1
|
Joshi H, Tuli HS, Ranjan A, Chauhan A, Haque S, Ramniwas S, Bhatia GK, Kandari D. The Pharmacological Implications of Flavopiridol: An Updated Overview. Molecules 2023; 28:7530. [PMID: 38005250 PMCID: PMC10673037 DOI: 10.3390/molecules28227530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don 344090, Russia;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Sector 125, Noida 201301, India;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Gurpreet Kaur Bhatia
- Department of Physics, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Divya Kandari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| |
Collapse
|
2
|
Feng C, Cheng Z, Xu Z, Tian Y, Tian H, Liu F, Luo D, Wang Y. EmCyclinD-EmCDK4/6 complex is involved in the host EGF-mediated proliferation of Echinococcus multilocularis germinative cells via the EGFR-ERK pathway. Front Microbiol 2022; 13:968872. [PMID: 36033888 PMCID: PMC9410764 DOI: 10.3389/fmicb.2022.968872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The larval stage of the tapeworm Echinococcus multilocularis causes alveolar echinococcosis (AE), one of the most lethal helminthic infections in humans. The tumor-like growth and development of the metacestode larvae within host organs are driven by a population of somatic stem cells, the germinative cells, which represent the only proliferative cells in the parasite. Host-derived factors have been shown to promote germinative cell proliferation. Since cells sense the external signal mainly in G1 phase of the cell cycle, host factors are expected to exert impacts on the machinery regulating G1/S phase of the germinative cells, which still remains largely unknown in E. multilocularis. In this study, we described the characterization of two key members of the G1/S phase cell-cycle regulation, EmCyclinD and EmCDK4/6. Our data show that EmCyclinD and EmCDK4/6 display significant sequence similarity to their respective mammalian homologs, and that EmCyclinD interacts with EmCDK4/6, forming a kinase-active complex to activate its substrate Rb1. EmCyclinD was actively expressed in the germinative cells. Addition of human EGF caused an elevated expression of EmCyclinD while inhibition of the EGFR-ERK signaling pathway in the parasite reduced the expression of EmCyclinD and downstream transcriptional factors. Treatment with Palbociclib, a specific CDK4/6 inhibitor, downregulated the expression of cell cycle-related factors and impeded germinative cell proliferation and vesicle formation from protoscoleces. Our data demonstrated that the EmCyclinD-EmCDK4/6 complex participates in the cell cycle regulation of germinative cells which is mediated by host EGF via the EGFR-ERK-EmCyclinD pathway in E. multilocularis.
Collapse
Affiliation(s)
- Chonglv Feng
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhe Cheng
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Zhe Cheng,
| | - Zhijian Xu
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ye Tian
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Huimin Tian
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Fan Liu
- Medical College, Xiamen University, Xiamen, Fujian, China
| | - Damin Luo
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yanhai Wang
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- Parasitology Research Laboratory, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Yanhai Wang,
| |
Collapse
|
3
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|
4
|
Abstract
Malaria is one of the most impacting public health problems in tropical and subtropical areas of the globe, with approximately 200 million cases worldwide annually. In the absence of an effective vaccine, rapid treatment is vital for effective malaria control. However, parasite resistance to currently available drugs underscores the urgent need for identifying new antimalarial therapies with new mechanisms of action. Among potential drug targets for developing new antimalarial candidates, protein kinases are attractive. These enzymes catalyze the phosphorylation of several proteins, thereby regulating a variety of cellular processes and playing crucial roles in the development of all stages of the malaria parasite life cycle. Moreover, the large phylogenetic distance between Plasmodium species and its human host is reflected in marked differences in structure and function of malaria protein kinases between the homologs of both species, indicating that selectivity can be attained. In this review, we describe the functions of the different types of Plasmodium kinases and highlight the main recent advances in the discovery of kinase inhibitors as potential new antimalarial drug candidates.
Collapse
|
5
|
Jankowska-Döllken M, Sanchez CP, Cyrklaff M, Lanzer M. Overexpression of the HECT ubiquitin ligase PfUT prolongs the intraerythrocytic cycle and reduces invasion efficiency of Plasmodium falciparum. Sci Rep 2019; 9:18333. [PMID: 31797898 PMCID: PMC6893019 DOI: 10.1038/s41598-019-54854-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
The glms ribozyme system has been used as an amenable tool to conditionally control expression of genes of interest. It is generally assumed that insertion of the ribozyme sequence does not affect expression of the targeted gene in the absence of the inducer glucosamine-6-phosphate, although experimental support for this assumption is scarce. Here, we report the unexpected finding that integration of the glms ribozyme sequence in the 3′ untranslated region of a gene encoding a HECT E3 ubiquitin ligase, termed Plasmodium falciparum ubiquitin transferase (PfUT), increased steady state RNA and protein levels 2.5-fold in the human malaria parasite P. falciparum. Overexpression of pfut resulted in an S/M phase-associated lengthening of the parasite’s intraerythrocytic developmental cycle and a reduced merozoite invasion efficiency. The addition of glucosamine partially restored the wild type phenotype. Our study suggests a role of PfUT in controlling cell cycle progression and merozoite invasion. Our study further raises awareness regarding unexpected effects on gene expression when inserting the glms ribozyme sequence into a gene locus.
Collapse
Affiliation(s)
- Monika Jankowska-Döllken
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Marek Cyrklaff
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Lima MNN, Neves BJ, Cassiano GC, Gomes MN, Tomaz KCP, Ferreira LT, Tavella TA, Calit J, Bargieri DY, Muratov EN, Costa FTM, Andrade CH. Chalcones as a basis for computer-aided drug design: innovative approaches to tackle malaria. Future Med Chem 2019; 11:2635-2646. [PMID: 31556721 PMCID: PMC7333642 DOI: 10.4155/fmc-2018-0255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/10/2019] [Indexed: 11/17/2022] Open
Abstract
Aim: Computer-aided drug design approaches were applied to identify chalcones with antiplasmodial activity. Methodology: The virtual screening was performed as follows: structural standardization of in-house database of chalcones; identification of potential Plasmodium falciparum protein targets for the chalcones; homology modeling of the predicted P. falciparum targets; molecular docking studies; and in vitro experimental validation. Results: Using these models, we prioritized 16 chalcones with potential antiplasmodial activity, for further experimental evaluation. Among them, LabMol-86 and LabMol-87 showed potent in vitro antiplasmodial activity against P. falciparum, while LabMol-63 and LabMol-73 were potent inhibitors of Plasmodium berghei progression into mosquito stages. Conclusion: Our results encourage the exploration of chalcones in hit-to-lead optimization studies for tackling malaria.
Collapse
Affiliation(s)
- Marilia NN Lima
- LabMol, Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Rua 240, Qd. 87, Goiânia, GO 74605-170, Brazil
| | - Bruno J Neves
- LabMol, Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Rua 240, Qd. 87, Goiânia, GO 74605-170, Brazil
- Laboratory of Cheminformatics, University Center of Anápolis (UniEVANGÉLICA), Anápolis, GO 75083-515, Brazil
| | - Gustavo C Cassiano
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-970, Brazil
| | - Marcelo N Gomes
- LabMol, Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Rua 240, Qd. 87, Goiânia, GO 74605-170, Brazil
- Metropolitan College of Anápolis, FAMA, Anápolis, GO 75064-780, Brazil
- InSiChem Drug Discovery, Anápolis, GO 75132-903, Brazil
| | - Kaira CP Tomaz
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-970, Brazil
| | - Leticia T Ferreira
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-970, Brazil
| | - Tatyana A Tavella
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-970, Brazil
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Y Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology & Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27955-7568, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Fabio TM Costa
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-970, Brazil
| | - Carolina Horta Andrade
- LabMol, Laboratory for Molecular Modeling & Drug Design, Faculty of Pharmacy, Federal University of Goiás, Rua 240, Qd. 87, Goiânia, GO 74605-170, Brazil
- Laboratory of Tropical Diseases, Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, UNICAMP, Campinas, SP 13083-970, Brazil
| |
Collapse
|
7
|
Eubanks AL, Perkins MM, Sylvester K, Ganley JG, Posfai D, Sanschargrin PC, Hong J, Sliz P, Derbyshire ER. In silico Screening and Evaluation of Plasmodium falciparum Protein Kinase 5 (PK5) Inhibitors. ChemMedChem 2018; 13:2479-2483. [PMID: 30328274 PMCID: PMC6436633 DOI: 10.1002/cmdc.201800625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/03/2018] [Indexed: 11/12/2022]
Abstract
An in silico screen of 350 000 commercially available compounds was conducted with an unbiased approach to identify potential malaria inhibitors that bind to the Plasmodium falciparum protein kinase 5 (PfPK5) ATP-binding site. PfPK5 is a cyclin-dependent kinase-like protein with high sequence similarity to human cyclin-dependent kinase 2 (HsCDK2), but its precise role in cell-cycle regulation remains unclear. After two-dimensional fingerprinting of the top scoring compounds, 182 candidates were prioritized for biochemical testing based on their structural diversity. Evaluation of these compounds demonstrated that 135 bound to PfPK5 to a similar degree or better than known PfPK5 inhibitors, confirming that the library was enriched with PfPK5-binding compounds. A previously reported triazolodiamine HsCDK2 inhibitor and the screening hit 4-methylumbelliferone were each selected for an analogue study. The results of this study highlight the difficult balance between optimization of PfPK5 affinity and binding selectivity for PfPK5 over its closest human homologue HsCDK2. Our approach enabled the discovery of several new PfPK5-binding compounds from a modest screening campaign and revealed the first scaffold to have improved PfPK5/HsCDK2 selectivity. These steps are critical for the development of PfPK5-targeting probes for functional studies and antimalarials with decreased risks of host toxicity.
Collapse
Affiliation(s)
- Amber L. Eubanks
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
| | - Marisha M. Perkins
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710 (USA)
| | - Jack G. Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
| | - Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710 (USA)
| | - Paul C. Sanschargrin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 45 Shattuck Street, Boston, Massachusetts 02115 (USA)
| | - Jiyong Hong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 45 Shattuck Street, Boston, Massachusetts 02115 (USA)
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708 (USA),
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, North Carolina 27710 (USA)
| |
Collapse
|
8
|
Matthews H, Duffy CW, Merrick CJ. Checks and balances? DNA replication and the cell cycle in Plasmodium. Parasit Vectors 2018; 11:216. [PMID: 29587837 PMCID: PMC5872521 DOI: 10.1186/s13071-018-2800-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
It is over 100 years since the life-cycle of the malaria parasite Plasmodium was discovered, yet its intricacies remain incompletely understood - a knowledge gap that may prove crucial for our efforts to control the disease. Phenotypic screens have partially filled the void in the antimalarial drug market, but as compound libraries eventually become exhausted, new medicines will only come from directed drug development based on a better understanding of fundamental parasite biology. This review focusses on the unusual cell cycles of Plasmodium, which may present a rich source of novel drug targets as well as a topic of fundamental biological interest. Plasmodium does not grow by conventional binary fission, but rather by several syncytial modes of replication including schizogony and sporogony. Here, we collate what is known about the various cell cycle events and their regulators throughout the Plasmodium life-cycle, highlighting the differences between Plasmodium, model organisms and other apicomplexan parasites and identifying areas where further study is required. The possibility of DNA replication and the cell cycle as a drug target is also explored. Finally the use of existing tools, emerging technologies, their limitations and future directions to elucidate the peculiarities of the Plasmodium cell cycle are discussed.
Collapse
Affiliation(s)
- Holly Matthews
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK
| | - Craig W Duffy
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK
| | - Catherine J Merrick
- Centre for Applied Entomology and Parasitology, Faculty of Natural Sciences, Keele University, Staffordshire, ST55BG, Keele, UK.
| |
Collapse
|
9
|
Buskes MJ, Harvey KL, Richards BJ, Kalhor R, Christoff RM, Gardhi CK, Littler DR, Cope ED, Prinz B, Weiss GE, O'Brien NJ, Crabb BS, Deady LW, Gilson PR, Abbott BM. Antimalarial activity of novel 4-cyano-3-methylisoquinoline inhibitors against Plasmodium falciparum: design, synthesis and biological evaluation. Org Biomol Chem 2018; 14:4617-39. [PMID: 27105169 DOI: 10.1039/c5ob02517f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Central to malaria pathogenesis is the invasion of human red blood cells by Plasmodium falciparum parasites. Following each cycle of intracellular development and replication, parasites activate a cellular program to egress from their current host cell and invade a new one. The orchestration of this process critically relies upon numerous organised phospho-signaling cascades, which are mediated by a number of central kinases. Parasite kinases are emerging as novel antimalarial targets as they have diverged sufficiently from their mammalian counterparts to allow selectable therapeutic action. Parasite protein kinase A (PfPKA) is highly expressed late in the cell cycle of the parasite blood stage and has been shown to phosphorylate a critical invasion protein, Apical Membrane Antigen 1. This enzyme could therefore be a valuable drug target so we have repurposed a substituted 4-cyano-3-methylisoquinoline that has been shown to inhibit rat PKA with the goal of targeting PfPKA. We synthesised a novel series of compounds and, although many potently inhibit the growth of chloroquine sensitive and resistant strains of P. falciparum, they were found to have minimal activity against PfPKA, indicating that they likely have another target important to parasite cytokinesis and invasion.
Collapse
Affiliation(s)
- Melissa J Buskes
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Katherine L Harvey
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Benjamin J Richards
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Robabeh Kalhor
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Chamodi K Gardhi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | - Elliott D Cope
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Boris Prinz
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Greta E Weiss
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Nathan J O'Brien
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Brendan S Crabb
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, Victoria 3010, Australia and Monash University, Melbourne, Victoria 3800, Australia
| | - Leslie W Deady
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Paul R Gilson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia and Monash University, Melbourne, Victoria 3800, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
10
|
The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum. mBio 2017; 8:mBio.00605-17. [PMID: 28611247 PMCID: PMC5472185 DOI: 10.1128/mbio.00605-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G1-, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle.
Collapse
|
11
|
Chakraborty A. Emerging drug resistance in Plasmodium falciparum: A review of well-characterized drug targets for novel antimalarial chemotherapy. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61090-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Gray KA, Gresty KJ, Chen N, Zhang V, Gutteridge CE, Peatey CL, Chavchich M, Waters NC, Cheng Q. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro. PLoS One 2016; 11:e0157906. [PMID: 27326764 PMCID: PMC4915707 DOI: 10.1371/journal.pone.0157906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/07/2016] [Indexed: 12/02/2022] Open
Abstract
Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment.
Collapse
Affiliation(s)
- Karen-Ann Gray
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karryn J. Gresty
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nanhua Chen
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Veronica Zhang
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- School of Biochemistry, University of Queensland, Brisbane, Australia
| | | | - Christopher L. Peatey
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marina Chavchich
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Norman C. Waters
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (QC); (NW)
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail: (QC); (NW)
| |
Collapse
|
13
|
Deshmukh AS, Agarwal M, Mehra P, Gupta A, Gupta N, Doerig CD, Dhar SK. Regulation of Plasmodium falciparum Origin Recognition Complex subunit 1 (PfORC1) function through phosphorylation mediated by CDK-like kinase PK5. Mol Microbiol 2015; 98:17-33. [PMID: 26094711 DOI: 10.1111/mmi.13099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum Origin Recognition Complex subunit 1 (PfORC1) has been implicated in DNA replication and var gene regulation. While the C-terminus is involved in DNA replication, the specific role of N-terminus has been suggested in var gene regulation in a Sir2-dependent manner. PfORC1 is localized at the nuclear periphery, where the clustering of chromosomal ends at the early stage of parasite development may be crucial for the regulation of subtelomeric var gene expression. Upon disassembly of telomeric clusters at later stages of parasite development, ORC1 is distributed in the nucleus and parasite cytoplasm where it may be required for its other cellular functions including DNA replication. The level of ORC1 decreases dramatically at the late schizont stage. The mechanisms that mediate regulation of PfORC1 function are largely unknown. Here we show, by the use of recombinant proteins and of transgenic parasites expressing wild type or mutant forms of ORC1, that phosphorylation of the PfORC1-N terminal domain by the cyclin-dependent kinase (CDK) PfPK5 abolishes DNA-binding activity and leads to changes in subcellular localization and proteasome-mediated degradation of the protein in schizonts. These results reveal that PfORC1 phosphorylation by a CDK is central to the regulation of important biological functions like DNA replication and var gene silencing.
Collapse
Affiliation(s)
- Abhijit S Deshmukh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,National Institute of Animal Biotechnology, Hyderabad, India
| | - Meetu Agarwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Parul Mehra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ashish Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Christian D Doerig
- Department of Microbiology, School of Biomedical sciences, Monash University, Clayton, Victoria, Australia
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
14
|
Antimalarial activity of kinase inhibitor, nilotinib, in vitro and in vivo. J Antibiot (Tokyo) 2015; 68:469-72. [PMID: 25690362 DOI: 10.1038/ja.2015.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/08/2022]
|
15
|
Houzé S, Hoang NT, Lozach O, Le Bras J, Meijer L, Galons H, Demange L. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents. Molecules 2014; 19:15237-57. [PMID: 25251193 PMCID: PMC6271241 DOI: 10.3390/molecules190915237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022] Open
Abstract
In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs). There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs). We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R)-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains). Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.
Collapse
Affiliation(s)
- Sandrine Houzé
- Laboratoire de Parasitologie, CNR du Paludisme, AP-HP, Hôpital Bichat & UMR 216 IRD, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire, Paris 75006, France.
| | - Nha-Thu Hoang
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 rue des Saints-Pères, Paris 75270, France.
| | - Olivier Lozach
- Protein Phosphorylation and Human Diseases Group, CNRS, USR 3151, Station biologique, Roscoff 29680, France.
| | - Jacques Le Bras
- Laboratoire de Parasitologie, CNR du Paludisme, AP-HP, Hôpital Bichat & UMR 216 IRD, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire, Paris 75006, France.
| | - Laurent Meijer
- Protein Phosphorylation and Human Diseases Group, CNRS, USR 3151, Station biologique, Roscoff 29680, France.
| | - Hervé Galons
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff 29680, France.
| | - Luc Demange
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 rue des Saints-Pères, Paris 75270, France.
| |
Collapse
|
16
|
Iwanaga T, Sugi T, Kobayashi K, Takemae H, Gong H, Ishiwa A, Murakoshi F, Recuenco FC, Horimoto T, Akashi H, Kato K. Characterization of Plasmodium falciparum cdc2-related kinase and the effects of a CDK inhibitor on the parasites in erythrocytic schizogony. Parasitol Int 2013; 62:423-30. [DOI: 10.1016/j.parint.2013.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/27/2013] [Accepted: 05/11/2013] [Indexed: 11/26/2022]
|
17
|
Abstract
Malaria, the disease caused by infection with protozoan parasites from the genus Plasmodium, claims the lives of nearly 1 million people annually. Developing nations, particularly in the African Region, bear the brunt of this malaria burden. Alarmingly, the most dangerous etiologic agent of malaria, Plasmodium falciparum, is becoming increasingly resistant to current first-line antimalarials. In light of the widespread devastation caused by malaria, the emergence of drug-resistant P. falciparum strains, and the projected decrease in funding for malaria eradication that may occur over the next decade, the identification of promising new targets for antimalarial drug design is imperative. P. falciparum kinases have been proposed as ideal drug targets for antimalarial drug design because they mediate critical cellular processes within the parasite and are, in many cases, structurally and mechanistically divergent when compared with kinases from humans. Identifying a molecule capable of inhibiting the activity of a target enzyme is generally an arduous and expensive process that can be greatly aided by utilizing in silico drug design techniques. Such methods have been extensively applied to human kinases, but as yet have not been fully exploited for the exploration and characterization of antimalarial kinase targets. This review focuses on in silico methods that have been used for the evaluation of potential antimalarials and the Plasmodium kinases that could be explored using these techniques.
Collapse
|
18
|
Mefloquine exposure induces cell cycle delay and reveals stage-specific expression of the pfmdr1 gene. Antimicrob Agents Chemother 2012. [PMID: 23208721 DOI: 10.1128/aac.01006-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Drug-resistant Plasmodium falciparum malaria is a major public health problem. An elevated pfmdr1 gene copy number (CN) is known to decrease parasite sensitivity to the commonly used antimalarial mefloquine (MFQ). To understand the relationship between pfmdr1 CN and mefloquine resistance, we evaluated pfmdr1 transcript levels in three P. falciparum strains with different CNs in the presence and absence of MFQ. Parasite strains with multiple pfmdr1 gene copies exhibited higher relative transcript levels than single-copy parasites, and MFQ induced pfmdr1 expression above the levels without treatment in all three strains evaluated. Concomitant morphology analyses of the sampled cultures revealed that MFQ treatment of synchronized ring-stage parasites induced a delay in parasite maturation through the intraerythrocytic cycle. pfmdr1 expression peaks in the ring stage, and MFQ could be causing increased transcription by delaying parasite maturation. However, pretreatment with mefloquine did not affect the artemisinin in vitro half-maximal inhibitory concentration (IC(50)). These results suggest that MFQ-induced increases in pfmdr1 expression are the direct result of the maturation delay at the ring stage but that this change in expression does not affect the antimalarial activity of artemisinin.
Collapse
|
19
|
Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Maity P, Bandyopadhyay U. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol 2012; 2:469-89. [PMID: 22112223 DOI: 10.1586/ecp.09.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malaria is a major global threat, that results in more than 2 million deaths each year. The treatment of malaria is becoming extremely difficult due to the emergence of drug-resistant parasites, the absence of an effective vaccine, and the spread of insecticide-resistant vectors. Thus, malarial therapy needs new chemotherapeutic approaches leading to the search for new drug targets. Here, we discuss different approaches to identifying novel antimalarial drug targets. We have also given due attention to the existing validated targets with a view to develop novel, rationally designed lead molecules. Some of the important parasite proteins are claimed to be the targets; however, further in vitro or in vivo structure-function studies of such proteins are crucial to validate these proteins as suitable targets. The interactome analysis among apicoplast, mitochondrion and genomic DNA will also be useful in identifying vital pathways or proteins regulating critical pathways for parasite growth and survival, and could be attractive targets. Molecules responsible for parasite invasion to host erythrocytes and ion channels of infected erythrocytes, essential for intra-erythrocyte survival and stage progression of parasites are also becoming attractive targets. This review will discuss and highlight the current understanding regarding the potential antimalarial drug targets, which could be utilized to develop novel antimalarials.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kato K, Sugi T, Iwanaga T. Roles of Apicomplexan protein kinases at each life cycle stage. Parasitol Int 2011; 61:224-34. [PMID: 22209882 DOI: 10.1016/j.parint.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/12/2011] [Accepted: 12/18/2011] [Indexed: 01/21/2023]
Abstract
Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma.
Collapse
Affiliation(s)
- Kentaro Kato
- Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
21
|
Borrelidin, a potent antimalarial: stage-specific inhibition profile of synchronized cultures of Plasmodium falciparum. J Antibiot (Tokyo) 2011; 64:381-4. [DOI: 10.1038/ja.2011.6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Reininger L, Wilkes JM, Bourgade H, Miranda-Saavedra D, Doerig C. An essential Aurora-related kinase transiently associates with spindle pole bodies during Plasmodium falciparum erythrocytic schizogony. Mol Microbiol 2010; 79:205-21. [PMID: 21166904 PMCID: PMC3025120 DOI: 10.1111/j.1365-2958.2010.07442.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aurora kinases compose a family of conserved Ser/Thr protein kinases playing essential roles in eukaryotic cell division. To date, Aurora homologues remain uncharacterized in the protozoan phylum Apicomplexa. In malaria parasites, the characterization of Aurora kinases may help understand the cell cycle control during erythrocytic schizogony where asynchronous nuclear divisions occur. In this study, we revisited the kinome of Plasmodium falciparum and identified three Aurora-related kinases, Pfark-1, -2, -3. Among these, Pfark-1 is highly conserved in malaria parasites and also appears to be conserved across Apicomplexa. By tagging the endogenous Pfark-1 gene with the green fluorescent protein (GFP) in live parasites, we show that the Pfark-1–GFP protein forms paired dots associated with only a subset of nuclei within individual schizonts. Immunofluorescence analysis using an anti-α-tubulin antibody strongly suggests a recruitment of Pfark-1 at duplicated spindle pole bodies at the entry of the M phase of the cell cycle. Unsuccessful attempts at disrupting the Pfark-1 gene with a knockout construct further indicate that Pfark-1 is required for parasite growth in red blood cells. Our study provides new insights into the cell cycle control of malaria parasites and reports the importance of Aurora kinases as potential targets for new antimalarials.
Collapse
Affiliation(s)
- Luc Reininger
- INSERM-EPFL Joint Laboratory, Global Health Institute, EPFL-SV-GHI, Station 19, CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
23
|
Reilly Ayala HB, Wacker MA, Siwo G, Ferdig MT. Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum. BMC Genomics 2010; 11:577. [PMID: 20955606 PMCID: PMC3091725 DOI: 10.1186/1471-2164-11-577] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 10/18/2010] [Indexed: 11/24/2022] Open
Abstract
Background Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of Plasmodium falciparum through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration. Results Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle. Conclusions We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c), a Zinc finger transcription factor (PFL0465c) both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c).
Collapse
|
24
|
Caridha D, Kathcart AK, Jirage D, Waters NC. Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases. Bioorg Med Chem Lett 2010; 20:3863-7. [DOI: 10.1016/j.bmcl.2010.05.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 01/05/2023]
|
25
|
The malarial CDK Pfmrk and its effector PfMAT1 phosphorylate DNA replication proteins and co-localize in the nucleus. Mol Biochem Parasitol 2010; 172:9-18. [DOI: 10.1016/j.molbiopara.2010.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
|
26
|
Chung DWD, Ponts N, Cervantes S, Le Roch KG. Post-translational modifications in Plasmodium: more than you think! Mol Biochem Parasitol 2009; 168:123-34. [PMID: 19666057 DOI: 10.1016/j.molbiopara.2009.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/10/2009] [Accepted: 08/03/2009] [Indexed: 12/21/2022]
Abstract
Recent evidences indicate that transcription in Plasmodium may be hard-wired and rigid, deviating from the classical model of transcriptional gene regulation. Thus, it is important that other regulatory pathways be investigated as a comprehensive effort to curb the deadly malarial parasite. Research in post-translational modifications in Plasmodium is an emerging field that may provide new venues for drug discovery and potential new insights into how parasitic protozoans regulate their life cycle. Here, we discuss the recent findings of post-translational modifications in Plasmodium.
Collapse
Affiliation(s)
- Duk-Won Doug Chung
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
27
|
Geyer JA, Keenan SM, Woodard CL, Thompson PA, Gerena L, Nichols DA, Gutteridge CE, Waters NC. Selective inhibition of Pfmrk, a Plasmodium falciparum CDK, by antimalarial 1,3-diaryl-2-propenones. Bioorg Med Chem Lett 2009; 19:1982-5. [PMID: 19250824 DOI: 10.1016/j.bmcl.2009.02.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/24/2022]
Abstract
The cyclin dependent protein kinases, Pfmrk and PfPK5, most likely play an essential role in cell cycle control and differentiation in Plasmodium falciparum and are thus an attractive target for antimalarial drug development. Various 1,3-diaryl-2-propenones (chalcone derivatives) which selectivity inhibit Pfmrk in the low micromolar range (over PfPK5) are identified. Molecular modeling shows a pair of amino acid residues within the Pfmrk active site which appear to confer this selectivity. Predicted interactions between the chalcones and Pfmrk correlate well with observed potency. Pfmrk inhibition and activity against the parasite in vitro correlate weakly. Several mechanisms of action have been suggested for chalcone derivatives and our study suggests that kinase inhibition may be an additional mechanism of antimalarial activity for this class of compounds.
Collapse
Affiliation(s)
- Jeanne A Geyer
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Molecular machinery of signal transduction and cell cycle regulation in Plasmodium. Mol Biochem Parasitol 2009; 165:1-7. [PMID: 19393157 DOI: 10.1016/j.molbiopara.2009.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 12/27/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
Abstract
The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.
Collapse
|
29
|
Protein kinases of malaria parasites: an update. Trends Parasitol 2008; 24:570-7. [PMID: 18845480 DOI: 10.1016/j.pt.2008.08.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/04/2008] [Accepted: 08/11/2008] [Indexed: 11/24/2022]
Abstract
Protein kinases (PKs) play crucial roles in the control of proliferation and differentiation in eukaryotic cells. Research on protein phosphorylation has expanded tremendously in the past few years, in part as a consequence of the realization that PKs represent attractive drug targets in a variety of diseases. Activity in Plasmodium PK research has followed this trend, and several reports on various aspects of this subject were delivered at the Molecular Approaches to Malaria 2008 meeting (MAM2008), a sharp increase from the previous meeting. Here, the authors of most of these communications join to propose an integrated update of the development of the rapidly expanding field of Plasmodium kinomics.
Collapse
|
30
|
Grimberg BT, Erickson JJ, Sramkoski RM, Jacobberger JW, Zimmerman PA. Monitoring Plasmodium falciparum growth and development by UV flow cytometry using an optimized Hoechst-thiazole orange staining strategy. Cytometry A 2008; 73:546-54. [PMID: 18302186 DOI: 10.1002/cyto.a.20541] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The complex life cycle of Plasmodium falciparum (Pf) makes it difficult to limit infections and reduce the risk of severe malaria. Improved understanding of Pf blood-stage growth and development would provide new opportunities to evaluate and interfere with successful completion of the parasite's life cycle. Cultured blood stage Pf was incubated with Hoechst 33342 (HO) and thiazole orange (TO) to stain DNA and total nucleic acids, respectively. Correlated HO and TO fluorescence emissions were then measured by flow cytometry. Complex bivariate data patterns were analyzed by manual cluster gating to quantify parasite life cycle stages. The permutations of viable staining with both reagents were tested for optimal detection of parasitized RBC (pRBC). Pf cultures were exposed to HO and TO simultaneously to achieve optimal staining of pRBC and consistent quantification of early and late stages of the replicative cycle (rings through schizonts). Staining of Pf nucleic acids allows for analysis of parasite development in the absence of fixatives, lysis, or radioactivity to enable examination of erythrocytes from parasite invasion through schizont rupture using sensitive and rapid assay procedures. Investigation of the mechanisms by which anti-malarial drugs and antibodies act against different Pf lifecycle stages will be aided by this cytometric strategy.
Collapse
Affiliation(s)
- Brian T Grimberg
- Center for Global Health and Disease, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-7286, USA
| | | | | | | | | |
Collapse
|
31
|
Gupta A, Mehra P, Dhar SK. Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation. Mol Microbiol 2008; 69:646-65. [PMID: 18554328 PMCID: PMC2610387 DOI: 10.1111/j.1365-2958.2008.06316.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum. Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiaeorigin recognition complex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co-immunoprecipitates with PCNA during early-to-mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non-replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA-interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co-ordination between ORC and PCNA during eukaryotic DNA replication in general.
Collapse
Affiliation(s)
- Ashish Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
32
|
Abstract
The spread of parasitic resistance has necessitated the development of new drugs and drug targets for the treatment of malaria. Microtubules, which have gained outstanding importance as target molecules for the development of anticancer drugs, are likely to be potent antimalarial targets. The clinical implementation of microtubule inhibitors has given rise to a detailed mechanistic understanding of their interaction with tubulin on the molecular level and their effects on the cellular level. By comparison, our knowledge on Plasmodium falciparum, the causative agent of the most severe form of malaria, is rather poor. This article gives an overview on the microtubule inhibitors that have been explored in the parasite, reviews their effects on parasite growth and assesses their potential as novel antimalarials.
Collapse
Affiliation(s)
- Barbara Kappes
- Universitätsklinikum Heidelberg, Abteilung für Parasitologie, Im Neuenheimer Feld 324, Heidelberg, Germany.
| | | |
Collapse
|
33
|
Chen Y, Jirage D, Caridha D, Kathcart AK, Cortes EA, Dennull RA, Geyer JA, Prigge ST, Waters NC. Identification of an effector protein and gain-of-function mutants that activate Pfmrk, a malarial cyclin-dependent protein kinase. Mol Biochem Parasitol 2006; 149:48-57. [PMID: 16737745 DOI: 10.1016/j.molbiopara.2006.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/06/2006] [Accepted: 04/18/2006] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) are key regulators of cell cycle control. In humans, CDK7 performs dual roles as the CDK activating kinase (CAK) responsible for regulating numerous CDKs and as the RNA polymerase II carboxyl-terminal domain (CTD) kinase involved in the regulation of transcription. Binding of an effector protein, human MAT1, stimulates CDK7 kinase activity and influences substrate specificity. In Plasmodium falciparum, CDKs and their roles in regulating growth and development are poorly understood. In this study, we characterized the regulatory mechanisms of Pfmrk, a putative homolog of human CDK7. We identified an effector, PfMAT1, which stimulates Pfmrk kinase activity in a cyclin-dependent manner. The addition of PfMAT1 stimulated RNA polymerase II CTD phosphorylation and had no effect on the inability of Pfmrk to phosphorylate PfPK5, a putative CDK1 homolog, which suggests that Pfmrk may be a CTD kinase rather than a CAK. In an attempt to abrogate the requirement for PfMAT1 stimulation, we mutated amino acids within the active site of Pfmrk. We found that two independent mutants, S138K and F143L, yielded a 4-10-fold increase in Pfmrk activity. Significant kinase activity of these mutants was observed in the absence of either cyclin or PfMAT1. Finally, we observed autophosphorylation of Pfmrk that is unaffected by the addition of either cyclin or PfMAT1.
Collapse
Affiliation(s)
- Yueqin Chen
- Department of Parasitology, Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gengenbacher M, Fitzpatrick TB, Raschle T, Flicker K, Sinning I, Müller S, Macheroux P, Tews I, Kappes B. Vitamin B6 biosynthesis by the malaria parasite Plasmodium falciparum: biochemical and structural insights. J Biol Chem 2005; 281:3633-41. [PMID: 16339145 DOI: 10.1074/jbc.m508696200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin B6 is one of nature's most versatile cofactors. Most organisms synthesize vitamin B6 via a recently discovered pathway employing the proteins Pdx1 and Pdx2. Here we present an in-depth characterization of the respective orthologs from the malaria parasite, Plasmodium falciparum. Expression profiling of Pdx1 and -2 shows that blood-stage parasites indeed possess a functional vitamin B6 de novo biosynthesis. Recombinant Pdx1 and Pdx2 form a complex that functions as a glutamine amidotransferase with Pdx2 as the glutaminase and Pdx1 as pyridoxal-5 '-phosphate synthase domain. Complex formation is required for catalytic activity of either domain. Pdx1 forms a chimeric bi-enzyme with the bacterial YaaE, a Pdx2 ortholog, both in vivo and in vitro, although this chimera does not attain full catalytic activity, emphasizing that species-specific structural features govern the interaction between the protein partners of the PLP synthase complexes in different organisms. To gain insight into the activation mechanism of the parasite bi-enzyme complex, the three-dimensional structure of Pdx2 was determined at 1.62 A. The obstruction of the oxyanion hole indicates that Pdx2 is in a resting state and that activation occurs upon Pdx1-Pdx2 complex formation.
Collapse
Affiliation(s)
- Martin Gengenbacher
- Abteilung für Parasitologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Möskes C, Burghaus PA, Wernli B, Sauder U, Dürrenberger M, Kappes B. Export of Plasmodium falciparum calcium-dependent protein kinase 1 to the parasitophorous vacuole is dependent on three N-terminal membrane anchor motifs. Mol Microbiol 2005; 54:676-91. [PMID: 15491359 DOI: 10.1111/j.1365-2958.2004.04313.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calcium-dependent protein kinases play a pivotal role in calcium signalling in plants and some protozoa, including the malaria parasites. They are found in various subcellular locations, suggesting an involvement in multiple signal transduction pathways. Recently, Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) has been found in the membrane and organelle fraction of the parasite. The kinase contains three motifs for membrane binding at its N-terminus, a consensus sequence for myristoylation, a putative palmitoylation site and a basic motif. Endogenous PfCDPK1 and the in vitro translated kinase were both shown to be myristoylated. The supposed membrane attachment function of the basic cluster was experimentally verified and shown to participate together with N-myristoylation in membrane anchoring of the kinase. Using immunogold electron microscopy, the protein was detected in the parasitophorous vacuole and the tubovesicular system of the parasite. Mutagenesis of the predicted acylated residues and the basic motif confirmed that dual acylation and the basic cluster are required for correct targeting of Aequorea victoria green fluorescent protein to the parasitophorous vacuole, suggesting that PfCDPK1 as the leishmanial hydrophilic acylated surface protein B is a representative of a novel class of proteins whose export is dependent on a 'non-classical' pathway involving N-myristoylation/palmitoylation.
Collapse
Affiliation(s)
- Christian Möskes
- Parasitology Department, Institute for Hygiene, Heidelberg University, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, Yan SF, Williamson KC, Holder AA, Carucci DJ, Yates JR, Winzeler EA. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res 2005; 14:2308-18. [PMID: 15520293 PMCID: PMC525690 DOI: 10.1101/gr.2523904] [Citation(s) in RCA: 336] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the role of post-transcriptional controls in the regulation of protein expression for the malaria parasite, Plasmodium falciparum, we have compared mRNA transcript and protein abundance levels for seven different stages of the parasite life cycle. A moderately high positive relationship between mRNA and protein abundance was observed for these stages; the most common discrepancy was a delay between mRNA and protein accumulation. Potentially post-transcriptionally regulated genes are identified, and families of functionally related genes were observed to share similar patterns of mRNA and protein accumulation.
Collapse
Affiliation(s)
- Karine G Le Roch
- Department of Cell Biology ICND202, the Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gissot M, Briquet S, Refour P, Boschet C, Vaquero C. PfMyb1, a Plasmodium falciparum transcription factor, is required for intra-erythrocytic growth and controls key genes for cell cycle regulation. J Mol Biol 2004; 346:29-42. [PMID: 15663925 DOI: 10.1016/j.jmb.2004.11.045] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/18/2004] [Accepted: 11/18/2004] [Indexed: 11/23/2022]
Abstract
During the complex life cycle of Plasmodium falciparum, divided between mosquito and human hosts, the regulation of morphologic changes implies a fine control of transcriptional regulation. Transcriptional control, however, and in particular its molecular actors, transcription factors and regulatory motifs, are as yet poorly described in Plasmodium. In order to decipher the molecular mechanisms implicated in transcriptional regulation, a transcription factor belonging to the tryptophan cluster family was studied. In a previous work, the PfMyb1 protein, contained in nuclear extracts, was shown to have DNA binding activity and to interact specifically with myb regulatory elements. We used long pfmyb1 double-stranded RNA (dsRNA) to interfere with the cognate messenger expression. Parasite cultures treated with pfmyb1 dsRNA exhibited a 40% growth inhibition when compared with either untreated cultures or cultures treated with unrelated dsRNA, and parasite mortality occurred during trophozoite to schizont transition. In addition, the pfmyb1 transcript and protein decreased by as much as 80% in treated trophozoite cultures at the time of their maximum expression. The global effect of this partial loss of transcript and protein was investigated using a thematic DNA microarray encompassing genes involved in signal transduction, cell cycle and transcriptional regulation. SAM software enabled us to identify several genes that were differentially expressed and probably directly or indirectly under the control of PfMyb1. Using chromatin immuno-precipitation, we demonstrated that PfMyb1 binds, within the parasite nuclei, to several promoters and therefore participates directly in the transcriptional regulation of the corresponding genes. This study provides the first evidence of a regulation network involving a Plasmodium transcription factor.
Collapse
Affiliation(s)
- Mathieu Gissot
- INSERM U511, CHU Pitié-Salpêtrière, 91 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
38
|
Bhattacharjee AK, Geyer JA, Woodard CL, Kathcart AK, Nichols DA, Prigge ST, Li Z, Mott BT, Waters NC. A three-dimensional in silico pharmacophore model for inhibition of Plasmodium falciparum cyclin-dependent kinases and discovery of different classes of novel Pfmrk specific inhibitors. J Med Chem 2004; 47:5418-26. [PMID: 15481979 DOI: 10.1021/jm040108f] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cell division cycle is regulated by a family of cyclin-dependent protein kinases (CDKs) that are functionally conserved among many eukaryotic species. The characterization of plasmodial CDKs has identified them as a leading antimalarial drug target in our laboratory. We have developed a three-dimensional QSAR pharmacophore model for inhibition of a Plasmodium falciparum CDK, known as Pfmrk, from a set of fifteen structurally diverse kinase inhibitors with a wide range of activity. The model was found to contain two hydrogen bond acceptor functions and two hydrophobic sites including one aromatic-ring hydrophobic site. Although the model was not developed from X-ray structural analysis of the known CDK2 structure, it is consistent with the structure-functional requirements for binding of the CDK inhibitors in the ATP binding pocket. Using the model as a template, a search of the in-house three-dimensional multiconformer database resulted in the discovery of sixteen potent Pfmrk inhibitors. The predicted inhibitory activities of some of these Pfmrk inhibitors from the molecular model agree exceptionally well with the experimental inhibitory values from the in vitro CDK assay.
Collapse
Affiliation(s)
- Apurba K Bhattacharjee
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Keenan SM, Welsh WJ. Characteristics of the Plasmodium falciparum PK5 ATP-binding site: implications for the design of novel antimalarial agents. J Mol Graph Model 2004; 22:241-7. [PMID: 14629982 DOI: 10.1016/j.jmgm.2003.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Increasing worldwide resistance of Plasmodium falciparum (P. falciparum) to traditional chemotherapy strategies such as chloroquine and mefloquine demonstrates the urgent need for the discovery of novel chemotherapeutic agents in the fight against malaria. The recent discovery of P. falciparum Protein Kinase 5 (PfPK5) invites the possibility of selectively targeting the life cycle of P. falciparum in order to prevent cerebral malaria. PfPK5 bears a high degree of sequence identity (>58%) to a structurally conserved family of mammalian kinases known as the cyclin-dependent kinases (CDKs). The CDKs are the key regulatory elements governing the ordered progression of the mammalian cell cycle. With numerous X-ray crystal structures of CDK2 to provide a structural template, here we present a three-dimensional structural model of PfPK5 constructed using computer-based homology modeling techniques. Our model was used to compare the ATP binding site of PfPK5 with that of the mammalian kinase CDK2. Furthermore, kinase-ligand interactions of PfPK5 with known inhibitors were investigated and compared to available crystal structures of CDK2 with inhibitors bound. The focus of the study is to identify similarities and differences between the ATP binding sites of the two kinases that can be exploited for future rational drug design.
Collapse
Affiliation(s)
- Susan M Keenan
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
40
|
Kinnaird JH, Bumstead JM, Mann DJ, Ryan R, Shirley MW, Shiels BR, Tomley FM. EtCRK2, a cyclin-dependent kinase gene expressed during the sexual and asexual phases of the Eimeria tenella life cycle. Int J Parasitol 2004; 34:683-92. [PMID: 15111090 DOI: 10.1016/j.ijpara.2004.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 01/05/2004] [Accepted: 01/07/2004] [Indexed: 11/24/2022]
Abstract
EtCRK2, a cyclin-dependent kinase from the coccidian parasite, Eimeria tenella is closely related to eukaryotic cyclin-dependent kinases that regulate progression of the cell cycle and to several cyclin-dependent kinases identified in the Apicomplexa. Northern blot analyses revealed that EtCRK2 is transcribed during both asexual (first-generation schizogony) and sexual (oocyst sporulation) replicative phases of the parasite life cycle. In addition, it appears to be transcriptionally regulated during meiosis. Recombinant EtCRK2 produced in Escherichia coli has kinase activity which is significantly stimulated by the addition of vertebrate cyclin A. This cyclin-dependent kinase may play a significant role in regulating critical cell cycle events during both asexual proliferation and sexual development of the parasite.
Collapse
Affiliation(s)
- J H Kinnaird
- Veterinary Parasitology, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Holton S, Merckx A, Burgess D, Doerig C, Noble M, Endicott J. Structures of P. falciparum PfPK5 Test the CDK Regulation Paradigm and Suggest Mechanisms of Small Molecule Inhibition. Structure 2003; 11:1329-37. [PMID: 14604523 DOI: 10.1016/j.str.2003.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum cell cycle regulators are promising targets for antimalarial drug design. We have determined the structure of PfPK5, the first structure of a P. falciparum protein kinase and the first of a cyclin-dependent kinase (CDK) not derived from humans. The fold and the mechanism of inactivation of monomeric CDKs are highly conserved across evolution. ATP-competitive CDK inhibitors have been developed as potential leads for cancer therapeutics. These studies have identified regions of the CDK active site that can be exploited to achieve significant gains in inhibitor potency and selectivity. We have cocrystallized PfPK5 with three inhibitors that target such regions. The sequence differences between PfPK5 and human CDKs within these inhibitor binding sites suggest that selective inhibition is an attainable goal. Such compounds will be useful tools for P. falciparum cell cycle studies, and will provide lead compounds for antimalarial drug development.
Collapse
Affiliation(s)
- Simon Holton
- Laboratory of Molecular Biophysics, Department of Biochemistry, South Parks Road, OX1 3QU, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Woodard CL, Li Z, Kathcart AK, Terrell J, Gerena L, Lopez-Sanchez M, Kyle DE, Bhattacharjee AK, Nichols DA, Ellis W, Prigge ST, Geyer JA, Waters NC. Oxindole-based compounds are selective inhibitors of Plasmodium falciparum cyclin dependent protein kinases. J Med Chem 2003; 46:3877-82. [PMID: 12930149 DOI: 10.1021/jm0300983] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclin dependent protein kinases (CDKs) have become attractive drug targets in an effort to identify effective inhibitors of the parasite Plasmodium falciparum, the causative agent of the most severe form of human malaria. We tested known CDK inhibitors for their ability to inhibit two malarial CDKs: Pfmrk and PfPK5. Many broad spectrum CDK inhibitors failed to inhibit Pfmrk suggesting that the active site differs from other CDKs in important ways. By screening compounds in the Walter Reed chemical database, we identified oxindole-based compounds as effective inhibitors of Pfmrk (IC(50) = 1.5 microM). These compounds have low cross-reactivity against PfPK5 and human CDK1 demonstrating selectivity for Pfmrk. Amino acid comparison of the active sites of Pfmrk and PfPK5 identified unique amino acid differences that may explain this selectivity and be exploited for further drug development efforts.
Collapse
Affiliation(s)
- Cassandra L Woodard
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Waters NC, Geyer JA. Cyclin-dependent protein kinases as therapeutic drug targets for antimalarial drug development. Expert Opin Ther Targets 2003; 7:7-17. [PMID: 12556199 DOI: 10.1517/14728222.7.1.7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) have been attractive drug targets for the development of anticancer therapies due to their direct and crucial role in the regulation of cellular proliferation. Following this trend, CDKs have been pursued as potential drug targets for several other diseases. Structure-based drug design programmes have focused on the plasmodial CDKs to develop new candidate antimalarial compounds. This review discusses the most recent advances relating to three Plasmodium falciparum CDKs (PfPK5, PfPK6 and Pfmrk) as they are developed as antimalarial drug targets. CDKs are highly conserved, and focus must be placed upon the amino acid differences between human and plasmodial CDKs in order to develop specific inhibitors. Comparisons of the active sites of human and parasite CDKs reveal sequence and potential structural variations. Using sequence analysis, molecular modelling and in vitro drug screening, it is possible to identify and develop inhibitors that specifically target the plasmodial CDKs. These efforts are aimed at identifying new classes of CDK inhibitors that may be exploited for antimalarial drug development.
Collapse
Affiliation(s)
- Norman C Waters
- United States Army Medical Research Unit-Kenya, MRU 64109 APO, AE 09831-4109, Kenya.
| | | |
Collapse
|
44
|
Abstract
The intraerythrocytic asexual cycle of the malarial parasite is complex and atypical: during schizogony the parasite undergoes multiple rounds of DNA replication and asynchronous nuclear division without cytokinesis. This cell cycle deviates from the classical eukaryotic cell cycle model where, 'DNA replicates only once per cell cycle'. A clear understanding of the molecular switches that control this unusual developmental cycle would be of great interest, both in terms of fundamental Plasmodium biology and in terms of novel potential drug target identification. In recent years considerable effort has been made to identify the malarial orthologues of the cyclin-dependent kinases, which are key regulators of the orderly progression of the eukaryotic cell cycle. This review focuses on the current state-of-knowledge of Plasmodium falciparum cyclin-dependent kinase-like kinases and their regulators.
Collapse
Affiliation(s)
- Christian Doerig
- INSERM U511 team, Wellcome Centre for Molecular Parasitology, The Anderson College, Glasgow, Scotland, UK
| | | | | |
Collapse
|
45
|
Nirmalan N, Wang P, Sims PFG, Hyde JE. Transcriptional analysis of genes encoding enzymes of the folate pathway in the human malaria parasite Plasmodium falciparum. Mol Microbiol 2002; 46:179-90. [PMID: 12366841 DOI: 10.1046/j.1365-2958.2002.03148.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Folate metabolism in Plasmodium falciparum is essential for cell growth and replication, and the target of important antimalarial agents. The pathway comprises a series of enzymes that convert GTP to derivatives of tetrahydrofolate, which are cofactors in one-carbon transfer reactions. We investigated the expression of five of the genes encoding these enzymes by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) using a threshold detection technique. We followed changes in mRNA levels as parasites progress through the erythrocytic cell cycle and examined this process in two cloned lines of diverse origins, as well as under stress conditions, induced by either removal of important metabolites or challenge by folate enzyme inhibitors. Although conventionally regarded as performing housekeeping functions, these genes show disparate levels of and changes in expression through the cell cycle, but respond quite uniformly to folate pathway-specific stress factors, with no evidence of feedback at the transcriptional level. Overall, the two genes involved in the thymidylate cycle (encoding dihy-drofolate reductase-thymidylate synthase, dhfr-ts, and serine hydroxymethyltransferase, shmt) gave the most abundant transcripts. However, only the latter showed major variation across the cell cycle, with a peak around the time of onset of DNA replication, possibly indicative of a regulatory function.
Collapse
Affiliation(s)
- Niroshini Nirmalan
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK
| | | | | | | |
Collapse
|
46
|
Santori MI, Laría S, Gómez EB, Espinosa I, Galanti N, Téllez-Iñón MT. Evidence for CRK3 participation in the cell division cycle of Trypanosoma cruzi. Mol Biochem Parasitol 2002; 121:225-32. [PMID: 12034456 DOI: 10.1016/s0166-6851(02)00039-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Trypanosoma cruzi CRK3 gene encodes a Cdc2p related protein kinase (CRK). To establish if it has a role in the regulation of the parasite cell cycle we studied CRK3 expression and activity throughout three life cycle stages. CRK3 from epimastigote soluble extracts interacted with p13(suc1)-beads. Endogenous CRK3 phosphorylated histone H1 and this activity was inhibited by specific CDK inhibitors: Olomoucine, Flavopiridol and Roscovitine. Flavopiridol partially inhibited the growth of T. cruzi epimastigotes at 50 nM, the lowest concentration used, but even with the highest (5 microM), cell growth was not completely arrested. CRK3 from Flavopiridol-inhibited epimastigote extracts exhibited a dose dependent inhibition of histone H1 phosphorylation. T. cruzi p13(suc1)-binding CRK displayed the same inhibition profile. This suggests that CRK3 is the enzyme responsible for the majority of the kinase activity associated with p13(suc1). CRK3 activity of hydroxyurea (HU) synchronized epimastigotes peaked in G2/M boundary while the kinase activity associated to p13(suc1)-beads increased at the same time point but remained high until late G2/M. In addition, CRK3 expression was constant during the cell cycle. This is a common pattern of CDK activity regulation. Taken together, these results support the idea that CRK3 is involved in control of the cell cycle in T. cruzi.
Collapse
Affiliation(s)
- María I Santori
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (IGEBI, CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Ouarzane-Amara M, Franetich JF, Mazier D, Pettit GR, Meijer L, Doerig C, Desportes-Livage I. In vitro activities of two antimitotic compounds, pancratistatin and 7-deoxynarciclasine, against Encephalitozoon intestinalis, a microsporidium causing infections in humans. Antimicrob Agents Chemother 2001; 45:3409-15. [PMID: 11709316 PMCID: PMC90845 DOI: 10.1128/aac.45.12.3409-3415.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antiparasitic effect of a collection of compounds with antimitotic activity has been tested on a mammalian cell line infected with Encephalitozoon intestinalis, a microsporidian causing intestinal and systemic infection in immunocompromised patients. The antiparasitic effect was evaluated by counting the number of parasitophorous vacuoles detected by immunofluorescence. Out of 526 compounds tested, 2 (pancratistatin and 7-deoxynarciclasine) inhibited the infection without affecting the host cell. The 50% inhibitory concentrations (IC(50)s) of pancratistatin and 7-deoxynarciclasine for E. intestinalis were 0.18 microM and 0.2 microM, respectively, approximately eightfold lower than the IC(50)s of these same compounds against the host cells. Electron microscopy confirmed the gradual decrease in the number of parasitophorous vacuoles and showed that of the two life cycle phases, sporogony was more sensitive to the inhibitors than merogony. Furthermore, the persistence of meronts in some cells apparently devoid of sporonts and spores indicated that the inhibitors block development rather than entry of the parasite into the host cell. The occurrence of binucleate sporoblasts and spores suggests that these inhibitors blocked a specific phase of cell division.
Collapse
Affiliation(s)
- M Ouarzane-Amara
- INSERM U511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, CHU Pitié-Salpêtrière, 75643 Paris Cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Kinnaird J, Logan M, Tait A, Langsley G. TaCRK3 encodes a novel Theileria annulata protein kinase with motifs characteristic of the family of eukaryotic cyclin dependent kinases: a comparative analysis of its expression with TaCRK2 during the parasite life cycle. Gene 2001; 279:127-35. [PMID: 11733137 DOI: 10.1016/s0378-1119(01)00753-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The TaCRK3 gene from the bovine apicomplexan parasite Theileria annulata, encodes a 46 kDa polypeptide with strong homology to the eukaryotic family of cyclin-dependent kinases. TaCRK3 does not show significant alignment with any particular CDK group, other than the Pfmrk kinases from the related apicomplexans Plasmodium falciparum and Plasmodium yoelii. It has a putative bipartite nuclear localization signal and is located to parasite nuclei by IFAT. Protein levels are constitutive throughout differentiation of the intra-lymphocytic macroschizont. This contrasts with the expression pattern of TaCRK2 (Kinnaird et al., 1996, Mol. Microbiol., 22, 293-302) which is closely related to the eukaryotic CDK1 /2 families involved in regulation of cell cycle progression. TaCRK2 is also located to the parasite nuclei but has no nuclear localization signal and exhibits transient up-regulation in protein levels during mid-merogony. However compared to TaCRK3, it shows down-regulation near the end of merogony. We predict that TaCRK3 may have a role in regulation of gene transcription while TaCRK2 is more likely to be involved in control of parasite nuclear division.
Collapse
Affiliation(s)
- J Kinnaird
- Department of Veterinary Parasitology, Glasgow University, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | | | |
Collapse
|
49
|
Li Z, Le Roch K, Geyer JA, Woodard CL, Prigge ST, Koh J, Doerig C, Waters NC. Influence of human p16(INK4) and p21(CIP1) on the in vitro activity of recombinant Plasmodium falciparum cyclin-dependent protein kinases. Biochem Biophys Res Commun 2001; 288:1207-11. [PMID: 11700040 DOI: 10.1006/bbrc.2001.5920] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulatory mechanisms of most cyclin dependent protein kinases (CDKs) are well understood and are highly conserved in eukaryotes. CDKs from the malaria parasite, Plasmodium falciparum, appear to be regulated in a similar manner with regard to cyclin binding and phosphorylation. In order to further understand their regulatory mechanisms, we examined two classes of cyclin dependent kinase inhibitors (CDIs) to inhibit a panel of plasmodial CDKs. We find that Pfmrk and PfPK5 are inhibited by heterologous p21(CIP1) with varying degrees of inhibition. In contrast, PfPK6, a kinase with sequence features characteristic of both a CDK and MAP kinase, is unaffected by this CDI. Furthermore, the CDK4/6 specific CDI, p16(INK4), fails to inhibit these plasmodial CDKs. Taken together, these results suggest that plasmodial CDKs may be regulated by the binding of inhibitory proteins in vivo.
Collapse
Affiliation(s)
- Z Li
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910-5100, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hassan P, Fergusson D, Grant KM, Mottram JC. The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol Biochem Parasitol 2001; 113:189-98. [PMID: 11295173 DOI: 10.1016/s0166-6851(01)00220-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Leishmania mexicana CRK3 gene encodes a cdc2-related protein kinase with activity towards histone H1. Attempts to disrupt both alleles of CRK3 in the promastigote life-cycle stage resulted in changes in cell ploidy, which were avoided only when an extra copy of CRK3 was expressed from an episome. This provides strong evidence that CRK3 is essential to L. mexicana. The cyclin-dependent kinase specific inhibitor flavopiridol inhibited affinity purified histidine tagged CRK3 (CRK3his) with an IC(50) value of 100 nM and inhibited in vitro growth of L. mexicana promastigotes. Incubation of promastigotes with 2.5 microM flavopiridol for 24 h led to cell cycle arrest with an accumulation of 95% of cells in G2 or early mitosis (G2/M). Release from cell cycle arrest resulted in a semi-synchronous re-entry into the cell cycle; samples taken at 2, 4, and 6 h after release from the block were enriched for cells in G1 (68%), S-phase (70%), and G2/M phase (61%), respectively. This method of synchronisation was used to show that the majority of CRK3his activity towards the substrate histone H1 was present at G2/M. These data suggest that CRK3 has an essential role in controlling cell cycle progression at the G2/M-phase transition in L. mexicana promastigotes.
Collapse
Affiliation(s)
- P Hassan
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, G11 6NU, Scotland, Glasgow, UK
| | | | | | | |
Collapse
|