also highly innervated by cholinergic fibres, showed no significant changes in acetylcholinesterase density after adrenalectomy. These observations suggest that glucocorticoids play an important role in supporting the development of cholinergic projections to the hippocampus. Cholinergic innervation of the hippocampus appears especially sensitive to the action of glucocorticoids occurring before the conclusion of the second postnatal week. Furthermore, this glucocorticoid influence is directed rather specifically to the hippocampus in comparison to the basolateral amygdala.
Collapse
Affiliation(s)
- L K Takahashi
- University of Wisconsin Medical School, Department of Psychiatry, Madison 53719-1179, USA
| | | |
Collapse
|
4
|
Plaschke M, Naumann T, Kasper E, Bender R, Frotscher M. Development of cholinergic and GABAergic neurons in the rat medial septum: effect of target removal in early postnatal development. J Comp Neurol 1997; 379:467-81. [PMID: 9067837 DOI: 10.1002/(sici)1096-9861(19970324)379:4<467::aid-cne1>3.0.co;2-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During normal development of the nervous system, the target fields influence the survival and differentiation of projection neurons, but the factors regulating this interaction remain obscure. In the present study, we have raised the question whether the target region is essential for the postnatal development and maintenance of two different types of central projection neurons, cholinergic and GABAergic septohippocampal cells. In early postnatal rats (P5, P10), the hippocampus was eliminated by unilateral intrahippocampal injections of the excitotoxin N-methyl-D-aspartate. After a long survival time (at P70), we have immunostained serial sections of the septal region with antibodies against choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme, or the calcium-binding protein parvalbumin (PARV) which is known to be contained in GABAergic septohippocampal neurons. In the medial septum ipsilateral to the lesioned side, about 60% of ChAT-immunoreactive neurons and 62% of PARV-immunoreactive neurons were found in adulthood even after complete elimination of the hippocampus. Some immunoreactive cells appeared heavily shrunken, but electron microscopic analysis revealed ultrastructural characteristics typical for medial septal neurons obtained from controls. Our results indicate that target elimination during development affected both types of projection cells, although only the cholinergic cells are known to be responsive to target-derived factors.
Collapse
Affiliation(s)
- M Plaschke
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Takahashi LK. Glucocorticoids and the hippocampus. Developmental interactions facilitating the expression of behavioral inhibition. Mol Neurobiol 1996; 13:213-26. [PMID: 8989771 DOI: 10.1007/bf02740624] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When threatened, the rapid induction of fear and anxiety responses is adaptive. This article summarizes the current knowledge of the neurobiological development of behavioral inhibition, a prominent response occurring in fear and anxiety-provoking situations. In the rat, behavioral inhibition as exemplified by freezing first appears near the end of the second postnatal week. This emergence of freezing coincides with the developmental period marked by the rapid increase in plasma concentrations of glucocorticoids. Studies show that removal of glucocorticoids at this time severely impairs the age-dependent appearance of freezing. This behavioral impairment produced by adrenalectomy, however, is prevented by exogenous glucocorticoid administration. The effectiveness of glucocorticoids in facilitating the development of freezing appears to be caused by its actions in the hippocampus. In particular, glucocorticoids appear to play a vital role in the postnatal cellular development of the hippocampal dentate gyrus. Doses of glucocorticoids shown to reverse the behavioral inhibitory deficits occurring after adrenalectomy are ineffective when hippocampal dentate granule neurons are destroyed by neurotoxins. Notably, site-specific administration of glucocorticoids to the dorsal hippocampus is successful in promoting the occurrence of freezing in the adrenalectomized rat pup. It is hypothesized that glucocorticoids exert their behavioral inhibitory effects by influencing the development of the septohippocampal cholinergic system. Support for this hypothesis is derived from work demonstrating the importance of glucocorticoids on nerve growth factor systems that play a critical role in septohippocampal cholinergic survival.
Collapse
Affiliation(s)
- L K Takahashi
- Department of Psychiatry, University of Wisconsin Medical School, Madison 53719-1179, USA
| |
Collapse
|
6
|
Takahashi LK, Goh CS. Presynaptic muscarinic cholinergic receptors in the dorsal hippocampus regulate behavioral inhibition of preweanling rats. Brain Res 1996; 731:230-5. [PMID: 8883877 DOI: 10.1016/0006-8993(96)00684-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this research was to determine whether early maturation of the dorsal hippocampal cholinergic system mediates behavior exhibited by preweanling rats in the presence or absence of an unfamiliar adult male rat, a threatening stimulus. The behavioral responses that were examined included behavioral inhibition or freezing which emerges at 2 weeks of age and ultrasonic vocalizations. Prior to behavioral testing, oxotremorine, an M2 muscarinic receptor agonist that reduces cholinergic release from presynaptic terminals, was infused into the dorsal hippocampal dentate gyrus. Results demonstrated that 14-day-old rats with bilateral hippocampal infusions of a 1 microgram dose of oxotremorine exhibited significant deficits in freezing when exposed to the adult male rat. Importantly, oxotremorine had no significant effects on ultrasound emission and ambulatory activity when rat pups were tested in social isolation. Thus, effects of oxotremorine in the hippocampal dentate gyrus do not produce global changes in behavior. Results suggest that cholinergic release into the dorsal hippocampus facilitates the display of behavioral inhibition at the end of the second postnatal week. Behavioral deficits in freezing may reflect an oxotremorine-induced disruption of hippocampal cholinergic function underlying the processing of biologically relevant olfactory stimuli as well as mechanisms associated with attention.
Collapse
Affiliation(s)
- L K Takahashi
- Department of Psychiatry, University of Wisconsin Medical School, Madison 53719-1179, USA.
| | | |
Collapse
|
7
|
Nyakas C, Buwalda B, Kramers RJ, Traber J, Luiten PG. Postnatal development of hippocampal and neocortical cholinergic and serotonergic innervation in rat: effects of nitrite-induced prenatal hypoxia and nimodipine treatment. Neuroscience 1994; 59:541-59. [PMID: 8008208 DOI: 10.1016/0306-4522(94)90176-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Postnatal development of ingrowing cholinergic and serotonergic fiber patterns were studied in the rat hippocampus and parietal cortex employing a histochemical procedure for acetylcholinesterase as a cholinergic fiber marker, and immunocytochemistry of serotonin for serotonergic fiber staining. The rat pups were killed at postnatal days 1, 3, 5, 7, 10, and 20. The development of cholinergic and serotonergic innervation was described and the fiber density quantified under normal conditions and after long-term prenatal anemic hypoxia induced by chronic exposure to sodium nitrite. Furthermore, a third group was studied in which the nitrite hypoxia was combined with a simultaneous treatment with the Ca(2+)-entry blocker nimodipine to test the neuroprotective potential of this drug. Quantitative measurement of fiber density from postnatal day 1 to day 20 yielded the following results: (i) both neurotransmitter systems revealed an age-dependent and an anatomically-organized developmental pattern; (ii) the serotonergic innervation of the dorsal hippocampus preceded that of cholinergic afferentation in postnatal days 1-3; (iii) prenatal hypoxia induced a transient delay in the innervation of parietal neocortex and dentate gyrus for both neurotransmitter systems, but left the innervation of the cornu ammonis unaffected; and (iv) the hypoxia-induced retardation of cholinergic and serotonergic fiber development was prevented by concomitant application of the Ca(2+)-antagonist nimodipine during the hypoxia. The results indicate that prenatal hypoxia evokes a temporary delay in the cholinergic and serotonergic fiber outgrowth in cortical target areas in a region-specific manner. The hypoxia-induced growth inhibition is prevented by the calcium antagonist nimodipine, which supports the importance of the intracellular Ca2+ homeostasis of cells and growth cones in regulating axonal proliferation.
Collapse
Affiliation(s)
- C Nyakas
- Department of Animal Physiology, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Morgane PJ, Austin-LaFrance R, Bronzino J, Tonkiss J, Díaz-Cintra S, Cintra L, Kemper T, Galler JR. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 1993; 17:91-128. [PMID: 8455820 DOI: 10.1016/s0149-7634(05)80234-9] [Citation(s) in RCA: 454] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this review, we have summarized various aspects as to how prenatal protein malnutrition affects development of the brain and have attempted to integrate several broad principles, concepts, and trends in this field in relation to our findings and other studies of malnutrition insults. Nutrition is probably the single greatest environmental influence both on the fetus and neonate, and plays a necessary role in the maturation and functional development of the central nervous system. Prenatal protein malnutrition adversely affects the developing brain in numerous ways, depending largely on its timing in relation to various developmental events in the brain and, to a lesser extent, on the type and severity of the deprivation. Many of the effects of prenatal malnutrition are permanent, though some degree of amelioration may be produced by exposure to stimulating and enriched environments. Malnutrition exerts its effects during development, not only during the so-called brain growth spurt period, but also during early organizational processes such as neurogenesis, cell migration, and differentiation. Malnutrition results in a variety of minimal brain dysfunction-type syndromes and ultimately affects attentional processes and interactions of the organism with the environment, in particular producing functional isolation from the environment, often leading to various types of learning disabilities. In malnutrition insult, we are dealing with a distributed, not focal, brain pathology and various developmental failures. Quantitative assessments show distorted relations between neurons and glia, poor formation of neuronal circuits and alterations of normal regressive events, including cell death and axonal and dendritic pruning, resulting in modified patterns of brain organization. Malnutrition insult results in deviations in normal age-related sequences of brain maturation, particularly affecting coordinated development of various cell types and, ultimately, affecting the formation of neuronal circuits and the commencing of activity of neurotransmitter cell types and, ultimately, affecting the formation of neuronal circuits and the commencing of activity of neurotransmitter systems. It is obvious that such diffuse type "lesions" can be adequately assessed only by interdisciplinary studies across a broad range of approaches, including morphological, biochemical, neurophysiological, and behavioral analyses.
Collapse
Affiliation(s)
- P J Morgane
- Worcester Foundation for Experimental Biology, Shrewsbury, MA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Takei N, Tsukui H, Hatanaka H. Nerve growth factor increases the intracellular content of acetylcholine in cultured septal neurons from developing rats. J Neurochem 1988; 51:1118-25. [PMID: 3418346 DOI: 10.1111/j.1471-4159.1988.tb03076.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of nerve growth factor (NGF) on the intracellular content of acetylcholine (ACh) in cultured septal neurons from developing rats have been examined. The content of ACh could be measured by using HPLC and electrochemical detection (HPLC-ECD), coupled with an immobilized enzyme column. This method of determination is very simple and rapid, and is highly sensitive. The content of ACh and the activity of choline acetyltransferase (ChAT) in cultured postnatal day 1 (P1) septal neurons grown on an astroglial "feeder" layer was increased during the period of cultivation by the addition of NGF. The activities of ChAT and the content of ACh increased in a dose-dependent manner in direct relationship to the different amounts of NGF employed. These effects of NGF, i.e., elevating the intracellular content of ACh, accompanied by an increase in activity of ChAT, also were confirmed in the P1 septal organotypic cultures. Additionally, embryonic day 17 (E17) septal neurons in a serum-free medium displayed a similar responsiveness to NGF with respect to the elevation in the content of ACh and the increase in activity of ChAT. These results suggest that intracellular levels of ACh are likely to be regulated by NGF in a fashion similar to that of the activity levels of the biosynthetic enzyme.
Collapse
Affiliation(s)
- N Takei
- Department of Neuroscience, Mitsubishi-Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
10
|
|
11
|
|
12
|
Whittemore SR, Seiger A. The expression, localization and functional significance of beta-nerve growth factor in the central nervous system. Brain Res 1987; 434:439-64. [PMID: 2825921 DOI: 10.1016/0165-0173(87)90008-7] [Citation(s) in RCA: 426] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S R Whittemore
- Department of Neurological Surgery, University of Miami School of Medicine, FL 33136
| | | |
Collapse
|
13
|
Bronzino JD, Siok CJ, Austin K, Austin-Lafrance RJ, Morgane PJ. Spectral analysis of the electroencephalogram in the developing rat. Brain Res 1987; 432:257-67. [PMID: 3676841 DOI: 10.1016/0165-3806(87)90050-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Power spectral measures of the EEG obtained from the frontal cortex and hippocampal formation during different vigilance states in the developing rat have been computed and compared. The most significant ontogenetic changes were observed in the hippocampal power spectra obtained during the vigilance state of REM sleep. These spectral analyses have revealed in the hippocampus: (1) a significant increase in the frequency at which the peak power occurs in the theta-frequency (4-11 Hz) band from 14 to 45 days of age; (2) a decrease in the quality factor of the peak from 14 to 45 days of age; (3) a decrease in the relative power co-ordinate for the center of spectral mass associated with the 0-4-Hz frequency band coupled with an increase in the frequency coordinate of the 4-11-Hz frequency band from 14 to 45 days of age, and; (4) a significant decrease in the average percent relative power associated with the 0-4-Hz frequency band from 14 to 22 days of age. For the EEG obtained from the frontal cortex, the major findings of note were: (1) a dominant contribution of relative power in the 0-4-Hz frequency band which was observed at every age and during every vigilance state tested, and; (2) a significant increase in the average percent relative power associated with this band at 18, 22, and 45 days of age. The results of this study provide a quantitative description of the electroencephalographic (EEG) ontogeny of the hippocampal formation and the frontal cortex in the rat. These ontogenetic changes in EEG activity relate closely to development of the internal circuitry and synaptic maturation in the hippocampal formation and frontal cortex.
Collapse
|
14
|
Auburger G, Heumann R, Hellweg R, Korsching S, Thoenen H. Developmental changes of nerve growth factor and its mRNA in the rat hippocampus: comparison with choline acetyltransferase. Dev Biol 1987; 120:322-8. [PMID: 2435590 DOI: 10.1016/0012-1606(87)90235-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous experiments have demonstrated that in the septo-hippocampal system choline acetyltransferase (ChAT) is induced by nerve growth factor (NGF) (Gnahn et al. (1983) Dev. Brain Res. 9, 45-52) and that hippocampal NGF and mRNANGF levels are correlated with the density of cholinergic innervation (Korsching et al. (1985) EMBO J. 4, 1389-1393). In the present investigation we have compared the developmental changes of ChAT, NGF, and mRNANGF levels in this system. During the postnatal development of the hippocampus the time courses of NGF and ChAT were well correlated including the most rapid increase between P12 and P14. This increase in hippocampal NGF was preceded by a corresponding increase in mRNANGF. The developmental changes in hippocampal NGF levels were also closely reflected by corresponding changes in the septum. This, together with previous observations (Korsching et al., 1985) that the adult septum, in spite of relatively high NGF levels, does not contain measurable quantities of mRNANGF, suggests that the NGF levels in the septum are determined by the quantity of NGF transported retrogradely from the field of innervation rather than by local synthesis. During the prenatal period hippocampal NGF levels were relatively high, whereas the mRNANGF was below the level of detection. Since the ingrowth of septal fibers, and with that also the removal of NGF by retrograde transport, begins around birth, the relatively high prenatal NGF levels probably result from an accumulation produced by a small copy number of mRNANGF prior to the removal of NGF by retrograde axonal transport. It is concluded that the correlation of the developmental changes in NGF and mRNANGF with the ChAT activity in the hippocampus further supports the concept of a physiological role of NGF in the central nervous system.
Collapse
|
15
|
Thoenen H, Bandtlow C, Heumann R. The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol 1987; 109:145-78. [PMID: 3317757 DOI: 10.1007/bfb0031026] [Citation(s) in RCA: 393] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
|
17
|
Morgane PJ, Austin K, Siok C, LaFrance R, Bronzino JD. Power spectral analysis of hippocampal and cortical EEG activity following severe prenatal protein malnutrition in the rat. Brain Res 1985; 354:211-8. [PMID: 3840400 DOI: 10.1016/0165-3806(85)90172-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have studied the effects of prenatal protein malnutrition on development of the hippocampal and frontal cortical electroencephalographic (EEG) activity. Using power spectral analyses in rats of several age groups we found that protein malnutrition, instituted prenatally and continued postnatally, produces marked alterations in power spectral measures, i.e., alterations in peak theta frequency in the hippocampus during rapid eye movement (REM) sleep. Peak theta frequency was found to be significantly retarded in malnourished animals, especially during the preweaning period of development. Protein malnutrition, therefore, appears to affect mechanisms responsible for generating the tonic component of theta activity.
Collapse
|
18
|
Goldowitz D, Seiger A, Olson L. Regulation of axonal ingrowth into area dentata as studied by sequential, double intraocular brain tissue transplantation. J Comp Neurol 1984; 227:50-62. [PMID: 6470210 DOI: 10.1002/cne.902270107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The anterior eye chamber was used as a model environment to study, in isolation, the interaction of embryonic area dentata transplants with transplants of one of three important sources of in situ innervation: entorhinal cortex, locus coeruleus or septal nuclei. None of these brain regions significantly affected the morphogenesis or in oculo growth of area dentata transplants. All three brain regions innervated the area dentata transplant. Entorhinal cortical transplants sent nerve fibers into a limited, and apparently specific, region of area dentata that was adjacent to the entorhinal transplant. This light innervation contrasts to the predominant innervation of area dentata by entorhinal cortex in situ. The fluorescent, noradrenergic neurons of locus coeruleus provided the area dentata transplant with an abundance of fine varicose nerve fibers. Given about 100 noradrenergic neurons in the locus coeruleus transplant and 4 to 6 months joint survival, the area dentata transplant was noradrenergically hyperinnervated. The cholinergic neurons of the septal nuclei transplant had a prolific ingrowth of acetylcholinesterase (AChE)-positive nerve fibers to the area dentata transplant. There appeared to be a mutual exclusion between the extrinsic AChE-positive fibers and the intrinsic Timm's-positive granule cell mossy fibers in the area dentata transplant. We conclude that isolated replicas of the coeruleo-, septo-, and entorhinal cortico-dentate pathways can be made through sequential intraocular double grafting. The nature of the in oculo connectivity between these replicates offers clues as to the mechanisms that might account for the regulation of nerve growth.
Collapse
|
19
|
Cherubini E, De Feo MR, Mecarelli O, Ricci GF. Behavioral and electrographic patterns induced by systemic administration of kainic acid in developing rats. Brain Res 1983; 285:69-77. [PMID: 6883128 DOI: 10.1016/0165-3806(83)90110-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Milner TA, Loy R, Amaral DG. An anatomical study of the development of the septo-hippocampal projection in the rat. Brain Res 1983; 284:343-71. [PMID: 6871729 DOI: 10.1016/0165-3806(83)90017-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
|