1
|
Kawakami N, Wekerle H. Life history of a brain autoreactive T cell: From thymus through intestine to blood-brain barrier and brain lesion. Neurotherapeutics 2024; 21:e00442. [PMID: 39237437 DOI: 10.1016/j.neurot.2024.e00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Brain antigen-specific autoreactive T cells seem to play a key role in inducing inflammation in the central nervous system (CNS), a characteristic feature of human multiple sclerosis (MS). These T cells are generated within the thymus, where they escape negative selection and become integrated into the peripheral immune repertoire of immune cells. Typically, these autoreactive T cells rest in the periphery without attacking the CNS. When autoimmune T cells enter gut-associated lymphatic tissue (GALT), they may be stimulated by the microbiota and its metabolites. After activation, the cells migrate into the CNS through the blood‒brain barrier, become reactivated upon interacting with local antigen-presenting cells, and induce inflammatory lesions within the brain parenchyma. This review describes how microbiota influence autoreactive T cells during their life, starting in the thymus, migrating through the periphery and inducing inflammation in their target organ, the CNS.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany; Emeritus Group Neuroimmunology, Max Planck Institute of Biological Intelligence, Germany.
| |
Collapse
|
2
|
Clarkson TC, Iguchi N, Xie AX, Malykhina AP. Differential transcriptomic changes in the central nervous system and urinary bladders of mice infected with a coronavirus. PLoS One 2022; 17:e0278918. [PMID: 36490282 PMCID: PMC9733897 DOI: 10.1371/journal.pone.0278918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) often leads to the development of neurogenic lower urinary tract symptoms (LUTS). We previously characterized neurogenic bladder dysfunction in a mouse model of MS induced by a coronavirus, mouse hepatitis virus (MHV). The aim of the study was to identify genes and pathways linking neuroinflammation in the central nervous system with urinary bladder (UB) dysfunction to enhance our understanding of the mechanisms underlying LUTS in demyelinating diseases. Adult C57BL/6 male mice (N = 12) received either an intracranial injection of MHV (coronavirus-induced encephalomyelitis, CIE group), or sterile saline (control group). Spinal cord (SC) and urinary bladders (UB) were collected from CIE mice at 1 wk and 4 wks, followed by RNA isolation and NanoString nCounter Neuroinflammation assay. Transcriptome analysis of SC identified a significantly changed expression of >150 genes in CIE mice known to regulate astrocyte, microglia and oligodendrocyte functions, neuroinflammation and immune responses. Two genes were significantly upregulated (Ttr and Ms4a4a), and two were downregulated (Asb2 and Myct1) only in the UB of CIE mice. Siglec1 and Zbp1 were the only genes significantly upregulated in both tissues, suggesting a common transcriptomic link between neuroinflammation in the CNS and neurogenic changes in the UB of CIE mice.
Collapse
Affiliation(s)
- Taylor C. Clarkson
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Alison Xiaoqiao Xie
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Anna P. Malykhina
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
3
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Li Z, Korhonen EA, Merlini A, Strauss J, Wihuri E, Nurmi H, Antila S, Paech J, Deutsch U, Engelhardt B, Chintharlapalli S, Koh GY, Flügel A, Alitalo K. Angiopoietin-2 blockade ameliorates autoimmune neuroinflammation by inhibiting leukocyte recruitment into the CNS. J Clin Invest 2020; 130:1977-1990. [PMID: 32149735 PMCID: PMC7108925 DOI: 10.1172/jci130308] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-2 (Ang2), a ligand of the endothelial Tie2 tyrosine kinase, is involved in vascular inflammation and leakage in critically ill patients. However, the role of Ang2 in demyelinating central nervous system (CNS) autoimmune diseases is unknown. Here, we report that Ang2 is critically involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis. Ang2 expression was induced in CNS autoimmunity, and transgenic mice overexpressing Ang2 specifically in endothelial cells (ECs) developed a significantly more severe EAE. In contrast, treatment with Ang2-blocking Abs ameliorated neuroinflammation and decreased spinal cord demyelination and leukocyte infiltration into the CNS. Similarly, Ang2-binding and Tie2-activating Ab attenuated the development of CNS autoimmune disease. Ang2 blockade inhibited expression of EC adhesion molecules, improved blood-brain barrier integrity, and decreased expression of genes involved in antigen presentation and proinflammatory responses of microglia and macrophages, which was accompanied by inhibition of α5β1 integrin activation in microglia. Taken together, our data suggest that Ang2 provides a target for increasing Tie2 activation in ECs and inhibiting proinflammatory polarization of CNS myeloid cells via α5β1 integrin in neuroinflammation. Thus, Ang2 targeting may serve as a therapeutic option for the treatment of CNS autoimmune disease.
Collapse
Affiliation(s)
- Zhilin Li
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emilia A Korhonen
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arianna Merlini
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Göttingen, Germany
| | - Judith Strauss
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Göttingen, Germany
| | - Eleonoora Wihuri
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jennifer Paech
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Göttingen, Germany
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Lee S, Nedumaran B, Hypolite J, Caldwell B, Rudolph MC, Malykhina AP. Differential neurodegenerative phenotypes are associated with heterogeneous voiding dysfunction in a coronavirus-induced model of multiple sclerosis. Sci Rep 2019; 9:10869. [PMID: 31350464 PMCID: PMC6659655 DOI: 10.1038/s41598-019-47407-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Patients with multiple sclerosis (MS) develop a variety of lower urinary tract symptoms (LUTS). We previously characterized a murine model of neurogenic bladder dysfunction induced by a neurotropic strain of a coronavirus. In the present study, we further study the role of long-lasting neurodegeneration on the development of neurogenic bladder dysfunction in mice with corona-virus induced encephalitis (CIE). Long-term follow up study revealed three phenotypes of neurodegenerative symptom development: recovery (REC group), chronic progression (C-PRO group) and chronic disease with relapsing-remitting episodes (C-RELAP group). The levels of IL-1β in REC group, IL-10 in C-RELAP group, and IL-1β, IL-6, IL-10 and TNF-α in C-PRO group were diminished in the brain. The levels of TNF-α in REC group and INF-γ, IL-2, TGF-β and TNF-α in the C-PRO group were also diminished in the urinary bladder. Mice in C-RELAP group showed a delayed recovery of voiding function. In vitro contractility studies determined a decreased basal detrusor tone and reduced amplitude of nerve-mediated contractions in C-RELAP group, whereas C-PRO group had elevated muscle-mediated contractions. In conclusion, mice with CIE developed three phenotypes of neurologic impairment mimicking different types of MS progression in humans and showed differential mechanisms driving neurogenic bladder dysfunction.
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, California, USA
| | - Balachandar Nedumaran
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, USA
| | - Joseph Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, USA
| | - Brian Caldwell
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Denver, Aurora, Co, USA
- NORC Metabolic and Cellular Analysis Core Center for Women's Health Research, University of Colorado Denver, Aurora, Co, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver, Aurora, Co, USA.
| |
Collapse
|
6
|
McCombe PA. The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J Clin Med 2018; 7:jcm7120494. [PMID: 30486504 PMCID: PMC6306813 DOI: 10.3390/jcm7120494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023] Open
Abstract
The role of pregnancy in multiple sclerosis (MS) is of importance because many patients with MS are young women in the childbearing age who require information to inform their reproductive decisions. Pregnancy is now well-known to be associated with fewer relapses of MS and reduced activity of autoimmune encephalomyelitis (EAE). However, in women with multiple sclerosis, this benefit is not always sufficient to protect against a rebound of disease activity if disease-modulating therapy is ceased for pregnancy. There is concern that use of assisted reproductive therapies can be associated with relapses of MS, but more data are required. It is thought that the beneficial effects of pregnancy are due to the pregnancy-associated changes in the maternal immune system. There is some evidence of this in human studies and studies of EAE. There is also evidence that having been pregnant leads to better long-term outcome of MS. The mechanism for this is not fully understood but it could result from epigenetic changes resulting from pregnancy or parenthood. Further studies of the mechanisms of the beneficial effects of pregnancy could provide information that might be used to produce new therapies.
Collapse
Affiliation(s)
- Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Brisbane, QLD 4029, Australia.
| |
Collapse
|
7
|
Age-associated changes in rat immune system: Lessons learned from experimental autoimmune encephalomyelitis. Exp Gerontol 2014; 58:179-97. [DOI: 10.1016/j.exger.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
|
8
|
Wlodarczyk A, Løbner M, Cédile O, Owens T. Comparison of microglia and infiltrating CD11c⁺ cells as antigen presenting cells for T cell proliferation and cytokine response. J Neuroinflammation 2014; 11:57. [PMID: 24666681 PMCID: PMC3987647 DOI: 10.1186/1742-2094-11-57] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/09/2014] [Indexed: 12/25/2022] Open
Abstract
Background Tissue-resident antigen-presenting cells (APC) exert a major influence on the local immune environment. Microglia are resident myeloid cells in the central nervous system (CNS), deriving from early post-embryonic precursors, distinct from adult hematopoietic lineages. Dendritic cells (DC) and macrophages infiltrate the CNS during experimental autoimmune encephalomyelitis (EAE). Microglia are not considered to be as effective APC as DC or macrophages. Methods In this work we compared the antigen presenting capacity of CD11c+ and CD11c− microglia subsets with infiltrating CD11c+ APC, which include DC. The microglial subpopulations (CD11c− CD45dim CD11b+ and CD11c+ CD45dim CD11b+) as well as infiltrating CD11c+ CD45high cells were sorted from CNS of C57BL/6 mice with EAE. Sorted cells were characterised by flow cytometry for surface phenotype and by quantitative real-time PCR for cytokine expression. They were co-cultured with primed T cells to measure induction of T cell proliferation and cytokine response. Results The number of CD11c+ microglia cells increased dramatically in EAE. They expressed equivalent levels of major histocompatibility complex and co-stimulatory ligands CD80 and CD86 as those expressed by CD11c+ cells infiltrating from blood. CD11c+ microglia differed significantly from blood-derived CD11c+ cells in their cytokine profile, expressing no detectable IL-6, IL-12 or IL-23, and low levels of IL-1β. By contrast, CD11c− microglia expressed low but detectable levels of all these cytokines. Transforming growth factor β expression was similar in all three populations. Although CNS-resident and blood-derived CD11c+ cells showed equivalent ability to induce proliferation of myelin oligodendrocyte glycoprotein-immunised CD4+ T cells, CD11c+ microglia induced lower levels of T helper (Th)1 and Th17 cytokines, and did not induce Th2 cytokines. Conclusions Our findings show distinct subtypes of APC in the inflamed CNS, with a hierarchy of functional competence for induction of CD4+ T cell responses.
Collapse
Affiliation(s)
| | | | | | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, J,B, Winsløwsvej 25, Odense, DK 5000, Denmark.
| |
Collapse
|
9
|
Williams RA, Greaves R, Read M, Timmis J, Andrews PS, Kumar V. In silico investigation into dendritic cell regulation of CD8Treg mediated killing of Th1 cells in murine experimental autoimmune encephalomyelitis. BMC Bioinformatics 2013; 14 Suppl 6:S9. [PMID: 23734666 PMCID: PMC3633023 DOI: 10.1186/1471-2105-14-s6-s9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis has been used extensively as an animal model of T cell mediated autoimmunity. A down-regulatory pathway through which encephalitogenic CD4Th1 cells are killed by CD8 regulatory T cells (Treg) has recently been proposed. With the CD8Treg cells being primed by dendritic cells, regulation of recovery may be occuring around these antigen presenting cells. CD4Treg cells provide critical help within this process, by licensing dendritic cells to prime CD8Treg cells, however the spatial and temporal aspects of this help in the CTL response is currently unclear. Results We have previously developed a simulator of experimental autoimmune encephalomyelitis (ARTIMMUS). We use ARTIMMUS to perform novel in silico experimentation regarding the priming of CD8Treg cells by dendritic cells, and the resulting CD8Treg mediated killing of encephalitogenic CD4Th1 cells. Simulations using dendritic cells that present antigenic peptides in a mutually exclusive manner (either MBP or TCR-derived, but not both) suggest that there is no significant reliance on dendritic cells that can prime both encephalitogenic CD4Th1 and Treg cells. Further, in silico experimentation suggests that dynamics of CD8Treg priming are significantly influenced through their spatial competition with CD4Treg cells and through the timing of Qa-1 expression by dendritic cells. Conclusion There is no requirement for the encephalitogenic CD4Th1 cells and cytotoxic CD8Treg cells to be primed by the same dendritic cells. We conjecture that no significant portion of CD4Th1 regulation by Qa-1 restricted CD8Treg cells occurs around individual dendritic cells, and as such, that CD8Treg mediated killing of CD4Th1 cells occurring around dendritic cells is not critical for recovery from the murine autoimmune disease. Furthermore, the timing of the CD4Treg licensing of dendritic cells and the spatial competition between CD4Treg and CD8Treg cells around the dendritic cell is critical for the size of the cytotoxic T lymphocyte response, because dendritic cells have a limited lifespan. If treatments can be found to either speed up the licensing process, or increase the spatial competitiveness of CD8Treg cells, the magnitude of the cytotoxic T lymphocyte response can be increased.
Collapse
|
10
|
Inglis HR, Greer JM, McCombe PA. Gene expression in the spinal cord in female lewis rats with experimental autoimmune encephalomyelitis induced with myelin basic protein. PLoS One 2012; 7:e48555. [PMID: 23139791 PMCID: PMC3491034 DOI: 10.1371/journal.pone.0048555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE), the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE) is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model. Methodology/Principal Findings MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR. Conclusions/Significance EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease.
Collapse
Affiliation(s)
- Hayley R. Inglis
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Judith M. Greer
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Pamela A. McCombe
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
11
|
Sosa RA, Forsthuber TG. The critical role of antigen-presentation-induced cytokine crosstalk in the central nervous system in multiple sclerosis and experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 2011; 31:753-68. [PMID: 21919736 PMCID: PMC3189551 DOI: 10.1089/jir.2011.0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4(+) T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process.
Collapse
Affiliation(s)
- Rebecca A Sosa
- Department of Biology, University of Texas at San Antonio, Texas 78249, USA
| | | |
Collapse
|
12
|
Almolda B, González B, Castellano B. Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE. J Neuroimmunol 2010; 223:39-54. [PMID: 20451260 DOI: 10.1016/j.jneuroim.2010.03.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/17/2010] [Accepted: 03/31/2010] [Indexed: 12/23/2022]
Abstract
Antigen presentation, a key mechanism in immune responses, involves two main signals: the first is provided by the engagement of a major histocompatibility complex (MHC), class I or class II, with their TCR receptor in lymphocytes, whereas the second demands the participation of different co-stimulatory molecules, such as CD28, CTLA-4 and their receptors B7.1 and B7.2. Specific T-cell activation and deactivation are achieved through this signalling. The aim of our study is to characterise, in the acute experimental autoimmune encephalomyelitis (EAE) model in Lewis rat, the temporal expression pattern of these molecules as well as the cells responsible for their expression. To accomplish that, MBP-immunised female Lewis rats were daily examined for the presence of clinical symptoms and sacrificed, according to their clinical score, at different phases during EAE. Spinal cords were cut with a cryostat and processed for immunohistochemistry: MHC-class I and MHC-class II, co-stimulatory molecules (B7.1, B7.2, CD28, CTLA-4) and markers of dendritic cells (CD1 for immature cells and fascin for mature cells). Our results show that microglial cells are activated in the inductive phase and, during this phase and peak, they are able to express MHC-class I, MHC-class II and CD1, but not B7.1 and B7.2. This microglial phenotype may induce the apoptosis or anergy of infiltrated CD28+ lymphocytes observed around blood vessels and in the parenchyma. During the recovery phase, microglial cells express high MHC-class I and class II and, those located in the surroundings of blood vessels, displayed the B7.2 co-stimulatory molecule. These cells are competent to interact with CTLA-4+ cells, which indicate an active role of microglial cells in modulating the ending of the immune response by inducing lymphocyte activity inhibition and Treg activation. Once clinical symptomatology disappeared, some foci of activated microglial cells (MHC-class II+/B7.2+) were still present in concomitance with CTLA-4+ cells, suggesting a prolonged involvement of microglia in lymphocyte inhibition and tolerance promotion. In addition to microglia, during the inductive and recovery phases, we also found perivascular ED2+ cells and fascin+ cells which are able to migrate to the parenchyma and may play a role in lymphocytic regulation. Further studies to understand the specific function played by these cells are warranted.
Collapse
Affiliation(s)
- Beatriz Almolda
- Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
13
|
Abstract
Multiple sclerosis (MS) is a relatively common disease of young adults. Patients with MS can have a wide range of symptoms and may develop significant disability. The cause of MS is unknown, but immunological mechanisms are important. In MS, the pathological features include prominent demyelination and inflammation, but there is also evidence of neurodegeneration. Bladder symptoms are common in MS. The bladder is under neural control, and bladder disturbance is usually attributed to demyelination or loss of axons from the neural pathways, particularly those in the spinal cord, that control the bladder. However, as with other symptoms in MS, the presence of bladder disturbance does not always correlate well with MRI lesions. We speculate that other possible causes of bladder dysfunction in MS might include the effects of circulating toxic factors. Urgency of micturition is prominent in MS, and better understanding of the receptors involved in bladder sensation suggests possible treatment strategies through inhibiting these receptors.
Collapse
Affiliation(s)
- Pamela A McCombe
- Center for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital, Herston, QLD, Australia.
| | | | | |
Collapse
|
14
|
Hofstetter HH, Toyka KV, Gold R. Permanent effector phenotype of neuroantigen-specific T cells acquired in the central nervous system during experimental allergic encephalomyelitis. Neurosci Lett 2006; 391:127-30. [PMID: 16198481 DOI: 10.1016/j.neulet.2005.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 08/09/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is regarded as an animal model of the human autoimmune disease multiple sclerosis (MS). Autoreactive T cells are present in the peripheral T cell repertoire of healthy mice and mediate clinical autoimmune disease only after activation by immunization or pathogens and migrate into the central nervous system (CNS). Because it is not known whether autoreactive T cells are regulated differentially once entering the CNS we investigated cytokine regulation in T cells from peripheral lymphatic organs and from the inflamed CNS ex vivo obtained from SJL mice after inducing relapsing-remitting EAE with PLP peptide 139-151. We show here that during acute EAE, an interleukin-2 (IL-2) biased T cell response exists in the spleen, while an interferon-gamma (IFN-gamma) biased T cell response prevails in the CNS of mice with acute EAE. The IFN-gamma biased phenotype was stable with optimized costimulation and even after in vitro stimulation with IL-2. After adoptive transfer into naïve syngeneic mice these T cells were only partially reversed to an IL-2 biased phenotype. These findings of our work suggest that a permanent effector phenotype of neuroantigen-specific T cells is finally acquired in the CNS in EAE.
Collapse
Affiliation(s)
- Harald H Hofstetter
- Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany.
| | | | | |
Collapse
|
15
|
Raivich G, Banati R. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. ACTA ACUST UNITED AC 2005; 46:261-81. [PMID: 15571769 DOI: 10.1016/j.brainresrev.2004.06.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2004] [Indexed: 12/23/2022]
Abstract
Microglia and macrophages, one a brain-resident, the other a mostly hematogenous cell type, represent two related cell types involved in the brain pathology in multiple sclerosis and its autoimmune animal model, the experimental allergic encephalomyelitis. Together, they perform a variety of different functions: they are the primary sensors of brain pathology, they are rapidly recruited to sites of infection, trauma or autoimmune inflammation in experimental allergic encephalomyelitis and multiple sclerosis and they are competent presenters of antigen and interact with T cells recruited to the inflamed CNS. They also synthesise a variety of molecules, such as cytokines (TNF, interleukins), chemokines, accessory molecules (B7, CD40), complement, cell adhesion glycoproteins (integrins, selectins), reactive oxygen radicals and neurotrophins, that could exert a damaging or a protective effect on adjacent axons, myelin and oligodendrocytes. The current review will give a detailed summary on their cellular response, describe the different classes of molecules expressed and their attribution to the blood derived or brain-resident macrophages and then discuss how these molecules contribute to the neuropathology. Recent advances using chimaeric and genetically modified mice have been particularly telling about the specific, overlapping and nonoverlapping roles of macrophages and microglia in the demyelinating disease. Interestingly, they point to a crucial role of hematogenous macrophages in initiating inflammation and myelin removal, and that of microglia in checking excessive response and in the induction and maintenance of remission.
Collapse
Affiliation(s)
- Gennadij Raivich
- Department of Anatomy, Obstetrics and Gynaecology, Perinatal Brain Repair Centre, University College London, Chenies Mews 86-96 WC1E 6HX London, UK.
| | | |
Collapse
|
16
|
Role of Microglia and Macrophages in Eae. EXPERIMENTAL MODELS OF MULTIPLE SCLEROSIS 2005. [PMCID: PMC7120081 DOI: 10.1007/0-387-25518-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microglia and macrophages are related cell types that play an important role in the pathogenesis of MS and EAE. This chapters reviews the role of these cells in the normal brain and their contribution to inflammatory demyelinating disease, including their role in antigen presentation, co-stimulation, and production of cytokines and other inflammatory mediators
Collapse
|
17
|
Abromson-Leeman S, Bronson R, Luo Y, Berman M, Leeman R, Leeman J, Dorf M. T-cell properties determine disease site, clinical presentation, and cellular pathology of experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1519-33. [PMID: 15509523 PMCID: PMC1618652 DOI: 10.1016/s0002-9440(10)63410-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two distinct clinical phenotypes of experimental autoimmune encephalomyelitis are observed in BALB interferon-gamma knockout mice immunized with encephalitogenic peptides of myelin basic protein. Conventional disease, characterized by ascending weakness and paralysis, occurs with greater frequency after immunizing with a peptide comprising residues 59 to 76. Axial-rotatory disease, characterized by uncontrolled axial rotation, occurs with greater frequency in mice immunized with a peptide corresponding to exon 2 of the full length 21.5-kd protein. The two clinical phenotypes are histologically distinguishable. Conventional disease is characterized by inflammation and demyelination primarily in spinal cord, whereas axial-rotatory disease involves inflammation and demyelination of lateral medullary areas of brain. Both types have infiltrates in which neutrophils are a predominating component. By isolating T cells and transferring disease to naive recipients, we show here that the type of disease is determined entirely by the inducing T cell. Furthermore, studies using CXCR2 knockout recipients, unable to recruit neutrophils to inflammatory sites, show that although neutrophils are critical for some of these T cells to effect disease, there are also interferon-gamma-deficient T cells that induce disease in the absence of both interferon-gamma and neutrophils. These results highlight the multiplicity of T-cell-initiated effector pathways available for inflammation and demyelination.
Collapse
Affiliation(s)
- Sara Abromson-Leeman
- Department of Pathology, Harvard Medical School, New Research Building, 77 Louis Pasteur Ave., Boston, MA 02115, USA. sara@
| | | | | | | | | | | | | |
Collapse
|
18
|
Magnus T, Korn T, Jung S. Chronically stimulated microglial cells do no longer alter their immune functions in response to the phagocytosis of apoptotic cells. J Neuroimmunol 2004; 155:64-72. [PMID: 15342197 DOI: 10.1016/j.jneuroim.2004.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 06/02/2004] [Accepted: 06/03/2004] [Indexed: 12/25/2022]
Abstract
In an autoimmune inflammatory setting, ingestion of apoptotic T cells leads to a down-regulation of microglial immune functions. Recent studies have indicated that microglia can be matured by exposure to GM-CSF. GM-CSF stimulation led to a differentiated microglial phenotype and enhanced antigen-presenting capabilities. The secretion of TNF-alpha was significantly decreased by the uptake of apoptotic cells in unstimulated microglia, but not in GM-CSF-differentiated microglia. IL-10 secretion was unaffected. After ingestion of apoptotic cells, only previously unstimulated, but not GM-CSF-differentiated microglial cells decreased their T cell-activating potential as measured by IFN-gamma secretion in antigen-activated MBP-specific T cells. Thus, GM-CSF stimulation reduces the immunomodulatory functions of microglial cells.
Collapse
Affiliation(s)
- Tim Magnus
- Department of Neurology, Clinical Research Group for Multiple Sclerosis and Neuroimmunology, University of Homburg, D-66421 Homburg/Saar, Germany.
| | | | | |
Collapse
|
19
|
Magnus T, Chan A, Savill J, Toyka KV, Gold R. Phagocytotic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. J Neuroimmunol 2002; 130:1-9. [PMID: 12225883 DOI: 10.1016/s0165-5728(02)00212-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Apoptotic cell death of inflammatory T cells is an established mechanism to terminate an autoimmune inflammatory response in the rodent and human central nervous system (CNS). The efficient clearance of apoptotic cells protects the tissue from leakage of potentially harmful substances from secondary necrotic cells. As the resident phagocyte, the microglial cell is the primary candidate for the clearance of apoptotic lymphocytes. Furthermore, the phagocytosis of apoptotic cells is accompanied by a spectrum of anti-inflammatory effects. In this review, we focus on the mechanisms for removal of apoptotic inflammatory cells by microglia in the central nervous system and their functional consequences.
Collapse
Affiliation(s)
- Tim Magnus
- Department of Neurology, Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Julius-Maximilians-University, D-97080, Würzburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Magnus T, Chan A, Grauer O, Toyka KV, Gold R. Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5004-10. [PMID: 11673508 DOI: 10.4049/jimmunol.167.9.5004] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apoptotic cell death is an established mechanism to terminate an inflammatory response in rodent or human brains. Microglia, as the resident phagocyte, is a strong candidate for the clearance of apoptotic lymphocytes. Apoptosis was induced in cultured autologous thymocytes and in myelin basic protein (MBP)-specific, encephalitogenic T cells from Lewis rats by the addition of 0.1 microg/ml methylprednisolone. The amount of phagocytosis of apoptotic cells was assessed using an in vitro phagocytosis assay. Supernatants were collected to measure microglial cytokine secretion. The state of immune activation in microglia was investigated by a T cell proliferation assay and by flow cytometric analysis of microglial surface expression of immune molecules. Microglia ingested specifically apoptotic cells (apoptotic thymocytes as well as MBP-specific T cells) in contrast to nonapoptotic control cells (p < 0.0001). Subsequent secretion of the proinflammatory cytokines TNF-alpha and IL-12 was significantly decreased, while the secretion of IL-10 and TGF-beta was not affected. Furthermore, ingestion of apoptotic cells led to increased microglial MHC class II expression without concomitant increase in MHC class I, costimulatory molecules, and ICAM expression. The Ag-specific activation of MBP-specific T cells in cocultures with microglia that had ingested apoptotic cells was significantly less than that of identical T cells that interacted with nonphagocytosing microglia. Together with negative results obtained in a trans-well system, this is in support of a cell contact-mediated effect. Microglia might play an important role in the clearance of apoptotic cells. The uptake of apoptotic cells by microglia is tolerogenic and results in a reduced proinflammatory cytokine production and a reduced activation of encephalitogenic T cells. This might help to restrict an autoimmune inflammation and minimize damage in the inflamed brain.
Collapse
Affiliation(s)
- T Magnus
- Department of Neurology, Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Harness J, Pender MP, McCombe PA. Cyclosporin A treatment modulates cytokine mRNA expression by inflammatory cells extracted from the spinal cord of rats with experimental autoimmune encephalomyelitis induced by inoculation with myelin basic protein. J Neurol Sci 2001; 187:7-16. [PMID: 11440739 DOI: 10.1016/s0022-510x(01)00505-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Lewis rats, treatment with high doses of cyclosporin A (CsA) suppresses clinical signs of experimental autoimmune encephalomyelitis (EAE), although disease occurs when treatment is ceased. Treatment with low doses of CsA causes EAE to take a chronic relapsing course. We have previously shown that CsA treatment causes a decline in the number of T cells and increased inflammatory cell apoptosis in the spinal cord. The present study was undertaken to assess whether CsA therapy also modulates cytokine mRNA expression by inflammatory cells in the spinal cord of rats with EAE, looking for changes that might contribute to the observed effects of CsA on the course of EAE. EAE was induced in Lewis rats by inoculation with myelin basic protein and adjuvants. At the peak of neurological signs, on day 14 after inoculation, rats were given a single intraperitoneal injection of saline, or CsA at a dose of 8, 16, 32 or 64 mg/kg. The next day, rats were sacrificed, the spinal cords removed, inflammatory cells were extracted from the cords, and mRNA isolated from these cells. Expression of cytokine mRNA was assessed by semi-quantitative reverse transcription polymerase chain reaction (PCR) and by quantitative real-time PCR. With both techniques, we found that CsA suppressed the expression of interferon-gamma mRNA and interleukin-2 (IL-2) mRNA. With real-time PCR, we found that CsA caused significantly increased expression of transforming growth factor-beta mRNA. With the different techniques, we observed no consistent pattern of alteration of expression of interleukin-10 or interleukin-4 mRNA. It is possible that these changes in cytokine mRNA expression contribute to the modulation of the clinical course of EAE that is produced by CsA treatment.
Collapse
Affiliation(s)
- J Harness
- Neuroimmunology Research Unit, Department of Medicine, The University of Queensland, Australia
| | | | | |
Collapse
|
22
|
Medana IM, Chaudhri G, Chan-Ling T, Hunt NH. Central nervous system in cerebral malaria: 'Innocent bystander' or active participant in the induction of immunopathology? Immunol Cell Biol 2001; 79:101-20. [PMID: 11264703 DOI: 10.1046/j.1440-1711.2001.00995.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cerebral malaria (CM) is a major life-threatening complication of Plasmodium falciparum infection in humans, responsible for up to 2 million deaths annually. The mechanisms underlying the fatal cerebral complications are still not fully understood. Many theories exist on the aetiology of human CM. The sequestration hypo-thesis suggests that adherence of parasitized erythrocytes to the cerebral vasculature leads to obstruction of the microcirculation, anoxia or metabolic disturbances affecting brain function, resulting in coma. This mechanism alone seems insufficient to explain all the known features of CM. In this review we focus on another major school of thought, that CM is the result of an over-vigorous immune response originally evolved for the protection of the host. Evidence in support of this second hypothesis comes from studies in murine malaria models in which T cells, monocytes, adhesion molecules and cytokines, have been implicated in the development of the cerebral complications. Recent studies of human CM also indicate a role for the immune system in the neurological complications. However, it is likely that multiple mechanisms are involved in the induction of cerebral complications and both the presence of parasitized erythrocytes in the central nervous system (CNS) and immunopathological processes contribute to the pathogenesis of CM. Most studies examining immunopathological responses in CM have focused on reactions occurring primarily in the systemic circulation. However, these also do not fully account for the development of cerebral complications in CM. In this review we summarize results from human and mouse studies that demonstrate morphological and functional changes in the resident glial cells of the CNS. The degree of immune activation and degeneration of glial cells was shown to reflect the extent of neurological complications in murine cerebral malaria. From these results we highlight the need to consider the potentially important contribution within the CNS of glia and their secreted products, such as cytokines, in the development of human CM.
Collapse
Affiliation(s)
- I M Medana
- Departments of Pathology and Anatomy/Histology, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
23
|
White CA, Nguyen KB, Pender MP. B cell apoptosis in the central nervous system in experimental autoimmune encephalomyelitis: roles of B cell CD95, CD95L and Bcl-2 expression. J Autoimmun 2000; 14:195-204. [PMID: 10756081 DOI: 10.1006/jaut.2000.0363] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role and fate of B cells in the central nervous system (CNS) in experimental autoimmune encephalomyelitis (EAE) are unknown. Using enzyme-linked immunospot assays we now show that B cells reactive to myelin basic protein (MBP) accumulate in the CNS of Lewis rats with acute EAE induced by immunization with MBP and adjuvants. We also report that B cells are eliminated from the CNS by apoptosis during spontaneous recovery from this disease. Apoptotic B cells were identified by flow cytometry of inflammatory cells extracted from the spinal cord and by histological sections of the spinal cord using light and electron microscopic immunocytochemistry. B cell apoptosis occurred preferentially in the CNS rather than in the peripheral lymphoid organs and was maximal just prior to the onset of spontaneous clinical recovery. Three colour flow cytometry indicated that B cells expressing CD95 (Fas) or CD95 ligand (CD95L) were highly vulnerable to apoptosis, whereas B cells expressing Bcl-2 were relatively protected from apoptosis. We propose that B cells are eliminated from the CNS by the interaction of CD95L and CD95 on the same B cell and that this contributes to the spontaneous resolution of CNS inflammation and clinical recovery in acute EAE.
Collapse
Affiliation(s)
- C A White
- Neuroimmunology Research Unit, Department of Medicine, The University of Queensland, Clinical Sciences Building, Royal Brisbane Hospital, Brisbane, Queensland, 4029, Australia
| | | | | |
Collapse
|
24
|
Woodroofe N, Cross AK, Harkness K, Simpson JE. The role of chemokines in the pathogenesis of multiple sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 468:135-50. [PMID: 10635025 DOI: 10.1007/978-1-4615-4685-6_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- N Woodroofe
- Biomedical Research Centre, Sheffield Hallam University, South Yorkshire, U.K.
| | | | | | | |
Collapse
|
25
|
Graf MR, Jadus MR, Hiserodt JC, Wepsic HT, Granger GA. Development of Systemic Immunity to Glioblastoma Multiforme Using Tumor Cells Genetically Engineered to Express the Membrane-Associated Isoform of Macrophage Colony-Stimulating Factor. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We investigated the ability of Fischer rat T9 glioblastoma cells transduced with cDNA genes for the secreted (s) or membrane-associated (m) isoform of M-CSF to elicit an antitumor response when implanted into syngeneic animals. Intracranial (i.c.) implantation of 1 × 105 T9 cells expressing mM-CSF (T9/mM-CSF) resulted in 80% tumor rejection. Electron microscopy of the T9/mM-CSF tumor site, 2–4 days postimplantation, showed marked infiltration by macrophages, many of which were in physical contact with the T9/mM-CSF cells. Animals that rejected T9/mM-CSF cells were resistant to i.c. rechallenge with T9 cells, but not syngeneic MadB106 breast adenocarcinoma cells, suggesting that T9-specific immunity can be generated within the brain via the endogenous APCs. Intracranial injection of parental T9, vector control (T9/LXSN), or T9 cells secreting M-CSF (T9/sM-CSF) was 100% fatal. Subcutaneous injection of 1 × 107 T9/sM-CSF, T9/LXSN, or parental T9 cells resulted in progressive tumors. In contrast, T9/mM-CSF cells injected s.c. were destroyed in 7–10 days and animals developed systemic immunity to parental T9 cells. Passive transfer of CD3+ T cells from the spleens of immune rats into naive recipients transferred T9 glioma-specific immunity. In vitro, splenocytes from T9/mM-CSF-immunized rats specifically proliferated in response to various syngeneic glioma stimulator cells. However, only marginal T cell-mediated cytotoxicity was observed by these splenocytes in a CTL assay against T9 target cells, regardless of restimulation with T9 cells. Subcutaneous immunization with viable T9/mM-CSF cells was effective in eradicating i.c. T9 tumors.
Collapse
Affiliation(s)
| | - Martin R. Jadus
- †Pathology, University of California, Irvine, CA 92697; and
- ‡The Veterans Affairs Medical Center, Long Beach, CA 90822
| | | | - H. Terry Wepsic
- †Pathology, University of California, Irvine, CA 92697; and
- ‡The Veterans Affairs Medical Center, Long Beach, CA 90822
| | | |
Collapse
|
26
|
Affiliation(s)
- J F Collawn
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
27
|
McCombe PA, Harness J, Pender MP. Effects of cyclosporin A treatment on clinical course and inflammatory cell apoptosis in experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. J Neuroimmunol 1999; 97:60-9. [PMID: 10408980 DOI: 10.1016/s0165-5728(99)00047-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats by inoculation with myelin basic protein (MBP) and adjuvants. Rats were treated with second daily injections of saline or cyclosporin A (CsA) from the day of inoculation. Saline-treated rats had an acute episode of disease followed by clinical recovery. Rats treated with CsA 16 or 32 mg/kg had minimal signs of EAE at the usual time after inoculation, but developed signs of disease after treatment was ceased. Rats treated with CsA 8 mg/kg had a delayed first episode of disease and then developed a relapsing or a chronic persistent course of disease. CsA 4 mg/kg delayed the onset of disease. To study the effects of CsA on the inflammatory infiltrate, cells were extracted from the spinal cords of rats with EAE, 16 h after a single injection of CsA or saline. Extracted cells were labelled with antibodies to T cells, CD11b/c (macrophages/microglia), CD95 (Fas) and Fas ligand. CsA 4 mg/kg did not alter the composition of the inflammatory infiltrate. Treatment with higher single doses of CsA caused a dose-dependent decline in the percentage of T cell receptor (TCR) alphabeta+ cells in the inflammatory infiltrate. All doses of CsA caused a significant increase in the number and percentage of cells that were apoptotic. CsA treatment caused an increase in the percentages of CD5+ and TCR alphabeta+ cells that were apoptotic. There was a decline in the percentage of apoptotic T cells that were Vbeta8.2+, compared to the percentage of non-apoptotic T cells that were Vbeta8.2+, in CsA treated rats compared to saline-treated controls. This suggests that, while CsA treatment caused a non-specific increase in the overall level of T cell apoptosis in the spinal cord, it abrogated the selective apoptosis of Vbeta8.2+ encephalitogenic T cells that normally occurs during spontaneous recovery from acute EAE.
Collapse
Affiliation(s)
- P A McCombe
- Department of Medicine, The University of Queensland, Royal Brisbane Hospital, Australia.
| | | | | |
Collapse
|
28
|
Rohn W, Tang LP, Dong Y, Benveniste EN. IL-1β Inhibits IFN-γ-Induced Class II MHC Expression by Suppressing Transcription of the Class II Transactivator Gene. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.2.886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Class II MHC Ags are critical for the initiation of immune responses by presenting Ag to T lymphocytes, leading to their activation and differentiation. The transcriptional activation of class II MHC genes requires the induction of the class II transactivator (CIITA) protein, a master regulator that is essential for both constitutive and IFN-γ-inducible class II MHC expression. The cytokine IL-1β has been shown to inhibit IFN-γ-induced class II MHC expression in various cell types. We investigated the underlying mechanism of this inhibitory effect of IL-1β using human astroglioma cell lines. Our findings demonstrate that IL-1β prevents the expression of class II MHC mRNA and protein upon treatment with IFN-γ. Furthermore, we demonstrate that IFN-γ induction of CIITA mRNA expression is inhibited by treatment of cells with IL-1β. IL-1β suppressed IFN-γ activation of the type IV CIITA promoter in astroglioma cells, indicating that the inhibitory influence of IL-1β is mediated by inhibition of CIITA transcription. IL-1β did not interfere with IFN-γ receptor signal transduction, since tyrosine phosphorylation, nuclear translocation, and DNA binding of STAT-1α to an IFN-γ activation sequence of the type IV CIITA promoter were not affected by IL-1β. As well, IL-1β treatment did not affect the ability of IFN-γ-induced interferon-regulatory factor-1 (IRF-1) to bind the IRF-1 element within the type IV CIITA promoter. This study suggests that IL-1β may play a role in regulating immunoreactivity by inhibiting transcription of the CIITA gene, thereby reducing subsequent class II MHC expression.
Collapse
Affiliation(s)
| | - Li Ping Tang
- †Cell Biology, University of Alabama, Birmingham, AL 35294
| | - Yuanshu Dong
- †Cell Biology, University of Alabama, Birmingham, AL 35294
| | - Etty N. Benveniste
- *Physiology and Biophysics and
- †Cell Biology, University of Alabama, Birmingham, AL 35294
| |
Collapse
|
29
|
McCombe PA, Nickson I, Pender MP. Cytokine expression by inflammatory cells obtained from the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis induced by inoculation with myelin basic protein and adjuvants. J Neuroimmunol 1998; 88:30-8. [PMID: 9688321 DOI: 10.1016/s0165-5728(98)00068-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory cells were obtained from the spinal cords of rats with acute experimental autoimmune encephalomyelitis (EAE) induced by inoculation with myelin basic protein (MBP) and adjuvants. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to investigate the expression of mRNA for interleukin-2 (IL-2), IL-4, IL-10 and interferon-gamma (IFN-gamma) by cells from groups of rats studied 10-21 days after inoculation. On all days of study, the inflammatory cells, which were predominantly lymphocytes, expressed mRNA for IL-2, IL-4, IL-10 and IFN-gamma. In the mRNA from normal rat spinal cord tissue, there was little expression of cytokine mRNA. Cells from a short-term MBP-reactive T cell line expressed all the cytokines. Densitometry was used to measure the products of PCR, to assess the expression of each cytokine relative to that of beta-actin. IL-2 mRNA was expressed throughout the course of disease and reached a peak on day 18, during late clinical recovery. IFN-gamma was expressed throughout the course of the disease and was also high during late recovery. IL-4 mRNA was present in the spinal cord throughout the course of the disease, with a slight rise during late recovery. Relative expression of IL-10 rose to a peak on days 17-19, during late recovery from clinical disease. This study indicates that IL-2, IL-4, IL-10 and IFN-gamma are expressed by inflammatory cells in the spinal cord in EAE, with the relative expression of all cytokines being high during late clinical recovery.
Collapse
Affiliation(s)
- P A McCombe
- Department of Medicine, The University of Queensland, Australia.
| | | | | |
Collapse
|
30
|
Takaoka Y, Nagai H, Tanahashi M, Kawada K. Cyclosporin A and FK-506 inhibit development of superantigen-potentiated collagen-induced arthritis in mice. GENERAL PHARMACOLOGY 1998; 30:777-82. [PMID: 9559334 DOI: 10.1016/s0306-3623(97)00331-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
1. Staphylococcal enterotoxine B (SEB; superantigen) accelerated the onset of arthritis in mice preimmunized with type II collagen (SEB-potentiated collagen-induced arthritis). Cyclosporin A and FK-506 inhibited the induction and development of clinical signs and histopathological changes of SEB-potentiated collagen-induced arthritis in mice. 2. Simultaneously, both cyclosporin A and FK-506 inhibited the development of humoral and cellular immunity to type II collagen. 3. The expression of IL-2 receptor (CD25) by SEB on splenocyte T cells from collagen-preimmunized mice was inhibited by both agents in ex vivo experimentation.
Collapse
Affiliation(s)
- Y Takaoka
- Department of Pharmacology, Gifu Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
31
|
Nagai H, Goto M, Kamada H, Boda K, Kitagaki K, Takaoka Y. Immunopharmacological studies on experimental allergic encephalomyelitis in DA rats. GENERAL PHARMACOLOGY 1998; 30:161-6. [PMID: 9502169 DOI: 10.1016/s0306-3623(97)00101-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immunopharmacological profile of experimental allergic encephalomyelitis (EAE) in DA rats was compared to that in Lewis rats, which are commonly used for the study of EAE. DA rats showed higher susceptibility to EAE than Lewis rats. The immunological studies indicate that DA rats showed higher humoral and cellular immune response to myelin basic protein (MBP) than Lewis rats. This is probably due to the susceptible T cells to mitogen and autoreactive T cells to MBP in DA rats. In pharmacological studies, cyclosporin A, FK-506 and prednisolone suppressed the development of EAE in both strains in a similar manner. These results suggest the existence of two different types of T cells with respect to the onset of EAE in DA rats: one is highly reactive to mitogen and MBP; the other is regulated by cyclosporin A and FK-506.
Collapse
Affiliation(s)
- H Nagai
- Department of Pharmacology, Gifu Pharmaceutical University, Mitahora-Higashi, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
OBJECTIVE Psychoneuroimmunology, which investigates the bidirectional communication between the central nervous system and the immune system, has been greatly advanced by the use of animal models. The objective of this paper is to describe animal models of disease that can or might be utilized to elucidate neural-immune interactions that alter pathogenesis. METHODS This paper reviews animal studies that have demonstrated a link among the brain, behavior, immunity, and disease, highlighting models in which the potential contribution of CNS-immune interactions has not yet been explored. RESULTS Animal studies allow for careful control of environmental stimuli, genetic background, and immunological challenge. As such, they are an important component of psychoneuroimmunology research. Models in which one might study the role of psychosocial factors in immunologically mediated disease processes, as in the case of other pathophysiologic processes, profit from an ability to manipulate both stressful events and the magnitude of the challenge to the immune system. CONCLUSIONS Animal studies in psychoneuroimmunology highlight the complexity of the interactions among behavior, the brain, the immune system, and pathogen. The genetic background of the animal (both in terms of central nervous and immune system responses), its previous history, the nature of the stressor, the nature of the pathogen and the type of immune response generated are some of the interacting factors that determine the magnitude and direction of stress-induced changes in disease outcome.
Collapse
Affiliation(s)
- J A Moynihan
- Center for Psychoneuroimmunology Research, University of Rochester School of Medicine and Dentistry, New York, USA
| | | |
Collapse
|
33
|
Adamus G, Amundson D, Vainiene M, Ariail K, Machnicki M, Weinberg A, Offner H. Myelin basic protein specific T-helper cells induce experimental anterior uveitis. J Neurosci Res 1996; 44:513-8. [PMID: 8794942 DOI: 10.1002/(sici)1097-4547(19960615)44:6<513::aid-jnr1>3.0.co;2-e] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunopathological changes in the eyes were examined in Lewis rats after active and passive induction of experimental autoimmune encephalomyelitis (EAE) with myelin basic proteins (MBP) at various stages of EAE. The onset of anterior uveitis (AU) coincided with hind limb paralysis, but uveitis persisted after clinical signs of EAE had subsided. A mild form of uveitis was characteristic for the majority of rats. The changes within the iris and ciliary body consisted of an accumulation of inflammatory cells lining the anterior surface of iris, the trabecular meshwork, and, in some cases, within the ciliary body and the aqueous humor. A similar histopathological picture was observed when rats were injected with the secondary encephalitogenic determinant for Lewis rats, MBP peptide 87-99. Flow cytometry analysis of T cells from the anterior segment of the inflamed eyes after immunization with MBP revealed the presence of CD4+ cells exclusively expressing V beta 8.2 and OX-40 markers. Our data suggest that MBP are encephalitogenic and uveitogenic in Lewis rats and that the V beta 8.2-positive T cells in the eye represent encephalitogenic T cells. Many of those T cells were distributed in the iris and the anterior chamber. These findings indicate that these MBP-specific T cells may play a critical role in EAE as well as in AU.
Collapse
Affiliation(s)
- G Adamus
- R.S. Dow Neurological Sciences Institute, Legacy Good Samaritan Hospital, Portland, Oregon 97209, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Eng LF, Ghirnikar RS, Lee YL. Inflammation in EAE: role of chemokine/cytokine expression by resident and infiltrating cells. Neurochem Res 1996; 21:511-25. [PMID: 8734446 DOI: 10.1007/bf02527717] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Experimental allergic encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system (CNS) which has many clinical and pathological features in common with multiple sclerosis (MS). Comparison of the histopathology of EAE and MS reveals a close similarity suggesting that these two diseases share common pathogenetic mechanisms. Immunologic processes are widely accepted to contribute to the initiation and continuation of the diseases and recent studies have indicated that microglia, astrocytes and the infiltrating immune cells have separate roles in the pathogenesis of the MS lesion. The role of cytokines as important regulatory elements in these immune processes has been well established in EAE and the presence of cytokines in cells at the edge of MS lesions has also been observed. However, the role of chemokines in the initial inflammatory process as well as in the unique demyelinating event associated with MS and EAE has only recently been examined. A few studies have detected the transient presence of selected chemokines at the earliest sign of leukocyte infiltration of CNS tissue and have suggested astrocytes as their cellular source. Based on these studies, chemokines have been postulated as a promising target for future therapy of CNS inflammation. This review summarized the events that occur during the inflammatory process in EAE and discusses the roles of cytokine and chemokine expression by the resident and infiltrating cells participating in the process.
Collapse
Affiliation(s)
- L F Eng
- Department of Pathology, Veteran Affairs Palo Alto Health Care System, CA 94304, USA
| | | | | |
Collapse
|
35
|
Bauer J, Ruuls SR, Huitinga I, Dijkstra CD. The role of macrophage subpopulations in autoimmune disease of the central nervous system. THE HISTOCHEMICAL JOURNAL 1996; 28:83-97. [PMID: 8737290 DOI: 10.1007/bf02331413] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this review the role of various subpopulations of macrophages in the pathogenesis of experimental autoimmune encephalomyetitis is discussed. Immunohistochemistry with macrophage markers shows that in this disease different populations of macrophages (i.e. perivascular cells, microglia and infiltrating blood-borne macrophages) are present in the central nervous system. These subpopulations partially overlap in some functional activity while other activities seem to be restricted to a distinct subpopulation, indicating that these subpopulations have different roles in the pathogenesis of encephalomyelitis. The studies discussed in this review reveal that immunocytochemical and morphological studies, combined with new techniques such as in situ nick translation and experimental approaches like the use of bone marrow chimeras and macrophage depletion techniques, give valuable information about the types and functions of cells involved in central nervous system inflammation. The review is divided in three parts. In the first part the experimental autoimmune encephalomyelitis model is introduced. The second part gives an overview of the origin, morphology and functions of the various subpopulations. In the third part the role of these subpopulations is discussed in relation to the various stages (i.e. preclinical, clinical and recovery) of the experimental disease.
Collapse
Affiliation(s)
- J Bauer
- Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Abstract
Microglial cells are brain macrophages which serve specific functions in the defense of the central nervous system (CNS) against microorganisms, the removal of tissue debris in neurodegenerative diseases or during normal development, and in autoimmune inflammatory disorders of the brain. In cultured microglial cells, several soluble inflammatory mediators such as cytokines and bacterial products like lipopolysaccharide (LPS) were demonstrated to induce a wide range of microglial activities, e.g. increased phagocytosis, chemotaxis, secretion of cytokines, activation of the respiratory burst and induction of nitric oxide synthase. Since heightened microglial activation was shown to play a role in the pathogenesis of experimental inflammatory CNS disorders, understanding the molecular mechanisms of microglial activation may lead to new treatment strategies for neurodegenerative disorders, multiple sclerosis and bacterial or viral infections of the nervous system.
Collapse
Affiliation(s)
- J Zielasek
- Department of Neurology, Julius-Maximilians-Universität, Würzburg, Germany
| | | |
Collapse
|
37
|
Mander TH, Morris JF. Immunophenotypic evidence for distinct populations of microglia in the rat hypothalamo-neurohypophysial system. Cell Tissue Res 1995; 280:665-73. [PMID: 7606773 DOI: 10.1007/bf00318369] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The morphology, distribution and immunophenotype of microglia throughout the adult rat hypothalamo-neurohypophysial system was examined. Four macrophage-associated antibodies (OX-42, F4/80, ED1 and ED2) were used; the expression of major histocompatibility complex antigens was investigated by use of antibodies against OX-6, OX-17 (MHC class II) and OX-18 (MHC class I). Three distinct types of microglia were identified. The first was located in the magnocellular nuclei; these 'radially branched' ('ramified') microglia had round cell bodies and long branched processes, and were strongly immunoreactive only for OX-42. The second was located outside the blood-brain barrier in the median eminence, pituitary stalk and neurohypophysis often close to blood vessels; these 'compact' microglia had irregular cell bodies and shorter processes, and were strongly labelled by OX-42 and F4/80, weakly labelled by OX-18, and generally unlabelled by ED1, ED2, OX-6 and OX-17. The third type was found in small numbers throughout the system at the surface of the nervous tissue or around blood vessels; these 'perivascular' microglia were elongated cells with no branching processes, and were strongly labelled by ED1, ED2, OX-18, OX-6, OX-17 and F4/80 antibodies but showed variable OX-42 immunoreactivity. Cells in a perivascular location were heterogeneous with respect to their immunophenotype. The presence in the normal adult rat hypothalamo-neurohypophysial system of MHC class-II molecules (OX-6 and OX-17) on a sub-set of perivascular microglia suggests that these cells are capable of presenting antigen to T lymphocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T H Mander
- Department of Human Anatomy, University of Oxford, UK
| | | |
Collapse
|
38
|
Tabi Z, McCombe PA, Pender MP. Apoptotic elimination of V beta 8.2+ cells from the central nervous system during recovery from experimental autoimmune encephalomyelitis induced by the passive transfer of V beta 8.2+ encephalitogenic T cells. Eur J Immunol 1994; 24:2609-17. [PMID: 7957554 DOI: 10.1002/eji.1830241107] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A CD4+V beta 8.2+ T cell clone specific for the peptide 72-89 of guinea pig myelin basic protein (GMBP) was used to induce acute experimental autoimmune encephalomyelitis (EAE) in Lewis rats. To assess apoptosis in inflammatory cells infiltrating the central nervous system (CNS), we extracted cells from the spinal cord, enriched them for T cells and performed flow-cytometric analysis of their DNA stained with propidium iodide. The presence of apoptosis was confirmed by the demonstration of DNA fragmentation on gel electrophoresis. A gradual increase in the proportion of apoptotic cells was observed between 4 and 7 days after the transfer of the encephalitogenic T cells. The highest frequency of apoptotic cells (9.2 +/- 1.2%) was observed 7 days after cell transfer, when clinical recovery commenced. Passive transfer of ovalbumin-specific cells resulted in only a background level (0.8%) of apoptosis in the CNS. We conclude that the apoptotic process selectively eliminates autoreactive T cells from the CNS as: (a) there was a selective disappearance of disease-relevant CD5+V beta 8.2+ cells from the CNS during the course of EAE; (b) there was a decrease in the frequency of CNS-infiltrating T cells reactive to the GMBP 72-89 peptide during the course of EAE, and in a standard proliferation assay there was a loss of in vitro reactivity of CNS-infiltrating cells to this peptide, but not to a non-CNS antigen (ovalbumin); (c) simultaneous surface labeling and DNA analysis of CNS-infiltrating cells revealed that the frequency of V beta 8.2+ cells was about sevenfold higher in the apoptotic T cell population than in the normal (non-apoptotic) T cell population; and (d) we were unable to detect recirculation of the V beta 8.2+ cells to lymphoid organs after their frequency decreased in the CNS. The selective apoptotic elimination of autoreactive T cells from the target organ of this spontaneously resolving autoimmune disease may have implications for the understanding of the mechanism by which an autoimmune attack is terminated and for the design of therapeutic strategies to facilitate this process.
Collapse
Affiliation(s)
- Z Tabi
- Department of Medicine, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|