1
|
Examination of multiple Trypanosoma cruzi targets in a new drug discovery approach for Chagas disease. Bioorg Med Chem 2022; 58:116577. [DOI: 10.1016/j.bmc.2021.116577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022]
|
2
|
Yepes AF, Quintero‐Saumeth J, Cardona‐Galeano W. Biologically Active Quinoline‐Hydrazone Conjugates as Potential
Trypanosoma cruzi
DHFR‐TS Inhibitors: Docking, Molecular Dynamics, MM/PBSA and Drug‐Likeness Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrés F. Yepes
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia-UdeA, Calle 70 No. 52-21, A.A 1226 Medellín Colombia
| | - Jorge Quintero‐Saumeth
- University of Pamplona Faculty of Basic Sciences, Pamplona, Colombia, Km 1 Vía Bucaramanga Ciudad Universitaria Pamplona Colombia
| | - Wilson Cardona‐Galeano
- Chemistry of Colombian Plants, Institute of Chemistry, Faculty of Exact and Natural Sciences University of Antioquia-UdeA, Calle 70 No. 52-21, A.A 1226 Medellín Colombia
| |
Collapse
|
3
|
Abdelfattah MAO, Ibrahim MA, Abdullahi HL, Aminu R, Saad SB, Krstin S, Wink M, Sobeh M. Eugenia uniflora and Syzygium samarangense extracts exhibit anti-trypanosomal activity: Evidence from in-silico molecular modelling, in vitro, and in vivo studies. Biomed Pharmacother 2021; 138:111508. [PMID: 33756157 DOI: 10.1016/j.biopha.2021.111508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
The parasite Trypanosoma brucei is the main cause of the sleeping sickness threatening millions of populations in many African countries. The parasitic infection is currently managed by some synthetic medications, most of them suffer limited activity spectrum and/or serious adverse effects. Some studies have pointed out the promising therapeutic potential of the plant extracts rich in polyphenols to curb down parasitic infections caused by T. brucei and other trypanosomes. In this work, the main components dominating Eugenia uniflora and Syzygium samarangense plant extracts were virtually screened, through docking, as inhibitors of seven T. brucei enzymes validated as potential drug targets. The in vitro and in vivo anti-T. brucei activities of the extracts in two treatment doses were evaluated. Moreover, the extract effects on the packed cell volume level, liver, and kidney functions were assessed. Five compounds showed strong docking and minimal binding energy to five target enzymes simultaneously and three other compounds were able to bind strongly to at least four of the target enzymes. These compounds represent lead hits to develop novel trypanocidal agents of natural origin. Both extracts showed moderate in vitro anti-trypanosomal activity. Infected animal groups treated over 5 days with the studied extracts showed an appreciable in vivo anti-trypanosomal activity and ameliorated in a dose dependent manner the anaemia, liver, and kidney damages induced by the infection. In conclusion, Eugenia uniflora and Syzygium samarangense could serve as appealing sources to treat trypanosomes infections.
Collapse
Affiliation(s)
| | | | | | - Raphael Aminu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Saad Bello Saad
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research Division, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
4
|
Valente M, Vidal AE, González-Pacanowska D. Targeting Kinetoplastid and Apicomplexan Thymidylate Biosynthesis as an Antiprotozoal Strategy. Curr Med Chem 2019; 26:4262-4279. [PMID: 30259810 DOI: 10.2174/0929867325666180926154329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
Abstract
Kinetoplastid and apicomplexan parasites comprise a group of protozoans responsible for human diseases, with a serious impact on human health and the socioeconomic growth of developing countries. Chemotherapy is the main option to control these pathogenic organisms and nucleotide metabolism is considered a promising area for the provision of antimicrobial therapeutic targets. Impairment of thymidylate (dTMP) biosynthesis severely diminishes the viability of parasitic protozoa and the absence of enzymatic activities specifically involved in the formation of dTMP (e.g. dUTPase, thymidylate synthase, dihydrofolate reductase or thymidine kinase) results in decreased deoxythymidine triphosphate (dTTP) levels and the so-called thymineless death. In this process, the ratio of deoxyuridine triphosphate (dUTP) versus dTTP in the cellular nucleotide pool has a crucial role. A high dUTP/dTTP ratio leads to uracil misincorporation into DNA, the activation of DNA repair pathways, DNA fragmentation and eventually cell death. The essential character of dTMP synthesis has stimulated interest in the identification and development of drugs that specifically block the biochemical steps involved in thymine nucleotide formation. Here, we review the available literature in relation to drug discovery studies targeting thymidylate biosynthesis in kinetoplastid (genera Trypanosoma and Leishmania) and apicomplexan (Plasmodium spp and Toxoplasma gondii) protozoans. The most relevant findings concerning novel inhibitory molecules with antiparasitic activity against these human pathogens are presented herein.
Collapse
Affiliation(s)
- María Valente
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Antonio E Vidal
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
5
|
Gibson MW, Dewar S, Ong HB, Sienkiewicz N, Fairlamb AH. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase. PLoS Negl Trop Dis 2016; 10:e0004714. [PMID: 27175479 PMCID: PMC4866688 DOI: 10.1371/journal.pntd.0004714] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.
Collapse
Affiliation(s)
- Marc W. Gibson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Simon Dewar
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Han B. Ong
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Natasha Sienkiewicz
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H. Fairlamb
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
6
|
Pacheco Homem D, Flores R, Tosqui P, de Castro Rozada T, Abicht Basso E, Gasparotto Junior A, Augusto Vicente Seixas F. Homology modeling of dihydrofolate reductase from T. gondii bonded to antagonists: molecular docking and molecular dynamics simulations. MOLECULAR BIOSYSTEMS 2013; 9:1308-15. [DOI: 10.1039/c3mb25530a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Setzer WN, Ogungbe IV. In-silico investigation of antitrypanosomal phytochemicals from Nigerian medicinal plants. PLoS Negl Trop Dis 2012; 6:e1727. [PMID: 22848767 PMCID: PMC3404109 DOI: 10.1371/journal.pntd.0001727] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/26/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment. METHODS A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4' epimerase (TbUDPGE), and ornithine decarboxylase (TbODC). RESULTS This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4' epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins. CONCLUSIONS This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations.
Collapse
Affiliation(s)
- William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, Alabama, USA.
| | | |
Collapse
|
8
|
Vanichtanankul J, Taweechai S, Yuvaniyama J, Vilaivan T, Chitnumsub P, Kamchonwongpaisan S, Yuthavong Y. Trypanosomal dihydrofolate reductase reveals natural antifolate resistance. ACS Chem Biol 2011; 6:905-11. [PMID: 21650210 DOI: 10.1021/cb200124r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) is a potential drug target for Trypanosoma brucei, a human parasite, which is the causative agent for African sleeping sickness. No drug is available against this target, since none of the classical antifolates such as pyrimethamine (PYR), cycloguanil, or trimethoprim are effective as selective inhibitors of T. brucei DHFR (TbDHFR). In order to design effective drugs that target TbDHFR, co-crystal structures with bound antifolates were studied. On comparison with malarial Plasmodium falciparum DHFR (PfDHFR), the co-crystal structures of wild-type TbDHFR reveal greater structural similarities to a mutant PfDHFR causing antifolate resistance than the wild-type enzyme. TbDHFR imposes steric hindrance for rigid inhibitors like PYR around Thr86, which is equivalent to Ser108Asn of the malarial enzymes. In addition, a missing residue on TbDHFR active-site loop together with the presence of Ile51 widens its active site even further than the structural effect of Asn51Ile, which is observed in PfDHFR structures. The structural similarities are paralleled by the similarly poor affinities of the trypanosomal enzyme for rigid inhibitors. Mutations of TbDHFR at Thr86 resulted in 10-fold enhancement or 7-fold reduction in the rigid inhibitors affinities for Thr86Ser or Thr86Asn, respectively. The co-crystal structure of TbDHFR with a flexible antifolate WR99210 suggests that its greater affinity result from its ability to avoid such Thr86 clash and occupy the widened binding space similarly to what is observed in the PfDHFR structures. Natural resistance to antifolates of TbDHFR can therefore be explained, and potential antifolate chemotherapy of trypanosomiasis should be possible taking this into account.
Collapse
Affiliation(s)
- Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
- Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Supannee Taweechai
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Jirundon Yuvaniyama
- Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
9
|
Sienkiewicz N, Jarosławski S, Wyllie S, Fairlamb AH. Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes. Mol Microbiol 2008; 69:520-33. [PMID: 18557814 PMCID: PMC2610392 DOI: 10.1111/j.1365-2958.2008.06305.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The phenotypes of single- (SKO) and double-knockout (DKO) lines of dihydrofolate reductase–thymidylate synthase (DHFR–TS) of bloodstream Trypanosoma brucei were evaluated in vitro and in vivo. Growth of SKO in vitro is identical to wild-type (WT) cells, whereas DKO has an absolute requirement for thymidine. Removal of thymidine from the medium triggers growth arrest in S phase, associated with gross morphological changes, followed by cell death after 60 h. DKO is unable to infect mice, whereas the virulence of SKO is similar to WT. Normal growth and virulence could be restored by transfection of DKO with T. brucei DHFR–TS, but not with Escherichia coli TS. As pteridine reductase (PTR1) levels are unchanged in SKO and DKO cells, PTR1 is not able to compensate for loss of DHFR activity. Drugs such as raltitrexed or methotrexate with structural similarity to folic acid are up to 300-fold more potent inhibitors of WT cultured in a novel low-folate medium, unlike hydrophobic antifols such as trimetrexate or pyrimethamine. DKO trypanosomes show reduced sensitivity to these inhibitors ranging from twofold for trimetrexate to >10 000-fold for raltitrexed. These data demonstrate that DHFR–TS is essential for parasite survival and represents a promising target for drug discovery.
Collapse
Affiliation(s)
- Natasha Sienkiewicz
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
10
|
Li Q, Pan D, Zhang JH, Yang F. Identification of the thymidylate synthase within the genome of white spot syndrome virus. J Gen Virol 2004; 85:2035-2044. [PMID: 15218189 DOI: 10.1099/vir.0.80048-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thymidylate synthase (TS) (EC 2.1.1.45) is essential for thede novosynthesis of dTMP in prokaryotic and eukaryotic organisms. Within the white spot syndrome virus (WSSV) genome, an open reading frame (WSV067) that encodes a 289 amino acid polypeptide showed significant homology to all known TSs from species including mammals, plants, fungi, protozoa, bacteria and DNA viruses. In this study, WSV067 was expressed inEscherichia coli, and the purified recombinant protein showed TS activity in dUMP−folate-binding assays using ultraviolet difference spectroscopy. RT-PCR and Western blot analyses showed that WSV067 was a genuine and early gene. Phylogenetic analysis revealed that WSSV-TS was more closely related to the TSs of eukaryotes than to those from prokaryotes.
Collapse
Affiliation(s)
- Qin Li
- Department of Biochemistry and Molecular Biology, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Deng Pan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, 178 Daxue Road, Xiamen 361005, China
| | - Jing-Hai Zhang
- Department of Biochemistry and Molecular Biology, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, SOA, 178 Daxue Road, Xiamen 361005, China
| |
Collapse
|
11
|
Gilbert IH. Inhibitors of dihydrofolate reductase in Leishmania and trypanosomes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:249-57. [PMID: 12084467 DOI: 10.1016/s0925-4439(02)00088-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protozoan diseases leishmaniasis, Chagas' disease and African trypanosomiasis are major health problems in many countries, particularly developing countries, and there are few drugs available to treat these diseases. Dihydrofolate reductase (DHFR) inhibitors have been used successfully in the treatment of a number of other diseases such as cancer, malaria and bacterial infections; however they have not been used for the treatment of these diseases. This article summarises studies on leishmanial and trypanosomal DHFR inhibitor development and evaluation. Possible mechanisms of resistance to DHFR inhibitors are also discussed.
Collapse
Affiliation(s)
- Ian H Gilbert
- Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, UK.
| |
Collapse
|
12
|
Machado CA, Ayala FJ. Sequence variation in the dihydrofolate reductase-thymidylate synthase (DHFR-TS) and trypanothione reductase (TR) genes of Trypanosoma cruzi. Mol Biochem Parasitol 2002; 121:33-47. [PMID: 11985861 DOI: 10.1016/s0166-6851(02)00019-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dihydrofolate reductase-thymidylate synthase (DHFR-TS) and trypanothione reductase (TR) are important enzymes for the metabolism of protozoan parasites from the family Trypanosomatidae (e.g. Trypanosoma spp., Leishmania spp.) that are targets of current drug-design studies. Very limited information exists on the levels of genetic polymorphism of these enzymes in natural populations of any trypanosomatid parasite. We present results of a survey of nucleotide variation in the genes coding for those enzymes in a large sample of strains from Trypanosoma cruzi, the agent of Chagas' disease. We discuss the results from an evolutionary perspective. A sample of 31 strains show 39 silent and five amino acid polymorphisms in DHFR-TS, and 35 silent and 11 amino acid polymorphisms in TR. No amino acid replacements occur in regions that are important for the enzymatic activity of these proteins, but some polymorphisms occur in sites previously assumed to be invariant. The sequences from both genes cluster in four major groups, a result that is not fully consistent with the current classification of T. cruzi in two major groups of strains. Most polymorphisms correspond to fixed differences among the four sequence groups. Two tests of neutrality show that there is no evidence of adaptive divergence or of selective events having shaped the distribution of polymorphisms and fixed differences in these genes in T. cruzi. However, one nearly significant reduction of variation in the TR sequences from one sequence group suggests a recent selective event at, or close to, that locus.
Collapse
Affiliation(s)
- Carlos A Machado
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| | | |
Collapse
|
13
|
Müller S, Da'dara A, Lüersen K, Wrenger C, Das Gupta R, Madhubala R, Walter RD. In the human malaria parasite Plasmodium falciparum, polyamines are synthesized by a bifunctional ornithine decarboxylase, S-adenosylmethionine decarboxylase. J Biol Chem 2000; 275:8097-102. [PMID: 10713131 DOI: 10.1074/jbc.275.11.8097] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polyamines putrescine, spermidine, and spermine are crucial for cell differentiation and proliferation. Interference with polyamine biosynthesis by inhibition of the rate-limiting enzymes ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) has been discussed as a potential chemotherapy of cancer and parasitic infections. Usually both enzymes are individually transcribed and highly regulated as monofunctional proteins. We have isolated a cDNA from the malaria parasite Plasmodium falciparum that encodes both proteins on a single open reading frame, with the AdoMetDC domain in the N-terminal region connected to a C-terminal ODC domain by a hinge region. The predicted molecular mass of the entire transcript is 166 kDa. The ODC/AdoMetDC coding region was subcloned into the expression vector pASK IBA3 and transformed into the AdoMetDC- and ODC-deficient Escherichia coli cell line EWH331. The resulting recombinant protein exhibited both AdoMetDC and ODC activity and co-eluted after gel filtration on Superdex S-200 at approximately 333 kDa, which is in good agreement with the molecular mass of approximately 326 kDa determined for the native protein from isolated P. falciparum. SDS-polyacrylamide gel electrophoresis analysis of the recombinant ODC/AdoMetDC revealed a heterotetrameric structure of the active enzyme indicating processing of the AdoMetDC domain. The data presented describe the occurrence of a unique bifunctional ODC/AdoMetDC in P. falciparum, an organization which is possibly exploitable for the design of new antimalarial drugs.
Collapse
Affiliation(s)
- S Müller
- Bernhard Nocht Institute for Tropical Medicine, Biochemical Parasitology, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Blum JH, Dove SL, Hochschild A, Mekalanos JJ. Isolation of peptide aptamers that inhibit intracellular processes. Proc Natl Acad Sci U S A 2000; 97:2241-6. [PMID: 10688899 PMCID: PMC15785 DOI: 10.1073/pnas.040573397] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a method for isolation of random peptides that inhibit intracellular processes in bacteria. A library of random peptides expressed as fusions to Escherichia coli thioredoxin (aptamers) were expressed under the tight control of the arabinose-inducible P(BAD) promoter. A selection was applied to the library to isolate aptamers that interfered with the activity of thymidylate synthase (ThyA) in vivo. Expression of an aptamer isolated by this method resulted in a ThyA(-) phenotype that was suppressed by simultaneous overexpression of ThyA. Two-hybrid analysis showed that this aptamer is likely to interact with ThyA in vivo. The library also was screened for aptamers that inhibited growth of bacteria expressing them, and five such aptamers were characterized. Four aptamers were bacteriostatic when expressed, whereas one showed a bactericidal effect. Introduction of translational stop codons into various aptamers blocked their activity, suggesting that their biological effects were likely to be due to protein aptamer rather than RNA. Combinatorial aptamers provide a new genetic and biochemical tool for identifying targets for antibacterial drug development.
Collapse
Affiliation(s)
- J H Blum
- Department of Microbiology, Shipley Institute of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
15
|
Capelluto DG, Hellman U, Cazzulo JJ, Cannata JJ. Purification and some properties of serine hydroxymethyltransferase from Trypanosoma cruzi. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:712-9. [PMID: 10651807 DOI: 10.1046/j.1432-1327.2000.01047.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A single form of serine hydroxymethyltransferase (SHMT) was detected in epimastigotes of Trypanosoma cruzi, in contrast to the three isoforms of the enzyme characterized from another trypanosomatid, Crithidia fasciculata [Capelluto D.G.S., Hellman U., Cazzulo J.J. & Cannata J.J.B. (1999) Mol. Biochem. Parasitol. 98, 187-201]. The T. cruzi SHMT was found to be highly unstable in crude extracts. In the presence of the cysteine proteinase inhibitors N-alpha-p-tosyl-L-lysine chloromethyl ketone and Ltrans-3-carboxyoxiran-2-carbonyl-L-leucylagmatine, however, the enzyme could be purified to homogeneity. Digitonin treatment of intact cells suggested that the enzyme is cytosolic. T. cruzi SHMT presents a monomeric structure shown by the apparent molecular masses of 69 kDa (native) and 55 kDa (subunit) determined by Sephadex G-200 gel filtration and SDS/PAGE, respectively. This is in contrast to the tetrameric SHMTs described in C. fasciculata and other eukaryotes. The enzyme was pyridoxal phosphate-dependent after L-cysteine and hydroxylamine treatments and it was strongly inhibited by the substrate analog folate, which was competitive towards tetrahydrofolate and noncompetitive towards L-serine. Partial sequencing of tryptic internal peptides of the enzyme indicate considerable similarity with other SHMTs, particularly from those of plant origin.
Collapse
Affiliation(s)
- D G Capelluto
- Centro de Investigaciones Bioenergéticas, Facultad de Medicina-CONICET, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Capelluto DG, Hellman U, Cazzulo JJ, Cannata JJ. Purification and partial characterization of three isoforms of serine hydroxymethyltransferase from Crithidia fasciculata. Mol Biochem Parasitol 1999; 98:187-201. [PMID: 10080388 DOI: 10.1016/s0166-6851(98)00166-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Three molecular forms of serine hydroxymethyltransferase (SHMT) have been detected in choanomastigotes of Crithidia fasciculata by DEAE-cellulose chromatography. The three isoforms (named SHMT I, II, and III) presented small differences in charge and molecular weight. Digitonin treatment of intact cells suggested that SHMT III is cytosolic, whereas the other two isoforms are particle bound, one being mitochondrial (SHMT I) and the other one very likely glycosomal (SHMT II). The three SHMT isoforms were purified to homogeneity, and their physicochemical and kinetic properties studied. Determination of their native and subunit molecular masses revealed that all of them have a tetrameric structure. The three isoforms were shown to be PLP-dependent enzymes after L-cysteine and hydroxylamine hydrochloride treatments. They showed similar pH optima, bimodal kinetics for L-serine and Michaelis-Menten kinetics for THF.
Collapse
Affiliation(s)
- D G Capelluto
- Centro de Investigaciones Bioenergéticas, Facultad de Medicina-CONICET, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
17
|
Zuccotto F, Martin AC, Laskowski RA, Thornton JM, Gilbert IH. Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania. J Comput Aided Mol Des 1998; 12:241-57. [PMID: 9749368 DOI: 10.1023/a:1016085005275] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.
Collapse
Affiliation(s)
- F Zuccotto
- Welsh School of Pharmacy, University of Wales Cardiff, U.K
| | | | | | | | | |
Collapse
|
18
|
Camacho A, Arrebola R, Peña-Diaz J, Ruiz-Pérez LM, González-Pacanowska D. Description of a novel eukaryotic deoxyuridine 5'-triphosphate nucleotidohydrolase in Leishmania major. Biochem J 1997; 325 ( Pt 2):441-7. [PMID: 9230126 PMCID: PMC1218580 DOI: 10.1042/bj3250441] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A Leishmania major full-length cDNA encoding a functional dUTP nucleotidohydrolase (dUTPase; EC 3.6.1.23) was isolated from a cDNA expression library by genetic complementation of dUTPase deficiency in Escherichia coli. The cDNA contained an open reading frame that encoded a protein of 269 amino acid residues with a calculated molecular mass of 30.3 kDa. Although eukaryotic dUTPases exhibit extensive similarity and there are five amino acid motifs that are common to all currently known dUTPase enzymes, the sequence of the protozoan gene differs significantly from its eukaryotic counterparts. None of the characteristic motifs were readily identifiable and the sequence encoded a larger polypeptide. However, the products of the reaction were dUMP and PPi, competition experiments with other deoxyribonucleoside triphosphates showed that the reaction is specific for dUTP, and the protozoan gene complemented dUTPase deficiency in Escherichia coli. The gene is of single copy; Northern blots indicated a transcript of the same size as the cDNA isolated in the screening procedure. The enzyme can be efficiently overexpressed in a highly active form by using the expression vector pET-11c. The availability of recombinant enzyme in large quantities will now permit detailed mechanistic and structural studies, which might contribute to a rational design of specifically targeted inhibitors against dUTPase from L. major.
Collapse
Affiliation(s)
- A Camacho
- Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Investigaciones Científicas, Calle Ventanilla 11, 18001 Granada, Spain
| | | | | | | | | |
Collapse
|
19
|
Abstract
Folate-dependent pathways of one-carbon metabolism are essential for the synthesis of purines, formylmethionyl-tRNA, thymidylate, serine and methionine. These syntheses use a cellular source of one-carbon substituted, tetrahydrofolate polyglutamate derivatives which are the preferred substrates of most folate-dependent enzymes. In the last decade, there have been major advances in the folate biochemistry of animal, bacterial, fungal and plant systems. These have included the refinement of methods for folate isolation and characterization, basic work on key enzymes of folate biosynthesis and the detailed characterization of proteins that catalyze the generation and utilization of one-carbon substituted folates.
Collapse
Affiliation(s)
- E A Cossins
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
20
|
Trujillo M, Donald RG, Roos DS, Greene PJ, Santi DV. Heterologous expression and characterization of the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of Toxoplasma gondii. Biochemistry 1996; 35:6366-74. [PMID: 8639582 DOI: 10.1021/bi952923q] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have expressed catalytically active Toxoplasma gondii dihydrofolate-thymidylate synthase (DHFR-TS) and the individual TS and DHFR domains in Escherichia coli using the T7 promoter of pET-15b. DHFR-TS constituted approximately 10% of the total soluble cell protein and was purified using methotrexate-Sepharose chromatography to yield 10 mg of homogeneous DHFR-TS per liter of culture. The DHFR domain was recovered as insoluble inclusion bodies which could be unfolded and refolded to recover soluble, active enzyme. The TS domain was overexpressed as a soluble protein by growing the cells at 24 degrees C; this is the first report of the expression of an active TS domain from a bifunctional enzyme. The kcat and K(m) values for DHFR-TS are similar to those of other previously characterized protozoan DHFRs and TSs. The antimicrobial antifolates, TMP and Pyr, inhibit DHFR activity of the bifunctional protein in accord with their effects in crude enzyme preparations and in vivo systems. Kinetic parameters and Ki values for TMP and Pyr with the isolated DHFR domain were identical to the values for DHFR in the bifunctional enzyme. Evidence of kinetic channeling of the dihydrofolate product of TS to the DHFR domain in the bifunctional enzyme was obtained by kinetic and inhibition studies. Properties such as yield, stability, and activities of the recombinant T. gondii DHFR-TS provide clear advantages over other bifunctional DHFR-TSs as a model for future studies.
Collapse
Affiliation(s)
- M Trujillo
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | | | | | | | |
Collapse
|