1
|
Late-emerging effects of perinatal undernutrition in neuronal limbic structures underlying the maternal response in the rat. Brain Res 2018; 1700:31-40. [PMID: 29964024 DOI: 10.1016/j.brainres.2018.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
Abstract
Maternal care in the rat is an ancient behavioral response to specific multisensory inputs widely integrated in a complex forebrain, limbic and brain stem network to meet the basic needs of the young. Early undernutrition interferes with the morphofunctional organization of the brain, including maternal circuitry. The late-emerging effects of pre- and neonatal undernutrition on nest building and pup retrieval by lactating Wistar rats were correlated with dendritic arbor and perikaryon measurements (Golgi-Cox) in layer II pyramidal neurons of the anterior cingulate cortex, layer III pyramidal neurons of the medial prefrontal cortex and multipolar basolateral amygdala neurons examined on lactation days 4 and 12. In the underfed group, pregnant F0 dams received different percentages of a balanced diet. After birth, prenatally underfed (F1) pups continued the undernutrition by remaining with a nipple-ligated mother for 12 h. Weaning occurred at 25 days of age, and pups were subsequently provided an ad libitum diet. At 90 days of age, F1 dams were maternally tested. Early underfed dams showed significant reductions in nest building and prolonged retrieval latencies for grasping pups by inappropriate body areas. The behavioral alterations were concurrent with highly significant reductions in the somatic cross-sectional area and perimeter, spine density and dendritic crossings of cingulate cells and medial prefrontal cortical pyramids, as well as smaller effects on amygdala neurons. The anatomical findings suggest different postsynaptic organizations that may affect the neuronal excitability stages for the integration and encoding of cues triggering the altered maternal response components of early underfed dams.
Collapse
|
2
|
Brock JW, Ross K, Prasad C. Effects of High Dietary Protein on Coping Behavior, Memory Performance, and Sensory Discrimination in Rats. Nutr Neurosci 2016; 1:305-14. [DOI: 10.1080/1028415x.1998.11747240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Wainwright P, Bulman-Fleming M, Lévesque S, Mutsaers L, McCutcheon D. A Saturated-Fat Diet during Development Alters Dendritic Growth in Mouse Brain. Nutr Neurosci 2016; 1:49-58. [DOI: 10.1080/1028415x.1998.11747212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Rocha-de-Melo AP, Picanço-Diniz CW, Borba JMC, Santos-Monteiro J, Guedes RCA. NADPH-diaphorase Histochemical Labeling Patterns in the Hippocampal Neuropil and Visual Cortical Neurons in Weaned Rats Reared during Lactation on Different Litter Sizes. Nutr Neurosci 2013; 7:207-16. [PMID: 15682647 DOI: 10.1080/10284150400001961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tissue distribution of nitric oxide-synthases was investigated in the rat hippocampus and visual cortex under nutritional changes induced by modification of the litter size. Young (30-45-days-old) rats, suckled in litters formed by 3,6 or 12 pups (called small, medium and large litters, respectively), were studied by using nicotine-adenine-dinucleotide phosphate-diaphorase histochemistry (shortly, diaphorase), a simple and robust procedure to characterize tissue distribution of nitric oxide-synthases. We assessed morphometric features of the diaphorase-positive cells in visual cortex, and the neuropil histochemical activity in hippocampal CA1 and dentate gyrus using densitometry analysis. In the large-litter group, the labeled-cell density in white matter of area 17 was higher, as compared to the small-litter group. There was a clear trend, in the large-litter group, to lower values of soma area, dendritic field and branches per neuron, but the differences were not significant. Densitometry analysis of hippocampus revealed a significant increase in the relative neuropil histochemical activity of the dentate gyrus molecular layer in the larger litters, which may be associated to increased compensatory blood flow in the hippocampus. The pathophysiological mechanisms of the observed changes remain to be investigated.
Collapse
Affiliation(s)
- Ana Paula Rocha-de-Melo
- Departamento de Nutrição, Universidade Federal de Pernambuco, BR-50670-901, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
5
|
Durán P, Miranda-Anaya M, de Jesús Romero-Sánchez M, Mondragón-Soto K, Granados-Rojas L, Cintra L. Time–place learning is altered by perinatal low-protein malnutrition in the adult rat. Nutr Neurosci 2013; 14:145-50. [DOI: 10.1179/147683011x13009738172567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Chakraborti A, Allen A, Allen B, Rosi S, Fike JR. Cranial irradiation alters dendritic spine density and morphology in the hippocampus. PLoS One 2012; 7:e40844. [PMID: 22815839 PMCID: PMC3397939 DOI: 10.1371/journal.pone.0040844] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/14/2012] [Indexed: 01/17/2023] Open
Abstract
Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG) granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9%) and 1 month (26.9%) after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7%) in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.
Collapse
Affiliation(s)
- Ayanabha Chakraborti
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, United States of America
| | - Antino Allen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, United States of America
| | - Barrett Allen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, United States of America
| | - Susanna Rosi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California, United States of America
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, United States of America
| | - John R. Fike
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, United States of America
- Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Rojas-Castañeda J, Vigueras-Villaseñor RM, Rojas P, Rojas C, Cintra L. Immunoreactive vasoactive intestinal polypeptide and vasopressin cells after a protein malnutrition diet in the suprachiasmatic nucleus of the rat. Lab Anim 2008; 42:360-8. [DOI: 10.1258/la.2007.007008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to evaluate the effects of prenatal and postnatal protein deprivation on the morphology and density of vasopressin (VP) and vasoactive intestinal polypeptide (VIP) immunoreactive neurons in the suprachiasmatic nucleus (SCN) of young rats. Female Wistar rats were fed either 6% (malnourished group) or 25% (control group) casein diet five weeks before conception, during gestation and lactation. After weaning, the pups were maintained on the same diet until sacrificed at 30 days of age. The major and minor axes, somatic area and the density of VP- and VIP-immunoreactive neurons were evaluated in the middle sections of the SCN. The present study shows that chronic protein malnutrition (ChPM) in VP neurons induces a significant decrease in number of cells (–31%,) and a significant increase in major and minor axes and somatic area (+12.2%, +21.1% and +15.0%, respectively). The VIP cells showed a significant decrease in cellular density (–41.5%) and a significant increase in minor axis (+13.5%) and somatic area (+10.1%). Our findings suggest that ChPM induces abnormalities in the density and morphology of the soma of VP and VIP neurons. These alterations may be a morphological substrate underlying circadian alterations previously observed in malnourished rats.
Collapse
Affiliation(s)
- J Rojas-Castañeda
- Laboratorio de Histomorfología, Torre de Investigación ‘Dr Joaquín Cravioto’, Instituto Nacional de Pediatría, SS, Av Insurgentes Sur No 3700-C, Col Insurgentes Cuicuilco, CP 04530, México
| | - R M Vigueras-Villaseñor
- Laboratorio de Histomorfología, Torre de Investigación ‘Dr Joaquín Cravioto’, Instituto Nacional de Pediatría, SS, Av Insurgentes Sur No 3700-C, Col Insurgentes Cuicuilco, CP 04530, México
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootécnia, Universidad Nacional Autónoma de México, México DF, México
| | - P Rojas
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez SS, Av Insurgentes Sur No 3877, México DF, CP 14269, México
| | - C Rojas
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, México DF, CP 04510, México
| | - L Cintra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM, Juriquilla, Qro, Km 15 Carr Qro-SLP, CP 76230, México
| |
Collapse
|
8
|
Abstract
Growth is the traditional means of assessing the impact of newborn nutrition. We argue that this approach is flawed as the optimum pattern of postnatal growth after extremely preterm birth is unknown and both growth restraint and growth acceleration are associated with beneficial as well as adverse outcomes. Clinical trials examining nutritional regimens should be designed to achieve specific patterns of postnatal growth. Clinical practice should include the systematic capture of neonatal nutritional intake. As the ultimate goals are adult health and wellbeing, long-term follow-up is essential.
Collapse
Affiliation(s)
- Vimal Vasu
- Division of Medicine, Imperial College London, Chelsea & Westminster Campus, London, UK
| | | |
Collapse
|
9
|
Silva-Gómez AB, Rojas D, Juárez I, Flores G. Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 2003; 983:128-36. [PMID: 12914973 DOI: 10.1016/s0006-8993(03)03042-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of postweaning social isolation (pwSI) on the morphology of the pyramidal neurons from the medial part of the prefrontal cortex (mPFC) and hippocampus were investigated in rats. The animals were weaned on day 21 postnatal (P21) and isolated 8 weeks. After the isolation period, locomotor activity was evaluated through 60 min in the locomotor activity chambers and the animals were sacrificed by overdoses of sodium pentobarbital and perfused intracardially with 0.9% saline solution. The brains were removed, processed by the Golgi-Cox stain and analyzed by the Sholl method. The locomotor activity in the novel environment from the isolated rats was increased with respect to the controls. The dendritic morphology clearly showed that the pwSI animals presented a decrease in dendritic length of pyramidal cells from the CA1 of the hippocampus without changes in the pyramidal neurons of the mPFC. However, the density of dendritic spines was decreased in the pyramidal cells from mPFC and Hippocampus. In addition, the Sholl analyses showed that pwSI produced a decrease in the number of sholl intersections compared with the control group only in the hippocampus region. The present results suggest that pwSI may in part affect the dendritic morphology in the limbic structures such as mPFC and hippocampus that are implicated in schizophrenia.
Collapse
|
10
|
Abstract
Although brain injury induced by undernutrition during early life is well described, the mechanisms that mediate the effects of undernutrition on brain development are not known. IGF-I plays an important role in the stimulation of postnatal somatic and brain growth. We have shown that IGF-I overexpression in brain ameliorates the effects of undernutrition on early postnatal brain growth, and thus, we postulated that alterations in IGF-I expression or action mediate the pathogenesis of malnutrition-induced brain injury. To begin to address this issue we evaluated the influence of undernutrition on brain IGF-I expression during early postnatal development in mice. Undernutrition was induced in mice by separating half of the pups in each litter from their lactating dams for a defined period each day. Pups were killed at postnatal day (P) 7, P14, P21, and P28. The changes in IGF-I mRNA were quantified by ribonuclease protection assay. At P7 IGF-I mRNA abundance in undernourished animals was increased in cerebral cortex (223% of controls), but decreased in diencephalon (36% of controls). At P14, IGF-I mRNA abundance was increased in diencephalon (230% of controls). Although there were no other statistically significant alterations of IGF-I mRNA in undernourished mice, IGF-I abundance in the cerebral cortex appeared increased at P14 (142% of controls), and in cerebellum it was consistently but modestly decreased (78 and 59% of controls) from P7 to P21, respectively. We conclude that nutrition regulates murine brain IGF-I expression in a developmentally specific fashion that is dependent on the region of expression. Importantly, the influence of undernutrition on IGF-I expression is markedly different in the brain than in liver, where nutritional deficiency profoundly decreases IGF-I expression. We speculate that the relative preservation of or increases in regional brain IGF-I expression explain, at least in part, the well-known finding that undernutrition during early postnatal development has less marked growth-retarding effects on the brain than it does on the soma.
Collapse
Affiliation(s)
- A Calikoglu
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7220, USA
| | | | | |
Collapse
|
11
|
Norrholm SD, Ouimet CC. Chronic fluoxetine administration to juvenile rats prevents age-associated dendritic spine proliferation in hippocampus. Brain Res 2000; 883:205-15. [PMID: 11074049 DOI: 10.1016/s0006-8993(00)02909-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The density of dendritic spines, the postsynaptic sites of most excitatory synapses, increases during the first 2 postnatal months in rat hippocampus. Significant alterations in hippocampal levels of serotonin and norepinephrine impact synaptic development during this time period. In the present study, dendritic spine density was studied in the hippocampus (CA1) and dentate gyrus of juvenile rats acutely and chronically exposed to antidepressant drugs that act on serotonin and norepinephrine. One group of 21-day-old rats was given a single injection of a serotonin specific re-uptake inhibitor (fluoxetine or fluvoxamine), a norepinephrine-specific re-uptake inhibitor (desipramine), or saline and killed after 24 h. A second group of rats was injected daily, beginning on postnatal day (PN) 21, for 3 weeks. This group was further subdivided into rats that were killed 1 day or 21 days after the last injection. Golgi analysis showed that a single injection of fluvoxamine produced a significant increase in dendritic spine density in stratum radiatum of CA1 and in the dentate gyrus. Further, acute treatment with all three antidepressants increased the total length of secondary dendrites in CA1, with fluoxetine and desipramine increasing the number of secondary dendrites as well. In fluoxetine-treated animals killed on days 42 or 62 (1 or 21 days post-treatment, respectively), dendritic spine density remained at levels present in CA1 at 21 days. These results show that acute antidepressant treatment can impact dendritic length and spine density, and raise the possibility that chronic fluoxetine treatment arrests spine development into young adulthood.
Collapse
Affiliation(s)
- S D Norrholm
- Program in Neuroscience, Department of Psychology, Florida State University, 211 Biomedical Research Facility, Tallahassee, FL 32306-4340, USA
| | | |
Collapse
|
12
|
Borba JM, Araújo MS, Picanço-Diniz CW, Manhães-de-Castro R, Guedes RC. Permanent and transitory morphometric changes of NADPH-diaphorase-containing neurons in the rat visual cortex after early malnutrition. Brain Res Bull 2000; 53:193-201. [PMID: 11044596 DOI: 10.1016/s0361-9230(00)00334-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the histochemical positivity to NADPH-diaphorase, which reveals nitric oxide synthase activity, in area 17 of rats malnourished early in life, both in the post-weaning period (group M1), and in adulthood after nutritional recovering (group M2). Control pups (C1 and C2 groups) received ad libitum after weaning the same diets as their mothers. Rats of group M2 were nutritionally recovered by receiving the control diet from post-natal day 42 until adulthood. Aldehyde-fixed sections (200-microm thick) through area 17 were processed for NADPH-diaphorase histochemistry following the malic enzyme indirect method. The features of NADPH-diaphorase-containing neurons of area 17 of malnourished young (M1) and adult (M2) rats were analyzed quantitatively in comparison to the matched groups C1 and C2. Permanent changes, represented by increase in the density and dendritic field areas of NADPH-diaphorase-positive cells, and transitory ones, represented by decreased values of soma areas, were observed in area 17 of the M1 and M2 cases. However, some other features, such as dendritic branch angle and number of dendrites per cell in the gray matter, remained unchanged after malnutrition. Thus, the findings indicate a possible relationship between early malnutrition and alterations in nitric oxide synthase-containing cells in the visual cortex. Physiological implications of these data may be related to synaptic plasticity and refinement of developmental brain circuits.
Collapse
Affiliation(s)
- J M Borba
- Laboratório de Fisiologia da Nutrição Naide Teodósio, Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | |
Collapse
|
13
|
Andrade JP, Madeira MD, Paula-Barbosa MM. Differential vulnerability of the subiculum and entorhinal cortex of the adult rat to prolonged protein deprivation. Hippocampus 1998; 8:33-47. [PMID: 9519885 DOI: 10.1002/(sici)1098-1063(1998)8:1<33::aid-hipo4>3.0.co;2-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein deprivation experienced in adult life leads to deficits in the number of hippocampal granule and CA3-CA1 pyramidal cells and to changes in the dendritic domain of granule cells and CA3 pyramids. To obtain a more complete insight into the effects of malnutrition on the limbic system of the adult rat we have analyzed the subiculum and the entorhinal cortex (neuronal layers II, III, and V-VI) in groups of 8-month-old rats fed with a low-protein diet (8% casein) since the age of 2 months and in age-matched control rats. Stereological methods were employed to estimate the total number of neurons in the subiculum and layers II, III, and V-VI of the entorhinal cortex and the volume of the respective cell layers. Moreover, to evaluate whether protein deprivation affects the dendritic domains of the neurons from these regions we have analyzed, in Golgi-impregnated material, the dendritic trees of the pyramidal cells of the subiculum and of the stellate neurons of the entorhinal cortex layer II applying quantitative and metric methods. The volume of the subiculum and the total number of its neurons were reduced in malnourished animals. In these animals we also found marked regressive changes in the apical and basal dendritic trees of the pyramidal subicular neurons. However, the spine density was increased in malnourished rats. No differences in the volume of the neuronal layers of the entorhinal cortex or in the total number of their neurons were found between protein-deprived and control rats, and no alterations were depicted in the dendritic trees of the stellate neurons of layer II. We can thus conclude that the effects of long-term protein deprivation are region specific and that the resulting structural alterations are confined to the three-layered components of the hippocampal region.
Collapse
Affiliation(s)
- J P Andrade
- Department of Anatomy, Porto Medical School, Portugal.
| | | | | |
Collapse
|
14
|
Prasad A, Prasad C. Short-term consumption of a diet rich in fat decreases anxiety response in adult male rats. Physiol Behav 1996; 60:1039-42. [PMID: 8873290 DOI: 10.1016/0031-9384(96)00135-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Short- and long-term changes in the composition of dietary macronutrients [protein (P), carbohydrate (C), and fat (F)] alter neurochemistry and behavior in animals. We examined whether short-term intake of a diet rich in P, C, or F affected their anxiety response (AR). AR of Sprague-Dawley rats was measured in an elevated plus maze. Rats were placed in the black compartment facing the wall opposite the aperture, and the time (max. 360 s) it took to enter the white compartment with all four paws was noted. Rats were fed Purina chow and tap water unless otherwise indicated. On repeated testing (three times on the same day) AR increased and, consequently, most rats spent the entire 360 s in the dark. Whereas most rats exhibited low anxiety response in trial 1, which increased during successive trials (low-high group), some exhibited high initial anxiety that remained unchanged (high-high group). To determine whether macronutrients may alter AR, groups of low-high and high-high rats were tested three times on the same day and then put on a P, C, or F diet for 7 days. On day 8, they were again tested for AR in a single trial and the results compared with those of the third trial of the previous test (preC: 302 +/- 39, post-C: 294 +/- 42, p > 0.05; pre-P: 305 +/- 35, post-P: 297 +/- 43, p > 0.05; pre-F: 321 +/- 17, post-F: 241 +/- 24sec, p = 0.009; n = 30; mean +/- SEM). The results show that a diet rich in F, but not P or C, decreases AR in rats.
Collapse
Affiliation(s)
- A Prasad
- Department of Medicine, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
15
|
Andrade JP, Castanheira-Vale AJ, Paz-Dias PG, Madeira MD, Paula-Barbosa MM. The dendritic trees of neurons from the hippocampal formation of protein-deprived adult rats. A quantitative Golgi study. Exp Brain Res 1996; 109:419-33. [PMID: 8817272 DOI: 10.1007/bf00229626] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have recently shown that lengthy periods of low-protein feeding of the adult rat lead to deficits in the number of hippocampal granule and pyramidal cells, and in the number of mossy fiber synapses. These findings prompted us to analyze the dendrites of these neurons to evaluate whether, under the same experimental conditions, degenerative and/or plastic changes also take place at the dendritic level. The hippocampal formations from five 8-month-old rats fed a low-protein diet (casein 8%) for 6 months from the age of 2 months and from five age-matched controls were Golgi-impregnated and the morphology of the dendritic trees quantitatively studied. We found that in malnourished animals there was a reduction in the number of dendritic branches in the dentate granule cells and in the apical dendritic arborizations of CA3 pyramidal neurons. In addition, in the dentate granule cells the spine density was markedly increased and the terminal dendritic segments were elongated in malnourished animals. No alterations were found in the apical dendrites of CA1 pyramidal cells. The results obtained show that long periods of malnutrition induce marked, although not uniform, changes in the dendritic domain of the hippocampal neurons, which reflect the presence of both degenerating and regrowing mechanisms. These alterations are likely to affect the connectivity pattern of the hippocampal formation and, hence, the activity of the neuronal circuitries in which this region of the brain is involved.
Collapse
Affiliation(s)
- J P Andrade
- Department of Anatomy, Porto Medical School, Portugal
| | | | | | | | | |
Collapse
|
16
|
Andrade JP, Castanheira-Vale AJ, Madeira MD. Time scale and extent of neuronal and synaptic loss in the hippocampal formation of malnourished adult rats. Brain Res 1996; 718:1-12. [PMID: 8773761 DOI: 10.1016/0006-8993(95)01544-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have demonstrated that a prolonged low-protein diet induces neuronal and synaptic loss in the hippocampal formation of the adult rat. Because 6 months of protein deprivation was the shortest period analyzed in the previous investigations, in the present study we have evaluated the length of the treatment period necessary to induce significant changes in the numbers of neurons and synapses. Groups of 2-month-old rats were analyzed: (1) and (2) malnourished for 1 and 3 months with a low-protein diet (8% casein): (3) and (4) age-matched control rats fed with a standard diet. Stereological methods were employed to estimate the total number of granule, hilar, CA3 and CA1 pyramidal cells and the volume of the respective cell layers, the volume of the mossy fiber system and the number and related quantitative features of mossy fiber-CA3 synapses. No differences in the number of cells or synapses were found between 1-month malnourished rats and the respective controls. However, in rats treated for 3 months the total number of granule cells. CA3 and CA1 pyramidal cells was reduced, as was the total number of synapses. These findings indicate that the changes induced by protein deprivation progressively increase during the early phases of treatment and that they are already evident after 3 months of protein deprivation.
Collapse
Affiliation(s)
- J P Andrade
- Department of Anatomy, Porto Medical School, Portugal.
| | | | | |
Collapse
|
17
|
Rao MS, Raju TR. Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons--a quantitative study. Brain Res 1995; 694:312-7. [PMID: 8974660 DOI: 10.1016/0006-8993(95)00822-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effect of chronic restraint stress on the number of dendritic spines and excrescences of hippocampal CA3 pyramidal neurons has been investigated. The results revealed a significant increase in the number of dendritic spines of apical and basal dendrites in rats subjected to restraint stress (6 h per day for 21 days). The number of excrescences were also markedly increased in stressed rats. The physiological significance and possible mechanism for increased spine density is discussed.
Collapse
|
18
|
Díaz-Cintra S, García-Ruiz M, Corkidi G, Cintra L. Effects of prenatal malnutrition and postnatal nutritional rehabilitation on CA3 hippocampal pyramidal cells in rats of four ages. Brain Res 1994; 662:117-26. [PMID: 7859064 DOI: 10.1016/0006-8993(94)90803-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of prenatal protein malnutrition and postnatal nutritional rehabilitation on CA3 hippocampal pyramidal cells were investigated in rats of 15, 30, 90 and 220 days of age. Female rats were fed either 6% or 25% casein diet 5 weeks before conception. Following delivery, litters born the same day to 6% and 25% casein diet rats were randomly cross-fostered to 25% casein diet dams and maintained on that diet until sacrificed. In 288 rapid-Golgi impregnated cells, we measured somal size, length of the longest apical dendrite, number of apical and basal dendrites intersecting 10 concentric rings 38 microns apart, synaptic spine density in three 50 microns segments of the largest apical dendrite and the thorny excrescence area. Prenatal protein malnutrition produced differential morphological changes on CA3 pyramidal cells. We observed significant decreases of somal size (at 90 and 220 days of age), of length of apical dendrites (at 15 days old), of apical (in 15 day animals) and basal (in 15, 90 and 220 day animals) dendritic branching and of spine density (in 30, 90 and 220 day animals). We also found significant increases of apical dendritic branching in 90 and 220 day old rats. These results indicate that prenatal protein malnutrition affects normal development and produces long-term effects on CA3 pyramidal cells.
Collapse
Affiliation(s)
- S Díaz-Cintra
- Centro de Neurobiología, UNAM, Ciudad Universitaria, México, DF, México
| | | | | | | |
Collapse
|
19
|
Wainwright PE, Huang YS, Bulman-Fleming B, Lévesque S, McCutcheon D. The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice. Behav Brain Res 1994; 60:125-36. [PMID: 8003242 DOI: 10.1016/0166-4328(94)90139-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study we investigated the effects of dietary fatty acid (FA) composition combined with postweaning environmental enrichment on brain fatty acid composition and behavior in mice. There were three dietary conditions: a saturated fat group deficient in essential fatty acids, a group deficient in n-3 fatty acids only, and a control group containing both n-3 and n-6 fatty acids in a ratio of 0.27. Animals were fed these diets during pregnancy and lactation and after weaning. Brain fatty acid composition was determined on days 1, 9, 17 and 25 after birth and in adult animals at 3 months. At weaning two females from each litter were assigned randomly to either an enriched or standard environmental condition. After six weeks in these environments they were tested in the Morris water maze and open field. Adult percentages of 22:6n-3 were present in the brain within the first week after birth. These values were reduced by 50% in the n-3 deficient diet and by 80% in the saturated fat diet; adult animals on the saturated fat diet were also severely retarded in growth. Animals fed the saturated fat diet were initially slightly slower in locating the hidden platform in the Morris maze relative to the control group, but this was not apparent in the reversal learning phase; a cued learning task using a visible platform indicated that these effects did not appear to be related to differences in motor or motivational capacities. The n-3 deficient group did not differ from either the saturated fat group or the controls. All dietary groups showed beneficial effects of environmental enrichment in decreasing their latency to locate the hidden platform, and these effects appeared to be partially independent of the increased swimming speed of the enriched animals. Enriched animals in all groups showed less rearing activity in the open field and spent more time stationary; the animals fed saturated fat reared less and travelled shorter distances more slowly. In all cases the effects of diet and environment were additive, thereby providing little support for the hypothesis that dietary fatty acid composition would affect the animals' capacity to benefit from the functional effects of environmental enrichment.
Collapse
Affiliation(s)
- P E Wainwright
- Department of Health Studies, University of Waterloo, Ont., Canada
| | | | | | | | | |
Collapse
|
20
|
García-Ruiz M, Díaz-Cintra S, Cintra L, Corkidi G. Effect of protein malnutrition on CA3 hippocampal pyramidal cells in rats of three ages. Brain Res 1993; 625:203-12. [PMID: 8275303 DOI: 10.1016/0006-8993(93)91060-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prenatal and postnatal protein deprivation effects on CA3-hippocampal pyramidal cells were investigated in 30-, 90- and 220-day-old rats. Female rats were fed either a 6% or a 25% casein diet 5 wk before conception and the litters were maintained on their respective diet until sacrificed. In 216 rapid Golgi-impregnated cells, we measured somal size, length and diameter of apical dendrite, number of apical dendrites intersecting 10 concentric rings 38 microns apart, thorny excrescence area and length, head diameter and density of synaptic spines on 50-microns segments of apical dendrite. The present experiments showed that malnutrition produced significant reductions of somal size in animals at 220 days of age. There were significant reductions of apical dendrite diameters in animals of 30 and 90 days, and of density and head diameter of synaptic spines at the three ages studied, and significant decrease of the thorny excrescence area at 220 days of age. At this latter age, dendritic branching was significantly decreased in the last four rings representing the area into which the perforant pathway projects. In 30-day malnourished rats, dendritic branching showed a significant increase in rings 4-6 representing the area in which the Schaffer collaterals synapse. The location of the deficit in dendritic spines corresponds to the sites where mossy fibers synapse on the apical dendrites of CA3 neurons. Age-related changes normally observed in control rats (e.g., the 30-day-old control group showed the smallest somal size and 220-day-old controls the largest size) failed to occur in the malnourished rats. The deficits in spine density and dendritic branching (in animals of 220 days old) were similar to those found in our previous studies on fascia dentata.
Collapse
Affiliation(s)
- M García-Ruiz
- Departamento de Fisiología, UNAM, Ciudad Universitaria, México, DF
| | | | | | | |
Collapse
|