1
|
Niu X, Melendez DL, Raj S, Cai J, Senadeera D, Mandelbaum J, Shestopalov IA, Martin SD, Zon LI, Schlaeger TM, Lai LP, McMahon AP, Craft AM, Galloway JL. A conserved transcription factor regulatory program promotes tendon fate. Dev Cell 2024:S1534-5807(24)00489-1. [PMID: 39216481 DOI: 10.1016/j.devcel.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Tendons, which transmit force from muscles to bones, are highly prone to injury. Understanding the mechanisms driving tendon fate would impact efforts to improve tendon healing, yet this knowledge is limited. To find direct regulators of tendon progenitor emergence, we performed a zebrafish high-throughput chemical screen. We established forskolin as a tenogenic inducer across vertebrates, functioning through Creb1a, which is required and sufficient for tendon fate. Putative enhancers containing cyclic AMP (cAMP) response elements (CREs) in humans, mice, and fish drove specific expression in zebrafish cranial and fin tendons. Analysis of these genomic regions identified motifs for early B cell factor (Ebf/EBF) transcription factors. Mutation of CRE or Ebf/EBF motifs significantly disrupted enhancer activity and specificity in tendons. Zebrafish ebf1a/ebf3a mutants displayed defects in tendon formation. Notably, Creb1a/CREB1 and Ebf1a/Ebf3a/EBF1 overexpression facilitated tenogenic induction in zebrafish and human pluripotent stem cells. Together, our work identifies the functional conservation of two transcription factors in promoting tendon fate.
Collapse
Affiliation(s)
- Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Delmy L Melendez
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suyash Raj
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junming Cai
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dulanjalee Senadeera
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Mandelbaum
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ilya A Shestopalov
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scott D Martin
- Department of Sports Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Leonard I Zon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Thorsten M Schlaeger
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lick Pui Lai
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - April M Craft
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. Front Aging Neurosci 2024; 16:1400447. [PMID: 39006222 PMCID: PMC11239576 DOI: 10.3389/fnagi.2024.1400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Pizzoni A, Zhang X, Altschuler DL. From membrane to nucleus: A three-wave hypothesis of cAMP signaling. J Biol Chem 2024; 300:105497. [PMID: 38016514 PMCID: PMC10788541 DOI: 10.1016/j.jbc.2023.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel L Altschuler
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
5
|
Kim HY, Shim JH, Heo CY. A Rare Skeletal Disorder, Fibrous Dysplasia: A Review of Its Pathogenesis and Therapeutic Prospects. Int J Mol Sci 2023; 24:15591. [PMID: 37958575 PMCID: PMC10650015 DOI: 10.3390/ijms242115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Fibrous dysplasia (FD) is a rare, non-hereditary skeletal disorder characterized by its chronic course of non-neoplastic fibrous tissue buildup in place of healthy bone. A myriad of factors have been associated with its onset and progression. Perturbation of cell-cell signaling networks and response outputs leading to disrupted building blocks, incoherent multi-level organization, and loss of rigid structural motifs in mineralized tissues are factors that have been identified to participate in FD induction. In more recent years, novel insights into the unique biology of FD are transforming our understandings of its pathology, natural discourse of the disease, and treatment prospects. Herein, we built upon existing knowledge with recent findings to review clinical, etiologic, and histological features of FD and discussed known and potential mechanisms underlying FD manifestations. Subsequently, we ended on a note of optimism by highlighting emerging therapeutic approaches aimed at either halting or ameliorating disease progression.
Collapse
Affiliation(s)
- Ha-Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jung-Hee Shim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
- Department of Research Administration Team, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Chan-Yeong Heo
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea;
| |
Collapse
|
6
|
Chowdhury MAR, An J, Jeong S. The Pleiotropic Face of CREB Family Transcription Factors. Mol Cells 2023; 46:399-413. [PMID: 37013623 PMCID: PMC10336275 DOI: 10.14348/molcells.2023.2193] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 04/05/2023] Open
Abstract
cAMP responsive element-binding protein (CREB) is one of the most intensively studied phosphorylation-dependent transcription factors that provide evolutionarily conserved mechanisms of differential gene expression in vertebrates and invertebrates. Many cellular protein kinases that function downstream of distinct cell surface receptors are responsible for the activation of CREB. Upon functional dimerization of the activated CREB to cis-acting cAMP responsive elements within the promoters of target genes, it facilitates signal-dependent gene expression. From the discovery of CREB, which is ubiquitously expressed, it has been proven to be involved in a variety of cellular processes that include cell proliferation, adaptation, survival, differentiation, and physiology, through the control of target gene expression. In this review, we highlight the essential roles of CREB proteins in the nervous system, the immune system, cancer development, hepatic physiology, and cardiovascular function and further discuss a wide range of CREB-associated diseases and molecular mechanisms underlying the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Md. Arifur Rahman Chowdhury
- Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Jungeun An
- Division of Life Sciences (Life Sciences Major), Jeonbuk National University, Jeonju 54896, Korea
| | - Sangyun Jeong
- Division of Life Sciences (Molecular Biology Major), Department of Bioactive Material Sciences, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
7
|
Chrysanthemum boreale Makino Inhibits Oxidative Stress-Induced Neuronal Damage in Human Neuroblastoma SH-SY5Y Cells by Suppressing MAPK-Regulated Apoptosis. Molecules 2022; 27:molecules27175498. [PMID: 36080264 PMCID: PMC9457777 DOI: 10.3390/molecules27175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress has been demonstrated to play a pivotal role in the pathological processes of many neurodegenerative diseases. In the present study, we demonstrated that Chrysanthemum boreale Makino extract (CBME) suppresses oxidative stress-induced neurotoxicity in human neuroblastoma SH-SY5Y cells and elucidated the underlying molecular mechanism. Our observations revealed that CBME effectively protected neuronal cells against H2O2-induced cell death by preventing caspase-3 activation, Bax upregulation, Bcl-2 downregulation, activation of three mitogen-activated protein kinases (MAPKs), cAMP response element-binding protein (CREB) and NF-κB phosphorylation, and iNOS induction. These results provide evidence that CBME has remarkable neuroprotective properties in SH-SY5Y cells against oxidative damage, suggesting that the complementary or even alternative role of CBME in preventing and treating neurodegenerative diseases is worth further studies.
Collapse
|
8
|
Todd D, Clapp M, Dains P, Karacay B, Bonthius DJ. Purkinje cell-specific deletion of CREB worsens alcohol-induced cerebellar neuronal losses and motor deficits. Alcohol 2022; 101:27-35. [PMID: 35378204 PMCID: PMC9783827 DOI: 10.1016/j.alcohol.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Exposure to alcohol during pregnancy can kill developing fetal neurons and lead to fetal alcohol spectrum disorder (FASD) in the offspring. However, not all fetuses are equally vulnerable to alcohol toxicity. These differences in vulnerability among individuals are likely due, at least in part, to genetic differences. Some genes encode neuroprotective molecules that act through signaling pathways to protect neurons against alcohol's toxic effects. One signaling pathway that can protect cultured neurons against alcohol-induced cell death in vitro is the cAMP pathway. A goal of this study was to determine whether the cAMP pathway can exert a similar neuroprotective effect against alcohol in vivo. A key molecule within the cAMP pathway is cAMP response element binding protein (CREB). In this study, CREB was specifically disrupted in cerebellar Purkinje cells to study its role in protection of cerebellar neurons against alcohol toxicity. METHODS Mice with Purkinje cell-specific knockout of CREB were generated with the Cre-lox system. A 2 × 2 design was used in which Cre-negative and Cre-positive mice received either 0.0 or 2.2 mg/g ethanol by intraperitoneal (i.p.) injection daily over postnatal day (PD) 4-9. Stereological cell counts of cerebellar Purkinje cells and granule cells were performed on PD 10. Motor function was assessed on PD 40 using the rotarod. RESULTS Purkinje cell-specific disruption of CREB alone (in the absence of alcohol) induced only a small reduction in Purkinje cell number. However, the loss of CREB function from Purkinje cells greatly increased the vulnerability of Purkinje cells to alcohol-induced cell death. While alcohol killed 20% of Purkinje cells in the Cre-negative (CREB-expressing) mice, alcohol killed 57% of Purkinje cells in the Cre-positive (CREB-nonexpressing) mice. This large loss of Purkinje cells did not lead to similar alcohol-induced losses of granule cells. In the absence of alcohol, lack of CREB function in Purkinje cells had no effect on rotarod performance. However, in the presence of alcohol, disruption of CREB in Purkinje cells substantially worsened rotarod performance. DISCUSSION Disruption of a single gene (CREB) in a single neuronal population (Purkinje cells) greatly increases the vulnerability of that cell population to alcohol-induced cell death and worsens alcohol-induced brain dysfunction. The results suggest that the cAMP pathway can protect cells in vivo against alcohol toxicity and underline the importance of genetics in determining the neuropathology and behavioral deficits of FASD.
Collapse
Affiliation(s)
- Dylan Todd
- Neuroscience Program, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Michael Clapp
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Parker Dains
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Bahri Karacay
- Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Daniel J. Bonthius
- Neuroscience Program, University of Iowa Carver College of Medicine, Iowa City, IA,Department of Pediatrics, University of Iowa, Carver College of Medicine, Iowa City, IA,Atrium Health/Levine Children’s Hospital, Charlotte, NC
| |
Collapse
|
9
|
Cyra M, Schulte M, Berthold R, Heinst L, Jansen EP, Grünewald I, Elges S, Larsson O, Schliemann C, Steinestel K, Hafner S, Simmet T, Wardelmann E, Kailayangiri S, Rossig C, Isfort I, Trautmann M, Hartmann W. SS18-SSX drives CREB activation in synovial sarcoma. Cell Oncol (Dordr) 2022; 45:399-413. [PMID: 35556229 PMCID: PMC9187574 DOI: 10.1007/s13402-022-00673-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Synovial sarcoma (SySa) is a rare soft tissue tumor characterized by a reciprocal t(X;18) translocation. The chimeric SS18-SSX fusion protein represents the major driver of the disease, acting as aberrant transcriptional dysregulator. Oncogenic mechanisms whereby SS18-SSX mediates sarcomagenesis are incompletely understood, and strategies to selectively target SySa cells remain elusive. Based on results of Phospho-Kinase screening arrays, we here investigate the functional and therapeutic relevance of the transcription factor CREB in SySa tumorigenesis. Methods Immunohistochemistry of phosphorylated CREB and its downstream targets (Rb, Cyclin D1, PCNA, Bcl-xL and Bcl-2) was performed in a large cohort of SySa. Functional aspects of CREB activity, including SS18-SSX driven circuits involved in CREB activation, were analyzed in vitro employing five SySa cell lines and a mesenchymal stem cell model. CREB mediated transcriptional activity was modulated by RNAi-mediated knockdown and small molecule inhibitors (666-15, KG-501, NASTRp and Ro 31-8220). Anti-proliferative effects of the CREB inhibitor 666-15 were tested in SySa avian chorioallantoic membrane and murine xenograft models in vivo. Results We show that CREB is phosphorylated and activated in SySa, accompanied by downstream target expression. Human mesenchymal stem cells engineered to express SS18-SSX promote CREB expression and phosphorylation. Conversely, RNAi-mediated knockdown of SS18-SSX impairs CREB phosphorylation in SySa cells. Inhibition of CREB activity reduces downstream target expression, accompanied by suppression of SySa cell proliferation and induction of apoptosis invitro and in vivo. Conclusion In conclusion, our data underline an essential role of CREB in SySa tumorigenesis and provides evidence for molecular targeted therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-022-00673-w.
Collapse
Affiliation(s)
- Magdalene Cyra
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Miriam Schulte
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Ruth Berthold
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Lorena Heinst
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Esther-Pia Jansen
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Inga Grünewald
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Sandra Elges
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Olle Larsson
- Departments of Oncology and Pathology, The Karolinska Institute, Stockholm, Sweden
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Respiratory Medicine, Münster University Hospital, Münster, Germany
| | - Konrad Steinestel
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ilka Isfort
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany. .,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany. .,Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany.
| |
Collapse
|
10
|
Evaluation of the effect of nicotine and O-acetyl-L-carnitine on testosterone-induced spatial learning impairment in Morris water maze and assessment of protein markers. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Mi Z, Song Y, Wang J, Liu Z, Cao X, Dang L, Lu Y, Sun Y, Xiong H, Zhang L, Chen Y. cAMP-Induced Nuclear Condensation of CRTC2 Promotes Transcription Elongation and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104578. [PMID: 35037420 PMCID: PMC8981427 DOI: 10.1002/advs.202104578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Formation of biomolecular condensates by phase separation has recently emerged as a new principle for regulating gene expression in response to extracellular signaling. However, the molecular mechanisms underlying the coupling of signal transduction and gene activation through condensate formation, and how dysregulation of these mechanisms contributes to disease progression, remain elusive. Here, the authors report that CREB-regulated transcription coactivator 2 (CRTC2) translocates to the nucleus and forms phase-separated condensates upon activation of cAMP signaling. They show that intranuclear CRTC2 interacts with positive transcription elongation factor b (P-TEFb) and activates P-TEFb by disrupting the inhibitory 7SK snRNP complex. Aberrantly elevated cAMP signaling plays central roles in the development of autosomal dominant polycystic kidney disease (ADPKD). They find that CRTC2 localizes to the nucleus and forms condensates in cystic epithelial cells of both mouse and human ADPKD kidneys. Genetic depletion of CRTC2 suppresses cyst growth in an orthologous ADPKD mouse model. Using integrative transcriptomic and cistromic analyses, they identify CRTC2-regulated cystogenesis-associated genes, whose activation depends on CRTC2 condensate-facilitated P-TEFb recruitment and the release of paused RNA polymerase II. Together, their findings elucidate a mechanism by which CRTC2 nuclear condensation conveys cAMP signaling to transcription elongation activation and thereby promotes cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Zeyun Mi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yandong Song
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Jiuchen Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Zhiheng Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Xinyi Cao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Lin Dang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yumei Lu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yongzhan Sun
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Hui Xiong
- Department of UrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250001China
| | - Lirong Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| | - Yupeng Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Institute of UrologyThe Second Hospital of Tianjin Medical UniversityTianjin Medical UniversityTianjin300070China
| |
Collapse
|
12
|
Shao M, Zheng C, Ma X, Lyu F. Ecto-5'-nucleotidase (CD73) inhibits dorsal root ganglion neuronal apoptosis by promoting the Ado/cAMP/PKA/CREB pathway. Exp Ther Med 2021; 22:1374. [PMID: 34650622 PMCID: PMC8506929 DOI: 10.3892/etm.2021.10809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a serious affliction that can lead to insufficient blood supply to the spinal cord, resulting in nutrient and energy deficiency in nerve cells such as neurons. In the present study, a spinal cord injury mouse model was constructed using wild-type (WT) and ecto-5'-nucleotidase (CD73)-/- mice. The results of TUNEL and immunofluorescence assays indicated that the apoptosis of neurons in CD73-/- mice was increased after spinal cord injury. Dorsal root ganglion (DRG) neurons from WT and CD73-/- mice were cultured in low glucose and hypoxic conditions to simulate the effects of spinal cord injury on neurons. Subsequently, a western blot assay was used to detect the expression of CD73, caspase-3 and Bcl-2. Flow cytometry was used to detect cell apoptosis and the corresponding kits were used to detect changes in lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), reactive oxygen species (ROS), adenosine triphosphate (ATP) and cell activity. The results revealed that the apoptosis level of CD73-overexpressing DRG neurons was decreased under anoxia and glucose deficiency. The release of LDH, MDA and the production of ROS in CD73 DRG neurons was decreased, while the synthesis of ATP, the activity of SOD and cell activity increased after hypoxia-hypoglycemia treatment. Additional cellular studies demonstrated that blocking the expression and hydrolase activity of CD73 with α,β-methylene ADP (APCP) could counteract the protective effect of CD73 on neuronal apoptosis, while adenosine (Ado) could rescue the increased apoptosis caused by CD73 deletion. In addition, the cAMP/ protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling pathway was also positively regulated by CD73 and Ado. In conclusion, CD73 could inhibit DRG neuronal apoptosis by promoting the Ado/cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Minghao Shao
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chaojun Zheng
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiaosheng Ma
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Feizhou Lyu
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
13
|
Huang Z, Wan C, Wang Y, Qiao P, Zou Q, Ma J, Liu Z, Cai Z. Anti-Cognitive Decline by Yinxing-Mihuan-Oral-Liquid via Activating CREB/BDNF Signaling and Inhibiting Neuroinflammatory Process. Exp Aging Res 2021; 47:273-287. [PMID: 33499761 DOI: 10.1080/0361073x.2021.1878756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND: Cognitive decline in the normal aging process is one of the most common and prominent problems. Delaying and alleviating cognitive impairment is an important strategy of anti-aging. This study is to aim at investigating the effects of Yinxing-Mihuan-Oral-Liquid(GMOL) on the CREB/BDNF signaling in the normal aging process.METHODS: SD rats were randomly divided into GMOL group and control group. The Morris water maze (MWM) was introduced for behavioral test. Immunohistochemistry and immunofluorescence were used for cAMP response element binding protein 1(CREB1), p-CREB(Ser133), brain-derived neurotrophic factor(BDNF), synaptophysin(SYP) and glial fibrillary acidic protein(GFAP). Western blot was conducted for investigating the levels of CREB1 and p-CREB(Ser133), BDNF, SYP, GFAP and interleukin 6(IL-6). RESULTS: Our data showed that compared with the control group, GMOL group had higher expression of memory-related proteins, decreased inflammatory factors, and enhanced spatial learning and memory ability.CONCLUSION: The study results show that GMOL ameliorates cognitive impairment of the normal aged SD rats via enhancing the expression of memory biomarkers and inhibiting inflammatory process. The potential neuroprotective role of GMOL in the process of aging may be related to mitigating cognitive decline via activating CREB/BDNF signaling and inhibiting inflammatory process.
Collapse
Affiliation(s)
- Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Chengqun Wan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Peifeng Qiao
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jingxi Ma
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhou Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
14
|
Tafet GE, Nemeroff CB. Pharmacological Treatment of Anxiety Disorders: The Role of the HPA Axis. Front Psychiatry 2020; 11:443. [PMID: 32499732 PMCID: PMC7243209 DOI: 10.3389/fpsyt.2020.00443] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Stress in general, and early life stress in particular, has been associated with the development of anxiety and mood disorders. The molecular, biological and psychological links between stress exposure and the pathogenesis of anxiety and mood disorders have been extensively studied, resulting in the search of novel psychopharmacological strategies aimed at targets of the hypothalamic-pituitary-adrenal (HPA) axis. Hyperactivity of the HPA axis has been observed in certain subgroups of patients with anxiety and mood disorders. In addition, the effects of different anti-anxiety agents on various components of the HPA axis has been investigated, including benzodiazepines, tricyclic antidepressants (TCAs), and selective serotonin reuptake inhibitors (SSRIs). For example, benzodiazepines, including clonazepam and alprazolam, have been demonstrated to reduce the activity of corticotrophin releasing factor (CRF) neurons in the hypothalamus. TCAs and SSRIs are also effective anti-anxiety agents and these may act, in part, by modulating the HPA axis. In this regard, the SSRI escitalopram inhibits CRF release in the central nucleus of the amygdala, while increasing glucocorticoid receptor (GRs) density in the hippocampus and hypothalamus. The molecular effects of these anti-anxiety agents in the regulation of the HPA axis, taken together with their clinical efficacy, may provide further understanding about the role of the HPA axis in the pathophysiology of mood and anxiety disorders, paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gustavo E. Tafet
- Department of Psychiatry and Neurosciences, Maimónides University, Buenos Aires, Argentina
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
15
|
Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. Cell Rep 2019; 29:3235-3252.e9. [DOI: 10.1016/j.celrep.2019.10.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
|
16
|
Kirchner A, Dachet F, Loeb JA. Identifying targets for preventing epilepsy using systems biology of the human brain. Neuropharmacology 2019; 168:107757. [PMID: 31493467 DOI: 10.1016/j.neuropharm.2019.107757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
Abstract
Approximately one third of all epilepsy patients are resistant to current therapeutic treatments. Some patients with focal forms of epilepsy benefit from invasive surgical approaches that can lead to large surgical resections of human epileptic neocortex. We have developed a systems biology approach to take full advantage of these resections and the brain tissues they generate as a means to understand underlying mechanisms of neocortical epilepsy and to identify novel biomarkers and therapeutic targets. In this review, we will describe our unique approach that has led to the development of a 'NeuroRepository' of electrically-mapped epileptic tissues and associated data. This 'Big Data' approach links quantitative measures of ictal and interictal activities corresponding to a specific intracranial electrode to clinical, imaging, histological, genomic, proteomic, and metabolomic measures. This highly characterized data and tissue bank has given us an extraordinary opportunity to explore the underlying electrical, cellular, and molecular mechanisms of the human epileptic brain. We describe specific examples of how an experimental design that compares multiple cortical regions with different electrical activities has led to discoveries of layer-specific pathways and how these can be 'reverse translated' from animal models back to humans in the form of new biomarkers and therapeutic targets. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Allison Kirchner
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Fabien Dachet
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Neuro Repository, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, 60612, USA; University of Illinois Neuro Repository, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Gu G, Scott T, Yan Y, Warren N, Zhang A, Tabatabaei A, Xu H, Aertgeerts K, Gomez L, Morse A, Li YW, Breitenbucher JG, Massari E, Vivian J, Danks A. Target Engagement of a Phosphodiesterase 2A Inhibitor Affecting Long-Term Memory in the Rat. J Pharmacol Exp Ther 2019; 370:399-407. [DOI: 10.1124/jpet.118.255851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/24/2019] [Indexed: 12/13/2022] Open
|
18
|
Korkutata M, Saitoh T, Cherasse Y, Ioka S, Duo F, Qin R, Murakoshi N, Fujii S, Zhou X, Sugiyama F, Chen JF, Kumagai H, Nagase H, Lazarus M. Enhancing endogenous adenosine A2A receptor signaling induces slow-wave sleep without affecting body temperature and cardiovascular function. Neuropharmacology 2019; 144:122-132. [DOI: 10.1016/j.neuropharm.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 01/20/2023]
|
19
|
Yang Z, Xu X, Li F, Yang F. Characterization of the promoter of white spot syndrome virus immediate-early gene wsv249. Virus Res 2018; 252:76-81. [PMID: 29753890 DOI: 10.1016/j.virusres.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
White spot syndrome virus immediate early (IE) gene wsv249 encodes an E3 ubiquitin ligase that can interact with a shrimp ubiquitin-conjugating enzyme to mediate ubiquitination. In this study, to understand the transcriptional regulation of wsv249, a serial of 5'-truncated mutations were made on its promoter and the activities of mutated promoters was analyzed. Four 25 bp regions potentially containing either positive or negative regulatory elements were identified. Notably, the deletion of -275/-250, which abolished a cAMP-response element (CRE), greatly reduced the promoter activity by 84.2%. CRE serves as the binding site for proteins belong to the cAMP responsive element-binding proteins (CREBs) family and the activator protein 1 (AP-1) family. Electrophoretic mobility shift assay (EMSA) showed that Lvc-Jun could directly bind to the CRE element in the promoter region of wsv249. In addition, the regulation of shrimp homolog of c-Jun and CREB on wsv249 promoter was further investigated. We found that Lvc-Jun greatly upregulated the activity of wsv249 promoter by ∼12.4 fold, and the CRE at -212/-205 but not the one at -256/-249 was essential for the regulation. In contrast, LvCREB-3 could not activate wsv249 promoter activity. These findings extend our knowledge of the transcriptional regulation of WSSV IE genes.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen,361005, PR China
| | - Xiaomin Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; School of life Science, Xiamen University, Xiamen,361005, PR China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China.
| | - Feng Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of State Oceanic Administration, Third Institute of Oceanography, Xiamen, 361005, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
20
|
Zhong Y, Chen J, Li L, Qin Y, Wei Y, Pan S, Jiang Y, Chen J, Xie Y. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats. Brain Res 2018; 1691:64-74. [DOI: 10.1016/j.brainres.2018.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
|
21
|
Wolfe A, Hussain MA. The Emerging Role(s) for Kisspeptin in Metabolism in Mammals. Front Endocrinol (Lausanne) 2018; 9:184. [PMID: 29740399 PMCID: PMC5928256 DOI: 10.3389/fendo.2018.00184] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
Kisspeptin was initially identified as a metastasis suppressor. Shortly after the initial discovery, a key physiologic role for kisspeptin emerged in the regulation of fertility, with kisspeptin acting as a neurotransmitter via the kisspeptin receptor, its cognate receptor, to regulate hypothalamic GnRH neurons, thereby affecting pituitary-gonadal function. Recent work has demonstrated a more expansive role for kisspeptin signaling in a variety of organ systems. Kisspeptin has been revealed as a significant player in regulating glucose homeostasis, feeding behavior, body composition as well as cardiac function. The direct impact of kisspeptin on peripheral metabolic tissues has only recently been recognized. Here, we review the emerging endocrine role of kisspeptin in regulating metabolic function. Controversies and current limitations in the field as well as areas of future studies toward kisspeptin's diverse array of functions will be highlighted.
Collapse
Affiliation(s)
- Andrew Wolfe
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States
| | - Mehboob A. Hussain
- Department of Internal Medicine Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, United States
| |
Collapse
|
22
|
Li X, Guo C, Li Y, Li L, Wang Y, Zhang Y, Li Y, Chen Y, Liu W, Gao L. Ketamine administered pregnant rats impair learning and memory in offspring via the CREB pathway. Oncotarget 2018; 8:32433-32449. [PMID: 28430606 PMCID: PMC5464800 DOI: 10.18632/oncotarget.15405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been reported to impair the capacity for learning and memory. This study examined whether these capacities were also altered in the offspring and investigated the role of the CREB signaling pathway in pregnant rats, subjected to ketamine-induced anesthesia. On the 14th day of gestation (P14), female rats were anesthetized for 3 h via intravenous ketamine injection (200 mg/Kg). Morris water maze task, contextual and cued fear conditioning, and olfactory tasks were executed between the 25th to 30th day after birth (B25-30) on rat pups, and rats were sacrificed on B30. Nerve density and dendritic spine density were examined via Nissl’s and Golgi staining. Simultaneously, the contents of Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII), p-CaMKII, CaMKIV, p-CaMKIV, Extracellular Regulated Protein Kinases (ERK), p-ERK, Protein Kinase A (PKA), p-PKA, cAMP-Response Element Binding Protein (CREB), p-CREB, and Brain Derived Neurotrophic Factor (BDNF) were detected in the hippocampus. We pretreated PC12 cells with both PKA inhibitor (H89) and ERK inhibitor (SCH772984), thus detecting levels of ERK, p-ERK, PKA, p-PKA, p-CREB, and BDNF. The results revealed that ketamine impaired the learning ability and spatial as well as conditioned memory in the offspring, and significantly decreased the protein levels of ERK, p-ERK, PKA, p-PKA, p-CREB, and BDNF. We found that ERK and PKA (but not CaMKII or CaMKIV) have the ability to regulate the CREB-BDNF pathway during ketamine-induced anesthesia in pregnant rats. Furthermore, ERK and PKA are mutually compensatory for the regulation of the CREB-BDNF pathway.
Collapse
Affiliation(s)
- Xinran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Cen Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lina Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuxin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenhan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Kim S, Shou J, Abera S, Ziff EB. Sucrose withdrawal induces depression and anxiety-like behavior by Kir2.1 upregulation in the nucleus accumbens. Neuropharmacology 2017; 130:10-17. [PMID: 29191750 DOI: 10.1016/j.neuropharm.2017.11.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 02/02/2023]
Abstract
Dieting induces depression and anxiety among other emotional symptoms. Animal models indicate that repeated access to palatable foods such as sugar induces depression and anxiety-like behavior when the food is no longer available. However, the neurobiological mechanisms of how dietary restriction influences mood have not been fully understood. We used the two-bottle sucrose choice paradigm as an overeating and withdrawal model. Withdrawal after lengthy sucrose overeating elicited depression and anxiety-like behavior, which was reversed by sucrose reinstatement. In the nucleus accumbens (NAc) of sucrose withdrawal animals, dopamine levels and cAMP response element binding protein (CREB) activity were significantly reduced, while the inwardly rectifying K+ channel, Kir2.1, was significantly elevated. In addition, overexpression of Kir2.1 selectively in neurons expressing dopamine D1 receptors was sufficient to induce negative mood-linked behavior in the absence of sucrose overeating experience. As elevated K+ channels reduce neuronal excitability, a sucrose withdrawal-induced increase in Kir2.1 expression is able to decrease NAc activity, which provides a cellular basis for depression and anxiety-like behavior in animals.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States; Molecular Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, United States.
| | - Jiayi Shou
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Sinedu Abera
- Department of Biochemistry and Molecular Pharmacology, New York University Lagnone Medical Center, New York, NY 10016, United States
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University Lagnone Medical Center, New York, NY 10016, United States
| |
Collapse
|
24
|
Nagata N, Iwanari H, Kumagai H, Kusano-Arai O, Ikeda Y, Aritake K, Hamakubo T, Urade Y. Generation and characterization of an antagonistic monoclonal antibody against an extracellular domain of mouse DP2 (CRTH2/GPR44) receptors for prostaglandin D2. PLoS One 2017; 12:e0175452. [PMID: 28394950 PMCID: PMC5386288 DOI: 10.1371/journal.pone.0175452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin D2 (PGD2) is a lipid mediator involved in sleep regulation and inflammation. PGD2 interacts with 2 types of G protein-coupled receptors, DP1 and DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on T helper type 2 cells)/GPR44 to show a variety of biological effects. DP1 activation leads to Gs-mediated elevation of the intracellular cAMP level, whereas activation of DP2 decreases this level via the Gi pathway; and it also induces G protein-independent, arrestin-mediated cellular responses. Activation of DP2 by PGD2 causes the progression of inflammation via the recruitment of lymphocytes by enhancing the production of Th2-cytokines. Here we developed monoclonal antibodies (MAbs) against the extracellular domain of mouse DP2 by immunization of DP2-null mutant mice with DP2-overexpressing BAF3, murine interleukin-3 dependent pro-B cells, to reduce the generation of antibodies against the host cells by immunization of mice. Moreover, we immunized DP2-KO mice to prevent immunological tolerance to mDP2 protein. After cell ELISA, immunocytochemical, and Western blot analyses, we successfully obtained a novel monoclonal antibody, MAb-1D8, that specifically recognized native mouse DP2, but neither human DP2 nor denatured mouse DP2, by binding to a particular 3D receptor conformation formed by the N-terminus and extracellular loop 1, 2, and 3 of DP2. This antibody inhibited the binding of 0.5 nM [3H]PGD2 to mouse DP2 (IC50 = 46.3 ± 18.6 nM), showed antagonistic activity toward 15(R)-15-methyl PGD2-induced inhibition of 300 nM forskolin-activated cAMP production (IC50 = 16.9 ± 2.6 nM), and gave positive results for immunohistochemical staining of DP2-expressing CD4+ Th2 lymphocytes that had accumulated in the kidney of unilateral ureteral obstruction model mice. This monoclonal antibody will be very useful for in vitro and in vivo studies on DP2-mediated diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibody Specificity
- CD4-Positive T-Lymphocytes/metabolism
- CHO Cells
- COS Cells
- Cricetulus
- Cyclic AMP/metabolism
- Disease Models, Animal
- Epitope Mapping
- HEK293 Cells
- Humans
- Hybridomas/metabolism
- Immunization
- Immunohistochemistry
- Kidney/metabolism
- Kidney/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Precursor Cells, B-Lymphoid/immunology
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Ureteral Obstruction/immunology
- Ureteral Obstruction/metabolism
- Ureteral Obstruction/pathology
- beta-Arrestins/metabolism
Collapse
Affiliation(s)
- Nanae Nagata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
- * E-mail: (YU); (NN)
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Kumagai
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Aritake
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
- * E-mail: (YU); (NN)
| |
Collapse
|
25
|
Lee S, Wottrich S, Bonavida B. Crosstalks between Raf-kinase inhibitor protein and cancer stem cell transcription factors (Oct4, KLF4, Sox2, Nanog). Tumour Biol 2017; 39:1010428317692253. [PMID: 28378634 DOI: 10.1177/1010428317692253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Raf-kinase inhibitor protein has been reported to inhibit both the Raf/mitogen extracellular signal-regulated kinase/extracellular signal-regulated kinase and nuclear factor kappa-light-chain of activated B cells pathways. It has also been reported in cancers that Raf-kinase inhibitor protein behaves as a metastatic suppressor as well as a chemo-immunosensitizing factor to drug/immune-mediated apoptosis. The majority of cancers exhibit low or no levels of Raf-kinase inhibitor protein. Hence, the activities of Raf-kinase inhibitor protein contrast, in part, to those mediated by several cancer stem cell transcription factors for their roles in resistance and metastasis. In this review, the existence of crosstalks in the signaling pathways between Raf-kinase inhibitor protein and several cancer stem cell transcription factors (Oct4, KLF4, Sox2 and Nanog) was assembled. Oct4 is induced by Lin28, and Raf-kinase inhibitor protein inhibits the microRNA binding protein Lin28. The expression of Raf-kinase inhibitor protein inversely correlates with the expression of Oct4. KLF4 does not interact directly with Raf-kinase inhibitor protein, but rather interacts indirectly via Raf-kinase inhibitor protein's regulation of the Oct4/Sox2/KLF4 complex through the mitogen-activated protein kinase pathway. The mechanism by which Raf-kinase inhibitor protein inhibits Sox2 is via the inhibition of the mitogen-activated protein kinase pathway by Raf-kinase inhibitor protein. Thus, Raf-kinase inhibitor protein's relationship with Sox2 is via its regulation of Oct4. Inhibition of extracellular signal-regulated kinase by Raf-kinase inhibitor protein results in the upregulation of Nanog. The inhibition of Oct4 by Raf-kinase inhibitor protein results in the failure of the heterodimer formation of Oct4 and Sox2 that is necessary to bind to the Nanog promoter for the transcription of Nanog. The findings revealed that there exists a direct correlation between the expression of Raf-kinase inhibitor protein and the expression of each of the above transcription factors. Based on these analyses, we suggest that the expression level of Raf-kinase inhibitor protein may be involved in the regulation of the cancer stem cell phenotype.
Collapse
Affiliation(s)
- SoHyun Lee
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wottrich
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Jing YP, Wang D, Han XL, Dong DJ, Wang JX, Zhao XF. The Steroid Hormone 20-Hydroxyecdysone Enhances Gene Transcription through the cAMP Response Element-binding Protein (CREB) Signaling Pathway. J Biol Chem 2016; 291:12771-12785. [PMID: 27129227 DOI: 10.1074/jbc.m115.706028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
Animal steroid hormones regulate gene transcription through genomic pathways by binding to nuclear receptors. These steroid hormones also rapidly increase intracellular calcium and cyclic adenosine monophosphate (cAMP) levels and activate the protein kinase C (PKC) and protein kinase A (PKA) nongenomic pathways. However, the function and mechanism of the nongenomic pathways of the steroid hormones are unclear, and the relationship between the PKC and PKA pathways is also unclear. We propose that the steroid hormone 20-hydroxyecdysone (20E) activates the PKA pathway to enhance 20E-induced gene transcription in the lepidopteran insect Helicoverpa armigera The expression of the catalytic subunit 1 of PKA (PKAC1) increased during metamorphosis, and PKAC1 knockdown blocked pupation and repressed 20E-responsive gene expression. 20E regulated PKAC1 phosphorylation at threonine 200 and nuclear translocation through an ecdysone-responsive G-protein-coupled receptor 2. PKAC1 induced cAMP response element-binding protein (CREB) phosphorylation at serine 143, which bound to the cAMP response element on DNA to enhance 20E-responsive gene transcription. Through ecdysone-responsive G-protein-coupled receptor 2, 20E increased cAMP levels, which induced CREB PKA phosphorylation and 20E-responsive gene expression. This study demonstrates that the PKA/CREB pathway tightly and critically regulates 20E-induced gene transcription as well as its relationship with the 20E-induced PKC pathway.
Collapse
Affiliation(s)
- Yu-Pu Jing
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Di Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Lin Han
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Du-Juan Dong
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|
27
|
Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:54-65. [PMID: 26773169 DOI: 10.1016/j.pbiomolbio.2015.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 01/23/2023]
Abstract
The calcium/calmodulin-dependent protein kinase IV (CAMKIV) belongs to the serine/threonine protein kinase family, and is primarily involved in transcriptional regulation in lymphocytes, neurons and male germ cells. CAMKIV operates the signaling cascade and regulates activity of several transcription activators by phosphorylation, which in turn plays pivotal roles in immune response, inflammation and memory consolidation. In this review, we tried to focus on different aspects of CAMKIV to understand the significance of this protein in the biological system. This enzyme is associated with varieties of disorders such as cerebral hypoxia, azoospermia, endometrial and ovarian cancer, systemic lupus, etc., and hence it is considered as a potential therapeutic target. Structure of CAMKIV is comprised of five distinct domains in which kinase domain is responsible for enzyme activity. CAMKIV is involved in varieties of cellular functions such as regulation of gene expression, T-cell maturation, regulation of survival phase of dendritic cells, bone growth and metabolism, memory consolidation, sperm motility, regulation of microtubule dynamics, cell-cycle progression and apoptosis. In this review, we performed an extensive analysis on structure, function and regulation of CAMKIV and associated diseases.
Collapse
|
28
|
Nestler EJ. Reflections on: "A general role for adaptations in G-Proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Brain Res 2015; 1645:71-4. [PMID: 26740398 DOI: 10.1016/j.brainres.2015.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/19/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED In 1991 we demonstrated that chronic morphine exposure increased levels of adenylyl cyclase and protein kinase A (PKA) in several regions of the rat central nervous system as inferred from measures of enzyme activity in crude extracts (Terwilliger et al., 1991). These findings led us to hypothesize that a concerted upregulation of the cAMP pathway is a general mechanism of opiate tolerance and dependence. Moreover, in the same study we showed similar induction of adenylyl cyclase and PKA activity in nucleus accumbens (NAc) in response to chronic administration of cocaine, but not of several non-abused psychoactive drugs. Morphine and cocaine also induced equivalent changes in inhibitory G protein subunits in this brain region. We thus extended our hypothesis to suggest that, particularly within brain reward regions such as NAc, cAMP pathway upregulation represents a common mechanism of reward tolerance and dependence shared by several classes of drugs of abuse. Research since that time, by many laboratories, has provided substantial support for these hypotheses. Specifically, opiates in several CNS regions including NAc, and cocaine more selectively in NAc, induce expression of certain adenylyl cyclase isoforms and PKA subunits via the transcription factor, CREB, and these transcriptional adaptations serve a homeostatic function to oppose drug action. In certain brain regions, such as locus coeruleus, these adaptations mediate aspects of physical opiate dependence and withdrawal, whereas in NAc they mediate reward tolerance and dependence that drives increased drug self-administration. This work has had important implications for understanding the molecular basis of addiction. ORIGINAL ARTICLE ABSTRACT "A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Previous studies have shown that chronic morphine increases levels of the G-protein subunits Giα and Goα, adenylate cyclase, cyclic AMP-dependent protein kinase, and certain phosphoproteins in the rat locus coeruleus, but not in several other brain regions studied, and that chronic morphine decreases levels of Giα and increases levels of adenylate cyclase in dorsal root ganglion/spinal cord (DRG-SC) co-cultures. These findings led us to survey the effects of chronic morphine on the G-protein/cyclic AMP system in a large number of brain regions to determine how widespread such regulation might be. We found that while most regions showed no regulation in response to chronic morphine, nucleus accumbens (NAc) and amygdala did show increases in adenylate cyclase and cyclic AMP-dependent protein kinase activity, and thalamus showed an increase in cyclic AMP-dependent protein kinase activity only. An increase in cyclic AMP-dependent protein kinase activity was also observed in DRG-SC co-cultures. Morphine regulation of G-proteins was variable, with decreased levels of Giα seen in the NAc, increased levels of Giα and Goα amygdala, and no change in thalamus or the other brain regions studied. Interestingly, chronic treatment of rats with cocaine, but not with several non-abused drugs, produced similar changes compared to morphine in G-proteins, adenylate cyclase, and cyclic AMP-dependent protein kinase in the NAc, but not in the other brain regions studied. These results indicate that regulation of the G-protein/cyclic AMP system represents a mechanism by which a number of opiate-sensitive neurons adapt to chronic morphine and thereby develop aspects of opiate tolerance and/or dependence. The findings that chronic morphine and cocaine produce similar adaptations in the NAc, a brain region important for the reinforcing actions of many types of abused substances, suggest further that common mechanisms may underlie psychological aspects of drug addiction mediated by this brain region. © 1991. This article is part of a Special Issue entitled SI:50th Anniversary Issue.
Collapse
Affiliation(s)
- Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1065, New York, NY 10029, USA.
| |
Collapse
|
29
|
Pauli M, Chakarov N, Rupp O, Kalinowski J, Goesmann A, Sorenson MD, Krüger O, Hoffman JI. De novo assembly of the dual transcriptomes of a polymorphic raptor species and its malarial parasite. BMC Genomics 2015; 16:1038. [PMID: 26645667 PMCID: PMC4673757 DOI: 10.1186/s12864-015-2254-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/27/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Studies of non-model species are important for understanding the molecular processes underpinning phenotypic variation under natural ecological conditions. The common buzzard (Buteo buteo; Aves: Accipitriformes) is a widespread and common Eurasian raptor with three distinct plumage morphs that differ in several fitness-related traits, including parasite infestation. To provide a genomic resource for plumage polymorphic birds in general and to search for candidate genes relating to fitness, we generated a transcriptome from a single dead buzzard specimen plus easily accessible, minimally invasive samples from live chicks. RESULTS We not only de novo assembled a near-complete buzzard transcriptome, but also obtained a significant fraction of the transcriptome of its malaria-like parasite, Leucocytozoon buteonis. By identifying melanogenesis-related transcripts that are differentially expressed in light ventral and dark dorsal feathers, but which are also expressed in other regions of the body, we also identified a suite of candidate genes that could be associated with fitness differences among the morphs. These include several immune-related genes, providing a plausible link between melanisation and parasite load. qPCR analysis of a subset of these genes revealed significant differences between ventral and dorsal feathers and an additional effect of morph. CONCLUSION This new resource provides preliminary insights into genes that could be involved in fitness differences between the buzzard colour morphs, and should facilitate future studies of raptors and their malaria-like parasites.
Collapse
Affiliation(s)
- Martina Pauli
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany.
- Present address: Molecular Ecology and Evolution Lab, Lund University, 223 62, Lund, Sweden.
| | - Oliver Rupp
- Bioinformatics and Systems Biology, Justus-Liebig-University, 35390, Giessen, Germany
- Center for Biotechnology, Bielefeld University, 33501, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33501, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University, 35390, Giessen, Germany
- Center for Biotechnology, Bielefeld University, 33501, Bielefeld, Germany
| | | | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - Joseph Ivan Hoffman
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| |
Collapse
|
30
|
Taub M, Garimella S, Kim D, Rajkhowa T, Cutuli F. Renal proximal tubule Na,K-ATPase is controlled by CREB-regulated transcriptional coactivators as well as salt-inducible kinase 1. Cell Signal 2015; 27:2568-78. [PMID: 26432356 PMCID: PMC4696386 DOI: 10.1016/j.cellsig.2015.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 01/11/2023]
Abstract
Sodium reabsorption by the kidney is regulated by locally produced natriuretic and anti-natriuretic factors, including dopamine and norepinephrine, respectively. Previous studies indicated that signaling events initiated by these natriuretic and anti-natriuretic factors achieve their effects by altering the phosphorylation of Na,K-ATPase in the renal proximal tubule, and that protein kinase A (PKA) and calcium-mediated signaling pathways are involved. The same signaling pathways also control the transcription of the Na,K-ATPase β subunit gene atp1b1 in renal proximal tubule cells. In this report, evidence is presented that (1) both the recently discovered cAMP-regulated transcriptional coactivators (CRTCs) and salt-inducible kinase 1 (SIK1) contribute to the transcriptional regulation of atp1b1 in renal proximal tubule (RPT) cells and (2) renal effectors, including norepinephrine, dopamine, prostaglandins, and sodium, play a role. Exogenously expressed CRTCs stimulate atp1b1 transcription. Evidence for a role of endogenous CRTCs includes the loss of transcriptional regulation of atp1b1 by a dominant-negative CRTC, as well as by a CREB mutant, with an altered CRTC binding site. In a number of experimental systems, SIK phosphorylates CRTCs, which are then sequestered in the cytoplasm, preventing their nuclear effects. Consistent with such a role of SIK in primary RPT cells, atp1b1 transcription increased in the presence of a dominant-negative SIK1, and in addition, regulation by dopamine, norepinephrine, and monensin was disrupted by a dominant-negative SIK1. These latter observations can be explained if SIK1 is phosphorylated and inactivated in the presence of these renal effectors. Our results support the hypothesis that Na,K-ATPase in the renal proximal tubule is regulated at the transcriptional level via SIK1 and CRTCs by renal effectors, in addition to the previously reported control of the phosphorylation of Na,K-ATPase.
Collapse
Affiliation(s)
- Mary Taub
- Biochemistry Department,School of Medicine and Biomedical SciencesUniversity at Buffalo,140 Farber Hall, 3435 Main Street,Buffalo, NY 14214, USA.
| | - Sudha Garimella
- Biochemistry Department,School of Medicine and Biomedical SciencesUniversity at Buffalo,140 Farber Hall, 3435 Main Street,Buffalo, NY 14214, USA
| | - Dongwook Kim
- Biochemistry Department,School of Medicine and Biomedical SciencesUniversity at Buffalo,140 Farber Hall, 3435 Main Street,Buffalo, NY 14214, USA
| | - Trivikram Rajkhowa
- Biochemistry Department,School of Medicine and Biomedical SciencesUniversity at Buffalo,140 Farber Hall, 3435 Main Street,Buffalo, NY 14214, USA
| | - Facundo Cutuli
- Biochemistry Department,School of Medicine and Biomedical SciencesUniversity at Buffalo,140 Farber Hall, 3435 Main Street,Buffalo, NY 14214, USA
| |
Collapse
|
31
|
Kamenskaya DN, Pankova MV, Atopkin DM, Brykov VA. Fish growth-hormone genes: Evidence of functionality of paralogous genes in Levanidov’s charr Salvelinus levanidovi. Mol Biol 2015. [DOI: 10.1134/s002689331505009x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Li H, Wang J, Wang P, Rao Y, Chen L. Resveratrol Reverses the Synaptic Plasticity Deficits in a Chronic Cerebral Hypoperfusion Rat Model. J Stroke Cerebrovasc Dis 2015; 25:122-8. [PMID: 26456198 DOI: 10.1016/j.jstrokecerebrovasdis.2015.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/29/2015] [Accepted: 09/06/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Dementia is the most prevalent neurological disease in aged people. Chronic cerebral hypoperfusion (CCH) is one of the causes of vascular dementia (VaD) and is also an etiological factor for Alzheimer's disease (AD). However, effective therapy for those two diseases is still missing. Resveratrol is a polyphenol produced by plants that have multiple biological functions, such as increased life span and delay in the onset of diseases associated with aging. It is known supplement with resveratrol could exert neuroprotection against multiple injury factors induced neuronal death and degeneration, as well as the cognitive decline of CCH rat model. METHODS The morris water maze was used to evaluate the learning and memory, electrophysiological recording was used to detect the synaptic plasticity, the Golgi staining was used to examine the change of dendritic spines, the western blot was used to detect the proteins levels. RESULTS We reported that resveratrol pretreatment effectively restore the synaptic plasticity in CCH rats both functional and structural. We also found that the PKA-CREB activation may be a major player in resveratrol-mediated neuroprotection in CCH model. CONCLUSIONS Our data provide the mechanistic evidence for the neuroprotective effects of resveratrol in vascular dementia.
Collapse
Affiliation(s)
- Huagang Li
- Department of Neurology, Zhongnan Hospital, Wuhan University, China.
| | - Jing Wang
- Department of Neurology, Zhongnan Hospital, Wuhan University, China
| | - Pu Wang
- Department of Rehabilitation, West China Hospital, Sichuang University, China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, China
| | - Liping Chen
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University, China
| |
Collapse
|
33
|
Hussain MA, Song WJ, Wolfe A. There is Kisspeptin - And Then There is Kisspeptin. Trends Endocrinol Metab 2015; 26:564-572. [PMID: 26412157 PMCID: PMC4587393 DOI: 10.1016/j.tem.2015.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
While kisspeptin was initially found to function as a metastasis suppressor, after identification of its receptor KISS1R and their expression profiles in tissues such as the hypothalamus and adrenals, kisspeptin and KISS1R were predominantly assigned endocrine functions, including regulating puberty and fertility through their actions on hypothalamic gonadotropin releasing hormone production. More recently, an alter ego for kisspeptin has emerged, with a significant role in regulating glucose homeostasis, insulin secretion, as well as food intake and body composition, and deficient kisspeptin signaling results in reduced locomotor activity and increased adiposity. This review highlights these recent observations on the role of kisspeptin in metabolism as well as several key questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Mehboob A Hussain
- Divisions of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University, Baltimore, MD, USA.
| | - Woo-Jin Song
- Divisions of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Wolfe
- Divisions of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
Accounting for the delay in the transition from acute to chronic pain: axonal and nuclear mechanisms. J Neurosci 2015; 35:495-507. [PMID: 25589745 DOI: 10.1523/jneurosci.5147-13.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acute insults produce hyperalgesic priming, a neuroplastic change in nociceptors that markedly prolongs inflammatory mediator-induced hyperalgesia. After an acute initiating insult, there is a 72 h delay to the onset of priming, for which the underlying mechanism is unknown. We hypothesized that the delay is due to the time required for a signal to travel from the peripheral terminal to the cell body followed by a return signal to the peripheral terminal. We report that when an inducer of hyperalgesic priming (monocyte chemotactic protein 1) is administered at the spinal cord of Sprague Dawley rats, priming is detected at the peripheral terminal with a delay significantly shorter than when applied peripherally. Spinally induced priming is detected not only when prostaglandin E2 (PGE2) is presented to the peripheral nociceptor terminals, but also when it is presented intrathecally to the central terminals in the spinal cord. Furthermore, when an inducer of priming is administered in the paw, priming can be detected in spinal cord (as prolonged hyperalgesia induced by intrathecal PGE2), but only when the mechanical stimulus is presented to the paw on the side where the priming inducer was administered. Both spinally and peripherally induced priming is prevented by intrathecal oligodeoxynucleotide antisense to the nuclear transcription factor CREB mRNA. Finally, the inhibitor of protein translation reversed hyperalgesic priming only when injected at the site where PGE2 was administered, suggesting that the signal transmitted from the cell body to the peripheral terminal is not a newly translated protein, but possibly a newly expressed mRNA.
Collapse
|
35
|
Cross-talk between PKA-Cβ and p65 mediates synergistic induction of PDE4B by roflumilast and NTHi. Proc Natl Acad Sci U S A 2015; 112:E1800-9. [PMID: 25831493 DOI: 10.1073/pnas.1418716112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphodiesterase 4B (PDE4B) plays a key role in regulating inflammation. Roflumilast, a phosphodiesterase (PDE)4-selective inhibitor, has recently been approved for treating severe chronic obstructive pulmonary disease (COPD) patients with exacerbation. However, there is also clinical evidence suggesting the development of tachyphylaxis or tolerance on repeated dosing of roflumilast and the possible contribution of PDE4B up-regulation, which could be counterproductive for suppressing inflammation. Thus, understanding how PDE4B is up-regulated in the context of the complex pathogenesis and medications of COPD may help improve the efficacy and possibly ameliorate the tolerance of roflumilast. Here we show that roflumilast synergizes with nontypeable Haemophilus influenzae (NTHi), a major bacterial cause of COPD exacerbation, to up-regulate PDE4B2 expression in human airway epithelial cells in vitro and in vivo. Up-regulated PDE4B2 contributes to the induction of certain important chemokines in both enzymatic activity-dependent and activity-independent manners. We also found that protein kinase A catalytic subunit β (PKA-Cβ) and nuclear factor-κB (NF-κB) p65 subunit were required for the synergistic induction of PDE4B2. PKA-Cβ phosphorylates p65 in a cAMP-dependent manner. Moreover, Ser276 of p65 is critical for mediating the PKA-Cβ-induced p65 phosphorylation and the synergistic induction of PDE4B2. Collectively, our data unveil a previously unidentified mechanism underlying synergistic up-regulation of PDE4B2 via a cross-talk between PKA-Cβ and p65 and may help develop new therapeutic strategies to improve the efficacy of PDE4 inhibitor.
Collapse
|
36
|
Zhang SJ, Li YF, Wang GE, Tan RR, Tsoi B, Mao GW, Zhai YJ, Cao LF, Chen M, Kurihara H, Wang Q, He RR. Caffeine ameliorates high energy diet-induced hepatic steatosis: sirtuin 3 acts as a bridge in the lipid metabolism pathway. Food Funct 2015; 6:2578-87. [DOI: 10.1039/c5fo00247h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We demonstrate that caffeine could improve HED-induced hepatic steatosis by promoting lipid metabolism via the cAMP/CREB/SIRT3/AMPK/ACC pathway. SIRT3 acts as a molecular bridge connecting caffeine and lipid metabolism.
Collapse
|
37
|
Brand SJ, Moller M, Harvey BH. A Review of Biomarkers in Mood and Psychotic Disorders: A Dissection of Clinical vs. Preclinical Correlates. Curr Neuropharmacol 2015; 13:324-68. [PMID: 26411964 PMCID: PMC4812797 DOI: 10.2174/1570159x13666150307004545] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/04/2015] [Accepted: 03/06/2015] [Indexed: 11/23/2022] Open
Abstract
Despite significant research efforts aimed at understanding the neurobiological underpinnings of mood (depression, bipolar disorder) and psychotic disorders, the diagnosis and evaluation of treatment of these disorders are still based solely on relatively subjective assessment of symptoms as well as psychometric evaluations. Therefore, biological markers aimed at improving the current classification of psychotic and mood-related disorders, and that will enable patients to be stratified on a biological basis into more homogeneous clinically distinct subgroups, are urgently needed. The attainment of this goal can be facilitated by identifying biomarkers that accurately reflect pathophysiologic processes in these disorders. This review postulates that the field of psychotic and mood disorder research has advanced sufficiently to develop biochemical hypotheses of the etiopathology of the particular illness and to target the same for more effective disease modifying therapy. This implies that a "one-size fits all" paradigm in the treatment of psychotic and mood disorders is not a viable approach, but that a customized regime based on individual biological abnormalities would pave the way forward to more effective treatment. In reviewing the clinical and preclinical literature, this paper discusses the most highly regarded pathophysiologic processes in mood and psychotic disorders, thereby providing a scaffold for the selection of suitable biomarkers for future studies in this field, to develope biomarker panels, as well as to improve diagnosis and to customize treatment regimens for better therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Brian H Harvey
- Division of Pharmacology and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
38
|
Zhang L, Jin C, Lu X, Yang J, Wu S, Liu Q, Chen R, Bai C, Zhang D, Zheng L, Du Y, Cai Y. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology 2014; 323:95-108. [DOI: 10.1016/j.tox.2014.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
|
39
|
Shakil H, Saleem S. Genetic Deletion of Prostacyclin IP Receptor Exacerbates Transient Global Cerebral Ischemia in Aging Mice. Brain Sci 2014; 3:1095-108. [PMID: 24634780 PMCID: PMC3950203 DOI: 10.3390/brainsci3031095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transient global cerebral ischemia causes delayed neuronal death in the hippocampal CA1 region. It also induces an up regulation of cyclooxygenase 2 (COX-2), which generates several metabolites of arachidonic acid, known as prostanoids, including Prostaglandin I2 (PGI2). The present study investigated whether the PGI2 IP receptor plays an important role in brain injury after global cerebral ischemia in aged mice. Adult young (2-3 months) and aged (12-15 months) male C57Bl/6 wild-type (WT) or IP receptor knockout (IP KO) mice underwent a 12 min bilateral common carotid artery occlusion (BCCAO) or a sham surgery. Behavior tests (neurologic deficit and T-maze) were performed 3 and 7 days after BCCAO. After seven days of reperfusion, the numbers of cells positive for markers of neurons, astrocytes, microglia, myeloperoxidase (MPO) and phosphorylated CREB (p-CREB) were evaluated immunohistochemically. Interestingly, in young and aged IP KO ischemic mice, there was a significant increase (p < 0.01) in cognitive deficit, hippocampal CA1 pyramidal neuron death, microglia and MPO activation, while p-CREB was reduced as compared to their corresponding WT controls. These data suggest that following ischemia, IP receptor deletion contributes to memory and cognitive deficits regulated by the CREB pathway and that treatment with IP receptor agonists could be a useful target to prevent harmful consequences.
Collapse
Affiliation(s)
- Hania Shakil
- Hamdard College of Medicine and Dentistry, Hamdard University, Sharae Madinat Al-Hikmah, Karachi 74600, Pakistan
| | - Sofiyan Saleem
- Center for Neuroscience, Aging and Stem Cell Research, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Xiong SL, Liu X, Yi GH. High-density lipoprotein induces cyclooxygenase-2 expression and prostaglandin I-2 release in endothelial cells through sphingosine kinase-2. Mol Cell Biochem 2014; 389:197-207. [PMID: 24385109 PMCID: PMC3950625 DOI: 10.1007/s11010-013-1941-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
Abstract
High-density lipoprotein (HDL) has a significant cardioprotective effects. HDL induces cyclooxygenase-2 (COX-2) expression and prostacyclin I-2 (PGI-2) release in vascular endothelial cells, which contributes to its anti-atherogenic effects. However, the underlying mechanisms are not fully understood. In the present study, we observed that HDL-stimulated COX-2 expression and PGI-2 production in human umbilical vein endothelial cells (HUVECs) in a time- and dose-dependent manner. These effects triggered by HDL were inhibited by pertussis toxin (PTX), protein kinase C (PKC) inhibitor GF109203X, and ERK inhibitor PD98059, suggesting that Gαi/Gαo-coupled GPCR, PKC, and ERK pathways are involved in HDL-induced COX-2/PGI-2 activation. More importantly, we found that silencing of sphingosine kinase 2 (SphK-2) also blocked HDL-induced COX-2/PGI-2 activation. In addition, HDL-activated SphK-2 phosphorylation accompanied by increased S1P level in the nucleus. Our ChIP data demonstrated that SphK-2 is associated with CREB at the COX-2 promoter region. Collectively, these results indicate that HDL induces COX-2 expression and PGI-2 release in endothelial cells through activation of PKC, ERK1/2, and SphK-2 pathways. These findings implicate a novel mechanism underlying anti-atherothrombotic effects of HDL.
Collapse
Affiliation(s)
- Sheng-Lin Xiong
- You Country People's Hospital, Zhuzhou, 412300, Hunan, China,
| | | | | |
Collapse
|
41
|
Kovács KJ. CRH: The link between hormonal-, metabolic- and behavioral responses to stress. J Chem Neuroanat 2013; 54:25-33. [DOI: 10.1016/j.jchemneu.2013.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023]
|
42
|
Zhang L, Xu J, Sun N, Cai H, Ren M, Zhang J, Yu C, Wang Z, Gao L, Zhao J. The presence of adenosine A2a receptor in thyrocytes and its involvement in Graves' IgG-induced VEGF expression. Endocrinology 2013; 154:4927-38. [PMID: 24080368 DOI: 10.1210/en.2012-2258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Goitrogenesis in Graves' disease (GD) has been attributed to anti-TSH receptor antibody stimulation. Recently, a role for adenosine A2a receptor (A2aR) in goiter formation was reported in the thyroglobulin-A2aR transgenic mice. However, it is unclear whether A2aR is expressed in the thyroid and whether it is associated with the pathogenesis of goiter in GD. Here, we confirmed the expression of A2aR in FRTL-5 cells, primary normal human thyrocytes (both sexes were used without regard to sex), and thyroid tissue (both sexes were used without regard to sex) by PCR, Western blotting, immunohistochemistry, and immunofluorescence. After treatments with A2aR-specific agonist 2-p-(2-Carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine or GD IgG, the mRNA and protein levels of vascular endothelial growth factor (VEGF), a growth factor related to goitrogenesis, were evaluated along with upstream signaling pathways. A2aR activation and GD IgG promoted the expression of VEGF in thyrocytes, which was accompanied by the activation of cAMP/protein kinase A/phosphorylated-cAMP-response element-binding protein, peroxisome proliferator-activated receptor γ coactivator-1α, and hypoxia-inducible factor-1α. The changes induced by GD IgG were partially abrogated by A2aR small interfering RNA and an A2aR antagonist. These results were supported by data on the goiter samples from the thyrotropin receptor adenovirus-induced GD mouse model (female). These data demonstrate that GD IgG could up-regulate the VEGF expression through A2aR, indicating a potential mechanism for goitrogenesis in GD.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Endocrinology, Shandong Provincial Hospital, 324 Jing 5 Road, Jinan, Shandong Province 250021, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu F, Li H, Zhao L, Li X, You J, Jiang Q, Li S, Jin L, Xu Y. Protective effects of aqueous extract from Acanthopanax senticosus against corticosterone-induced neurotoxicity in PC12 cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:861-868. [PMID: 23727182 DOI: 10.1016/j.jep.2013.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthopanax senticosus, classified into the family of Araliaceae, has been known for thousands of years as a remedy and is used to treat various diseases in traditional Chinese medicine system including hypertension, ischemic heart disease and hepatitis. AIM OF THE STUDY This study aimed to examine the protective effects of aqueous extract from Acanthopanax senticosus (ASE) on corticosterone-induced neurotoxicity and its possible mechanisms, using PC12 cells as a suitable in vitro model of depression. MATERIALS AND METHODS In this paper, PC12 cells were treated with 200 μM of corticosterone in the absence or presence of ASE in varying concentrations for 24 h. Then, cell viability was measured by MTT assay. The release amount of lactate dehydrogenase (LDH) was quantified using LDH assay kit. Apoptosis of PC12 cells was measured by Annexin V-FITC and PI labeling. The intracellular Ca(2+) content was tested by fluorescent labeling. The mRNA level of brain-derived neurotrophic factor (BDNF) was examined by real-time RT-PCR, and the expression of cAMP response element binding protein (CREB) was determined by western blotting. RESULTS The results showed that treatment with 200 μM of corticosterone could induce cytotoxicity in PC12 cells. However, different concentrations of ASE (50, 100, 200, and 400 μg/mL) significantly increased the cell viability, decreased the LDH release, suppressed the apoptosis of PC12 cells, attenuated the intracellular Ca(2+) overloading, up-regulated the BDNF mRNA level and CREB protein expression compared with the corresponding corticosterone-treated group. CONCLUSION The present results suggest that ASE exerts a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, which may be one of the acting mechanisms that accounts for the in vivo antidepressant activity of ASE.
Collapse
Affiliation(s)
- Feifei Wu
- Department of Biology and Chemistry Engineering, Shaoyang University, Shaoyang 422000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Everett LJ, Lay JL, Lukovac S, Bernstein D, Steger DJ, Lazar MA, Kaestner KH. Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver. BMC Genomics 2013; 14:337. [PMID: 23682854 PMCID: PMC3671974 DOI: 10.1186/1471-2164-14-337] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/13/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metabolic homeostasis in mammals critically depends on the regulation of fasting-induced genes by CREB in the liver. Previous genome-wide analysis has shown that only a small percentage of CREB target genes are induced in response to fasting-associated signaling pathways. The precise molecular mechanisms by which CREB specifically targets these genes in response to alternating hormonal cues remain to be elucidated. RESULTS We performed chromatin immunoprecipitation coupled to high-throughput sequencing of CREB in livers from both fasted and re-fed mice. In order to quantitatively compare the extent of CREB-DNA interactions genome-wide between these two physiological conditions we developed a novel, robust analysis method, termed the 'single sample independence' (SSI) test that greatly reduced the number of false-positive peaks. We found that CREB remains constitutively bound to its target genes in the liver regardless of the metabolic state. Integration of the CREB cistrome with expression microarrays of fasted and re-fed mouse livers and ChIP-seq data for additional transcription factors revealed that the gene expression switches between the two metabolic states are associated with co-localization of additional transcription factors at CREB sites. CONCLUSIONS Our results support a model in which CREB is constitutively bound to thousands of target genes, and combinatorial interactions between DNA-binding factors are necessary to achieve the specific transcriptional response of the liver to fasting. Furthermore, our genome-wide analysis identifies thousands of novel CREB target genes in liver, and suggests a previously unknown role for CREB in regulating ER stress genes in response to nutrient influx.
Collapse
Affiliation(s)
- Logan J Everett
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John Le Lay
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sabina Lukovac
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Diana Bernstein
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Steger
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Jin L, Wu F, Li X, Li H, Du C, Jiang Q, You J, Li S, Xu Y. Anti-depressant Effects of Aqueous Extract fromAcanthopanax senticosusin Mice. Phytother Res 2013; 27:1829-33. [DOI: 10.1002/ptr.4938] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Liji Jin
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P. R. China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian University of Technology; Dalian 116620 P. R. China
| | - Feifei Wu
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P. R. China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian University of Technology; Dalian 116620 P. R. China
| | - Xiaoyu Li
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P. R. China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian University of Technology; Dalian 116620 P. R. China
| | - Huaqiang Li
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P. R. China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian University of Technology; Dalian 116620 P. R. China
| | - Chong Du
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P. R. China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian University of Technology; Dalian 116620 P. R. China
| | - Qi Jiang
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P. R. China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian University of Technology; Dalian 116620 P. R. China
| | - Jiansong You
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P. R. China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian University of Technology; Dalian 116620 P. R. China
- Dalian SEM Bio-Engineering Technology Co. Ltd.; Dalian 116620 P. R. China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd.; Dalian 116620 P. R. China
| | - Yongping Xu
- School of Life Science and Biotechnology; Dalian University of Technology; Dalian 116024 P. R. China
- Ministry of Education Center for Food Safety of Animal Origin; Dalian University of Technology; Dalian 116620 P. R. China
- Dalian SEM Bio-Engineering Technology Co. Ltd.; Dalian 116620 P. R. China
- State Key Laboratories of Fine Chemicals; Dalian University of Technology; Dalian 116012 P. R. China
| |
Collapse
|
46
|
Yao ZG, Zhang L, Liang L, Liu Y, Yang YJ, Huang L, Zhu H, Ma CM, Qin C. The effect of PN-1, a Traditional Chinese Prescription, on the Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:518421. [PMID: 23476695 PMCID: PMC3588396 DOI: 10.1155/2013/518421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 01/30/2023]
Abstract
Traditional Chinese Medicine (TCM) is a complete medical system that has been practiced for more than 3000 years. Prescription number 1 (PN-1) consists of several Chinese medicines and is designed according to TCM theories to treat patients with neuropsychiatric disorders. The evidence of clinical practice suggests the benefit effects of PN-1 on cognitive deficits of dementia patients. We try to prove and explain this by using contemporary methodology and transgenic animal models of Alzheimer's disease (AD). The behavioral studies were developed to evaluate the memory of transgenic animals after intragastric administration of PN-1 for 3 months. Amyloid beta-protein (A β ) neuropathology was quantified using immunohistochemistry and ELISA. The western blotting was used to detect the levels of plasticity associated proteins. The safety of PN-1 on mice was also assessed through multiple parameters. Results showed that PN-1 could effectively relieve learning and memory impairment of transgenic animals. Possible mechanisms showed that PN-1 could significantly reduce plaque burden and A β levels and boost synaptic plasticity. Our observations showed that PN-1 could improve learning and memory ability through multiple mechanisms without detectable side effects on mice. We propose that PN-1 is a promising alternative treatment for AD in the future.
Collapse
Affiliation(s)
- Zhi-Gang Yao
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Ling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Liang Liang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Yu Liu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Ya-Jun Yang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Lan Huang
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Hua Zhu
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Chun-Mei Ma
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| | - Chuan Qin
- Comparative Medical Center, Institute of Laboratory Animal Science, Peking Union Medical College (PUMC), Chinese Academy of Medical Science (CAMS), Beijing 100021, China
| |
Collapse
|
47
|
Ranson RN, Connelly JH, Santer RM, Watson AHD. Nuclear expression of PG-21, SRC-1, and pCREB in regions of the lumbosacral spinal cord involved in pelvic innervation in young adult and aged rats. Anat Cell Biol 2012; 45:241-58. [PMID: 23301192 PMCID: PMC3531588 DOI: 10.5115/acb.2012.45.4.241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/31/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022] Open
Abstract
In rats, ageing results in dysfunctional patterns of micturition and diminished sexual reflexes that may reflect degenerative changes within spinal circuitry. In both sexes the dorsal lateral nucleus and the spinal nucleus of the bulbospongiosus, which lie in the L5-S1 spinal segments, contain motor neurons that innervate perineal muscles, and the external anal and urethral sphincters. Neurons in the sacral parasympathetic nucleus of these segments provide autonomic control of the bladder, cervix and penis and other lower urinary tract structures. Interneurons in the dorsal gray commissure and dorsal horn have also been implicated in lower urinary tract function. This study investigates the cellular localisation of PG-21 androgen receptors, steroid receptor co-activator one (SRC-1) and the phosphorylated form of c-AMP response element binding protein (pCREB) within these spinal nuclei. These are components of signalling pathways that mediate cellular responses to steroid hormones and neurotrophins. Nuclear expression of PG-21 androgen receptors, SRC-1 and pCREB in young and aged rats was quantified using immunohistochemistry. There was a reduction in the number of spinal neurons expressing these molecules in the aged males while in aged females, SRC-1 and pCREB expression was largely unchanged. This suggests that the observed age-related changes may be linked to declining testosterone levels. Acute testosterone therapy restored expression of PG-21 androgen receptor in aged and orchidectomised male rats, however levels of re-expression varied within different nuclei suggesting a more prolonged period of hormone replacement may be required for full restoration.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK. ; School of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
48
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
49
|
Yang D, Chen M, Russo-Neustadt A. Antidepressants are neuroprotective against nutrient deprivation stress in rat hippocampal neurons. Eur J Neurosci 2012; 36:2573-87. [DOI: 10.1111/j.1460-9568.2012.08187.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Zhou J, Zhang G, Zhou Q. Molecular characterization of cytochrome P450 CYP6B47 cDNAs and 5'-flanking sequence from Spodoptera litura (Lepidoptera: Noctuidae): its response to lead stress. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:726-736. [PMID: 22391394 DOI: 10.1016/j.jinsphys.2012.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 05/31/2023]
Abstract
In insects, P450s are responsible for the oxidative metabolism of structurally diverse endogenous and exogenous compounds including plant allelochemicals and insecticides. A novel full-length P450 cDNA, CYP6B47, was cloned from Spodoptera litura (Lepidoptera: Noctuidae). The sequence is 1718 bp in length with an ORF of 1509 bp encoding 503 amino acid residues. The phylogenetic analysis indicated that CYP6B47 belongs to CYP3 clan and second clade of CYP6Bs which contain 11 P450s from Noctuidae. Quantitative real-time PCR showed that CYP6B47 was expressed only in larvae stages and had a high level of transcription in the midgut and fat body. In addition, we cloned a 2141-bp 5'-flanking regions and presented the basal luciferase activities of promoter. We also predicted multiple putative elements for transcription factors binding in the 5'-flanking region. Interestingly, the expression of CYP6B47 significantly increased in the midgut and fat body after lead (Pb) exposure for 5 generations. Larvae tolerance to the alpha-cypermethrin (35% increased in LC(50)) and fenvalerate (52% increased in LC(50)) were improved after pre-exposure to 50 mg/kg Pb. These dates suggested that lead increased tolerance of larvae to insecticides mainly through transcriptional induction of detoxification genes including CYP6B47.
Collapse
Affiliation(s)
- Jialiang Zhou
- State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | | | | |
Collapse
|