1
|
Developmental changes in structural and functional properties of hippocampal AMPARs parallels the emergence of deliberative spatial navigation in juvenile rats. J Neurosci 2013; 33:12218-28. [PMID: 23884930 DOI: 10.1523/jneurosci.4827-12.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The neural mechanisms that support the late postnatal development of spatial navigation are currently unknown. We investigated this in rats and found that an increase in the duration of AMPAR-mediated synaptic responses in the hippocampus was related to the emergence of spatial navigation. More specifically, spontaneous alternation rate, a behavioral indicator of hippocampal integrity, increased at the end of the third postnatal week in association with increases in AMPAR response duration at SC-CA1 synapses and synaptically driven postsynaptic discharge of CA1 pyramidal neurons. Pharmacological prolongation of glutamatergic synaptic transmission in juveniles increased the spontaneous alternation rate and CA1 postsynaptic discharge and reduced the threshold for the induction of activity-dependent synaptic plasticity at SC-CA1 synapses. A decrease in GluA1 and increases in GluA3 subunit and transmembrane AMPAR regulatory protein (TARP) expression at the end of the third postnatal week provide a molecular explanation for the increase in AMPAR response duration and reduced efficacy of AMPAR modulators with increasing age. A shift in the composition of AMPARs and increased association with AMPAR protein complex accessory proteins at the end of the third postnatal week likely "turns on" the hippocampus by increasing AMPAR response duration and postsynaptic excitability and reducing the threshold for activity-dependent synaptic potentiation.
Collapse
|
2
|
Stoneham ET, Sanders EM, Sanyal M, Dumas TC. Rules of engagement: factors that regulate activity-dependent synaptic plasticity during neural network development. THE BIOLOGICAL BULLETIN 2010; 219:81-99. [PMID: 20972254 DOI: 10.1086/bblv219n2p81] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Overproduction and pruning during development is a phenomenon that can be observed in the number of organisms in a population, the number of cells in many tissue types, and even the number of synapses on individual neurons. The sculpting of synaptic connections in the brain of a developing organism is guided by its personal experience, which on a neural level translates to specific patterns of activity. Activity-dependent plasticity at glutamatergic synapses is an integral part of neuronal network formation and maturation in developing vertebrate and invertebrate brains. As development of the rodent forebrain transitions away from an over-proliferative state, synaptic plasticity undergoes modification. Late developmental changes in synaptic plasticity signal the establishment of a more stable network and relate to pronounced perceptual and cognitive abilities. In large part, activation of glutamate-sensitive N-methyl-d-aspartate (NMDA) receptors regulates synaptic stabilization during development and is a necessary step in memory formation processes that occur in the forebrain. A developmental change in the subunits that compose NMDA receptors coincides with developmental modifications in synaptic plasticity and cognition, and thus much research in this area focuses on NMDA receptor composition. We propose that there are additional, equally important developmental processes that influence synaptic plasticity, including mechanisms that are upstream (factors that influence NMDA receptors) and downstream (intracellular processes regulated by NMDA receptors) from NMDA receptor activation. The goal of this review is to summarize what is known and what is not well understood about developmental changes in functional plasticity at glutamatergic synapses, and in the end, attempt to relate these changes to maturation of neural networks.
Collapse
Affiliation(s)
- Emily T Stoneham
- Molecular Neuroscience Department, George MasonUniversity, Fairfax, Virginia 22030, USA
| | | | | | | |
Collapse
|
3
|
Kumar A, Thinschmidt JS, Foster TC, King MA. Aging effects on the limits and stability of long-term synaptic potentiation and depression in rat hippocampal area CA1. J Neurophysiol 2007; 98:594-601. [PMID: 17553951 DOI: 10.1152/jn.00249.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altered hippocampal synaptic plasticity may underlie age-related memory impairment. In acute hippocampal slices from aged (22-24 mo) and young adult (1-12 mo) male Brown Norway rats, extracellular excitatory postsynaptic field potentials were recorded in CA1 stratum radiatum evoked by Schaffer collateral stimulation. We used enhanced Ca(2+) to Mg(2+) ratio and paired-pulse stimulation protocol to induce maximum changes in the synaptic plasticity. Six episodes of theta-burst stimulation (TBS) or nine episodes of paired low-frequency stimulation (pLFS) were used to generate asymptotic long-term potentiation (LTP) and long-term depression (LTD), respectively. In addition, long-term depotentiation (LTdeP) or de-depression (LTdeD) from maximal LTP and LTD were examined using two episodes of pLFS or TBS. Multiple episodes of TBS or pLFS produced significant LTP or LTD in aged and young adult rats; this was not different between age groups. Moreover, there was no significant difference in the amount of LTdeP or LTdeD between aged and young adult rats. Our results show no age differences in the asymptotic magnitude of LTP or LTD, rate of synaptic modifications, development rates, reversal, or decay after postconditioning. Thus impairment of the basic synaptic mechanisms responsible for expression of these forms of plasticity is not likely to account for decline in memory function within this age range.
Collapse
Affiliation(s)
- Ashok Kumar
- Dept. of Neuroscience, The Evelyn F. and William L. McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
4
|
Foster TC, Kumar A. Susceptibility to induction of long-term depression is associated with impaired memory in aged Fischer 344 rats. Neurobiol Learn Mem 2007; 87:522-35. [PMID: 17276704 PMCID: PMC1896085 DOI: 10.1016/j.nlm.2006.12.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 02/03/2023]
Abstract
The current study employed aged and young male Fischer 344 rats to examine the relationship between long-term depression (LTD), age, and memory. Memory performance was measured on two tasks that are sensitive to hippocampal function; inhibitory avoidance and spatial discrimination on the Morris water maze. The slope of the extracellular excitatory postsynaptic field potential was recorded from CA3-CA1 synapses in hippocampal slices. Low frequency stimulation (LFS) induced a modest LTD only in aged animals under standard recording conditions. The decrease in synaptic transmission examined only in aged animals correlated with memory scores on the spatial task and LTD was not observed in aged animals with the highest memory scores. LTD induction was facilitated by increasing the Ca(2+)/Mg(2+) ratio of the recording medium or employing a paired-pulse stimulation paradigm. Age differences disappeared when LFS was delivered under conditions of elevated Ca(2+)/Mg(2+) in the recording medium. Using multiple induction episodes under conditions which facilitate LTD-induction, no age-related difference was observed in the maximum level of LTD. The results indicate that the increased susceptibility to LTD induction is associated with impaired memory and results from a shift in the induction process. The possible relationship between LTD and memory function is discussed.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
5
|
Velísek L, Vathy I. Mifepristone (RU486) inhibits lateral perforant path long‐term potentiation in hippocampal slices from prenatally morphine‐exposed female rats. Int J Dev Neurosci 2005; 23:559-65. [PMID: 16165340 DOI: 10.1016/j.ijdevneu.2005.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 08/04/2005] [Indexed: 11/24/2022] Open
Abstract
In brain slices from prenatally saline-exposed female rats during proestrus and diestrus, long-term potentiation (LTP) can be induced in the lateral perforant pathway (LPP). Prenatal morphine exposure suppresses LTP induction in the LPP during proestrus. Here we studied synaptic plasticity in the LPP in slices from female rats prenatally exposed to morphine. Two additional factors were investigated: the role of the estrous cycle and role of glucocorticoid receptors. Hippocampal slices were prepared from adult, prenatally saline- or morphine-exposed female rats. One hour prior to decapitation, vaginal smears were obtained and the rats either in proestrus or diestrus were treated with a non-specific glucocorticoid receptor antagonist mifepristone (RU486) or with a vehicle. LPP was stimulated with high-frequency stimulation. Short-tem plasticity (STP) and the induction and maintenance of long-term potentiation (LTP) were assessed. In all groups of prenatally saline-exposed rats, LTP was induced and maintained with the exception of RU486-treated rats during proestrus where the LTP was induced but not maintained. In prenatally morphine-exposed females in diestrus, both STP and LTP were induced after postnatal vehicle treatment. In morphine-exposed, proestrous females, neither STP nor LTP were induced irrespective of the postnatal treatment. Thus, prenatal morphine exposure suppresses the induction of LTP in the LPP, except during diestrus. Data indicate that the induction and maintenance of LTP in the LPP in hippocampal slices from female rats is multifactorial: ovarian steroids and functionality of glucocorticoid receptors cooperation are necessary for induction and maintenance of the LTP, prenatal morphine exposure interferes with this process possibly by its long-term effects on synaptic plasticity.
Collapse
Affiliation(s)
- Libor Velísek
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
6
|
Dumas TC. Late postnatal maturation of excitatory synaptic transmission permits adult-like expression of hippocampal-dependent behaviors. Hippocampus 2005; 15:562-78. [PMID: 15884034 DOI: 10.1002/hipo.20077] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sensorimotor systems in altricial animals mature incrementally during early postnatal development, with complex cognitive abilities developing late. Of prominence are cognitive processes that depend on an intact hippocampus, such as contextual-configural learning, allocentric and idiocentric navigation, and certain forms of trace conditioning. The mechanisms that regulate the delayed maturation of the hippocampus are not well understood. However, there is support for the idea that these behaviors come "on line" with the final maturation of excitatory synaptic transmission. First, by providing a timeline for the first behavioral expression of various forms of learning and memory, this study illustrates the late maturation of hippocampal-dependent cognitive abilities. Then, functional development of the hippocampus is reviewed to establish the temporal relationship between maturation of excitatory synaptic transmission and the behavioral evidence of adult-like hippocampal processing. These data suggest that, in rats, mechanisms necessary for the expression of adult-like synaptic plasticity become available at around 2 postnatal weeks of age. However, presynaptic plasticity mechanisms, likely necessary for refinement of the hippocampal network, predominate and impede information processing until the third postnatal week.
Collapse
Affiliation(s)
- Theodore C Dumas
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254, USA.
| |
Collapse
|
7
|
O'Boyle MP, Do V, Derrick BE, Claiborne BJ. In vivo recordings of long-term potentiation and long-term depression in the dentate gyrus of the neonatal rat. J Neurophysiol 2003; 91:613-22. [PMID: 14645375 DOI: 10.1152/jn.00307.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous in vitro studies demonstrated that long-term potentiation (LTP) could be elicited at medial perforant path (MPP) synapses onto hippocampal granule cells in slices from 7-day-old rats. In contrast, in vivo studies suggested that LTP at perforant path synapses could not be induced until at least days 9 or 10 and then in only a small percentage of animals. Because several characteristics of the oldest granule cells are adult-like on day 7, we re-examined the possibility of eliciting LTP in 7-day-old rats in vivo. We also recorded from 8- and 9-day-old rats to further elucidate the occurrence and magnitude of LTP in neonates. With halothane anesthesia, all animals in each age group exhibited synaptic plasticity of the excitatory postsynaptic potential following high-frequency stimulation of the MPP. In 7-day-old rats, LTP was elicited in 40% of the animals and had an average magnitude of 143%. Long-term depression (LTD) alone (magnitude of 84%) was induced in 40% of the animals, while short-term potentiation (STP) alone (magnitude of 123%) was induced in 10%. STP followed by LTD was elicited in the remaining 10%. Data were similar for all ages combined. In addition, the N-methyl-d-aspartate (NMDA) antagonist (R,S)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) blocked the occurrence of LTP at each age and doubled the percentage of animals expressing LTD alone for all ages combined. These results demonstrate that tetanic stimulation can elicit LTP or LTD at MPP synapses in 7-day-old rats, supporting our premise that at least a portion of the dentate gyrus is functional at this early age.
Collapse
Affiliation(s)
- Michael P O'Boyle
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | | | |
Collapse
|
8
|
Blaise JH, Bronzino JD. Effects of stimulus frequency and age on bidirectional synaptic plasticity in the dentate gyrus of freely moving rats. Exp Neurol 2003; 182:497-506. [PMID: 12895462 DOI: 10.1016/s0014-4886(03)00136-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the frequency-dependent transition from homosynaptic long-term depression (LTD) to long-term potentiation (LTP) at the lateral perforant pathway/dentate gyrus synapse in adult (90 days of age) and immature (15 days of age) awake, freely moving rats. Dentate-evoked field potentials were recorded and analyzed using the population spike amplitude and the field EPSP slope measures following sustained stimulation (900 pulses) of the lateral perforant pathway at various frequencies (1, 3, 7, 30, 50, or 200 Hz). Our results indicate that both the strength and the direction (LTP or LTD) of synaptic plasticity vary as a function of activation frequency: sustained low-frequency stimulation ranging from 1 to 7 Hz results in depression of activated synapses, whereas high-frequency stimulation (30-200 Hz) produces potentiation. In addition, a significant (P < 0.01) ontogenetic shift in the frequency of transition from LTD to LTP was observed; the transition frequency in immature animals was significantly lower than that obtained in adult animals. These observations agree strongly with the prediction of the Bienenstock-Cooper-Munro theory of synapse modification, indicating perhaps a neurophysiological basis for this theoretical model of learning in the dentate gyrus of awake behaving rats.
Collapse
Affiliation(s)
- J Harry Blaise
- Department of Engineering, Trinity College, Hartford, CT 06106, USA.
| | | |
Collapse
|
9
|
Velísek L, Velísková J, Stanton PK. Low-frequency stimulation of the kindling focus delays basolateral amygdala kindling in immature rats. Neurosci Lett 2002; 326:61-3. [PMID: 12052538 DOI: 10.1016/s0304-3940(02)00294-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stimulation of deep brain sites is a new approach for treatment of intractable seizures. In adult rats, low-frequency stimulation (LFS; 1-3 Hz) of the kindling site interferes with the course of kindling epileptogenesis. In this study we determined whether the LFS will be effective against the fast kindling in the basolateral amygdala in immature, 15 day old rats. LFS (15 min of 1 Hz stimulation) was applied after each of the 1 s, 60 Hz kindling stimulus. LFS suppressed afterdischarge duration and seizure stage throughout the course of kindling, which indicates a strong antiepileptogenic potential. As the kindling and LFS stimulation patterns are similar to those used for induction of long-term potentiation and long-term depression (LTD), respectively, LTD or depotentiation may play a role in the mechanism of action.
Collapse
Affiliation(s)
- Libor Velísek
- Department of Neurology, Albert Einstein College of Medicine, K314, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
10
|
Abstract
The role of L-type Ca2+ channels in the induction of synaptic plasticity in hippocampal slices of aged (22-24 months) and young adult (4-6 months) male Fischer 344 rats was investigated. Prolonged 1 Hz stimulation (900 pulses) of Schaffer collaterals, which normally depresses CA3/CA1 synaptic strength in aged rat slices, failed to induce long-term depression (LTD) during bath application of the L-channel antagonist nifedipine (10 microM). When 5 Hz stimulation (900 pulses) was used to modify synaptic strength, nifedipine facilitated synaptic enhancement in slices from aged, but not young, adult rats. This enhancement was pathway-specific, reversible, and impaired by the NMDA receptor (NMDAR) antagonist DL-2-amino-5-phosphonopentanoic acid (AP5). Induction of long-term potentiation (LTP) in aged rats, using 100 Hz stimulation, occluded subsequent synaptic enhancement by 5 Hz stimulation, suggesting that nifedipine-facilitated enhancement shares mechanisms in common with conventional LTP. Facilitation of synaptic enhancement by nifedipine likely was attributable to a reduction ( approximately 30%) in the Ca2+-dependent K+-mediated afterhyperpolarization (AHP), because the K+ channel blocker apamin (1 microM) similarly reduced the AHP and promoted synaptic enhancement by 5 Hz stimulation. In contrast, apamin did not block LTD induction using 1 Hz stimulation, suggesting that, in aged rats, the AHP does not influence LTD and LTP induction in a similar way. The results indicate that, during aging, L-channels can (1) facilitate LTD induction during low rates of synaptic activity and (2) impair LTP induction during higher levels of synaptic activation via an increase in the Ca2+-dependent AHP.
Collapse
|
11
|
Velísek L. Extracellular acidosis and high levels of carbon dioxide suppress synaptic transmission and prevent the induction of long-term potentiation in the CA1 region of rat hippocampal slices. Hippocampus 1998; 8:24-32. [PMID: 9519884 DOI: 10.1002/(sici)1098-1063(1998)8:1<24::aid-hipo3>3.0.co;2-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-term potentiation (LTP) is a long-lasting increase in synaptic strength induced by high frequency stimulation. LTP may participate in learning and memory formation. In many synaptic systems, LTP is dependent on intact function of N-methyl-D-aspartate (NMDA) receptors. NMDA receptors may be inhibited in different conditions involving also extracellular acidosis. A decrease in the extracellular pH accompanies many pathological states such as ischemia, hypoxia, and the CNS injury. The study was designed to determine whether comparable extracellular acid-base imbalances are able to interfere with the LTP induction. Hippocampal slices from adult rats were stimulated with high frequency stimulation (1 x 100 Hz/1 s) at Schaffer collateral-commissural synaptic system in the environment with different pH (6.7-7.8) and the field responses were recorded in CA1. Acidosis was achieved by supplying excessive CO2 or by HCO3-decrease in standard bicarbonate-containing buffer or by a direct acidification of the buffer containing Na-HEPES. Invariably, all forms of acidification suppressed the efficacy of normal, low frequency synaptic transmission and prevented the induction of LTP in a reversible manner; i.e., after reperfusion of the slices at pH 7.3 and restimulation, there was a return of synaptic transmission back to baseline, and a significant amount of LTP occurred. In contrast, alkalization to pH 7.8, although enhancing synaptic transmission efficacy, did not further increase the LTP magnitude compared to control environment with pH 7.3. The results suggest that extracellular acidosis associated with several pathological conditions in the CNS may significantly diminish the LTP induction, and thus negatively affect all physiological processes that utilize LTP.
Collapse
Affiliation(s)
- L Velísek
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
12
|
Abstract
Altered calcium (Ca2+) homeostasis is thought to play a key role in aging and neuropathology resulting in memory deficits. Several forms of hippocampal synaptic plasticity are dependent on Ca2+, providing a potential link between altered Ca2+ homeostasis and memory deficits associated with aging. The current study reviews evidence for Ca2+ dysregulation during aging which could interact with Ca(2+)-dependent synaptic plasticity. The authors suggest that changes in Ca2+ regulation could adjust the thresholds for synaptic modification, favoring processes for depression of synaptic strength during aging.
Collapse
Affiliation(s)
- T C Foster
- Department of Psychology, University of Virginia, Charlottesville 22903, USA.
| | | |
Collapse
|
13
|
Abstract
The present study describes the postnatal development of zinc-containing boutons and their neurons of origin in the hippocampal region of the mouse. Ages investigated for the development of zinc-containing neuropil were postnatal days 0 (P0), P3, P7, P11, P15, P21, and P28. For zinc-containing cell bodies P7, P15, P21, and P28 were studied. In the area dentata, zinc-containing neuropil appeared first by P3 adjacent to the suprapyramidal limb of the granule cell layer and extended later toward the infrapyramidal limb. By P15, inter- and intralaminar gradients corresponded to those seen in adult animals. The appearance of labeled granule cells followed closely, although temporally delayed, the pattern of granule cell neurogenesis. All granule cells were labeled by P28. In the hippocampus proper, zinc-containing neuropil was seen by P0, but staining of the incipient mossy fiber zone was first visible by P3. Staining pattern and intensity developed gradually until they reached their mature appearance by P15. The distribution of labeled cells was identical to that seen in mature animals by P7 in CA3, but first by P21 in CA1. In the subiculum, neuropil staining first appeared proximally by P7, included all of this area by P11, and appeared mature by P21. A few labeled cells were seen in the proximal subiculum at all ages at which labeled cells were present in CA1. Labeled cells which extended further distally became first visible by P21. Their number and labeling intensity reached mature levels by P28. In the presubiculum, retrosplenial area 29e, and parasubiculum, neuropil staining first appeared by P3. The retrosplenial area 29e could be distinguished by P11. This area and the presubiculum reached their adult appearance by P21. This occurred first by P28 in the parasubiculum due to the late maturation of the parasubiculum a. Labeled cells were first seen by P7 in layer III of the presubiculum and by P15 in the retrosplenial area 29e and the parasubiculum. Cell labeling appeared mature by the same times as the neuropil staining. In the entorhinal areas a very light neuropil stain was apparent in the deeper layers by P0. A distinct rise in staining intensity was first observed by P7 in layers I-III. Thereafter, mature characteristics developed gradually and were attained by P21. Cell labeling was not seen in the medial entorhinal area. A few labeled cells were apparent by P7 in the lateral entorhinal area. After a slight increase by P15, numerous labeled cells were found in layer II and layer VI by P21. Their distribution and labeling intensity appeared mature by P28. Zinc-containing cells appear to represent cells formed late in the course of neurogenesis in all areas aside from the lateral entorhinal area. As far as intrinsic connections are concerned, it is the development of projections from this subset of neurons which is monitored in this study. We suggest that the appearance of zinc may contribute via its different effects on N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors to the end of a developmental phase that is permissive to changes in synaptic efficacy. Species differences and alternative functions of zinc are considered.
Collapse
Affiliation(s)
- L Slomianka
- Department of Anatomy and Human Biology, University of Western Australia, Nedlands, Australia.
| | | |
Collapse
|
14
|
Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J Neurosci 1996. [PMID: 8815877 DOI: 10.1523/jneurosci.16-19-05951.1996] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies have suggested that an increase in intracellular [Ca2+] is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission, and that release of Ca2+ from intracellular storage pools can be necessary to induce LTP. We investigated whether release of Ca2+ from intracellular stores also is required for the induction of LTD at Schaffer collateral-CA1 synapses in hippocampal slices. Both thapsigargin (1 microM) and cyclopiazonic acid (1 microM), compounds that deplete all intracellular Ca2+ pools by blocking LTP-dependent Ca2+ uptake into intracellular compartments, blocked the induction, but not maintenance, of LTD by low-frequency stimulation (LFS) (1 Hz/15 min) without affecting baseline synaptic transmission. Washout of the reversible inhibitor cyclopiazonic acid restored the ability to induce LTD. In contrast, thapsigargin did not block depotentiation of LTP by 1 Hz LFS, suggesting that LTP causes a reduction in the threshold [Ca2+] necessary for LTD. Selective depletion of the ryanodine receptor-gated Ca2+ pool by bath application of ryanodine (10 microM) also blocked the induction of LTD, indicating a requirement for Ca(2+)-induced Ca2+ release. Impalement of CA1 pyramidal neurons with microelectrodes containing thapsigargin (500 nM to 200 microM) prevented the induction of LTD at synapses on that neuron without blocking LTD in the rest of the slice. In contrast, similar filling of CA1 pyramidal neurons with ryanodine (2 microM to 5 mM) did not block the induction of LTD. From these data, we conclude that the induction of LTD requires release of Ca2+ both from a presynaptic ryanodine-sensitive pool and from postsynaptic (presumably IP3-gated) stores.
Collapse
|
15
|
Izumi Y, Zorumski CF. Developmental changes in long-term potentiation in CA1 of rat hippocampal slices. Synapse 1995; 20:19-23. [PMID: 7624825 DOI: 10.1002/syn.890200104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Long-term potentiation (LTP) was examined in the CA1 region of rat hippocampal slices at postnatal day 9 (P9), P15, P30, P60, P90, P120, and P300. A single 100 Hz x 1 sec tetanus failed to induce LTP in P9 slices, while similar degrees of LTP were observed at P15, P30, and P60. At P30, changes in population spike (PS) amplitudes were accurately predicted by changes in dendritic excitatory postsynaptic potentials (EPSPs). However, at P15, the predicted increase in PS calculated from corresponding changes in dendritic EPSPs was significantly less than the observed increase, suggesting that EPSP-PS dissociation (ES-dissociation) plays a substantial role in LTP at P15. Additionally, the corresponding changes in somatic EPSP height measured in the CA1 cell layer did not predict the E-S dissociation at P15, suggesting that the E-S dissociation arises largely from changes in the excitability of the soma. Using a single 100 Hz x 1 sec tetanus, LTP proved difficult to induce in slices from rats > or = P90, with slices showing initial enhancement that faded over 60 min of monitoring.
Collapse
Affiliation(s)
- Y Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
16
|
Velísek L, Moshé SL, Stanton PK. Resistance of hippocampal synaptic transmission to hypoxia in carbonic anhydrase II-deficient mice. Brain Res 1995; 671:245-53. [PMID: 7743211 DOI: 10.1016/0006-8993(94)01336-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mutant Car2n/Car2n mice deficient in carbonic anhydrase II (CA II; a major brain CA isozyme) suffer from systemic acidosis and are more resistant to experimental seizures than their normal littermates (+/+ or +/Car2n). The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor has been shown to contribute to long-term potentiation (LTP) of synaptic transmission, hypoxic/ischemic neuronal injury and to be blocked by extracellular protons (acidosis). We compared the effects of hypoxia on synaptic transmission and LTP in field CA1 of hippocampal slices from CA II-deficient mice to their normal littermates. Slices were subjected to successive 5, 10 and 15 min-periods of hypoxia with 30 min-recovery periods in between. Hippocampal slices from mutant, CA II-deficient mice, were more resistant to all periods of hypoxia tested than slices from normal littermates. In a separate set of mutant and normal slices, there were no differences in LTP of population spike amplitude. The relative resistance of CA II-deficient mice to hypoxia-induced damage may be a consequence of severe interstitial acidosis. The sustained influence of increased extracellular proton concentrations may change the characteristics of NMDA receptors resulting in an increased resistance of synaptic transmission in CA II-deficient mice to hypoxia compared to controls.
Collapse
Affiliation(s)
- L Velísek
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
17
|
Battistin T, Cherubini E. Developmental shift from long-term depression to long-term potentiation at the mossy fibre synapses in the rat hippocampus. Eur J Neurosci 1994; 6:1750-5. [PMID: 7874314 DOI: 10.1111/j.1460-9568.1994.tb00567.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During development, in the CA1 hippocampal region, long-term potentiation (LTP) starts appearing at postnatal (P) day 7 and reaches its maximal expression towards the end of the second postnatal week. However, LTP is often preceded by long-term depression (LTD), an activity-dependent and long-lasting reduction of synaptic strength. LTD can be induced by sustained, low-frequency stimulation of the afferent pathway and is dependent on activation of N-methyl-D-aspartate (NMDA) receptors. We report here that, in the CA3 hippocampal region, during a critical period of postnatal development, between P6 and P14, a high-frequency stimulation train (100 Hz, 1 s) to the mossy fibres in the presence of the NMDA receptor antagonist (+)-3-(2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP; 20 microM) induced LTD. The depression of the amplitude of the field excitatory postsynaptic potential (EPSP) was 28 +/- 7% (n = 21). This form of LTD was NMDA-independent and synapse-specific. When a tetanus was applied in the presence of CPP and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 microM), which blocked the field EPSP, it failed to induce LTD upon washout of CNQX. LTD was probably postsynaptic in origin since it did not affect paired-pulse facilitation. A rise in extracellular calcium concentration (from 2 to 4 mM) produced LTP instead of LTD. At the end of the second postnatal week, the same high-frequency stimulation train to the mossy fibres induced LTP as in adult neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Battistin
- Biophysics Laboratory, International School for Advanced Studies, Trieste, Italy
| | | |
Collapse
|