1
|
Bortolotti M, Biscotti F, Zanello A, Bolognesi A, Polito L. New Insights on Saporin Resistance to Chemical Derivatization with Heterobifunctional Reagents. Biomedicines 2023; 11:biomedicines11041214. [PMID: 37189832 DOI: 10.3390/biomedicines11041214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Saporin is a type 1 ribosome-inactivating protein widely used as toxic payload in the construction of targeted toxins, chimeric molecules formed by a toxic portion linked to a carrier moiety. Among the most used carriers, there are large molecules (mainly antibodies) and small molecules (such as neurotransmitters, growth factors and peptides). Some saporin-containing targeted toxins have been used for the experimental treatment of several diseases, giving very promising results. In this context, one of the reasons for the successful use of saporin lies in its resistance to proteolytic enzymes and to conjugation procedures. In this paper, we evaluated the influence of derivatization on saporin using three heterobifunctional reagents, namely 2-iminothiolane (2-IT), N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and 4-succinimidyloxycarbonyl-α-methyl-α-[2-pyridyldithio]toluene (SMPT). In order to obtain the highest number of inserted -SH groups with the lowest reduction of saporin biological activities, we assessed the residual ability of saporin to inhibit protein synthesis, to depurinate DNA and to induce cytotoxicity after derivatization. Our results demonstrate that saporin maintains an excellent resistance to derivatization processes, especially with SPDP, and permit us to define reaction conditions, in which saporin biological properties may not be altered. Therefore, these findings provide useful information for the construction of saporin-based targeted toxins, especially with small carriers.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Francesco Biscotti
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Andrea Zanello
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Andrea Bolognesi
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Letizia Polito
- Department of Medical and Surgical Sciences-DIMEC, General Pathology Section, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Nguyen D, Holien J, Dekiwadia C, Thrimawithana T, Piva T, Huynh T. Momordica cochinchinensis (Gấc) Seed Extracts Induce Apoptosis and Necrosis in Melanoma Cells. Pharmaceuticals (Basel) 2023; 16:ph16010100. [PMID: 36678596 PMCID: PMC9864523 DOI: 10.3390/ph16010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Momordica cochinchinensis is a herbal medicine used throughout Asia and this study investigated the antimelanoma potentials and molecular mechanisms of M. cochinchinensis seed with emphasis on extraction to optimise bioactivity. Overall, the aqueous extract was superior, with a wider diversity and higher concentration of proteins and peptides that was more cytotoxic to the melanoma cells than other extraction solvents. The IC50 of the aqueous extract on melanoma cells were similar to treatment with current anticancer drugs, vemurafenib and cisplatin. This cytotoxicity was cancer-specific with lower cytotoxic effects on HaCaT epidermal keratinocytes. Cytotoxicity correlated with MAPK signalling pathways leading to apoptosis and necrosis induced by triggering tumour necrosis factor receptor-1 (TNFR1), reducing the expression of nuclear factor kappa B (NF-kB), and suppression of BRAF/MEK. This efficacy of M. cochinchinensis seed extracts on melanoma cells provides a platform for future clinical trials as potent adjunctive therapy for metastatic melanoma.
Collapse
Affiliation(s)
- Dao Nguyen
- School of Science, RMIT University, P.O. Box 71, Bundoora 3083, Australia
- Faculty of Agriculture and Forestry, Tay Nguyen University, 567 Le Duan Street, Buon Ma Thuot City 63000, Vietnam
- Correspondence: (D.N.); (T.H.)
| | - Jessica Holien
- School of Science, RMIT University, P.O. Box 71, Bundoora 3083, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, GPO 2476, Melbourne 3001, Australia
| | - Thilini Thrimawithana
- School of Health and Biomedical Sciences, RMIT University, P.O. Box 71, Bundoora 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, P.O. Box 71, Bundoora 3083, Australia
| | - Tien Huynh
- School of Science, RMIT University, P.O. Box 71, Bundoora 3083, Australia
- Correspondence: (D.N.); (T.H.)
| |
Collapse
|
3
|
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
4
|
Knödler M, Buyel JF. Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnol Adv 2021; 47:107683. [PMID: 33373687 DOI: 10.1016/j.biotechadv.2020.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Molecular farming in plants is an emerging platform for the production of pharmaceutical proteins, and host species such as tobacco are now becoming competitive with commercially established production hosts based on bacteria and mammalian cell lines. The range of recombinant therapeutic proteins produced in plants includes replacement enzymes, vaccines and monoclonal antibodies (mAbs). But plants can also be used to manufacture toxins, such as the mistletoe lectin viscumin, providing an opportunity to express active antibody-toxin fusion proteins, so-called recombinant immunotoxins (RITs). Mammalian production systems are currently used to produce antibody-drug conjugates (ADCs), which require the separate expression and purification of each component followed by a complex and hazardous coupling procedure. In contrast, RITs made in plants are expressed in a single step and could therefore reduce production and purification costs. The costs can be reduced further if subcellular compartments that accumulate large quantities of the stable protein are identified and optimal plant growth conditions are selected. In this review, we first provide an overview of the current state of RIT production in plants before discussing the three key components of RITs in detail. The specificity-defining domain (often an antibody) binds cancer cells, including solid tumors and hematological malignancies. The toxin provides the means to kill target cells. Toxins from different species with different modes of action can be used for this purpose. Finally, the linker spaces the two other components to ensure they adopt a stable, functional conformation, and may also promote toxin release inside the cell. Given the diversity of these components, we extract broad principles that can be used as recommendations for the development of effective RITs. Future research should focus on such proteins to exploit the advantages of plants as efficient production platforms for targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- M Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| |
Collapse
|
5
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
6
|
Neller KCM, Diaz CA, Platts AE, Hudak KA. De novo Assembly of the Pokeweed Genome Provides Insight Into Pokeweed Antiviral Protein (PAP) Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1002. [PMID: 31447869 PMCID: PMC6691146 DOI: 10.3389/fpls.2019.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/17/2019] [Indexed: 05/21/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are RNA glycosidases thought to function in defense against pathogens. These enzymes remove purine bases from RNAs, including rRNA; the latter activity decreases protein synthesis in vitro, which is hypothesized to limit pathogen proliferation by causing host cell death. Pokeweed antiviral protein (PAP) is a RIP synthesized by the American pokeweed plant (Phytolacca americana). PAP inhibits virus infection when expressed in crop plants, yet little is known about the function of PAP in pokeweed due to a lack of genomic tools for this non-model species. In this work, we de novo assembled the pokeweed genome and annotated protein-coding genes. Sequencing comprised paired-end reads from a short-insert library of 83X coverage, and our draft assembly (N50 = 42.5 Kb) accounted for 74% of the measured pokeweed genome size of 1.3 Gb. We obtained 29,773 genes, 73% of which contained known protein domains, and identified several PAP isoforms. Within the gene models of each PAP isoform, a long 5' UTR intron was discovered, which was validated by RT-PCR and sequencing. Presence of the intron stimulated reporter gene expression in tobacco. To gain further understanding of PAP regulation, we complemented this genomic resource with expression profiles of pokeweed plants subjected to stress treatments [jasmonic acid (JA), salicylic acid, polyethylene glycol, and wounding]. Cluster analysis of the top differentially expressed genes indicated that some PAP isoforms shared expression patterns with genes involved in terpenoid biosynthesis, JA-mediated signaling, and metabolism of amino acids and carbohydrates. The newly sequenced promoters of all PAP isoforms contained cis-regulatory elements associated with diverse biotic and abiotic stresses. These elements mediated response to JA in tobacco, based on reporter constructs containing promoter truncations of PAP-I, the most abundant isoform. Taken together, this first genomic resource for the Phytolaccaceae plant family provides new insight into the regulation and function of PAP in pokeweed.
Collapse
Affiliation(s)
| | | | - Adrian E. Platts
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | | |
Collapse
|
7
|
Yarnell E, Touwaide A. Accuracy of Dioscorides,' De materia medica (First Century C.E.), Regarding Diuretic Activity of Plants. J Altern Complement Med 2018; 25:107-120. [PMID: 30403493 DOI: 10.1089/acm.2018.0251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Assess whether an ancient text on herbal medicine accurately characterizes a class of herbal diuretics. DESIGN The Greek text of Dioscorides De materia medica was assessed for herbs stated to have diuretic activity, and then modern research was sought to determine how accurate the ancient assessment of these herbs was. RESULTS Of the 105 plants cited as having diuretic activity by Dioscorides, 56 (53.3%) genuses are confirmed as being diuretic in animal or human research. For another 38 (36.2%) genuses, no research related to diuresis could be identified. Six (5.7%) genuses had mixed results in modern research, whereas a mere 5 (4.8%) genuses were shown to not have diuretic activity. Considering the 67 genuses that were investigated, 56 (83.6%) were confirmed. CONCLUSION This analysis confirms that Dioscorides was accurate in determining the diuretic nature of herbs, raising the possibility that he was right about other therapeutic suggestions concerning herbs he made. For the remaining herbs that have not been assessed for diuretic effect, it is not yet known if Dioscorides was accurate. Our findings suggest that the 38 herbs Dioscorides categorized as diuretics that have not been studied for diuretic function are candidates for research in this regard.
Collapse
Affiliation(s)
- Eric Yarnell
- 1 Department of Botanical Medicine, School of Naturopathic Medicine, Bastyr University, Kenmore, Washington
| | - Alain Touwaide
- 2 Institute for the Preservation of Medical Traditions, Washington, District of Columbia
| |
Collapse
|
8
|
Bolognesi A, Bortolotti M, Battelli MG, Polito L. Hyperuricaemia, Xanthine Oxidoreductase and Ribosome-Inactivating Proteins from Plants: The Contributions of Fiorenzo Stirpe to Frontline Research. Molecules 2017; 22:molecules22020206. [PMID: 28134797 PMCID: PMC6155646 DOI: 10.3390/molecules22020206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 11/16/2022] Open
Abstract
The enzymes called ribosome-inactivating proteins (RIPs) that are able to depurinate nucleic acids and arrest vital cellular functions, including protein synthesis, are still a frontline research field, mostly because of their promising medical applications. The contributions of Stirpe to the development of these studies has been one of the most relevant. After a short biographical introduction, an overview is offered of the main results obtained by his investigations during last 55 years on his main research lines: hyperuricaemia, xanthine oxidoreductase and RIPs.
Collapse
Affiliation(s)
- Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
9
|
Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules 2016; 21:molecules21121627. [PMID: 27898041 PMCID: PMC6273060 DOI: 10.3390/molecules21121627] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
This review provides a historical overview of the research on plant ribosome-inactivating proteins (RIPs), starting from the first studies at the end of eighteenth century involving the purification of abrin and ricin, as well as the immunological experiments of Paul Erlich. Interest in these plant toxins was revived in 1970 by the observation of their anticancer activity, which has given rise to a large amount of research contributing to the development of various scientific fields. Biochemistry analyses succeeded in identifying the enzymatic activity of RIPs and allowed for a better understanding of the ribosomal machinery. Studies on RIP/cell interactions were able to detail the endocytosis and intracellular routing of ricin, thus increasing our knowledge of how cells handle exogenous proteins. The identification of new RIPs and the finding that most RIPs are single-chain polypeptides, together with their genetic sequencing, has aided in the development of new phylogenetic theories. Overall, the biological properties of these proteins, including their abortifacient, anticancer, antiviral and neurotoxic activities, suggest that RIPs could be utilized in agriculture and in many biomedical fields, including clinical drug development.
Collapse
Affiliation(s)
- Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Stefania Maiello
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
10
|
Neller KCM, Klenov A, Hudak KA. The Pokeweed Leaf mRNA Transcriptome and Its Regulation by Jasmonic Acid. FRONTIERS IN PLANT SCIENCE 2016; 7:283. [PMID: 27014307 PMCID: PMC4792876 DOI: 10.3389/fpls.2016.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 05/16/2023]
Abstract
The American pokeweed plant, Phytolacca americana, is recognized for synthesizing pokeweed antiviral protein (PAP), a ribosome inactivating protein (RIP) that inhibits the replication of several plant and animal viruses. The plant is also a heavy metal accumulator with applications in soil remediation. However, little is known about pokeweed stress responses, as large-scale sequencing projects have not been performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed in the presence and absence of jasmonic acid (JA), a hormone mediating plant defense. Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology searches against public sequence databases resulted in the annotation of 59 096 transcripts. Differential expression analysis identified JA-responsive genes that may be involved in defense against pathogen infection and herbivory. We confirmed the existence of several PAP isoforms and cloned a potentially novel isoform of PAP. Expression analysis indicated that PAP isoforms are differentially responsive to JA, perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family member provides a source of new genes that may be involved in stress tolerance in this plant. The sequences generated in our study have been deposited in the SRA database under project # SRP069141.
Collapse
|
11
|
Schrot J, Weng A, Melzig MF. Ribosome-inactivating and related proteins. Toxins (Basel) 2015; 7:1556-615. [PMID: 26008228 PMCID: PMC4448163 DOI: 10.3390/toxins7051556] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs.
Collapse
Affiliation(s)
- Joachim Schrot
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Alexander Weng
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universitaet Berlin, Koenigin-Luise-Str. 2 + 4, 14195 Berlin, Germany.
| |
Collapse
|
12
|
Domashevskiy AV, Goss DJ. Pokeweed antiviral protein, a ribosome inactivating protein: activity, inhibition and prospects. Toxins (Basel) 2015; 7:274-98. [PMID: 25635465 PMCID: PMC4344624 DOI: 10.3390/toxins7020274] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 01/30/2023] Open
Abstract
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant's defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction-a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics.
Collapse
MESH Headings
- Animals
- Binding Sites
- Endoribonucleases/chemistry
- Fungal Proteins/chemistry
- Genome, Viral
- Humans
- Protein Isoforms
- RNA Caps/chemistry
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribosome Inactivating Proteins, Type 1/chemistry
- Ribosome Inactivating Proteins, Type 1/genetics
- Ribosome Inactivating Proteins, Type 1/metabolism
- Ribosome Inactivating Proteins, Type 1/pharmacology
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ricin/chemistry
Collapse
Affiliation(s)
- Artem V Domashevskiy
- John Jay College of Criminal Justice, Department of Sciences, City University of New York, 524 West 59th Street, New York, NY 10019, USA.
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York and the Graduate Center, 695 Park Avenue, New York, NY 10065, USA.
| |
Collapse
|
13
|
Cimini A, Mei S, Benedetti E, Laurenti G, Koutris I, Cinque B, Cifone MG, Galzio R, Pitari G, Di Leandro L, Giansanti F, Lombardi A, Fabbrini MS, Ippoliti R. Distinct cellular responses induced by saporin and a transferrin-saporin conjugate in two different human glioblastoma cell lines. J Cell Physiol 2012; 227:939-51. [PMID: 21503892 DOI: 10.1002/jcp.22805] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ~12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A (IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternative intracellular pathways.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Biology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lombardi A, Marshall RS, Savino C, Fabbrini MS, Ceriotti A. Type I Ribosome-Inactivating Proteins from Saponaria officinalis. TOXIC PLANT PROTEINS 2010. [DOI: 10.1007/978-3-642-12176-0_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Structure/function studies on two type 1 ribosome inactivating proteins: Bouganin and lychnin. J Struct Biol 2009; 168:278-87. [PMID: 19616098 DOI: 10.1016/j.jsb.2009.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/24/2009] [Accepted: 07/12/2009] [Indexed: 11/20/2022]
Abstract
The three-dimensional structures of two type 1 RIPs, bouganin and lychnin, has been solved. Their adenine polynucleotide glycosylase activity was also determined together with other known RIPs: dianthin 30, PAP-R, momordin I, ricin A chain and saporin-S6. Saporin-S6 releases the highest number of adenine molecules from rat ribosomes, and poly(A), while its efficiency is similar to dianthin 30, bouganin and PAP-R on herring sperm DNA. Measures of the protein synthesis inhibitory activity confirmed that saporin-S6 is the most active. The overall structure of bouganin and lychnin is similar to the other considered RIPs and the typical RIP fold is conserved. The superimpositioning of their C(alpha) atoms highlights some differences in the N-terminal and C-terminal domains. A detailed structural analysis indicates that the efficiency of saporin-S6 on various polynucleotides can be ascribed to a negative electrostatic surface potential at the active site and several exposed positively charged residues in the region around that site. These two conditions, not present at the same time in other examined RIPs, could guarantee an efficient interaction with the substrate and an efficient catalysis.
Collapse
|
16
|
Engineering and Biological Characterization of VB6-845, an Anti-EpCAM Immunotoxin Containing a T-cell Epitope-depleted Variant of the Plant Toxin Bouganin. J Immunother 2009; 32:574-84. [DOI: 10.1097/cji.0b013e3181a6981c] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Mansouri S, Nourollahzadeh E, Hudak KA. Pokeweed antiviral protein depurinates the sarcin/ricin loop of the rRNA prior to binding of aminoacyl-tRNA to the ribosomal A-site. RNA (NEW YORK, N.Y.) 2006; 12:1683-92. [PMID: 16888324 PMCID: PMC1557698 DOI: 10.1261/rna.70306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ribosome-inactivating proteins, such as the pokeweed antiviral protein (PAP), inhibit translation by depurinating the conserved sarcin/ricin loop of the large ribosomal RNA. Depurinated ribosomes are unable to bind elongation factor 2, and, thus, the translocation step of the elongation cycle is inhibited. Though the consequences of depurination are well characterized, the ribosome conformation required for depurination to take place has not been described. In this report, we correlate biochemical and genetic data to conclude that pokeweed antiviral protein depurinates the sarcin/ricin loop when the A-site of the ribosomal peptidyl-transferase center is unoccupied. We show that prior incubation of ribosomes with puromycin, an analog of the 3'-terminus of aminoacyl-tRNA, inhibits both binding and depurination by PAP in a concentration-dependent manner. Expression of PAP in the yeast strain mak8-1 results in little depurination unless the cells are lysed, a process that would promote loss of aminoacyl-tRNA from the ribosome. The mak8-1 strain is known to exhibit a higher affinity for aminoacyl-tRNA compared with wild-type cells, and therefore, its ribosomes are more resistant to PAP in vivo. These data contribute to the mechanism of action of pokeweed antiviral protein; specifically, they have uncovered the ribosomal conformation required for depurination that leads to subsequent translation inhibition.
Collapse
Affiliation(s)
- Sheila Mansouri
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | | | | |
Collapse
|
18
|
Chambery A, de Donato A, Bolognesi A, Polito L, Stirpe F, Parente A. Sequence determination of lychnin, a type 1 ribosome-inactivating protein from Lychnis chalcedonica seeds. Biol Chem 2006; 387:1261-6. [PMID: 16972795 DOI: 10.1515/bc.2006.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complete amino acid sequence of lychnin, a type 1 ribosome-inactivating protein (RIP) isolated from Lychnis chalcedonica seeds, has been determined by automated Edman degradation and ESI-QTOF mass spectrometry. Lychnin consists of 234 amino acid residues with a molecular mass of 26 131.14 Da. All amino acid residues involved in the formation of the RIP active site (Tyr69, Tyr119, Glu170, Arg173 and Trp203) are fully conserved. Furthermore, a fast MALDI-TOF experiment showed that two out of three cysteinyl residues (Cys32 and Cys115) form a disulfide bridge, while Cys214 is in the thiol form, which makes it suitable for linking carrier molecules to generate immunotoxins and other conjugates.
Collapse
Affiliation(s)
- Angela Chambery
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Szalai K, Schöll I, Förster-Waldl E, Polito L, Bolognesi A, Untersmayr E, Riemer AB, Boltz-Nitulescu G, Stirpe F, Jensen-Jarolim E. Occupational sensitization to ribosome-inactivating proteins in researchers. Clin Exp Allergy 2005; 35:1354-60. [PMID: 16238796 DOI: 10.1111/j.1365-2222.2005.02338.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Ribosome-inactivating proteins (RIPs) are expressed in many plants. Because of their anti-infectious and anti-proliferative effects, intensive research is going on for applying these toxins in therapy against viral infections or malignancies. Recently, we demonstrated that type I allergy against RIPs from elderberry can occur. OBJECTIVE Stimulated by our study, a group of RIP researchers reported that some of the employees had suspected allergy to RIPs. METHODS AND RESULTS We tested their sera in ELISA on natural RIPs. Specific IgE in four subjects were found against dianthin30, gelonin, momordin, PAP-S, saporin, ricin and volkensin. In contrast, asparin and lychnin did not show any IgE binding. When separating extracts of plants containing the toxins in SDS-PAGE, RIPs appeared to be the predominant constituents. Interestingly, among the other plant proteins, they were exclusively recognized by IgE in immunoblot. RIPs derived from close botanical families share high sequence homologies. Nevertheless, in IgE inhibition experiments with human sera, cross-reactivity between RIPs also derived from non-related plants could be demonstrated. CONCLUSION We conclude that sensitization and IgE induction to RIPs may occur upon exposure. This has to be considered when applying them in therapy against malignancies or viral infections.
Collapse
Affiliation(s)
- K Szalai
- Center of Physiology and Pathophysiology, University Children's Hospital, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Silva ALC, Horta ACG, Moreira RA, Beltramini LM, Araújo APU. Production of Abrus pulchellus ribosome-inactivating protein from seeds callus culture. Toxicon 2003; 41:841-9. [PMID: 12782084 DOI: 10.1016/s0041-0101(03)00041-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ribosome inactivating proteins (RIPs) were isolated from callus culture that were established from seed explants of Abrus pulchellus. Cotyledon segments of immature seeds were inoculated in basal medium MS supplemented with different concentrations of auxin (2,4-D), citokinin (kinetin and BA) and sucrose in order to determine the best callus induction. A. pulchellus type 2 RIP (pulchellin) expression was monitored in callus cultures by RT-PCR and biological activity. The calli obtained after 35 days were freeze dried, macerated and submitted to extraction of total RNA and proteins (0.1 M Tris-HCl pH 7.6 buffer, containing 0.15 M NaCl, 3 h at room temperature). A specific DNA fragment codifying the A-chain pulchellin was amplified from callus RNA suggesting the presence of the protein. This was confirmed in the calli crude extract that showed haemagglutinating activity against rabbit blood cells and a high intraperitoneal toxicity to mice. The crude extract was also submitted to affinity chromatography on a Sepharose-4B column. The retained protein, peak released by 0.1 M galactose, appeared to be composed of two main bands in polyacrylamide gel electrophoresis, in denaturating conditions, with a similar pattern to that obtained with seeds.
Collapse
Affiliation(s)
- André Luis C Silva
- Grupo de Biofísica Molecular e Espectroscopia, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP CEP 13560-970, Brazil.
| | | | | | | | | |
Collapse
|
21
|
Zeng ZH, He XL, Li HM, Hu Z, Wang DC. Crystal structure of pokeweed antiviral protein with well-defined sugars from seeds at 1.8A resolution. J Struct Biol 2003; 141:171-8. [PMID: 12615543 DOI: 10.1016/s1047-8477(02)00580-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of pokeweed antiviral protein from seeds of Phytolacca americana (PAP-S) was solved at 1.8A. PAP-S is a one-chain ribosome-inactivating protein (RIP) and distinctively contains three well-defined N-acetylglucosamines, each covalently linked to an asparagine residue at positions, 10, 44, and 255, respectively. The high-resolution structure clearly shows the three mono-sugars to have either an alpha- or a beta-conformation. Two of sugars are located on the same side of the molecule with the active pocket. Except one hydrogen bond, there are no intermolecular interactions between the polypeptide chain and the sugars. Instead the sugar conformations appear to be stabilized by intermolecular interactions. The sugar structure defined at high resolution provides a structural basis for understanding their possible biological activity. The structural comparisons of PAP-S with other PAPs reveal that the major disparity of these homologous molecules is the different charge distribution on the upper right side of the front side near the active pocket. Based on the available structure of the 50S ribosomal subunit, the possible interactions between PAPs and the ribosome are discussed.
Collapse
Affiliation(s)
- Zong-Hao Zeng
- Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
22
|
Barth A, Müller D, Dürrling K. In vitro investigation of a standardized dried extract of Citrullus colocynthis on liver toxicity in adult rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2002; 54:223-30. [PMID: 12484560 DOI: 10.1078/0940-2993-00252] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A standardized extract of Citrullus colocynthis used as an oral natural laxative in folk medicine was tested for its influence on liver function parameters in vitro. Cytochrome P450 (CYP) dependent production of reactive oxygen species (ROS) under the influence of Citrullus colocynthis extract was investigated by means of stimulated lipid peroxidation (LPO), H2O2 formation and amplified chemiluminescence in rat liver microsomes. In rat liver 9000 x g supernatants 4 monooxygenase reactions mediated by different CYP forms were measured. Putative hepatotoxic effects of Citrullus colocynthis extract were measured by means of potassium and GSH concentrations in and LDH leakage from precision-cut rat liver slices. For possible hepatoprotective effects the influence of the extract on carbon tetrachloride-induced changes of these parameters was investigated. Citrullus colocynthis extract in concentrations higher than 10 microg/ml incubation mixture proved to inhibit lipid peroxidation and ROS-production as well as CYP1A-, 2B- and 3A-dependent reactions with typical substrates. In contrast, H2O2 production was not reduced under the influence of the extract, a slight but significant increase was seen. Citrullus colocynthis extract was found to be free of hepatotoxic effects in concentrations up to 100 microg/ml incubation mixture when liver slices were incubated in William's medium E for 22 hours. All viability parameters used were not influenced by the extract of Citrullus colocynthis. Carbon tetrachloride induced hepatotoxicity could not be prevented or alleviated. Moreover, the damage was sometimes enhanced by higher extract concentrations.
Collapse
Affiliation(s)
- Astrid Barth
- Institute of Pharmacology and Toxicology, Friedrich-Schiller-University Jena, Germany.
| | | | | |
Collapse
|
23
|
Park SW, Lawrence CB, Linden JC, Vivanco JM. Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. PLANT PHYSIOLOGY 2002; 130:164-78. [PMID: 12226497 PMCID: PMC166550 DOI: 10.1104/pp.000794] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2001] [Revised: 04/26/2002] [Accepted: 05/24/2002] [Indexed: 05/18/2023]
Abstract
Ribosome-inactivating proteins are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a novel type I ribosome-inactivating protein, termed PAP-H, was purified from Agrobacterium rhizogenes-transformed hairy roots of pokeweed (Phytolacca americana). The protein was purified by anion- and cation-exchange chromatography. PAP-H has a molecular mass of 29.5 kD as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its isoelectric point was determined to be 7.8. Yeast (Saccharomyces cerevisiae) ribosomes incubated with PAP-H released the 360-nucleotide diagnostic fragment from the 26S rRNA upon aniline treatment, an indication of its ribosome-inactivating activity. Using immunofluorescence microscopy, PAP-H was found to be located in the cell walls of hairy roots and root border cells. PAP-H was determined to be constitutively secreted as part of the root exudates, with its secretion enhanced by a mechanism mediated by ethylene induction. Purified PAP-H did not show in vitro antifungal activity against soil-borne fungi. In contrast, root exudates containing PAP-H as well as additional chitinase, beta-1,3-glucanase, and protease activities did inhibit the growth of soil-borne fungi. We found that PAP-H depurinates fungal ribosomes in vitro and in vivo, suggesting an additive mechanism that enables PAP-H to penetrate fungal cells.
Collapse
Affiliation(s)
- Sang-Wook Park
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523-1173, USA
| | | | | | | |
Collapse
|
24
|
Gosselaar PH, van-Dijk AJG, de-Gast GC, Polito L, Bolognesi A, Vooijs WC, Verheul AFM, Krouwer HGJ, Marx JJM. Transferrin toxin but not transferrin receptor immunotoxin is influenced by free transferrin and iron saturation. Eur J Clin Invest 2002; 32 Suppl 1:61-9. [PMID: 11886434 DOI: 10.1046/j.1365-2362.2002.0320s1061.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cytotoxic agents can be targeted successfully to cancer cells. The efficacy of such novel and potent anticancer strategies may be influenced by variables of iron metabolism. METHODS The in vitro cytotoxicity against glioma cells of transferrin (Tf)-based targeted toxins was compared with that of alpha-transferrin receptor (TfR)-immunotoxin. RESULTS Of four Tf-based targeted toxins, Tf-gelonin, Tf-pokeweed antiviral protein, Tf-momordin and Tf-saporin, inhibitory concentration 50% values against glioma-derived cell lines HS683 and U251, ranged from [4.8 +/- 1.5] x 10(-10) m for Tf-saporin to [26.9 +/- 15.3] x 10(-10) m for Tf-gelonin in [(3)H]-leucine incorporation assays. Tf-saporin and alpha-TfR-saporin-immunotoxin had similar efficacy, even in the more quantitative clonogenic assay (4-5 log kill with 1 x 10(-9) m) using the myeloma cell line RPMI 8226 and glioma cell line U251. However, on RPMI 8226, the efficacy of Tf-saporin 1 x 10(-9) m was reduced by 90% in the presence of 150 microg mL(-1)(=20% of normal plasma value) competing diferric transferrin, whereas the efficacy of the corresponding immunotoxin was affected only marginally. In addition, the efficacy of Tf-based conjugates will depend on their iron saturation state. Iron desaturation of Tf-saporin was demonstrated by [(59)Fe]-labelling, subsequent CM-Sepharose chromatography and SDS-PAGE. Desaturation led to virtually complete loss of affinity for the transferrin receptor, as determined by flow cytometry, which could be largely restored upon resaturation. CONCLUSION Transferrin-based toxin conjugates are strongly influenced by the presence of free transferrin and the iron saturation state. The corresponding alpha-transferrin receptor-immunotoxin does not show these disadvantages, has similar efficacy and should be preferred for further experiments.
Collapse
Affiliation(s)
- P H Gosselaar
- University Medical Centre Utrecht, Eijkman Winkler Institute G04.614, Heidelberglaan 100, PO Box 85500, 3508GA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang H, Ng TB. Isolation of a novel deoxyribonuclease with antifungal activity from Asparagus officinalis seeds. Biochem Biophys Res Commun 2001; 289:120-4. [PMID: 11708787 DOI: 10.1006/bbrc.2001.5963] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A deoxyribonuclease distinct from the previously isolated asparagus ribosome-inactivating proteins, possessing a molecular weight of 30 kDa and requiring a pH of 7.5 for optimum hydrolytic activity toward herring sperm DNA, was isolated from Asparagus officinalis seeds. The isolation procedure involved extraction with saline, (NH(4))(2)SO(4) precipitation, ion-exchange chromatography on DEAE-cellulose, affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on CM-Sepharose, and FPLC gel filtration on Superdex 75. The doxyribonuclease was unadsorbed onto DEAE-cellulose and Affi-gel blue gel and adsorbed onto CM-Sepharose. It exhibited the novel N-terminal sequence, GIEVIKIREL. The deoxyribonuclease was purified to a specific activity of 1584 units/mg. It was devoid of ribonuclease, protease, and HIV-1 reverse transcriptase-inhibitory activities. However, it inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC(50) of 20 microM. It exhibited antifungal activity toward Botrytis cinerea but not toward Fusarium oxysporum and Mycosphaerella arachidicola.
Collapse
Affiliation(s)
- H Wang
- Department of Microbiology, China Agricultural University, Beijing, China
| | | |
Collapse
|
26
|
Zhang GP, Shi YL, Wang WP, Liu WY. Cation channel formed at lipid bilayer by Cinnamomin, a new type II ribosome-inactivating protein. Toxicon 1999; 37:1313-22. [PMID: 10400291 DOI: 10.1016/s0041-0101(99)00078-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cinnamomin, a new type II ribosome-inactivating protein, purified from the seeds of Cinnamonum camphora is reconstituted into the membranes of planar lipid bilayer and giant liposome. The channel-forming activity of the cinnamomin is found and cation permeability of the channel is characterized by patch clamp. In an asymmetric solution system, bath 150/pipette 100 mM KCl, the unit conductance is 140+/-7 pS and the reversal potential is 10.4+/-0.6 mV, very close to the theoretical value of the K+ electrode. The results offer an interpretation for internalization of the RIP and the cytotoxicity difference between single and two chain RIP.
Collapse
Affiliation(s)
- G P Zhang
- Shanghai Institute of Physiology, Chinese Academy of Sciences, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Tumer NE, Hudak K, Di R, Coetzer C, Wang P, Zoubenko O. Pokeweed antiviral protein and its applications. Curr Top Microbiol Immunol 1999; 240:139-58. [PMID: 10394719 DOI: 10.1007/978-3-642-60234-4_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- N E Tumer
- Department of Plant Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | | | |
Collapse
|
28
|
Zeng Z, Jin L, Li H, Hu Z, Wang D. Crystal structure of pokeweed antiviral protein from seeds ofPhytolacca americana at 0.25 nm. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 1998; 41:413-418. [PMID: 18726259 DOI: 10.1007/bf02882742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/1998] [Indexed: 05/26/2023]
Abstract
Crystals of pokeweed antiviral protein (PAP) from seeds ofPhytolacca americana with high diffraction ability were grown from high protein concentration (100 mg/mL) solution at high temperature (33 degrees C). The crystal structure was solved by use of molecular replacement method and refied by use of molecular dynamic method at 0.25 nm to anR factor of 18.15% with standard deviations from standard geometry of 0.001 6 nm and 2.04 for bond lengths and bond angles, respectively. Comparison with two other PAPS revealed, near the active center, a sequence- and structure-variable region, consisting of the loop connecting the fifth beta-strand with the second alpha-helix and including a proposed active residue, suggesting this loop probably to be related to difference in activity.
Collapse
Affiliation(s)
- Z Zeng
- Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | | | | | | | | |
Collapse
|
29
|
Poyet JL, Hoeveler A. cDNA cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro. FEBS Lett 1997; 406:97-100. [PMID: 9109394 DOI: 10.1016/s0014-5793(97)00250-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pokeweed antiviral proteins (PAP) represent a family of protein toxins isolated from various organs and at different stages of development of Phytolacca americana (pokeweed). We isolated, sequenced and characterized for the first time a complete cDNA encoding a pokeweed antiviral protein expressed in seeds. The cDNA of PAP-S consists of 1249 nucleotides and encodes a mature 262 amino acid protein. Its predicted amino acid sequence is more similar to PAP (76%) than to PAP II (31%). It is known from literature that PAP-S is more active in inhibiting protein synthesis than other members of the PAP family. Therefore, the cDNA of PAP-S was expressed in Escherichia coli and the biological activity of the recombinant protein was compared with that of PAP purified from spring leaves. In a rabbit translation system, the median inhibitory concentrations (IC50) of recombinant PAP-S and native PAP were determined as 0.07 and 0.29 nM, respectively. Although the PAP-S protein in seeds is glycosylated, PAP-S can be expressed in Escherichia coli in a very active form, indicating that post-translational modification in pokeweed does not seem to alter its ability to inhibit protein synthesis.
Collapse
Affiliation(s)
- J L Poyet
- Laboratoire de Biochimie et de Biologie Moléculaire, UFR des Sciences et des Techniques, Besancon, France
| | | |
Collapse
|
30
|
Di Massimo AM, Di Loreto M, Pacilli A, Raucci G, D'Alatri L, Mele A, Bolognesi A, Polito L, Stirpe F, De Santis R. Immunoconjugates made of an anti-EGF receptor monoclonal antibody and type 1 ribosome-inactivating proteins from Saponaria ocymoides or Vaccaria pyramidata. Br J Cancer 1997; 75:822-8. [PMID: 9062402 PMCID: PMC2063398 DOI: 10.1038/bjc.1997.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The present paper describes two immunoconjugates consisting of an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MAb), named Mint5, covalently linked to the type 1 ribosome-inactivating proteins (RIPs) ocymoidine (Ocy) and pyramidatine (Pyra) from Saponaria ocymoides and Vaccaria pyramidata respectively. Both antibody and toxins are shown to retain their respective biological properties upon chemical conjugation. The immunoconjugates exert specific inhibition of EGFR expressing target cell proliferation and protein synthesis in in vitro assays and also inhibit the growth of grafted human tumour cells in nude mice.
Collapse
Affiliation(s)
- A M Di Massimo
- Menarini Ricerche SpA, Department of Biotechnology, Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yoshinari S, Yokota S, Sawamoto H, Koresawa S, Tamura M, Endo Y. Purification, characterization and subcellular localization of a type-1 ribosome-inactivating protein from the sarcocarp of Cucurbita pepo. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:585-91. [PMID: 9022685 DOI: 10.1111/j.1432-1033.1996.0585r.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The flesh of the fruit of Cucurbita pepo contains a type-1 ribosome-inactivating protein (RIP), which we named pepocin. Pepocin was purified to apparent homogeneity by acid fractionation, ion-exchange chromatography and adsorption chromatography. The protein was found to have a molecular mass of 26 kDa and a pI of about 9.9. It does not contain glycosidic linkages. The protein inhibits protein synthesis in a rabbit-reticulocyte lysate with an IC50 (concentration causing 50% inhibition) of 15.4 pM, and depurinates 28S rRNA in the ribosomes of the lysate in a manner identical to that of ricin A-chain and other RIP. The enzyme is also active on wheat-germ ribosomes and on Escherichia coli ribosomes. The sequence of the N-terminal 20 amino acids of the protein reveals a close relationship to other RIP. Immunoelectron-microscopic localization of pepocin in the sarcocarp shows that the protein is predominantly localized in intercellular spaces. In addition, the immunolocalized signals are observed in leaf intercellular spaces.
Collapse
Affiliation(s)
- S Yoshinari
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Chen RS, Leung HW, Dong YC, Wong RN. Modeling of the three-dimensional structure of luffin-alpha and its simulated reaction with the substrate oligoribonucleotide GAGA. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:649-57. [PMID: 8968956 DOI: 10.1007/bf01886747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A fundamental problem in biochemistry and molecular biology is understanding the spatial structure of macromolecules and then analyzing their functions. In this study, the three-dimensional structure of a ribosome-inactivating protein luffin-alpha was predicted using a neural network method and molecular dynamics simulation. A feedforward neural network with the backpropagation learning algorithm were trained on model class of homologous proteins including trichosanthin and alpha-momorcharin. The distance constraints for the C alpha atoms in the protein backbone were utilized to generate a folded crude conformation of luffin-alpha by model building and the steepest descent minimization approach. The crude conformation was refined by molecular dynamics techniques and a simulated annealing procedure. The interaction between luffin-alpha and its analogous substrate GAGA was also simulated to understand its action mechanism.
Collapse
Affiliation(s)
- R S Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
33
|
|
34
|
Bolognesi A, Olivieri F, Battelli MG, Barbieri L, Falasca AI, Parente A, Del Vecchio Blanco F, Stirpe F. Ribosome-inactivating proteins (RNA N-glycosidases) from the seeds of Saponaria ocymoides and Vaccaria pyramidata. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:935-40. [PMID: 7737197 DOI: 10.1111/j.1432-1033.1995.tb20343.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
From the seeds of the Caryophyllaceae Saponaria ocymoides and Vaccaria pyramidata two proteins were purified which have the properties of the type-1 (single-chain) ribosome-inactivating proteins [reviewed by Barbieri, L., Battelli, M. G. & Stirpe, F. (1993) Ribosome-inactivating proteins from plants, Biochim. Biophys. Acta 1154, 237-282]. The proteins have molecular masses of 30.2 kDa (S. ocymoides) and 28.0 kDa (V. pyramidata) and pI greater than 9.5, their N-terminal amino acid sequences are similar to those of saporin-S6 and dianthin 30, ribosome-inactivating proteins from other Caryophyllaceae, and they partially cross-react with sera against these proteins. Both proteins inhibit protein synthesis by a rabbit-reticulocyte lysate with IC50 (concentrations giving 50% inhibition) below 10(-10) M, have a smaller effect on poly(U)-directed phenylalanine polymerisation by rat liver ribosomes (nanomolar IC50, approximately) and on protein synthesis by various cell lines (IC50 ranging from 4 nM to > 3000 nM) and possess rRNA N-glycosidase activity, releasing 1 mol adenine/ribosome.
Collapse
Affiliation(s)
- A Bolognesi
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Barbieri L, Battelli MG, Stirpe F. Ribosome-inactivating proteins from plants. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1154:237-82. [PMID: 8280743 DOI: 10.1016/0304-4157(93)90002-6] [Citation(s) in RCA: 546] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L Barbieri
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy
| | | | | |
Collapse
|
36
|
Wachinger M, Samtleben R, Gerhäuser C, Wagner H, Erfle V. Bryodin, a single-chain ribosome-inactivating protein, selectively inhibits the growth of HIV-1-infected cells and reduces HIV-1 production. RESEARCH IN EXPERIMENTAL MEDICINE. ZEITSCHRIFT FUR DIE GESAMTE EXPERIMENTELLE MEDIZIN EINSCHLIESSLICH EXPERIMENTELLER CHIRURGIE 1993; 193:1-12. [PMID: 8446767 DOI: 10.1007/bf02576205] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bryodin, a single-chain ribosome-inactivating protein (RIP) isolated from Bryonia cretica ssp dioica (cucurbitaceae), was found to selectively inhibit the growth of persistently HIV-1-infected T lymphoma cells (KE37/1) and human lung fibroblast when used in concentrations from 2-20 micrograms/ml. Uninfected KE37/1 cells remained unaffected at the same doses of bryodin. In addition, bryodin reduced HIV production in the surviving infected cells. Two isoforms of bryodin were purified by dye ligand chromatography. Both isoforms exerted the growth-inhibiting influence and reduced HIV production. Trichosanthin, another member of the RIP family, had similar inhibitory effects on the growth of HIV-1 infected cells and on HIV-1 production. Bryodin and trichosanthin were effective in about the same dose range. No selective effects for HIV-infected cells were observed with the RIPs gelonin and ricin.
Collapse
Affiliation(s)
- M Wachinger
- Institut für Molekulare Virologie, GSF Forschungszentrum für Umwelt und Gesundheit, Neuherberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
37
|
Parente A, De Luca P, Bolognesi A, Barbieri L, Battelli MG, Abbondanza A, Sande MJ, Gigliano GS, Tazzari PL, Stirpe F. Purification and partial characterization of single-chain ribosome-inactivating proteins from the seeds of Phytolacca dioica L. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:43-9. [PMID: 8218414 DOI: 10.1016/0167-4781(93)90035-c] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three ribosome-inactivating proteins (RIPs) similar to those already known (Stirpe et al. (1992) Bio/Technology 10, 405-412) were purified from the seeds of Phytolacca dioica. These proteins, called Phytolacca dioica RIPs (PD-S1, PD-S2 and PD-S3 RIPs), are glycoproteins, with M(r) approx. 30,000, inhibit protein synthesis by a rabbit reticulocyte lysate and phenylalanine polymerization by isolated ribosomes, and depurinate rat liver rRNA in an apparently identical manner as the A-chain of ricin and other RIPs (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912). Part of the purified rat liver ribosomes appeared resistant to the action of PD-S RIPs. The most abundant protein, PD-S2 RIP, gave a weak or nil cross-reaction with sera against various other RIPs, including a pokeweed antiviral protein from the roots of Phytolacca americana. PD-S2 RIP was linked to a monoclonal antibody (Ber-H2) against the CD30 human lymphocyte antigen and the resulting immunotoxin was selectively toxic to the CD30 + Hodgkin's lymphoma-derived L540 cell line.
Collapse
Affiliation(s)
- A Parente
- Dipartimento di Chimica organica e biologica, Università di Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ferreras JM, Barbieri L, Girbés T, Battelli MG, Rojo MA, Arias FJ, Rocher MA, Soriano F, Mendéz E, Stirpe F. Distribution and properties of major ribosome-inactivating proteins (28 S rRNA N-glycosidases) of the plant Saponaria officinalis L. (Caryophyllaceae). BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1216:31-42. [PMID: 8218413 DOI: 10.1016/0167-4781(93)90034-b] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied the distribution of the protein synthesis inhibitory activity in the tissues of Saponaria officinalis L. (Caryophyllaceae). Seven major saporins, ribosome-inactivating proteins, were purified to apparent homogeneity from leaves, roots and seeds using a new procedure of RIPs isolation including ion-exchange and hydrophobic chromatography. They all catalysed the depurination of rat liver ribosomes, which generate the Endo's diagnostic rRNA fragment upon treatment with acid aniline, thus indicating that A4324 from the 28S rRNA has been released (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912). The molecular mass of saporins by SDS-PAGE ranged between 30.2 and 31.6 kDa and by gel-filtration between 27.5 and 30.1 kDa. Amino acid composition and amino-terminal amino acid sequence indicate that all saporins may be considered isoforms. Only two saporins present in roots were glycosylated (SO-R1 and SO-R3). All saporins are very active on cell-free translation systems derived from rabbit reticulocyte lysates, rat liver, Triticum aestivum L., Cucumis sativus L. and Vicia sativa L. However, they are poor inhibitors of an Escherichia coli translation system. They inhibit protein synthesis in HeLa, BeWo and NB 100 cells, HeLa cells being the most resistant. The enzymatic activity of at least one saporin isoform was dependent on magnesium concentration in the standard rat liver cell-free system.
Collapse
Affiliation(s)
- J M Ferreras
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Girbés T, Citores L, Ferreras JM, Rojo MA, Iglesias R, Muñoz R, Arias FJ, Calonge M, García JR, Méndez E. Isolation and partial characterization of nigrin b, a non-toxic novel type 2 ribosome-inactivating protein from the bark of Sambucus nigra L. PLANT MOLECULAR BIOLOGY 1993; 22:1181-1186. [PMID: 8400135 DOI: 10.1007/bf00028990] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The bark of Sambucus nigra L. contains a non-toxic novel type 2 ribosome-inactivating protein that we named nigrin b. In vitro, nigrin b strongly inhibited mammalian protein synthesis but did not affect plant nor bacterial protein synthesis. The protein (M(r) 58,000) contains two subunits, A (M(r) 26,000) and B (M(r) 32,000); linked by disulphide bridge(s). Nigrin b was found to be an rRNA N-glycosidase of the rRNA of intact mammalian ribosomes and shares a very good N-terminal amino-acid sequence homology with the anti-HIV-1 proteins TAP 29 and trichosanthin.
Collapse
Affiliation(s)
- T Girbés
- Departamento de Bioquimíca y Biología Molecular, Facultad de Ciencias, Universidad de Valladolid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Delprino L, Giacomotti M, Dosio F, Brusa P, Ceruti M, Grosa G, Cattel L. Toxin-targeted design for anticancer therapy. II: Preparation and biological comparison of different chemically linked gelonin-antibody conjugates. J Pharm Sci 1993; 82:699-704. [PMID: 8360843 DOI: 10.1002/jps.2600820706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To obtain more potent immunotoxins for anticancer therapy a gelonin-AR3 antibody immunoconjugate was prepared with different new linkers and coupling procedures. The gelonin was derivatized with the heterobifunctional thioimidate linkers ethyl-acetyl-3-mercaptopropionthioimidate (AMPT) and 3-(4-carboxamidophenyldithio)propionthioimidate (CDPT), and with the succinimidyl type reagents N-succinimidyl-3-(4-carboxamidophenyldithio)propionate (SCDP) and N-succinimidyl-S-acetyl thiolacetate (SATA). The biological activity of gelonin modified with different linkers (AMPT, CDPT, SCDP, SATA) was determined by a rabbit reticulocyte assay. We found that AMPT was the molecule of choice to derivatize the toxin, confirming the preferability of thioimidate linkers. The monoclonal antibody Mab was derivatized with CDPT and SCDP. Then the following immunoconjugates were prepared with different procedures: Mab-CDPT with gelonin-AMPT; Mab-CDPT with gelonin-CDPT; Mab-SCDP with gelonin-SATA. To verify whether selection of the most suitable coupling procedure could affect the antitumoral activity of the gelonin-AR3 immunoconjugate, the three immunotoxins were tested on target HT-29 human colon carcinoma cells versus nontarget MeWo cells. The gelonin immunoconjugate linked via the AMPT-CDPT thioimidate reagents showed highest antitumoral activity as well as best selectivity for the target cells.
Collapse
Affiliation(s)
- L Delprino
- Istituto di Chimica Farmaceutica Applicata, University of Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Battelli MG, Montacuti V, Stirpe F. High sensitivity of cultured human trophoblasts to ribosome-inactivating proteins. Exp Cell Res 1992; 201:109-12. [PMID: 1612115 DOI: 10.1016/0014-4827(92)90353-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many plant proteins possessing abortifacient activities were identified as ribosome-inactivating proteins (RIPs). The effect of several ribosome-inactivating proteins (saporin 6, dianthin 32, pokeweed antiviral protein from seeds, gelonin, bryodin-R, and momordin) on primary cultures of human trophoblasts and human embryonal fibroblasts and on choriocarcinoma (JAR and BeWo) and ovarian carcinoma (TG) cell lines was studied. Protein synthesis of human trophoblasts and BeWo cells was lowered by RIPs more than that of other cells. The trophoblastic receptors for estradiol were not affected by treatment of the cells with momordin. The binding and uptake of saporin 6 and momordin by BeWo and HeLa cells were not correlated to cell toxicity.
Collapse
Affiliation(s)
- M G Battelli
- Department of Experimental Pathology, University of Bologna, Italy
| | | | | |
Collapse
|
42
|
Stirpe F, Barbieri L, Battelli MG, Soria M, Lappi DA. Ribosome–Inactivating Proteins from Plants: Present Status and Future Prospects. ACTA ACUST UNITED AC 1992; 10:405-12. [PMID: 1368484 DOI: 10.1038/nbt0492-405] [Citation(s) in RCA: 252] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Plant ribosome-inactivating proteins (RIPs) are N-glycosidases which cleave the N-glycosidic bond of adenine in a specific ribosomal RNA sequence. Most commonly RIPs are single-chain proteins (type 1 RIPs), but some (type 2 RIPs) possess a galactose-specific lectin domain that binds to cell surfaces. The latter RIPs are potent toxins, the best known of which is ricin. RIPs have antiviral and abortifacient activities, and, in a widespread application, can also be linked to antibodies or ligands to form immunotoxins or conjugates specifically toxic to a given type of cell.
Collapse
Affiliation(s)
- F Stirpe
- Dipartimento di Patologia Sperimentale, Università di Bologna, Italy
| | | | | | | | | |
Collapse
|
43
|
Carnicelli D, Brigotti M, Montanaro L, Sperti S. Differential requirement of ATP and extra-ribosomal proteins for ribosome inactivation by eight RNA N-glycosidases. Biochem Biophys Res Commun 1992; 182:579-82. [PMID: 1734872 DOI: 10.1016/0006-291x(92)91771-h] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The requirement of ATP and extra-ribosomal proteins for the inactivation of ribosomes by eight plant RNA N-glycosidases [ribosome-inactivating proteins (RIPs)] was investigated. Tritin, pokeweed antiviral protein and barley RIP depend, as gelonin [Sperti, S., Brigotti, M., Zamboni, M., Carnicelli, D. and Montanaro, L. (1991) Biochem. J., 277, 281-284], on the presence of ATP and extra-ribosomal proteins for full inactivation of ribosomes, while bryodin, lychnin, momordin, momorcochin and saporin inactivate isolated Artemia salina ribosomes suspended in buffer saline.
Collapse
Affiliation(s)
- D Carnicelli
- Dipartimento di Patologia sperimentale dell'Università di Bologna, Italy
| | | | | | | |
Collapse
|
44
|
Fong WP, Wong RN, Go TT, Yeung HW. Minireview: enzymatic properties of ribosome-inactivating proteins (RIPs) and related toxins. Life Sci 1991; 49:1859-69. [PMID: 1745101 DOI: 10.1016/0024-3205(91)90286-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are a group of proteins that inhibit protein synthesis in eucaryotic cells. While the biological effects have been well characterized, the underlying enzymatic mechanisms have not been elucidated until recently. Two different mechanisms have been identified. Plant and bacterial RIPs act as N-glycosidases. They cleave a single N-glycosidic bond between adenine and ribose at a specific nucleotide A-4324 of the 28S rRNA of the 60S ribosomal subunit. On the other hand, the fungal RIPs act as ribonucleases and cleave a single phosphodiester bond between G-4325 and A-4326 of the same rRNA, just one nucleotide away from the site of action of plant/bacterial RIPs. Other protein synthesis inhibitory proteins act by their ADP-ribosyltransferase activity which modify and thus inactivate elongation factor-2. Recently, some toxins have been shown to possess deoxyribonuclease activity which may also account for their toxicity.
Collapse
Affiliation(s)
- W P Fong
- Department of Biochemistry, Chinese University of Hong Kong, Shatin, N.T
| | | | | | | |
Collapse
|