1
|
Onduka T, Ojima D, Ito K, Mochida K, Ito M, Koyama J, Fujii K. Photo-induced toxicity and oxidative stress responses in Tigriopus japonicus exposed to nitro-polycyclic aromatic hydrocarbons and artificial light. CHEMOSPHERE 2017; 169:596-603. [PMID: 27902966 DOI: 10.1016/j.chemosphere.2016.11.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/27/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
Photo-induced toxicity is an important phenomenon in ecotoxicology because sunlight reaches many organisms in their natural habitats. To elucidate whether sunlight enhances the toxicity of nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), the acute toxicities of 10 nitro-PAHs and the related compound 1-nitropyrene (1-NP) to Tigriopus japonicus were assessed in darkness or under light conditions. In addition, the relationships among the toxicity of 1-NP to T. japonicus, lighting condition, and the concentration of reactive oxygen species (ROS) formed were investigated in the presence or absence of the ROS scavenger ascorbic acid in the test solutions. Light irradiation increased the toxicity of all tested nitro-PAHs except 1,5-dinitronaphthalene. Among the compounds tested, 1-NP was the most phototoxic: it was more than 1000 times more toxic under the light conditions than in darkness. In contrast, at the same light levels, pyrene was not phototoxic. Light irradiation induced the generation of ROS in the 1-NP exposure groups, and the immobilization rate of T. japonicus increased with the amount of ROS produced. The addition of ascorbic acid to the test solutions suppressed both the generation of ROS and the light-induced immobilization of T. japonicus. To accurately assess the ecotoxicologic risk of nitro-PAHs, their overall photo-induced toxicity must be considered.
Collapse
Affiliation(s)
- Toshimitsu Onduka
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan.
| | - Daisuke Ojima
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Katsutoshi Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Mana Ito
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
| | - Kazunori Fujii
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| |
Collapse
|
2
|
Jariyasopit N, Zimmermann K, Schrlau J, Arey J, Atkinson R, Yu TW, Dashwood RH, Tao S, Simonich SLM. Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10155-64. [PMID: 25119270 PMCID: PMC4152393 DOI: 10.1021/es5015407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/19/2014] [Accepted: 07/21/2014] [Indexed: 05/02/2023]
Abstract
The heterogeneous reactions of ambient particulate matter (PM)-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) with NO3/N2O5, OH radicals, and O3 were studied in a laboratory photochemical chamber. Ambient PM2.5 and PM10 samples were collected from Beijing, China, and Riverside, California, and exposed under simulated atmospheric long-range transport conditions for O3 and OH and NO3 radicals. Changes in the masses of 23 PAHs and 20 NPAHs, as well as the direct and indirect-acting mutagenicity of the PM (determined using the Salmonella mutagenicity assay with TA98 strain), were measured prior to and after exposure to NO3/N2O5, OH radicals, and O3. In general, O3 exposure resulted in the highest relative degradation of PM-bound PAHs with more than four rings (benzo[a]pyrene was degraded equally well by O3 and NO3/N2O5). However, NPAHs were most effectively formed during the Beijing PM exposure to NO3/N2O5. In ambient air, 2-nitrofluoranthene (2-NF) is formed from the gas-phase NO3 radical- and OH radical-initiated reactions of fluoranthene, and 2-nitropyrene (2-NP) is formed from the gas-phase OH radical-initiated reaction of pyrene. There was no formation of 2-NF or 2-NP in any of the heterogeneous exposures, suggesting that gas-phase formation of NPAHs did not play an important role during chamber exposures. Exposure of Beijing PM to NO3/N2O5 resulted in an increase in direct-acting mutagenic activity which was associated with the formation of mutagenic NPAHs. No NPAH formation was observed in any of the exposures of the Riverside PM. This was likely due to the accumulation of atmospheric degradation products from gas-phase reactions of volatile species onto the surface of PM collected in Riverside prior to exposure in the chamber, thus decreasing the availability of PAHs for reaction.
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kathryn Zimmermann
- Air
Pollution Research Center, University of
California, Riverside, California 92521, United States
| | - Jill Schrlau
- Environmental
and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Janet Arey
- Air
Pollution Research Center, University of
California, Riverside, California 92521, United States
| | - Roger Atkinson
- Air
Pollution Research Center, University of
California, Riverside, California 92521, United States
| | - Tian-Wei Yu
- Environmental
and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Roderick H. Dashwood
- Institute
of Biosciences & Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | - Shu Tao
- College
of Urban and Environmental Science, Peking
University, Beijing, 100871, China
| | - Staci L. Massey Simonich
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
- Environmental
and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
3
|
Xia Q, Yin JJ, Zhao Y, Wu YS, Wang YQ, Ma L, Chen S, Sun X, Fu PP, Yu H. UVA photoirradiation of nitro-polycyclic aromatic hydrocarbons-induction of reactive oxygen species and formation of lipid peroxides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:1062-84. [PMID: 23493032 PMCID: PMC3709304 DOI: 10.3390/ijerph10031062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/02/2022]
Abstract
Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which nitro-PAHs induce genotoxicity. Although the metabolic activation of nitro-PAHs leading to toxicological activities has been well studied, the photo-induced activation of nitro-PAHs has seldom been reported. In this paper, we report photo-induced lipid peroxidation by 19 nitro-PAHs. The results indicated that all but two of the nitro-PAHs can induce lipid peroxidation. Mechanistic studies suggest that lipid peroxidation by nitro-PAHs is mediated by free radicals generated in the reaction. There was no structural correlation between the nitro-PAHs and their ability to induce lipid peroxidation upon UVA irradiation, or between the HOMO-LUMO gap and the ability to cause lipid peroxidation. Most of the nitro-PAHs are less potent in terms of causing lipid peroxidation than their parent PAHs. The lack of correlation is attributed to the complex photophysics and photochemistry of the nitro-PAHs and the yield of reactive oxygen species (ROS) and other factors.
Collapse
Affiliation(s)
- Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; E-Mails: (Q.X.); (Y.Z.); (Y.-Q.W.); (L.M.); (S.C.)
| | - Jun J. Yin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA; E-Mail:
| | - Yuewei Zhao
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; E-Mails: (Q.X.); (Y.Z.); (Y.-Q.W.); (L.M.); (S.C.)
| | - Yuh-Sen Wu
- Hung Kuang University, Sha-Lu, Taichung, 443, Taiwan; E-Mail:
| | - Yu-Qui Wang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; E-Mails: (Q.X.); (Y.Z.); (Y.-Q.W.); (L.M.); (S.C.)
| | - Liang Ma
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; E-Mails: (Q.X.); (Y.Z.); (Y.-Q.W.); (L.M.); (S.C.)
| | - Shoujun Chen
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; E-Mails: (Q.X.); (Y.Z.); (Y.-Q.W.); (L.M.); (S.C.)
| | - Xin Sun
- National Institute of Occupational Health and Poisoning Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; E-Mail:
| | - Peter P. Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; E-Mails: (Q.X.); (Y.Z.); (Y.-Q.W.); (L.M.); (S.C.)
| | - Hongtao Yu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
4
|
Fu PP, Xia Q, Zhao Y, Wang S, Yu H, Chiang HM. Phototoxicity of herbal plants and herbal products. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:213-255. [PMID: 24024520 DOI: 10.1080/10590501.2013.824206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plants are used by humans in daily life in many different ways, including as food, herbal medicines, and cosmetics. Unfortunately, many natural plants and their chemical constituents are photocytotoxic and photogenotoxic, and these phototoxic phytochemicals are widely present in many different plant families. To date, information concerning the phototoxicity and photogenotoxicity of many plants and their chemical constituents is limited. In this review, we discuss phototoxic plants and their major phototoxic constituents; routes of human exposure; phototoxicity of these plants and their constituents; general mechanisms of phototoxicity of plants and phototoxic components; and several representative phototoxic plants and their photoactive chemical constituents.
Collapse
Affiliation(s)
- Peter P Fu
- a National Center for Toxicological Research , Jefferson , Arkansas , USA
| | | | | | | | | | | |
Collapse
|
5
|
Fu PP, Xia Q, Sun X, Yu H. Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-light-induced reactive oxygen species, lipid peroxidation, and DNA damage. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:1-41. [PMID: 22458855 DOI: 10.1080/10590501.2012.653887] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of mutagenic and tumorigenic environmental contaminants. Although the mechanisms by which PAHs induce cancer in experimental animals have been extensively studied and the metabolic activation pathways have been determined, the environmental fate of PAHs and the phototoxicity exerted by PAHs, as well as their photoreaction products formed in the environment, have received much less attention. In this review, the formation of oxygenated PAHs, PAH quinones, nitro-PAHs, and halogenated PAHs from photoreaction of environmental PAHs are addressed. Upon light irradiation, PAHs and all PAH photoreaction products can absorb light energy to reach photo-excited states, which react with molecular oxygen, medium, and coexisting chemicals to produce reactive oxygen species (ROS) and other reactive intermediates, such as oxygenated PAHs and free radicals. These intermediates, including ROS, induce lipid peroxidation, and DNA damage including DNA strand breakage, oxidation to 8-oxo-2'-deoxyguanosine, and DNA-adducts. Since these toxicological endpoints are associated with age-related diseases, including cancer, environmental PAHs concomitantly exposed to sunlight may potentially promote human skin damage, leading to ageing and skin cancers. Thus, we suggest that (i) in addition to the widely recognized metabolic pathways, more attention must be paid to photoreaction as an important activation pathway for PAHs, (ii) risk assessment of environmental PAHs should take into consideration the complex photochemical reactions leading to mixtures of products that are also phototoxic; and (iii) the study of structure-toxicity relationships should be expanded to cover the complex photoreactions and extrinsic factors that affect phototoxicity endpoints.
Collapse
Affiliation(s)
- Peter P Fu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | |
Collapse
|
6
|
Yu H, Xia Q, Yan J, Herreno-Saenz D, Wu YS, Tang IW, Fu PP. Photoirradiation of polycyclic aromatic hydrocarbons with UVA light - a pathway leading to the generation of reactive oxygen species, lipid peroxidation, and dna damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2006; 3:348-54. [PMID: 17159277 PMCID: PMC2701161 DOI: 10.3390/ijerph2006030045] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which PAHs induce genotoxicity. Although the metabolic activation of PAHs leading to biological activities has been well studied, the photo-induced activation pathway has seldom reported. In this paper, we review the study of photoirradiation of PAHs with UVA irradiation results in (i) cytotoxicity and DNA damage (ii) DNA single strand cleavage; (iii) formation of 8-hydroxy-2'-deoxyguanosine adduct (8-OHdG), and (iv) formation of lipid peroxidation. Evidence has been shown that these photobiological activities are mediated by reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hongtao Yu
- Department of Chemistry, Jackson State University, Jackson, MS 39217, USA
| | - Qingsu Xia
- National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Jian Yan
- Department of Chemistry, Jackson State University, Jackson, MS 39217, USA
| | - Diogenes Herreno-Saenz
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico 00935
| | - Yuh-Shen Wu
- Hung Kuang University, Sha-Lu, Taichung, Taiwan, ROC
| | - I-Wah Tang
- National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Peter P. Fu
- National Center for Toxicological Research, Jefferson, AR 72079, USA
| |
Collapse
|
7
|
Yu H. Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2002; 20:149-83. [PMID: 12515673 PMCID: PMC3812823 DOI: 10.1081/gnc-120016203] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants that has long been of interest in the fields of organic chemistry, theoretical chemistry, physical chemistry, environmental science, toxicology, cancer research, and energy sciences. Concerning environmental science and cancer research, majority of the research has focused on the occurrence, environmental fate, degradation/remediation, chemical transformation, genotoxicity, metabolism and metabolic activation, DNA adduct formation, mutagenesis, and carcinogenesis. Although many books and reviews on these subjects have been published, PAH photochemistry and phototoxicity have received much less attention. Therefore, it is intended for this article to provide an up-to-date source of photochemical reaction, photo-transformation, and phototoxicity of PAHs and their oxygenated, nitrated, halogenated, and amino substituted derivatives on a molecular basis. A perspective for future work is also discussed.
Collapse
Affiliation(s)
- Hongtao Yu
- Department of Chemistry, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
8
|
Yu H. Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2002; 20:149-183. [PMID: 12515673 PMCID: PMC3812823 DOI: 10.1081/gnc-120016203 10.1081/gnc-120016203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of environmental contaminants that has long been of interest in the fields of organic chemistry, theoretical chemistry, physical chemistry, environmental science, toxicology, cancer research, and energy sciences. Concerning environmental science and cancer research, majority of the research has focused on the occurrence, environmental fate, degradation/remediation, chemical transformation, genotoxicity, metabolism and metabolic activation, DNA adduct formation, mutagenesis, and carcinogenesis. Although many books and reviews on these subjects have been published, PAH photochemistry and phototoxicity have received much less attention. Therefore, it is intended for this article to provide an up-to-date source of photochemical reaction, photo-transformation, and phototoxicity of PAHs and their oxygenated, nitrated, halogenated, and amino substituted derivatives on a molecular basis. A perspective for future work is also discussed.
Collapse
Affiliation(s)
- Hongtao Yu
- Department of Chemistry, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
9
|
Yang DTC, Chou A, Chen E, Chiu LH, Ni Y. Photodecomposition of Environmental Nitro-Polycyclic Aromatic Hydrocarbons. Polycycl Aromat Compd 1995. [DOI: 10.1080/10406639408015172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Helma C, Sommer R, Schulte-Hermann R, Knasmüller S. Enhanced clastogenicity of contaminated groundwater following UV irradiation detected by the Tradescantia micronucleus assay. Mutat Res 1994; 323:93-8. [PMID: 7509031 DOI: 10.1016/0165-7992(94)90081-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Tradescantia micronucleus (Trad-MCN) assay was used to determine clastogenic effects of contaminated groundwater collected near a hazardous waste landfill. Water samples were taken from a purification plant (activated charcoal filtration, UV irradiation) which was built to avoid groundwater contamination by this landfill. Five series of experiments were conducted during approximately 4 months. In addition, water samples were irradiated under laboratory conditions with increasing doses of UV light. Several field water samples gave positive, dose-dependent effects before filtration and irradiation. Maximal values (6.1 +/- 4.7 micronuclei (MCN)/100 tetrads) were six-fold above controls. UV irradiation of activated charcoal-filtered water resulted in an enhancement of MCN frequencies. Exposure of groundwater to UV irradiation in the laboratory led to a dose-dependent increase of micronuclei. At the highest dose (1500 J/m2) the MCN frequency was more than six times higher than in the unirradiated sample (5.4 +/- 1.0 vs. 0.8 +/- 0.4 MCN/100 tetrads). The clastogenicity of UV-irradiated samples decreased with a half-life of approximately 1 day. Irradiation of tap water did not increase the MCN frequency. Our results indicate that irradiation of water with UV light for disinfection purposes might lead to a transiently increased genotoxicity of chemically polluted water samples.
Collapse
Affiliation(s)
- C Helma
- Institute for Tumor Biology-Cancer Research, Vienna, Austria
| | | | | | | |
Collapse
|
11
|
Polycyclic aromatic compounds of environmental and occupational importance ? Their occurrence, toxicity and the development of high-purity certified reference materials. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf00321499] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Kagan J, Tuveson RW, Gong HH. The light-dependent cytotoxicity of benzo[a]pyrene: effect on human erythrocytes, Escherichia coli cells, and Haemophilus influenzae transforming DNA. Mutat Res 1989; 216:231-42. [PMID: 2552308 DOI: 10.1016/0165-1161(89)90048-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In vitro, the photodynamic compound benzo[a]pyrene (BAP) generates singlet oxygen efficiently when irradiated in organic solvents. It also photogenerates superoxide anion radical in water and can act as a photoreducing agent in the absence of oxygen. In vivo, the hemolysis of human erythrocytes, the inactivation of Escherichia coli cells representing a series of strains differing in excision repair and catalase proficiency, and the inactivation of Haemophilus influenzae transforming DNA activity were used to characterize the phototoxicity of BAP in the presence of near-UV light (290-400 nm). The results are consistent with BAP behaving as a photosensitizer that generates both superoxide and singlet oxygen, and that damages chiefly membranes. DNA does not seem to be a major target in the phototoxic reactions investigated.
Collapse
Affiliation(s)
- J Kagan
- Department of Chemistry, University of Illinois, Chicago 60680
| | | | | |
Collapse
|
13
|
Holloway MP, Biaglow MC, McCoy EC, Anders M, Rosenkranz HS, Howard PC. Photochemical instability of 1-nitropyrene, 3-nitrofluoranthene, 1,8-dinitropyrene and their parent polycyclic aromatic hydrocarbons. Mutat Res 1987; 187:199-207. [PMID: 3031495 DOI: 10.1016/0165-1218(87)90037-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The environmental contaminants pyrene, 1-nitropyrene, 1,8-dinitropyrene, fluoranthene, and 3-nitrofluoranthene were exposed to light (greater than or equal to 310 nm) either in DMSO, or following coating onto silica. Under all conditions tested the pyrenyl were less stable than the fluoranthenyl compounds. During irradiation in DMSO or on silica, 1-nitropyrene had half-lives of 1.2 and 6 days, while those of 3-nitrofluoranthene were 12.5 and greater than 20 days, respectively. The photodecomposition of 1,8-dinitropyrene resembled that of 1-nitropyrene with half-lives of 0.7 and 5.7 days. A principle photodecomposition product of 1,8-dinitropyrene was identified as 1-nitropyren-8-ol. It was also found that when the nitroarenes were exposed to light, the loss of compound was associated with a concomitant loss of mutagenicity in Salmonella typhimurium strain TA98. The mechanism of nitrated polycyclic aromatic hydrocarbon decomposition and 1-nitropyren-8-ol formation, and the relevance to the atmospheric disposition of these compounds are discussed.
Collapse
|