1
|
Andrade-Pavón D, Gómez-García O, Villa-Tanaca L. Review and Current Perspectives on DNA Topoisomerase I and II Enzymes of Fungi as Study Models for the Development of New Antifungal Drugs. J Fungi (Basel) 2024; 10:629. [PMID: 39330389 PMCID: PMC11432948 DOI: 10.3390/jof10090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Fungal infections represent a growing public health problem, mainly stemming from two phenomena. Firstly, certain diseases (e.g., AIDS and COVID-19) have emerged that weaken the immune system, leaving patients susceptible to opportunistic pathogens. Secondly, an increasing number of pathogenic fungi are developing multi-drug resistance. Consequently, there is a need for new antifungal drugs with novel therapeutic targets, such as type I and II DNA topoisomerase enzymes of fungal organisms. This contribution summarizes the available information in the literature on the biology, topology, structural characteristics, and genes of topoisomerase (Topo) I and II enzymes in humans, two other mammals, and 29 fungi (including Basidiomycetes and Ascomycetes). The evidence of these enzymes as alternative targets for antifungal therapy is presented, as is a broad spectrum of Topo I and II inhibitors. Research has revealed the genes responsible for encoding the Topo I and II enzymes of fungal organisms and the amino acid residues and nucleotide residues at the active sites of the enzymes that are involved in the binding mode of topoisomerase inhibitors. Such residues are highly conserved. According to molecular docking studies, antifungal Topo I and II inhibitors have good affinity for the active site of the respective enzymes. The evidence presented in the current review supports the proposal of the suitability of Topo I and II enzymes as molecular targets for new antifungal drugs, which may be used in the future in combined therapies for the treatment of infections caused by fungal organisms.
Collapse
Affiliation(s)
- Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
| |
Collapse
|
2
|
Mahato R, Behera DK, Patra B, Das S, Lakra K, Pradhan SN, Abbas SJ, Ali SI. Plant-based natural products in cancer therapeutics. J Drug Target 2024; 32:365-380. [PMID: 38315449 DOI: 10.1080/1061186x.2024.2315474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Various cells in our body regularly divide to replace old cells and dead cells. For a living cell to be growing, cell division and differentiation is highly essential. Cancer is characterised by uncontrollable cell division and invasion of other tissues due to dysregulation in the cell cycle. An accumulation of genetic changes or mutations develops through different physical (UV and other radiations), chemical (chewing and smoking of tobacco, chemical pollutants/mutagens), biological (viruses) and hereditary factors that can lead to cancer. Now, cancer is considered as a major death-causing factor worldwide. Due to advancements in technology, treatment like chemotherapy, radiation therapy, bone marrow transplant, immunotherapy, hormone therapy and many more in the rows. Although, it also has some side effects like fatigue, hair fall, anaemia, nausea and vomiting, constipation. Modern improved drug therapies come with severe side effects. There is need for safer, more effective, low-cost treatment with lesser side-effects. Biologically active natural products derived from plants are the emerging strategy to deal with cancer proliferation. Moreover, they possess anti-carcinogenic, anti-proliferative and anti-mutagenic properties with reduced side effects. They also detoxify and remove reactive substances formed by carcinogenic agents. In this article, we discuss different plant-based products and their mechanism of action against cancer.
Collapse
Affiliation(s)
- Rohini Mahato
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Dillip Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Biswajit Patra
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
- P.G. Department of Botany, Fakir Mohan University, Balasore, Odisha, India
| | - Shradhanjali Das
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha, India
| | - Kulwant Lakra
- Department of Community Medicine, Veer Surendra Sai Institute of Medical Sciences and Research, Sambalpur, Odisha, India
| | | | - Sk Jahir Abbas
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| |
Collapse
|
3
|
Moiseeva N, Eroshenko D, Laletina L, Rybalkina E, Susova O, Karamysheva A, Tolmacheva I, Nazarov M, Grishko V. The Molecular Mechanisms of Oleanane Aldehyde-β-enone Cytotoxicity against Doxorubicin-Resistant Cancer Cells. BIOLOGY 2023; 12:biology12030415. [PMID: 36979107 PMCID: PMC10045559 DOI: 10.3390/biology12030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Oleanane aldehyde-β-enone (OA), being the semi-synthetic derivative of the triterpenoid betulin, effectively inhibits the proliferation of HBL-100 and K562 cancer cells (IC50 0.47–0.53 µM), as well as the proliferation of their resistant subclones with high P-gp expression HBL-100/Dox, K562/i-S9 and K562/i-S9_Dox (IC50 0.45−1.24 µM). A molecular docking study, rhodamine efflux test, synergistic test with Dox, and ABC transporter gene expression were used to investigate the ability of OA to act as a P-gp substrate or inhibitor against Dox-resistant cells. We noted a trend toward a decrease in ABCB1, ABCC1 and ABCG2 expression in HBL-100 cells treated with OA. The in silico and in vitro methods suggested that OA is neither a direct inhibitor nor a competitive substrate of P-gp in overexpressing P-gp cancer cells. Thus, OA is able to overcome cellular resistance and can accumulate in Dox-resistant cells to realize toxic effects. The set of experiments suggested that OA toxic action can be attributed to activating intrinsic/extrinsic or only intrinsic apoptosis pathways in Dox-sensitive and Dox-resistant cancer cells, respectively. The cytotoxicity of OA in resistant cells is likely mediated by a mitochondrial cell death pathway, as demonstrated by positive staining with Annexin V–FITC, an increasing number of cells in the subG0/G1 phase, reactive oxygen species generation, mitochondrial dysfunction, cytochrome c migration and caspases-9,-6 activation.
Collapse
Affiliation(s)
- Natalia Moiseeva
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Daria Eroshenko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Lidia Laletina
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Ekaterina Rybalkina
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Olga Susova
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Aida Karamysheva
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Irina Tolmacheva
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Mikhail Nazarov
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Victoria Grishko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
- Correspondence:
| |
Collapse
|
4
|
Jamal QMS. Structural Recognition and Binding Pattern Analysis of Human Topoisomerase II Alpha with Steroidal Drugs: In Silico Study to Switchover the Cancer Treatment. Asian Pac J Cancer Prev 2020; 21:1349-1355. [PMID: 32458643 PMCID: PMC7541882 DOI: 10.31557/apjcp.2020.21.5.1349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Topoisomerase TOP-IIA (TTOP-IIA) is widely used as a significant target for cancer therapeutics because of its involvement in cell proliferation. Steroidal drugs have been suggested for breast cancer treatment as aromatase enzymes inhibitors . TTOP-IIA inhibitors can be used as a target for the development of new cancer therapeutics. MATERIALS AND METHODS In this study, we conducted a docking study on steroidal drugs Anastrozole (ANA), Letrozole (LET), and exemestane (EXE) with TTOP-IIA to explore the therapeutic area of these drugs. RESULTS The binding interaction of EXE drug had significant docking interaction which is followed by ANA and LET. Thus, all these drugs could be used to inhibit the TTOP-IIA mediated cell proliferation and could be a hope to treat the other types of cancers. Among all three tested steroidal drugs, EXE showed binding energy -7.05 kcal/mol, hydrogen bond length1.78289 Å and amino acid involved in an interaction was A: LYS723:HZ3 -: UNK1:O6. CONCLUSION The obtained data showed the most significant binding interaction analyzed with the tested enzyme. Thus, in vitro laboratory experimentation and in vivo research are necessary to put forward therapeutic repositioning of these drugs to establish them as a broad spectrum potential anticancer drugs. .
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Saudi Arabia.
| |
Collapse
|
5
|
Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg Med Chem 2019; 27:3979-3997. [DOI: 10.1016/j.bmc.2019.07.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
|
6
|
Sato H, Saito K, Yamazaki M. Acceleration of Mechanistic Investigation of Plant Secondary Metabolism Based on Computational Chemistry. FRONTIERS IN PLANT SCIENCE 2019; 10:802. [PMID: 31293608 PMCID: PMC6606707 DOI: 10.3389/fpls.2019.00802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
This review describes the application of computational chemistry to plant secondary metabolism, focusing on the biosynthetic mechanisms of terpene/terpenoid, alkaloid, flavonoid, and lignin as representative examples. Through these biosynthetic studies, we exhibit several computational methods, including density functional theory (DFT) calculations, theozyme calculation, docking simulation, molecular dynamics (MD) simulation, and quantum mechanics/molecular mechanics (QM/MM) calculation. This review demonstrates how modern computational chemistry can be employed as an effective tool for revealing biosynthetic mechanisms and the potential of computational chemistry-for example, elucidating how enzymes regulate regio- and stereoselectivity, finding the key catalytic residue of an enzyme, and assessing the viability of hypothetical pathways. Furthermore, insights for the next research objective involving application of computational chemistry to plant secondary metabolism are provided herein. This review will be helpful for plant scientists who are not well versed with computational chemistry.
Collapse
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Center for Sustainable Resource Science, Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- *Correspondence: Mami Yamazaki,
| |
Collapse
|
7
|
Dai Y, Hua Q, Ling J, Shao C, Zhong C, Zhang X, Hu Y, Zhang L, Liu Y. Quantum chemical calculation of free radical substitution reaction mechanism of camptothecin. J Mol Graph Model 2018; 84:174-181. [PMID: 30015049 DOI: 10.1016/j.jmgm.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022]
Abstract
Free radical substitution reaction, which has low energy barrier and takes place in mild reaction conditions, is an important method for camptothecin's modification. The experimental data show that the free radical substitution reaction of camptothecin has high site selectivity, and prefers to take place at site 7. Up to now, few researches focus on the mechanism of it. In this study, the differences of the reaction rate constant (k) for the reactions at different sites, such as site of 7, 9, 10, 11, 12, were investigated with B3LYP of density functional theory at the 6-31 + G (d, p) base set level and CPCM aqueous solvent model. It was found that the substitution reaction can be carried out in two steps in acidic condition. First, the methyl radical attacks the corresponding site to form an intermediate having methyl radical combined with the camptothecin skeleton, and then a hydrogen atom was abstracted by the singlet oxygen to form methyl camptothecin, wherein the first step was the rate control step of the reaction. The results show that site 7 has the higherreaction rate constant (k) than other examined sites, indicating that the reaction tends to take place on site 7 position, which is in agreement with the experimental results.
Collapse
Affiliation(s)
- Yujie Dai
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China.
| | - Qingyuan Hua
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Jun Ling
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Chunfu Shao
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Xiuli Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Yanying Hu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Liming Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| | - Yaotian Liu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin, 300457, PR China
| |
Collapse
|
8
|
Gaur R, Choubey DK, Usman M, Ward BD, Roy JK, Mishra L. Synthesis, structures, nuclease activity, cytotoxicity, DFT and molecular docking studies of two nitrato bridged homodinuclear (Cu-Cu, Zn-Zn) complexes containing 2,2′-bipyridine and a chalcone derivative. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:650-660. [DOI: 10.1016/j.jphotobiol.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
|
9
|
Pommier Y, Pilon A, Bajaj K, Mazumder A, Neamati N. HIV-1 Integrase as a Target for Antiviral Drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/095632029700800601] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Aa Pilon
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - K Bajaj
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - A Mazumder
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - N Neamati
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Building 37, Room 5C25, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
10
|
Hou GX, Liu P, Yang J, Wen S. Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan-Meier plotter. PLoS One 2017; 12:e0174515. [PMID: 28355294 PMCID: PMC5371362 DOI: 10.1371/journal.pone.0174515] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/10/2017] [Indexed: 01/09/2023] Open
Abstract
DNA topoisomerases are essential to modulate DNA topology during various cellular genetic processes. The expression and distinct prognostic value of topoisomerase isoforms in non-small-cell lung cancer (NSCLC) is not well established. In the current study, we have examined the mRNA expression of topoisomerase isoforms by using Oncomine analysis and investigated their prognostic value via the Kaplan–Meier plotter database in NSCLC patients. Our analysis indicated that the expression level of topoisomerases in lung cancer was higher compared with normal tissues. Especially, high expression of two topoisomerase isoforms, TOP2A and TOP3A, was found to be correlated to worse overall survival (OS) in all NSCLC and lung adenocarcinoma (Ade) patients, but not in lung squamous cell carcinoma (SCC) patients. In a contrast, high expression of isoforms TOP1 and TOP2B indicated better OS in all NSCLC and Ade, but not in SCC patients. Meanwhile, high expression of TOP1MT and TOP3B was not correlated with OS in NSCLC patients. Furthermore, we also demonstrated a relationship between topoisomerase isoforms and the clinicopathological features for the NSCLC patients, such as grades, clinical stages, lymph node status, smoking status, gender, chemotherapy and radiotherapy. These results support that TOP2A and TOP3A are associated with worse prognosis in NSCLC patients. In addition, our study also shows that TOP1 and TOP2B contribute to favorable prognosis in NSCLC patients. The exact prognostic significance of TOP1MT and TOP3B need to be further elucidated. Comprehensive evaluation of expression and prognosis of topoisomerase isoforms will be a benefit for the better understanding of heterogeneity and complexity in the molecular biology of NSCLC, paving a way for more accurate prediction of prognosis and discovery of potential drug targets for NSCLC patients.
Collapse
Affiliation(s)
- Guo-Xin Hou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Panpan Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
11
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|
12
|
Peng CK, Zeng T, Xu XJ, Chang YQ, Hou W, Lu K, Lin H, Sun PH, Lin J, Chen WM. Novel 4-(4-substituted amidobenzyl)furan-2(5H)-one derivatives as topoisomerase I inhibitors. Eur J Med Chem 2017; 127:187-199. [DOI: 10.1016/j.ejmech.2016.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/13/2016] [Accepted: 12/17/2016] [Indexed: 11/29/2022]
|
13
|
Lu B, Zhang H, Zhang T, Cai Y, Hu Y, Zheng H, Li B. Topoisomerase I expression is associated with prognosis in postoperative non-small cell lung cancer patients. Thorac Cancer 2016; 7:486-94. [PMID: 27385993 PMCID: PMC4930970 DOI: 10.1111/1759-7714.12359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 11/30/2022] Open
Abstract
Background Biomarkers may help to improve non‐small cell lung cancer (NSCLC) prognosis. However, the prognostic effect of topoisomerase I (Topo I) on NSCLC is unknown. We evaluated the clinicopathologic and prognostic significance of tumor Topo I and thymidylate synthase (TS) protein expression in postoperative NSCLC patients. Methods One hundred and fifteen patients with postoperative NSCLC were enrolled. Topo I and TS protein were detected in removed tumors by immunohistochemistry. The correlations between Topo I/TS protein expression and clinicopathologic characters and outcomes of patients were analyzed. Results Increased expression of Topo I was found in 57 (49.6%) tumors. The largest diameter of the tumor was significantly different between patients with high and low Topo I expression (P = 0.035). TS staining showed that 35 (30.4%) carcinomas were TS positive. The level of TS expression was correlated with tumor differentiation (P = 0.037). Patients with low Topo I expression had significantly longer overall survival (OS) than those with high expression (P = 0.004). The correlation between Topo I expression and OS was demonstrated among patients with squamous cell carcinoma (P = 0.030) and patients in pathological tumor node metastasis stage I (P = 0.027). Topo I expression was positively correlated with TS expression in tumor tissue (R = 0.251, P = 0.007). Conclusions Low Topo I expression is an independent favorable prognostic factor for longer OS in postoperative NSCLC patients, especially in squamous cell carcinoma. There is a correlation between the expression of TS and Topo I in removed tumor tissue.
Collapse
Affiliation(s)
- Baohua Lu
- Division of Medical Oncology Beijing Chest Hospital, Capital Medical University Beijing China
| | - Hongmei Zhang
- Division of Medical Oncology Beijing Chest Hospital, Capital Medical University Beijing China
| | - Tongmei Zhang
- Division of Medical Oncology Beijing Chest Hospital, Capital Medical University Beijing China
| | - Yiran Cai
- Division of Pathology Beijing Chest Hospital, Capital Medical University Beijing China
| | - Ying Hu
- Division of Medical Oncology Beijing Chest Hospital, Capital Medical University Beijing China
| | - Hua Zheng
- Division of Medical Oncology Beijing Chest Hospital, Capital Medical University Beijing China
| | - Baolan Li
- Division of Medical Oncology Beijing Chest Hospital, Capital Medical University Beijing China
| |
Collapse
|
14
|
Khetani A, Momenpour A, Alarcon EI, Anis H. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS). BIOMEDICAL OPTICS EXPRESS 2015; 6:4599-609. [PMID: 26601021 PMCID: PMC4646565 DOI: 10.1364/boe.6.004599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 05/12/2023]
Abstract
The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells.
Collapse
Affiliation(s)
- Altaf Khetani
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Ali Momenpour
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emilio I. Alarcon
- University of Ottawa Heart Institute, Division of Cardiac Surgery Research, 40 Ruskin Street, Ottawa, ON K1Y 4W7 Canada
| | - Hanan Anis
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
15
|
Ali Y, Abd Hamid S. Human topoisomerase II alpha as a prognostic biomarker in cancer chemotherapy. Tumour Biol 2015; 37:47-55. [DOI: 10.1007/s13277-015-4270-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
|
16
|
Ogloblina AM, Bannikova VA, Khristich AN, Oretskaya TS, Yakubovskaya MG, Dolinnaya NG. Parallel G-quadruplexes formed by guanine-rich microsatellite repeats inhibit human topoisomerase I. BIOCHEMISTRY (MOSCOW) 2015; 80:1026-38. [DOI: 10.1134/s0006297915080088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Kim YK, Koo NY, Yun PY. Anticancer effects of CKD-602 (Camtobell ®) via G2/M phase arrest in oral squamous cell carcinoma cell lines. Oncol Lett 2014; 9:136-142. [PMID: 25435947 PMCID: PMC4246617 DOI: 10.3892/ol.2014.2648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 08/22/2014] [Indexed: 11/06/2022] Open
Abstract
CKD-602 (7-[2-(N-isopropylamino) ethyl]-(20S)-camptothecin, belotecan) is a synthetic water-soluble camptothecin derivative and topoisomerase I inhibitor that has been shown to exert a clinical anticancer effect on various types of tumor. In the present study, the anticancer effects of CKD-602 on the following three human oral squamous cell carcinoma (OSCC) cell lines originating from Korean cancer patients: YD-8 (tongue), YD-9 (buccal mucosa) and YD-38 (lower gingiva) were analyzed. The apoptotic proportion of the cells and cell cycle position were analyzed using flow cytometry. The expression of cell cycle regulatory proteins was detected by western blot analysis. CKD-602 was demonstrated to exert a time- and dose-dependent antiproliferative effect in all cell lines in vitro, however, susceptibility to CKD-602 at 72 h following treatment varied among the three cell lines, with 50% inhibition of cell viability at concentrations of 2.4 μg/ml for YD-8, 0.18 μg/ml for YD-9 and 0.05 μg/ml for YD-38. To investigate the underlying mechanism of the CKD-602 antiproliferative effect, a cell cycle-analysis was conducted in the three OSCC cell lines and CKD-602 treatment was observed to induce G2/M phase arrest. Furthermore, western blot analysis revealed that the expression levels of phospho-cdc2 (Tyr 15), cyclin A2 and cyclin B1 were increased in a time-dependent manner, following the administration of CKD-602. In the fluorescence-activated cell sorting analysis, the number of apoptotic cells was also increased in a dose-dependent manner following CKD-602 treatment of the OSCC cell lines. The results suggest that CKD-602 may inhibit the proliferation of OSCC oral cancer cells derived from samples from Korean patients by apoptosis and by G2/M phase arrest.
Collapse
Affiliation(s)
- Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea
| | - Na-Youn Koo
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea
| |
Collapse
|
18
|
Role of topoisomerase I and thymidylate synthase expression in sporadic colorectal cancer: associations with clinicopathological and molecular features. Pathol Res Pract 2013; 210:111-7. [PMID: 24332575 DOI: 10.1016/j.prp.2013.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/23/2013] [Accepted: 11/06/2013] [Indexed: 12/14/2022]
Abstract
Topoisomerase I (Topo I) and thymidylate synthase (TS) are essential enzymes for the replication, transcription and repair of DNA, and are potential biomarkers in colorectal cancer (CRC). The aim of the study was to correlate the tissue expression of Topo I and TS in sporadic CRCs with relevant pathological and molecular features and patients' outcome. Topo I and TS expression was assessed by immunostaining in 112 consecutive primary CRCs. Increased expression of Topo I was found in 36% of tumors, preferentially rectal (50%) and with not otherwise specified (NOS) histology (44%). Topo I expression was associated with 18q allelic loss (LOH), (p=0.013), microsatellite stable phenotype (p=0.002) and normal expression of mismatch proteins hMLH1 and hMSH2 (p=0.0012 and p=0.02, respectively). High TS expression was found in 60% of tumors, more frequently in distal sites (62%) and with NOS histology (66%); no association with microsatellite instability was observed. Topo I seems to be involved in the chromosomal instability pathway of sporadic CRCs. Conversely, high TS expression is unlikely to affect the clinical behavior of microsatellite unstable CRCs.
Collapse
|
19
|
Lee CC, Chang DM, Huang KF, Chen CL, Chen TC, Lo Y, Guh JH, Huang HS. Design, synthesis and antiproliferative evaluation of fluorenone analogs with DNA topoisomerase I inhibitory properties. Bioorg Med Chem 2013; 21:7125-33. [PMID: 24094433 DOI: 10.1016/j.bmc.2013.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
A series of 2,7-diamidofluorenones were designed, synthesized, and screened by SRB assay. Some synthesized compounds exhibited antitumor activities in submicromolar range. Ten compounds (3a, 3b, 3c, 3g, 3j, 3l, 4a, 4h, 4i, and 4j) were also selected by NCI screening system and 3c (GI50=1.66 μM) appeared to be the most active agent of this series. Furthermore, 3c attenuated topoisomerase I-mediated DNA relaxation at low micromolar concentrations. These results indicated that fluorenones have potential to be further developed into anticancer drugs.
Collapse
Affiliation(s)
- Chia-Chung Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
A theoretical study on mechanism of the anticancer drug camptothecin's E-ring-opening. J Mol Graph Model 2013; 43:58-65. [DOI: 10.1016/j.jmgm.2013.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 12/19/2022]
|
21
|
CHEN PENG, LIU BING, HU MING. The effect of hydroxycamptothecin and pingyangmycin on human squamous cell carcinoma of the tongue. Oncol Lett 2013; 5:947-952. [PMID: 23426884 PMCID: PMC3576210 DOI: 10.3892/ol.2013.1109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/30/2012] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to test hydroxycamptothecin (HCPT) and pingyangmycin (PYM) for their ability to inhibit the squamous cells of tongue carcinoma (Tca8113 cells). The effect of these compounds was tested using the MTT assay in vitro, clonogenic assays, flow cytometry, morphological observation, telomeric repeat amplification protocol (TRAP), transplantation of tumors into athymic mice and TUNEL staining. Treatment with HCPT and PYM, alone or in combination, inhibited the tumor cells and showed a greater inhibition when the drugs were combined. The cloning efficiency of Tca8113 cells was decreased. The microstructure and cell cycle of the cells changed significantly as a result of treatment. Telomerase activity was significantly inhibited in a time-dependent manner. By appearing to promote apoptosis, the drugs demonstrated a significant level of inhibition of the tumor cells in an athymic mouse model, promoting prolonged survival. HCPT and PYM have a marked cytotoxic effect on Tca8113 cells which is improved when used in combination.
Collapse
Affiliation(s)
- PENG CHEN
- Department of Oral and Maxillofacial Surgery, General Hospital of PLA, Beijing 100853
| | - BING LIU
- Department of Stomatology, General Air Force Hospital of PLA, Beijing 100036,
P.R. China
| | - MING HU
- Department of Oral and Maxillofacial Surgery, General Hospital of PLA, Beijing 100853
| |
Collapse
|
22
|
Baechler SA, Fehr M, Habermeyer M, Hofmann A, Merz KH, Fiebig HH, Marko D, Eisenbrand G. Synthesis, topoisomerase-targeting activity and growth inhibition of lycobetaine analogs. Bioorg Med Chem 2013; 21:814-23. [DOI: 10.1016/j.bmc.2012.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 12/21/2022]
|
23
|
Gaur R, Mishra L. Bi-nuclear Ru(ii) complexes of bis-chalcone and bis-flavonol: synthesis, characterization, photo cleavage of DNA and Topoisomerase I inhibition. RSC Adv 2013. [DOI: 10.1039/c3ra41451e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Nguyen TX, Morrell A, Conda-Sheridan M, Marchand C, Agama K, Bermingam A, Stephen AG, Chergui A, Naumova A, Fisher R, O’Keefe BR, Pommier Y, Cushman M. Synthesis and biological evaluation of the first dual tyrosyl-DNA phosphodiesterase I (Tdp1)-topoisomerase I (Top1) inhibitors. J Med Chem 2012; 55:4457-78. [PMID: 22536944 PMCID: PMC3350798 DOI: 10.1021/jm300335n] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Substances with dual tyrosyl-DNA phosphodiesterase I-topoisomerase I inhibitory activity in one low molecular weight compound would constitute a unique class of anticancer agents that could potentially have significant advantages over drugs that work against the individual enzymes. The present study demonstrates the successful synthesis and evaluation of the first dual Top1-Tdp1 inhibitors, which are based on the indenoisoquinoline chemotype. One bis(indenoisoquinoline) had significant activity against human Tdp1 (IC(50) = 1.52 ± 0.05 μM), and it was also equipotent to camptothecin as a Top1 inhibitor. Significant insights into enzyme-drug interactions were gained via structure-activity relationship studies of the series. The present results also document the failure of the previously reported sulfonyl ester pharmacophore to confer Tdp1 inhibition in this indenoisoquinoline class of inhibitors even though it was demonstrated to work well for the steroid NSC 88915 (7). The current study will facilitate future efforts to optimize dual Top1-Tdp1 inhibitors.
Collapse
Affiliation(s)
- Trung Xuan Nguyen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Andrew Morrell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Martin Conda-Sheridan
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Christophe Marchand
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Alun Bermingam
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, Maryland 217023
| | - Andrew G. Stephen
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Adel Chergui
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Alena Naumova
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Robert Fisher
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Barry R. O’Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, Maryland 217023
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4255
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
25
|
Topoisomerase I expression in tumors as a biological marker for CPT-11 chemosensitivity in patients with colorectal cancer. Surg Today 2011; 41:1196-9. [DOI: 10.1007/s00595-011-4546-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/01/2011] [Indexed: 10/17/2022]
|
26
|
Jang SY, Bae JS, Lee YH, Oh KY, Park KH, Bae YS. Caffeic acid and quercitrin purified from Houttuynia cordata inhibit DNA topoisomerase I activity. Nat Prod Res 2011; 25:222-31. [PMID: 20544499 DOI: 10.1080/14786410903339044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A methanol extract of Houttuynia cordata showed an inhibitory effect on mammalian DNA topoisomerase I. Two topoisomerase I inhibitory compounds were purified and identified as caffeic acid and quercitrin. Caffeic acid and quercitrin inhibited the activity of topoisomerase I with IC(50) values of about 0.15 and 0.05 mM, respectively. A concentration of 45 µM caffeic acid caused 50% growth inhibition in human leukaemia U937 cells, but not on those of normal fibroblast NIH3T3 cells. However, quercitrin mysteriously stimulated proliferation of U937 and NIH3T3 cells. Caffeic acid-induced cell death was characterised with the cleavage of poly (ADP-ribose) polymerase and procaspase-3, indicating that this inhibitor triggered apoptosis. The apoptotic induction by caffeic acid was also confirmed using flow cytometry analysis. Because DNA topoisomerase I is an important target for tumour chemotherapy, the present study suggests that caffeic acid, but not quercitrin, may function by suppressing oncogenic disease through the inhibition of cellular topoisomerase I activity.
Collapse
Affiliation(s)
- Seok-Young Jang
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Bae SK, Gwak J, Song IS, Park HS, Oh S. Induction of apoptosis in colon cancer cells by a novel topoisomerase I inhibitor TopIn. Biochem Biophys Res Commun 2011; 409:75-81. [PMID: 21549095 DOI: 10.1016/j.bbrc.2011.04.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
The tumor suppressor p53 plays an important role in cellular emergency mechanisms through regulating the genes involved in cell cycle arrest and apoptosis. To identify small molecules that can activate p53-responsive transcription, we performed chemical screening using genetically engineered HCT116 reporter cells. We found that TopIn (7-phenyl-6H-[1,2,5]oxadiazolo[3,4-e]indole 3-oxide) efficiently activated p53-mediated transcriptional activity and induced phosphorylation of p53 at Ser15, thereby stabilizing the p53 protein. Furthermore, TopIn upregulated the expression of p21(WAF1/CIP1), a downstream target of p53, and suppressed cellular proliferation in various colon cancer cells. Additionally, TopIn induced DNA fragmentation, caspase-3/7 activation and poly ADP ribose polymerase cleavage, typical biochemical markers of apoptosis, in p53 wild-type and mutated colon cancer cells. Finally, we found that TopIn inhibited topoisomerase I activity, but not topoisomerase II, in vitro and induced the formation of the topoisomerase I-DNA complex in HCT116 colon cancer cells. Unlike camptothecin (CPT) and its derivative SN38, TopIn did not affect the activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP) or multidrug-resistant protein-1 (MDR-1). These results suggest that TopIn may present a promising new topoisomerase I-targeting anti-tumor therapeutics.
Collapse
Affiliation(s)
- Soo Kyung Bae
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Mikulski D, Szeląg M, Molski M. Quantum-chemical study of interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-nucleobases. J Mol Model 2011; 17:3085-102. [PMID: 21360171 DOI: 10.1007/s00894-011-0999-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/28/2011] [Indexed: 11/28/2022]
Abstract
Trans-resveratrol, a natural phytoalexin present in red wine and grapes, has gained considerable attention because of its antiproliferative, chemopreventive and proapoptotic activity against human cancer cells. The accurate quantum-chemical computations based on the density functional theory (DFT) and ab initio second-order Møller-Plesset perturbation method (MP2) have been performed for the first time to study interactions of trans-resveratrol with guanine-thymine dinucleotide and DNA-derived nitrogenous bases: adenine, guanine, cytosine and thymine in vacuum and water medium. This compound is found to show high affinity to nitrogenous bases and guanine-thymine dinucleotide. The electrostatic interactions from intermolecular hydrogen bonding increase the stability of complexes studied. In particular, significantly strong hydrogen bonds between 4'-H atom of trans-resveratrol and imidazole nitrogen as well as carbonyl oxygen atoms of nucleobases studied stabilize these systems. The stabilization energies computed reveal that the negatively charged trans-resveratrol-dinucleotide complex is more energetically stable in water medium than in vacuum. MP2 method gives more reliable and significantly high values of stabilization energy of trans-resveratrol-dinucleotide, trans-resveratrol-guanine and trans-resveratrol-thymine complexes than B3LYP exchange-correlation functional because it takes into account London dispersion energy. According to the results, in the presence of trans-resveratrol the 3'-5' phosphodiester bond in dinucleotide can be cleaved and the proton from 4'-OH group of trans-resveratrol migrates to the 3'-O atom of dinucleotide. It is concluded that trans-resveratrol is able to break the DNA strand. Hence, the findings obtained help understand antiproliferative and anticancer properties of this polyphenol.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Theoretical Chemistry, Faculty of Chemistry, A. Mickiewicz University ul, Grunwaldzka 6, 60-780 Poznań, Poland.
| | | | | |
Collapse
|
29
|
Esselen M, Fritz J, Hutter M, Teller N, Baechler S, Boettler U, Marczylo TH, Gescher AJ, Marko D. Anthocyanin-rich extracts suppress the DNA-damaging effects of topoisomerase poisons in human colon cancer cells. Mol Nutr Food Res 2011; 55 Suppl 1:S143-53. [DOI: 10.1002/mnfr.201000315] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/23/2010] [Accepted: 11/26/2010] [Indexed: 01/09/2023]
|
30
|
Iwamatsu T. Chromosome formation during fertilization in eggs of the teleost Oryzias latipes. Methods Mol Biol 2011; 761:97-124. [PMID: 21755444 DOI: 10.1007/978-1-61779-182-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Upon fertilization, eggs shift their cell cycle from the meiotic to the mitotic pattern for embryogenesis. The information on chromosome formation has been accumulated by various experiments using inhibitors to affect formation and behavior of chromosomes in the cycle of cell proliferation. Based on experimental results on meiosis and early stages of development of the teleost Oryzias latipes, we discuss the roles of the activities of histone H1 kinase, microtubule-associated protein kinase, DNA polymerase, DNA topoisomerase, and other cytoplasmic factors that play a crucial role in formation and separation of chromosomes.
Collapse
|
31
|
Meng X, Chang Y, Qiu X, Wang X. Generation and analysis of expressed sequence tags from adductor muscle of Japanese scallop Mizuhopecten yessoensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 5:288-94. [DOI: 10.1016/j.cbd.2010.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 02/03/2023]
|
32
|
Wu N, Wu XW, Agama K, Pommier Y, Du J, Li D, Gu LQ, Huang ZS, An LK. A novel DNA topoisomerase I inhibitor with different mechanism from camptothecin induces G2/M phase cell cycle arrest to K562 cells. Biochemistry 2010; 49:10131-6. [PMID: 21033700 PMCID: PMC3010555 DOI: 10.1021/bi1009419] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA topoisomerase I (Top1) is an essential nuclear enzyme and a validated target for anticancer agent screening. In a previous study, we found that indolizinoquinoline-5,12-dione derivatives show significant biological activity against several human cancer cell lines. To understand their mechanism of inhibition of cancer cell growth, one indolizinoquinoline-5,12-dione derivative, CY13II, was further studied as lead. Our present results indicate that CY13II shows more potent antiproliferative activity against K562 cells than camptothecin. Additionally, K562 cells were arrested in G2/M, and their growth rate decreased after treatment with CY13II at micromolar concentration. Biochemical Top1 assays indicate that CY13II exhibits a different inhibitory mechanism from camptothecin. Unlike camptothecin, CY13II specifically inhibits the catalytic cleavage activity of Top1 instead of forming the drug-enzyme-DNA covalent ternary complex.
Collapse
Affiliation(s)
- Ning Wu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi-Wei Wu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892-4255, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892-4255, USA
| | - Jun Du
- Department of Microbial and Biochemical Pharmac, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lian-Quan Gu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin-Kun An
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
33
|
Bugreev DV, Nevinskiĭ GA. [The structure and mechanism of the action of type-IB DNA topoisomerases]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:293-311. [PMID: 20644584 DOI: 10.1134/s1068162010030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA topoisomerases responsible for the superspiralization of genomic DNA participate in almost all vitally important cell processes, including replication, transcription, and recombination, and are essential for normal cell functioning. The present review summarizes published data for type-IB topoisomerases. The results concerning the thermodynamic, structural, and kinetic aspects of the functioning of topoisomerases and the peculiarities of the mechanisms of their action have been analyzed for the first time.
Collapse
|
34
|
Bugreev DV, Nevinsky GA. Structure and mechanism of action of type IA DNA topoisomerases. BIOCHEMISTRY (MOSCOW) 2010; 74:1467-81. [PMID: 20210704 DOI: 10.1134/s0006297909130045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA topoisomerases are enzymes responsible for regulation of genomic DNA supercoiling. They participate in essential processes of cells such as replication, transcription, recombination, repair, etc., and they are necessary for normal functioning of the cells. Topoisomerases alter the topological state of DNA by either passing one strand of the helix through the other strand (type I) or by passing a region of duplex DNA through another region of duplex DNA (type II). Type I DNA topoisomerases are subdivided into enzymes that bind to the 5'- (type IA) or 3'-phosphate group (type IB) during relaxation of the cleavable DNA. This review summarizes the literature on type IA DNA topoisomerases. Special attention is given to particular properties of their structure and mechanisms of functioning of these enzymes.
Collapse
Affiliation(s)
- D V Bugreev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, pr. Lavrent'eva 8, Novosibirsk, Russia
| | | |
Collapse
|
35
|
Ryan D, Rafferty M, Hegarty S, O'Leary P, Faller W, Gremel G, Bergqvist M, Agnarsdottir M, Strömberg S, Kampf C, Pontén F, Millikan RC, Dervan PA, Gallagher WM. Topoisomerase I amplification in melanoma is associated with more advanced tumours and poor prognosis. Pigment Cell Melanoma Res 2010; 23:542-53. [PMID: 20465595 DOI: 10.1111/j.1755-148x.2010.00720.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we used array-comparative genomic hybridization (aCGH) and fluorescent in situ hybridization (FISH) to examine genetic aberrations in melanoma cell lines and tissues. Array-comparative genomic hybridization revealed that the most frequent genetic changes found in melanoma cell lines were amplifications on chromosomes 7p and 20q, along with disruptions on Chr 9, 10, 11, 12, 22 and Y. Validation of the results using FISH on tissue microarrays (TMAs) identified TOP1 as being amplified in melanoma tissues. TOP1 amplification was detected in a high percentage (33%) of tumours and was associated with thicker, aggressive tumours. These results show that TOP1 amplification is associated with advanced tumours and poor prognosis in melanoma. These observations open the possibility that TOP1-targeted therapeutics may be of benefit in a particular subgroup of advanced stage melanoma patients.
Collapse
Affiliation(s)
- Denise Ryan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shen DQ, Wu N, Li YP, Wu ZP, Zhang HB, Huang ZS, Gu LQ, An LK. Design, Synthesis, and Cytotoxicity of Indolizinoquinoxaline-5,12-dione Derivatives, Novel DNA Topoisomerase IB Inhibitors. Aust J Chem 2010. [DOI: 10.1071/ch09580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of new indolizinoquinoxaline-5,12-dione derivatives were designed and synthesized via a heterocyclization reaction of 6,7-dichloroquinoxaline-5,8-dione with active methylene reagents and pyridine derivatives. The synthesized compounds exhibited significant activity to inhibit the growth of four human tumour cell lines, including lung adenocarcinoma cell, large-cell lung carcinoma cell, breast carcinoma cell, and ardriamycin-resistant breast carcinoma cell at micromolar range. These compounds were also investigated for their inhibition to DNA topoisomerase IB activity. The results indicated that the indolizinoquinoxaline-5,12-dione structure might be a potential pharmacophore in anti-cancer drug design.
Collapse
|
37
|
Baikar S, Malpathak N. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs. Pharmacogn Rev 2010; 4:12-26. [PMID: 22228937 PMCID: PMC3249898 DOI: 10.4103/0973-7847.65320] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/04/2010] [Accepted: 07/10/2010] [Indexed: 11/04/2022] Open
Abstract
A large number of secondary metabolites like alkaloids, terpenoids, polyphenols and quinones are produced by the plants. These metabolites can be utilized as natural medicines for the reason that they inhibit the activity of DNA topoisomerase which are the clinical targets for anticancer drugs. DNA topoisomerases are the cellular enzymes that change the topological state of DNA through the breaking and rejoining of DNA strands. Synthetic drugs as inhibitors of topoisomerases have been developed and used in the clinical trials but severe side effects are a serious problem for them therefore, there is a need for the development of novel plant-derived natural drugs and their analogs which may serve as appropriate inhibitors with respect to drug designing. The theme for this review is how secondary metabolites or natural products inactivate the action of DNA topoisomerases and open new avenues towards isolation and characterization of compounds for the development of novel drugs with anticancer potential.
Collapse
|
38
|
Synergistic interactions between aminoflavone, paclitaxel and camptothecin in human breast cancer cells. Cancer Chemother Pharmacol 2009; 66:575-83. [PMID: 20012292 DOI: 10.1007/s00280-009-1198-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/26/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Aminoflavone is a unique DNA damaging agent currently undergoing phase I evaluation in a prodrug form (AFP464). In anticipation of combination regimens, interactions between aminoflavone and several anticancer drugs were investigated in MCF-7 breast cancer cells to determine whether synergistic cancer cell killing effects were observed. METHODS Colony formation assays were performed to assess the effect of combining aminoflavone with a variety of anticancer drugs. Changes in initial uptake, retention or efflux of aminoflavone and the second agent were compared to the behavior of drugs alone. Key features required for aminoflavone activity in cell culture models were also explored, focusing on the obligatory induction of CYP1A1/1A2 and binding of reactive aminoflavone metabolites to tumor cell total macromolecules and DNA. RESULTS Aminoflavone was synergistic when co-incubated with paclitaxel, camptothecin or SN38. Uptake of neither aminoflavone nor any of the other three compounds was altered in combination incubations. Paclitaxel did not inhibit DNA binding of aminoflavone metabolites, while camptothecin did. Aminoflavone-induced CYP1A1 induction was observed in the presence of camptothecin or paclitaxel. CONCLUSIONS Aminoflavone is a promising therapeutic agent for breast cancer due to its unique mechanism of action compared to commonly used drugs. Combined treatments utilizing aminoflavone in conjunction with paclitaxel or camptothecin may provide an even greater cytotoxic effect than achieved with aminoflavone alone.
Collapse
|
39
|
Kostopoulos I, Karavasilis V, Karina M, Bobos M, Xiros N, Pentheroudakis G, Kafiri G, Papakostas P, Vrettou E, Fountzilas G. Topoisomerase I but not thymidylate synthase is associated with improved outcome in patients with resected colorectal cancer treated with irinotecan containing adjuvant chemotherapy. BMC Cancer 2009; 9:339. [PMID: 19775480 PMCID: PMC2759966 DOI: 10.1186/1471-2407-9-339] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/24/2009] [Indexed: 02/06/2023] Open
Abstract
Background Thymidylate synthase (TS) and Topoisomerase I (Topo I) are significant biomarkers in colorectal cancer (CRC). We aimed to study the expression of TS and Topo I in patients with resected CRC who received adjuvant chemotherapy and correlated it with clinical outcome. Methods All patients diagnosed with CRC between 1989 and 2007 and treated with adjuvant chemotherapy within Hellenic Cooperative Oncology Group's (HeCOG) protocols, were identified. Archival paraffin-embedded tumor tissues were used for immunohistochemical detection of TS and Topo I. Immunohistochemistry was performed on tissue microarray slides using monoclonal antibodies against TS and Topo I. The results were correlated with survival (OS) and disease free survival (DFS). Results A cohort of 498 patients with a median age of 61 years and Dukes' stage B (49%) and C (51%) fulfilled the criteria of the study. All patients received adjuvant 5-FU-based chemotherapy, 38% irinotecan-containing. Positive TS and Topo I expression was found in 43% and 48% of cases, respectively. Five-year OS was 74% and DFS was 68%. In univariate analysis no association of TS and Topo I expression with OS and DFS was identified. In multivariate analysis however, Topo I expression was associated with a reduced risk of death (HR = 0.61, 95% CI 0.42-0.88, p = 0.009). In the irinotecan-treated subgroup, those patients who expressed Topo I had a better OS (HR = 0.47, 95% CI 0.23-0.94, p = 0.033). Conclusion Patients with resected CRC expressing Topo I seem to benefit from irinotecan-containing adjuvant chemotherapy. However randomised prospective trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ioannis Kostopoulos
- Department of Medical Oncology "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bae JS, Park JW, Park SH, Park JB, Rho YH, Ryu YB, Lee KS, Park KH, Bae YS. Apoptotic cell death of human leukaemia U937 cells by ubiquinone-9 purified fromPleurotus eryngii. Nat Prod Res 2009; 23:1112-9. [DOI: 10.1080/14786410802417107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Mustafa S, Venkatesh P, Pasha K, Mullangi R, Srinivas NR. Altered intravenous pharmacokinetics of topotecan in rats with acute renal failure (ARF) induced by uranyl nitrate: Do adenosine A1antagonists (selective/non-selective) normalize the altered topotecan kinetics in ARF? Xenobiotica 2009; 36:1239-58. [PMID: 17162470 DOI: 10.1080/00498250600839385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A series of exploratory investigations with multiple agents was carried out in normal rats and in rats with uranyl nitrate-induced acute renal failure to understand the disposition characteristics of intravenous topotecan (TPT) used as a model substrate. The disposition of TPT was unaltered in normal rats when treated with methotrexate, whereas treatment with probenecid increased the systemic exposure of TPT. In case of uranyl nitrate-induced acute renal failure (UN-ARF) rats, the systemic exposure of TPT was increased when compared with normal rats, whereas in UN-ARF rats treated with probenecid a further reduction in renal clearance of TPT was noted as compared with that of UN-ARF induced rats. Thus, TPT may be involved in the tubular secretory pathway when a passive glomerular filtration pathway for elimination was not possible. The disposition of TPT did not normalize in UN-ARF rats when treated with caffeine, a non-selective adenosine A1 receptor antagonist, whereas the selective adenosine A1 receptor antagonist (1,3-dipropyl-8-phenylxanthine, DPPX) normalized TPT pharmacokinetic disposition by improving renal function. Renal excretion studies demonstrated that CLR improved by almost fivefold following DPPX treatment in ARF rats. In addition, the qualitative stability/metabolism pattern of TPT in liver microsomes prepared from various groups of rats (normal rats, UN-ARF rats, rats treated with DPPX, and UN-ARF rats treated with DPPX) was found to be similar. In summary, using a pharmacokinetic tool as a surrogate, it has been shown that the pharmacokinetic disposition of TPT improved considerably upon treatment with DPPX, a selective adenosine A1 antagonist.
Collapse
Affiliation(s)
- S Mustafa
- Drug Metabolism and Pharmacokinetics, Discovery Research, Dr Reddy's Laboratories Ltd, Miyapur, Hyderabad, India
| | | | | | | | | |
Collapse
|
42
|
Malina J, Vrana O, Brabec V. Mechanistic studies of the modulation of cleavage activity of topoisomerase I by DNA adducts of mono- and bi-functional PtII complexes. Nucleic Acids Res 2009; 37:5432-42. [PMID: 19589806 PMCID: PMC2760795 DOI: 10.1093/nar/gkp580] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using electrophoresis and replication mapping, we show that the presence of DNA adducts of bifunctional antitumor cisplatin or monodentate [PtCl(dien)]Cl (dien = diethylenetriamine) in the substrate DNA inhibits eukaryotic topoisomerase 1 (top1) action, the adducts of cisplatin being more effective. The presence of camptothecin in the samples of platinated DNA markedly enhances effects of Pt–DNA adducts on top1 activity. Interestingly, the effects of Pt–DNA adducts on the catalytic activity of top1 in the presence of camptothecin differ depending on the sequence context. A multiple metallation of the short nucleotide sequences on the scissile strand, immediately downstream of the cleavage site impedes the cleavage by top1. On the other hand, DNA cleavage by top1 at some cleavage sites which were not platinated in their close proximity is notably enhanced as a consequence of global platination of DNA. We suggest that this enhancement of DNA cleavage by top1 may consist in its inability to bind to other cleavage sites platinated in their close neighborhood; thus, more molecules of top1 may become available for cleavage at the sites where top1 normally cleaves and where platination does not interfere.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic
| | | | | |
Collapse
|
43
|
Pfister TD, Reinhold WC, Agama K, Gupta S, Khin SA, Kinders RJ, Parchment RE, Tomaszewski JE, Doroshow JH, Pommier Y. Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther 2009; 8:1878-84. [PMID: 19584232 DOI: 10.1158/1535-7163.mct-09-0016] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Topoisomerase I (Top1) is a proven target for cancer therapeutics, and the level of Top1 in tumors has been used as a biomarker for chemotherapeutic efficacy. In this study, we report the development and validation of a two-site enzyme chemiluminescent immunoassay for Top1, which we used to measure Top1 levels in the NCI-60 cancer cell line panel. Top1 levels ranged from 0.9 to 9.8 ng/mL/microg protein extract in these cell lines. Levels varied both within and between cancer types but were generally highest in colon cancer and leukemia cell lines and lowest in central nervous system and renal cancer cell lines. Top1 mRNA levels in the NCI-60 cell lines were also measured by microarray; mRNA values generally showed a good correlation with protein levels (Pearson correlation = 0.8). When these expression levels were compared with the activity of the indenoisoquinoline class of Top1 inhibitors across the NCI-60 cell panel, low levels of Top1 were associated with increased resistance to these drugs. The results of our studies indicate that our Top1 assay can be used to quantify Top1 levels in untreated cells as well as cells treated with Top1 inhibitors and that the assay has the potential to be adapted for use in predicting clinical response to Top1-active antineoplastic agents.
Collapse
Affiliation(s)
- Thomas D Pfister
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Support Directorate, Science Applications International Corporation-Frederick Inc, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Basili S, Moro S. Novel camptothecin derivatives as topoisomerase I inhibitors. Expert Opin Ther Pat 2009; 19:555-74. [DOI: 10.1517/13543770902773437] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Jain T, Roper BJ, Grove A. A functional type I topoisomerase from Pseudomonas aeruginosa. BMC Mol Biol 2009; 10:23. [PMID: 19317906 PMCID: PMC2666729 DOI: 10.1186/1471-2199-10-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/24/2009] [Indexed: 01/27/2023] Open
Abstract
Background Pseudomonas aeruginosa encodes a putative topoisomerase with sequence similarity to the eukaryotic type IB topoisomerase from Vaccinia virus. Residues in the active site are conserved, notably Tyr292 which would be predicted to form the transient covalent bond to DNA. Results The gene encoding the P. aeruginosa topoisomerase I was cloned and expressed in E. coli. The enzyme relaxes supercoiled DNA, while a mutant containing a Tyr292 to Phe substitution at the active site was found to be catalytically inert. This is consistent with the role of Tyr in forming the covalent intermediate. Like Vaccinia topoisomerase, the P. aeruginosa topoisomerase relaxes DNA in the absence of ATP, but unlike Vaccinia topoisomerase, P. aeruginosa topoisomerase does not relax supercoiled DNA without MgCl2 present. In addition, high concentration of NaCl is not able to substitute for MgCl2 as seen for Vaccinia topoisomerase. A truncated derivative of the topoisomerase lacking residues 1–98 relaxes DNA, with both full length and truncated enzyme exhibiting equivalent requirements for divalent cations and the ability to relax DNA to completion, suggesting a shared domain organization. DNA-binding assays suggest an only modest preference for the CCCTT pentameric sequence required for transesterification by Vaccinia topoisomerase IB. Conclusion P. aeruginosa encodes a functional topoisomerase with significant similarity to the type IB enzyme encoded by poxviruses. In contrast to the Vaccinia-encoded homolog, the P. aeruginosa-encoded enzyme requires divalent cations for catalytic activity, relaxes DNA to completion, and does not exhibit a strong preference for the pentameric sequence stringently required by the Vaccinia-encoded homolog. A comparison with the structure of poxviral topoisomerase in complex with DNA suggests that bacterial homologs of the eukaryotic type IB topoisomerase may exhibit a relaxed sequence preference due to the lack of conservation of certain residues involved in sequence-specific DNA contacts, and that interaction with an only modestly preferred sequence may result in suboptimal positioning of catalytic residues.
Collapse
Affiliation(s)
- Teesta Jain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
46
|
Mukherjee JJ, Gupta SK, Sikka H, Kumar S. Inhibition of benzopyrene-diol-epoxide (BPDE)-induced bax and caspase-9 by cadmium: role of mitogen activated protein kinase. Mutat Res 2009; 661:41-6. [PMID: 19028507 DOI: 10.1016/j.mrfmmm.2008.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/16/2008] [Accepted: 10/28/2008] [Indexed: 01/16/2023]
Abstract
Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other polynuclear aromatic hydrocarbons (PAHs). The mechanism underlying this synergism is not clearly understood. Present study demonstrates that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in human leukemic HL-60 cells and others, and cadmium at non-cytotoxic concentration inhibits BPDE-induced apoptosis. We observed that BPDE treatment also activates all three MAP kinases e.g. ERK1/2, p38 and JNK in HL-60 cells, and inhibition of BPDE-induced apoptosis by cadmium is associated with down-regulation of pro-apoptotic bax induction/caspase-9 activation and up-regulation of ERK phosphorylation, whereas p38 MAP kinase and c-Jun phosphorylation (indicative of JNK activation) remain unaffected. Inhibition of ERKs by prior treatment of cells with 10muM U0126 relieves cadmium-mediated inhibition of apoptosis/bax induction/caspase-9 activation. Our results suggest that cadmium inhibits BPDE-induced apoptosis by modulating apoptotic signaling through up-regulation of ERK, which is known to promote cell survival.
Collapse
Affiliation(s)
- Jagat J Mukherjee
- State University of New York College at Buffalo, Environ. Toxicol. & Chem., Great Lakes Center, 1300 Elmwood Avenue, Buffalo, NY 14222, United States
| | | | | | | |
Collapse
|
47
|
Esselen M, Fritz J, Hutter M, Marko D. Delphinidin Modulates the DNA-Damaging Properties of Topoisomerase II Poisons. Chem Res Toxicol 2009; 22:554-64. [DOI: 10.1021/tx800293v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Melanie Esselen
- Section of Food Toxicology, Institute of Applied Biosciences, Universität Karlsruhe (TH), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Jessica Fritz
- Section of Food Toxicology, Institute of Applied Biosciences, Universität Karlsruhe (TH), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Melanie Hutter
- Section of Food Toxicology, Institute of Applied Biosciences, Universität Karlsruhe (TH), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Doris Marko
- Section of Food Toxicology, Institute of Applied Biosciences, Universität Karlsruhe (TH), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
48
|
Mutational studies reveal lysine 352 on the large subunit is indispensable for catalytic activity of bi-subunit topoisomerase I from Leishmania donovani. Mol Biochem Parasitol 2009; 165:57-66. [PMID: 19393162 DOI: 10.1016/j.molbiopara.2009.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/31/2008] [Accepted: 01/08/2009] [Indexed: 11/22/2022]
Abstract
From the vanadate complex crystal structure of Leishmania donovani topoisomerase I, several amino acid residues have been implicated to be involved in the catalytic reaction. Although several predictions and propositions have been made, the exact role of these amino acids has not yet been clearly demonstrated in vitro. Among these residues, lysine 352 and arginine 314 stand as potential candidates for playing the role of a general acid during the cleavage step. In this study, we have characterized the role of lysine 352 on the large subunit, by site-directed mutagenesis and have tried to identify the general acid that can protonate the 5?-O atom of the leaving strand. Studies with the mutant enzymes reveal that, relaxation activity was severely affected when Lys352 was mutated to arginine or alanine (K352R or K352A). Mutation of Arg314 to Lys (R314K) has very little effect on the relaxation activity. Detailed study reveals that, both cleavage and religation steps are severely affected in case of K352R and K352A and the cleavage religation equilibrium is shifted towards the cleavage. On the contrary, the R314K mutant exhibits only a slightly slower rate of cleavage compared to wild-type enzyme. Cleavage assays with an oligonucleotide containing 5?-bridging phosphorothiolate indicate that Lys352 acts as a general acid in the cleavage step. Altogether, this study establishes the indispensable role of lysine 352 in the catalytic reaction of L. donovani topoisomerase I.
Collapse
|
49
|
Tsavaris N, Lazaris A, Kosmas C, Gouveris P, Kavantzas N, Kopterides P, Papathomas T, Arapogiannis G, Zorzos H, Kyriakou V, Patsouris E. Topoisomerase I and IIalpha protein expression in primary colorectal cancer and recurrences following 5-fluorouracil-based adjuvant chemotherapy. Cancer Chemother Pharmacol 2008; 64:391-8. [PMID: 19083133 PMCID: PMC2688619 DOI: 10.1007/s00280-008-0886-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/21/2008] [Indexed: 11/26/2022]
Abstract
Purpose Human DNA topoisomerases I and II (topo-I and -II) are essential for vital cellular processes such as DNA replication, transcription, translation, recombination, and repair. In the present study, we correlate topo-I and -II expression and outcome after chemotherapy in primary and relapsed colorectal cancer. Patients and methods Patients with colorectal cancer that had recurred, following surgery and adjuvant chemotherapy and underwent a second operation were included in the present study. All had undergone surgical resection of the primary tumor and received post-operatively 5-FU-based (5FU + Leucovorin, Mayo Clinic regimen) adjuvant chemotherapy. Tumor tissue was collected at the initial operation from the primary tumor and at the time of recurrence (during the second operation following chemotherapy). All tissue samples were analyzed for levels of expression of both topo-I and topo-IIa using standard three-step immunohistochemistry on paraffin sections. Results Forty patients were included. Levels of expression of topo-I and topo-II were higher in malignant cells from tumor recurrences compared to primary tumors (P = 0.0001 for both). There was a statistically significant positive relationship between patients age and levels of topo-I (P = 0.011) and topo-II (P = 0.011) expression. Conclusions The study results reported here underscore the role of topoisomerase expression in colorectal cancer and suggest a potential role in tumor recurrence.
Collapse
Affiliation(s)
- Nicolas Tsavaris
- Medical Oncology Unit, Department of Pathophysiology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens University School of Medicine, 11527 Athens, Greece
| | - Andreas Lazaris
- First Department of Pathology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kosmas
- Second Department of Medical Oncology, “Metaxa” Cancer Hospital, Piraeus, Greece
| | - Panagiotis Gouveris
- Medical Oncology Unit, Department of Pathophysiology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens University School of Medicine, 11527 Athens, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros Kopterides
- Medical Oncology Unit, Department of Pathophysiology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens University School of Medicine, 11527 Athens, Greece
| | - Thomas Papathomas
- First Department of Pathology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Arapogiannis
- First Department of Pathology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Haralambos Zorzos
- First Department of Pathology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassiliki Kyriakou
- First Department of Pathology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Patsouris
- First Department of Pathology, Medical School, “Laikon” University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
50
|
Samor C, Guerrini A, Varchi G, Beretta GL, Fontana G, Bombardelli E, Carenini N, Zunino F, Bertucci C, Fiori J, Battaglia A. The Role of Polyamine Architecture on the Pharmacological Activity of Open Lactone Camptothecin−Polyamine Conjugates. Bioconjug Chem 2008; 19:2270-9. [DOI: 10.1021/bc800033r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cristian Samor
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Guerrini
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Greta Varchi
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giovanni Luca Beretta
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Gabriele Fontana
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Ezio Bombardelli
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Nives Carenini
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Franco Zunino
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Carlo Bertucci
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jessica Fiori
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Arturo Battaglia
- Istituto CNR per la Sintesi Organica e Fotoreattività “I.S.O.F.”, Area della Ricerca di Bologna, Via Gobetti 101, 40129 Bologna, Italy, Dipartimento di Oncologia Sperimentale e Laboratori, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milano, Italy, Indena SPA, viale Ortles 12, 20139 Milano, Italy, and Dipartimento di Scienze Farmaceutiche, Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|