1
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
2
|
Abstract
Cells respond to hypoxia by shifting cellular processes from general housekeeping functions to activating specialized hypoxia-response pathways. Oxygen plays an important role in generating ATP to maintain a productive rate of protein synthesis in normoxia. In hypoxia, the rate of the canonical protein synthesis pathway is significantly slowed and impaired due to limited ATP availability, necessitating an alternative mechanism to mediate protein synthesis and facilitate adaptation. Hypoxia adaptation is largely mediated by hypoxia-inducible factors (HIFs). While HIFs are well known for their transcriptional functions, they also play imperative roles in translation to mediate hypoxic protein synthesis. Such adaptations to hypoxia are often hyperactive in solid tumors, contributing to the expression of cancer hallmarks, including treatment resistance. The current literature on protein synthesis in hypoxia is reviewed here, inclusive of hypoxia-specific mRNA selection to translation termination. Current HIF targeting therapies are also discussed as are the opportunities involved with targeting hypoxia specific protein synthesis pathways.
Collapse
Affiliation(s)
- Nancy T Chee
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Ines Lohse
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Shaun P Brothers
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Fussenegger M, Moser S, Bailey JE. Regulated multicistronic expression technology for mammalian metabolic engineering. Cytotechnology 2011; 28:111-26. [PMID: 19003413 PMCID: PMC3449837 DOI: 10.1023/a:1008037916674] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Contemporary basic research is rapidly revealing increasingly complex molecular regulatory networks which are often interconnected via key signal integrators. These connections among regulatory and catalytic networks often frustrate bioengineers as promising metabolic engineering strategies are bypassed by compensatory metabolic responses or cause unexpected, undesired outcomes such as apoptosis, product protein degradation or inappropriate post- translational modification. Therefore, for metabolic engineering to achieve greater success in mammalian cell culture processes and to become important for future applications such as gene therapy and tissue engineering, this technology must be enhanced to allow simultaneous, in cases conditional, reshaping of metabolic pathways to access difficult-to-attain cell states. Recent advances in this new territory of multigene metabolic engineering are intimately linked to the development of multicistronic expression technology which allows the simultaneous, and in some cases, regulated expression of several genes in mammalian cells. Here we review recent achievements in multicistronic expression technology in view of multigene metabolic engineering.
Collapse
Affiliation(s)
- M Fussenegger
- Swiss Federal Institute of Technology, ETH Zurich, Institute of Biotechnology, CH-8093, Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Mittal S, Mir RA, Chauhan SS. Post-transcriptional regulation of human cathepsin L expression. Biol Chem 2011; 392:405-13. [PMID: 21395501 DOI: 10.1515/bc.2011.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The expression of cathepsin L, a lysosomal protease, is known to be elevated in cancer and other pathologies. Multiple splice variants of human cathepsin L with variable 5'UTRs exist, which encode for the same protein. Previously we have observed that variant hCATL A (bearing the longest 5'UTR) was translated in vitro with significantly lower efficiency than variant hCATL AIII (bearing the shortest 5'UTR). Contrary to these findings, results of the present study reveal that in cancer cells, hCATL A mRNA exhibits higher translatability in spite of having lower stability than AIII. This is the first report demonstrating a highly contrasting trend in translation efficiencies of hCATL variants in rabbit reticulocytes and live cells. Expression from chimeric mRNAs containing 5'UTRs of A or AIII upstream to luciferase reporter cDNA established the A UTR to be the sole determinant for this effect. Transient transfections of bicistronic plasmids and mRNAs confirmed the presence of a functional Internal Ribosome Entry Site in this UTR. Our data suggest that differential stability and translation initiation modes mediated by the 5'UTRs of human cathepsin L variants are involved in regulating its expression.
Collapse
Affiliation(s)
- Shivani Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | |
Collapse
|
5
|
Engström W, Shokrai A, Otte K, Granérus M, Gessbo A, Bierke P, Madej A, Sjölund M, Ward A. Transcriptional regulation and biological significance of the insulin like growth factor II gene. Cell Prolif 2007; 31:173-89. [PMID: 9925986 PMCID: PMC6647699 DOI: 10.1111/j.1365-2184.1998.tb01196.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The insulin like growth factors I and II are the most ubiquitous in the mammalian embryo. Moreover they play a pivotal role in the development and growth of tumours. The bioavailability of these growth factors is regulated on a transcriptional as well as on a posttranslational level. The expression of non-signalling receptors as well as binding proteins does further tune the local concentration of IGFs. This paper aims at reviewing how the transcription of the IGF genes is regulated. The biological significance of these control mechanisms will be discussed.
Collapse
Affiliation(s)
- W Engström
- Department of Pathology, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The cell has many ways to regulate the production of proteins. One mechanism is through the changes to the machinery of translation initiation. These alterations favor the translation of one subset of mRNAs over another. It was first shown that internal ribosome entry sites (IRESes) within viral RNA genomes allowed the production of viral proteins more efficiently than most of the host proteins. The RNA secondary structure of viral IRESes has sometimes been conserved between viral species even though the primary sequences differ. These structures are important for IRES function, but no similar structure conservation has yet to be shown in cellular IRES. With the advances in mathematical modeling and computational approaches to complex biological problems, is there a way to predict an IRES in a data set of unknown sequences? This review examines what is known about cellular IRES structures, as well as the data sets and tools available to examine this question. We find that the lengths, number of upstream AUGs, and %GC content of 5'-UTRs of the human transcriptome have a similar distribution to those of published IRES-containing UTRs. Although the UTRs containing IRESes are on the average longer, almost half of all 5'-UTRs are long enough to contain an IRES. Examination of the available RNA structure prediction software and RNA motif searching programs indicates that while these programs are useful tools to fine tune the empirically determined RNA secondary structure, the accuracy of de novo secondary structure prediction of large RNA molecules and subsequent identification of new IRES elements by computational approaches, is still not possible.
Collapse
Affiliation(s)
- Stephen D Baird
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
7
|
Cencig S, Nanbru C, Le SY, Gueydan C, Huez G, Kruys V. Mapping and characterization of the minimal internal ribosome entry segment in the human c-myc mRNA 5' untranslated region. Oncogene 2004; 23:267-77. [PMID: 14712232 DOI: 10.1038/sj.onc.1207017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human c-myc proto-oncogene is transcribed from four alternative promoters generating transcripts with 5' untranslated regions of various lengths. These transcripts encode two proteins, c-Myc1 and c-Myc2, from two initiation codons, CUG and AUG, respectively. We and others have previously demonstrated that the region of c-myc transcripts between nucleotides (nt) -363 and -94 upstream from the CUG start codon contained an internal ribosome entry site leading to the cap-independent translation of c-myc open reading frames (ORFs). Here, we mapped a 50-nt sequence (-143 -94), which is sufficient to promote internal translation initiation of c-myc ORFs. Interestingly, this 50-nt element can be further dissected into two segments of 14 nt, each capable of activating internal translation initiation. We also demonstrate that this 50-nt element acts as the ribosome landing site from which the preinitiation ribosomal complex scans the mRNA until the CUG or AUG start codons.
Collapse
Affiliation(s)
- Sabrina Cencig
- Laboratoire de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Kieft JS, Grech A, Adams P, Doudna JA. Mechanisms of internal ribosome entry in translation initiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:277-83. [PMID: 12762029 DOI: 10.1101/sqb.2001.66.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J S Kieft
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
9
|
Nevins TA, Harder ZM, Korneluk RG, Holcík M. Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J Biol Chem 2003; 278:3572-9. [PMID: 12458215 DOI: 10.1074/jbc.m206781200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cellular stresses lead to the inhibition of protein synthesis. Despite this, some cellular mRNAs are selectively translated under these conditions. It was suggested that the presence of internal ribosome entry site (IRES) sequences in the 5'-untranslated regions allow these mRNAs to be actively translated despite the overall cessation of protein synthesis. Here we tested the hypothesis that the IRES elements of genes that are involved in the control of cell survival are distinctly regulated by cellular stresses. We show that the transient conditions of cellular stress favor the translation of pro-survival IRES, while the severe apoptotic conditions support translation of pro-death IRES elements. Furthermore, activation of pro-death IRES during the etoposide-induced apoptosis is caspase-dependent and correlates with the expression of apoptotic fragments of two members of the eIF4G translation initiation factor family, p97/DAP5/NAT1 and eIF4GI. Our results suggest that the regulation of IRES translation during stress contributes to the fine-tuning of cell fate.
Collapse
Affiliation(s)
- Tara A Nevins
- Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Larsen LK, Amri EZ, Mandrup S, Pacot C, Kristiansen K. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene: alternative promoter usage and splicing yield transcripts exhibiting differential translational efficiency. Biochem J 2002; 366:767-75. [PMID: 12059785 PMCID: PMC1222822 DOI: 10.1042/bj20011821] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2001] [Revised: 05/07/2002] [Accepted: 06/12/2002] [Indexed: 11/17/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) beta/delta is ubiquitously expressed, but the level of expression differs markedly between different cell types. In order to determine the molecular mechanisms governing PPARbeta/delta gene expression, we have isolated and characterized the mouse gene encoding PPARbeta/delta. The gene spans approx. 41 kb and comprises 11 exons of which the six exons located in the 3'-end of the gene are included in all transcripts. Primer-extension and 5'-rapid amplification of cDNA ends experiments revealed the presence of multiple transcription start points and splice variants, originating from the use of at least four different promoters. One of these transcription start points was found to be used predominantly in all tissues examined. Initiation from this major transcription start point gives rise to a transcript with a 548 nt 5'-untranslated leader containing eight upstream AUG codons. We show that the presence of the 548 nt leader resulted in a low translational efficiency of the corresponding PPARbeta/delta mRNA and propose, based on structural features of the 5'-untranslated region, that translational initiation may be mediated via an internal ribosome entry site-dependent mechanism.
Collapse
MESH Headings
- 3T3 Cells
- 5' Untranslated Regions
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- Codon
- DNA, Complementary/metabolism
- Exons
- Mice
- Models, Genetic
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Leif K Larsen
- Rheoscience A/S, Glerupvej 2, DK-2610 Rødovre, Denmark.
| | | | | | | | | |
Collapse
|
11
|
van der Velden AW, van Nierop K, Voorma HO, Thomas AAM. Ribosomal scanning on the highly structured insulin-like growth factor II-leader 1. Int J Biochem Cell Biol 2002; 34:286-97. [PMID: 11849996 DOI: 10.1016/s1357-2725(01)00116-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complex architecture of human insulin-like growth factor (IGF) II-leader 1 of 592 nucleotides (nt), with one open reading frame (ORF), and the potential to fold into stable structures makes efficient linear ribosomal scanning difficult to comprehend. Indeed, leader 1-driven reporter expression is low in rabbit reticulocyte lysate. Contrarily, leader 1 is very efficient in cells. Therefore, we tested whether this 5'UTR uses an alternative mechanism for translation initiation in vivo, internal entry or ribosomal shunting. Internal initiation was tested by introducing leader 1 into the intercistronic region of a bicistronic vector. Second cistron expression, driven by leader 1, was lower than by the intercistronic beta-globin 5'UTR, indicating that leader 1 does not contain an internal ribosomal entry site (IRES). Shunting was tested by inserting hairpin (HP) structures, capable of blocking ribosomal scanning, at eight positions in leader 1. After transfection, these mutant 5'UTRs were incapable of directing reporter expression. Less stable HPs at the same positions increased the activity to 50% of wild-type activity, indicating that insertions at these positions are not disastrous for initiation. These data indicate that the translational machinery encounters major parts of leader 1. As scanning seems unlikely, and internal entry and shunting were shown not to occur, we discuss a modified scanning mechanism for architecturally complex 5'UTRs.
Collapse
Affiliation(s)
- Alike W van der Velden
- Department of Developmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
12
|
Morley SJ. The regulation of eIF4F during cell growth and cell death. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:1-37. [PMID: 11575157 DOI: 10.1007/978-3-662-09889-9_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S J Morley
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
13
|
Koh DCY, Liu DX, Wong SM. A six-nucleotide segment within the 3' untranslated region of hibiscus chlorotic ringspot virus plays an essential role in translational enhancement. J Virol 2002; 76:1144-53. [PMID: 11773390 PMCID: PMC135814 DOI: 10.1128/jvi.76.3.1144-1153.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA plant viruses use various translational regulatory mechanisms to control their gene expression. Translational enhancement of viral mRNAs that leads to higher levels of protein synthesis from specific genes may be essential for the virus to successfully compete for cellular translational machinery. The control elements have yet to be analyzed for members of the genus Carmovirus, a small group of plant viruses with positive-sense RNA genomes. In this study, we examined the 3' untranslated region (UTR) of hibiscus chlorotic ringspot virus (HCRSV) genomic RNA (gRNA) and subgenomic RNA (sgRNA) for its role in the translational regulation of viral gene expression. The results showed that the 3' UTR of HCRSV significantly enhanced the translation of several open reading frames on gRNA and sgRNA and a viral gene in a bicistronic construct with an inserted internal ribosome entry site. Through deletion and mutagenesis studies of both the bicistronic construct and full-length gRNA, we demonstrated that a six-nucleotide sequence, GGGCAG, that is complementary to the 3' region of the 18S rRNA and a minimal length of 180 nucleotides are required for the enhancement of translation induced by the 3' UTR.
Collapse
Affiliation(s)
- Dora Chin-Yen Koh
- Department of Biological Sciences, The National University of Singapore, Singapore 117543, Republic of Singapore
| | | | | |
Collapse
|
14
|
Nanbru C, Prats AC, Droogmans L, Defrance P, Huez G, Kruys V. Translation of the human c-myc P0 tricistronic mRNA involves two independent internal ribosome entry sites. Oncogene 2001; 20:4270-80. [PMID: 11464293 DOI: 10.1038/sj.onc.1204548] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/08/2022]
Abstract
The human c-myc proto-oncogene is transcribed from four alternative promoters (P0, P1, P2, and P3) giving rise to mRNAs having 5' leader sequences of various length. The c-myc P0 mRNA contains three open reading frames (ORFs), the last one encoding c-Myc1 and c-Myc2 proteins generated by alternative translation initiated at CUG and AUG codons. The middle ORF (MYCHEX1) and the 5' ORF (ORF1) code for proteins 188 and 114 amino acids in length, respectively. We and others previously identified an internal ribosome entry site (IRES) in P0 and P2 c-myc mRNAs, promoting the cap-independent translation of c-Myc1 and c-Myc2. Here, we report the presence of a second IRES (named IRES1) promoting the cap-independent translation of MYCHEX1 in c-myc P0 mRNA. Using deletion analysis, we mapped an 80-nt region essential for IRES1 activity. c-myc P0 mRNA is thus the first eukaryotic polycistronic mRNA described for which translation initiation of two different open reading frames (MYCHEX1 and c-Myc1/c-Myc2) involves internal ribosome entry.
Collapse
Affiliation(s)
- C Nanbru
- Laboratoire de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, rue Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- M Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
16
|
Giraud S, Greco A, Brink M, Diaz JJ, Delafontaine P. Translation initiation of the insulin-like growth factor I receptor mRNA is mediated by an internal ribosome entry site. J Biol Chem 2001; 276:5668-75. [PMID: 11063741 DOI: 10.1074/jbc.m005928200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin-like growth factor I receptor (IGF-IR) is a heterotetrameric receptor mediating the effects of insulin-like growth I and other growth factors. This receptor is encoded by an mRNA containing an unusually long, G-C-rich, and highly structured 5' untranslated region. Using bicistronic constructs, we demonstrated here that the 5' untranslated region of the IGF-IR allows translation initiation by internal ribosome entry and therefore constitutes an internal ribosome entry site. In vitro cross-linking revealed that this internal ribosome entry site binds a protein of 57 kDa. Immunoprecipitation of UV cross-linked proteins proved that this protein was the polypyrimidine tract-binding protein, a well known regulator of picornavirus mRNA translation. The efficiency of translation of the endogenous IGF-IR mRNA is not affected by rapamycin, which is a potent inhibitor of cap-dependent translation. This result provides evidence that the endogenous IGF-IR mRNA is translated, at least in part, through a cap-independent mechanism. This is the first report of a growth factor receptor containing sequence elements that allow translation initiation to occur by internal initiation. Because the IGF-IR has a pivotal function in the cell cycle, this mechanism of translation regulation could play a crucial role in the control of cell proliferation and differentiation.
Collapse
Affiliation(s)
- S Giraud
- Division of Cardiology, University Hospital of Geneva, Rue Micheli-du-Crest 24, 1211 Geneva 14, Switzerland and the INSERM Unité 369, Faculté de Médecine Lyon RTH Laennec, 7 Rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | | | | | | | | |
Collapse
|
17
|
Buck CB, Shen X, Egan MA, Pierson TC, Walker CM, Siliciano RF. The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J Virol 2001; 75:181-91. [PMID: 11119587 PMCID: PMC113911 DOI: 10.1128/jvi.75.1.181-191.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several retroviruses have recently been shown to promote translation of their gag gene products by internal ribosome entry. In this report, we show that mRNAs containing the human immunodeficiency virus type 1 (HIV-1) gag open reading frame (ORF) exhibit internal ribosome entry site (IRES) activity that can promote translational initiation of Pr55(gag). Remarkably, this IRES activity is driven by sequences within the gag ORF itself and is not dependent on the native gag 5'-untranslated region (UTR). This cap-independent mechanism for Pr55(gag) translation may help explain the high levels of translation of this protein in the face of major RNA structural barriers to scanning ribosomes found in the gag 5' UTR. The gag IRES activity described here also drives translation of a novel 40-kDa Gag isoform through translational initiation at an internal AUG codon found near the amino terminus of the Pr55(gag) capsid domain. Our findings suggest that this low-abundance Gag isoform may be important for wild-type replication of HIV-1 in cultured cells. The activities of the HIV-1 gag IRES may be an important feature of the HIV-1 life cycle and could serve as a novel target for antiretroviral therapeutic strategies.
Collapse
Affiliation(s)
- C B Buck
- Program in Cellular and Molecular Medicine, Cellular and Molecular Biology, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
18
|
Urwin P, Yi L, Martin H, Atkinson H, Gilmartin PM. Functional characterization of the EMCV IRES in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:583-9. [PMID: 11123797 DOI: 10.1046/j.1365-313x.2000.00904.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The translation of eukaryotic messenger RNA is typically dependent upon the presence of an m7GpppN cap structure at the 5' end of the transcript. However, several animal viruses, including the Picorna viruses, have been shown to exhibit cap-independent translation through the presence of an internal ribosome entry site or IRES. This IRES-mediated cap-independent internal translation initiation has been exploited to generate bicistronic transcripts that function in animal cells. Recently IRES elements have also been identified in a small number of vertebrate, insect and yeast cellular messenger RNAs although no such sequences have been identified in endogenous plant genes and there are no reports of animal virus derived IRES activity in plant cells. Here we have constructed a bicistronic gene containing both green fluorescent protein and luciferase open-reading frames separated by the encephalomyocarditis IRES element under the control of the CaMV 35S promoter. Northern analysis reveals expression of the bicistronic transcript and in vivo imaging of GFP and luciferase activities demonstrates the functional presence of both proteins. Western blot analysis confirms the independent translation of both reporter proteins. These data suggest that insertion of the encephalomyocarditis virus (EMCV) IRES element between two open-reading frames of a plant bicistronic transcript can mediate translation of the second open-reading frame. This activity is more apparent in the leaves, than in the roots, of transgenic seedlings carrying the bicistronic reporter gene construct.
Collapse
Affiliation(s)
- P Urwin
- Centre for Plant Sciences, Leeds Institute for Plant Biotechnology and Agriculture, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
19
|
Abstract
Translation initiation of human Bip mRNA is directed by an internal ribosomal entry site (IRES) located in the 5' non-translated region. No trans-acting factor possibly involved in this process has as of yet been identified. For the encephalomyocarditis virus and other picornaviruses, polypyrimidine tract-binding protein (PTB) has been found to enhance the translation through IRES elements, probably by interaction with the IRES structure. Here, we report that PTB specifically binds to the central region (nt 50-117) of the Bip 5' non-translated region. Addition of purified PTB to rabbit reticulocyte lysate and overexpression of PTB in Cos-7 cells selectively inhibited Bip IRES-dependent translation. On the other hand, depletion of endogenous PTB or addition of an RNA interacting with PTB enhanced the translational initiation directed by Bip IRES. These suggest that PTB can either enhance or inhibit IRES-dependent translation depending on mRNAs.
Collapse
Affiliation(s)
- Y K Kim
- NRL, Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San31, Pohang, Hyoja-Dong, 790-784, Korea
| | | | | |
Collapse
|
20
|
Watada H, Mirmira RG, Leung J, German MS. Transcriptional and translational regulation of beta-cell differentiation factor Nkx6.1. J Biol Chem 2000; 275:34224-30. [PMID: 10938085 DOI: 10.1074/jbc.m004981200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the mature pancreas, the homeodomain transcription factor Nkx6.1 is uniquely restricted to beta-cells. Nkx6.1 also is expressed in developing beta-cells and plays an essential role in their differentiation. Among cell lines, both beta- and alpha-cell lines express nkx6.1 mRNA; but no protein can be detected in the alpha-cell lines, suggesting that post-transcriptional regulation contributes to the restriction of Nkx6.1 to beta-cells. To investigate the regulator of Nkx6.1 expression, we outlined the structure of the mouse nkx6.1 gene, and we identified regions that direct cell type-specific expression. The nkx6.1 gene has a long 5'-untranslated region (5'-UTR) downstream of a cluster of transcription start sites. nkx6.1 gene sequences from -5.6 to +1.0 kilobase pairs have specific promoter activity in beta-cell lines but not in NIH3T3 cells. This activity is dependent on sequences located at about -800 base pairs and on the 5'-UTR. Electrophoretic mobility shift assays demonstrate that homeodomain transcription factors PDX1 and Nkx2.2 can bind to the sequence element located at -800 base pairs. In addition, dicistronic assays establish that the 5'-UTR region functions as a potent internal ribosomal entry site, providing cell type-specific regulation of translation. These data demonstrate that complex regulation of both Nkx6.1 transcription and translation provides the specificity of expression required during pancreas development.
Collapse
Affiliation(s)
- H Watada
- Hormone Research Institute, University of California, San Francisco, California 94143-0534, USA
| | | | | | | |
Collapse
|
21
|
Holcik M, Sonenberg N, Korneluk RG. Internal ribosome initiation of translation and the control of cell death. Trends Genet 2000; 16:469-73. [PMID: 11050335 DOI: 10.1016/s0168-9525(00)02106-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The majority of cellular stresses lead to the inhibition of cap-dependent translation. Some mRNAs, however, are translated by a cap-independent mechanism, mediated by ribosome binding to internal ribosome entry site (IRES) elements located in the 5' untranslated region. Interestingly, IRES elements are found in the mRNAs of several survival factors, oncogenes and proteins crucially involved in the control of apoptosis. These mRNAs are translated under a variety of stress conditions, including hypoxia, serum deprivation, irradiation and apoptosis. Thus, IRES-mediated translational control might have evolved to regulate cellular responses in acute but transient stress conditions that would otherwise lead to cell death.
Collapse
Affiliation(s)
- M Holcik
- Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, ON, K1H 8L1, Ottawa, Canada.
| | | | | |
Collapse
|
22
|
Harries M, Phillipps N, Anderson R, Prentice G, Collins M. Comparison of bicistronic retroviral vectors containing internal ribosome entry sites (IRES) using expression of human interleukin-12 (IL-12) as a readout. J Gene Med 2000; 2:243-9. [PMID: 10953915 DOI: 10.1002/1521-2254(200007/08)2:4<243::aid-jgm115>3.0.co;2-q] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Many gene therapy applications require the co-ordinated delivery of more than one reading frame. We wished to systematically compare IRES in the context of a retroviral vector to determine which was the most effective for protein production and viral titre. To do this we monitored expression of IL-12, as co-ordinated expression of both p35 and p40 subunits is required for production of the active heterodimer. METHODS Retroviral vectors were constructed to express human IL-12 in which an IRES initiates translation of the p40 subunit, with the IRES optimally aligned to the initiation codon of p40. Vectors containing an IRES from either polio virus (PV), encephalomyocarditis virus (EMCV), foot and mouth disease virus (FMDV) or murine leukaemia virus (MLV) were compared with a vector expressing IL-12 as a single protein (Flexi-12; in which the two IL-12 subunits are linked by a peptide). RESULTS All vectors produced high titre virus and directed synthesis of IL-12 in target cells. The bicistronic vectors containing the IRES from EMCV and PV were the most effective in infected 3T3 cells, producing up to 40 ng IL-12/10(6) cells/48 h, similar to the 50 ng IL-12/10(6) cells/48 h obtained with Flexi-12. The IRES from PV was the most efficient in human melanoma cells. CONCLUSIONS Bicistronic retroviral vectors have been constructed that effectively transduce target cells and produce high levels of protein. Target cell specificity of IRES function was observed. The combination of Flexi-12 and the IRES from PV will be useful in the generation of vectors expressing IL-12 with a second protein such as IL-2 for transduction of melanoma cells.
Collapse
Affiliation(s)
- M Harries
- Department of Immunology, University College London, The Windeyer Institute of Medical Sciences, UK
| | | | | | | | | |
Collapse
|
23
|
Pozner A, Goldenberg D, Negreanu V, Le SY, Elroy-Stein O, Levanon D, Groner Y. Transcription-coupled translation control of AML1/RUNX1 is mediated by cap- and internal ribosome entry site-dependent mechanisms. Mol Cell Biol 2000; 20:2297-307. [PMID: 10713153 PMCID: PMC85390 DOI: 10.1128/mcb.20.7.2297-2307.2000] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AML1/RUNX1 belongs to the runt domain transcription factors that are important regulators of hematopoiesis and osteogenesis. Expression of AML1 is regulated at the level of transcription by two promoters, distal (D) and proximal (P), that give rise to mRNAs bearing two distinct 5' untranslated regions (5'UTRs) (D-UTR and P-UTR). Here we show that these 5'UTRs act as translation regulators in vivo. AML1 mRNAs bearing the uncommonly long (1,631-bp) P-UTR are poorly translated, whereas those with the shorter (452-bp) D-UTR are readily translated. The low translational efficiency of the P-UTR is attributed to its length and the cis-acting elements along it. Transfections and in vitro assays with bicistronic constructs demonstrate that the D-UTR mediates cap-dependent translation whereas the P-UTR mediates cap-independent translation and contains a functional internal ribosome entry site (IRES). The IRES-containing bicistronic constructs are more active in hematopoietic cell lines that normally express the P-UTR-containing mRNAs. Furthermore, we show that the IRES-dependent translation increases during megakaryocytic differentiation but not during erythroid differentiation, of K562 cells. These results strongly suggest that the function of the P-UTR IRES-dependent translation in vivo is to tightly regulate the translation of AML1 mRNAs. The data show that AML1 expression is regulated through usage of alternative promoters coupled with IRES-mediated translation control. This IRES-mediated translation regulation adds an important new dimension to the fine-tuned control of AML1 expression.
Collapse
Affiliation(s)
- A Pozner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76000, Israel
| | | | | | | | | | | | | |
Collapse
|
24
|
Gosert R, Chang KH, Rijnbrand R, Yi M, Sangar DV, Lemon SM. Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites In vivo. Mol Cell Biol 2000; 20:1583-95. [PMID: 10669736 PMCID: PMC85342 DOI: 10.1128/mcb.20.5.1583-1595.2000] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The regulation of cap-independent translation directed by the internal ribosome entry sites (IRESs) present in some viral and cellular RNAs is poorly understood. Polypyrimidine-tract binding protein (PTB) binds specifically to several viral IRESs. IRES-directed translation may be reduced in cell-free systems that are depleted of PTB and restored by reconstitution of lysates with recombinant PTB. However, there are no data concerning the effects of PTB on IRES-directed translation in vivo. We transfected cells with plasmids expressing dicistronic transcripts in which the upstream cistron encoded PTB or PTB deletion mutants (including a null mutant lacking amino acid residues 87 to 531). The downstream cistron encoded a reporter protein (chloramphenicol acetyltransferase [CAT]) under translational control of the poliovirus IRES which was placed within the intercistronic space. In transfected BS-C-1 cells, transcripts expressing wild-type PTB produced 12-fold more reporter protein than similar transcripts encoding the PTB null mutant. There was a 2.4-fold difference in CAT produced from these transcripts in HeLa cells, which contain a greater natural abundance of PTB. PTB similarly stimulated CAT production from transcripts containing the IRES of hepatitis A virus or hepatitis C virus in BS-C-1 cells and Huh-7 cells (37- to 44-fold increase and 5 to 5.3-fold increase, respectively). Since PTB had no quantitative or qualitative effect on transcription from these plasmids, we conclude that PTB stimulates translation of representative picornaviral and flaviviral RNAs in vivo. This is likely to reflect the stabilization of higher ordered RNA structures within the IRES and was not observed with PTB mutants lacking RNA recognition motifs located in the C-terminal third of the molecule.
Collapse
Affiliation(s)
- R Gosert
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7030, USA
| | | | | | | | | | | |
Collapse
|
25
|
Bai C, Tolias PP. Genetic analysis of a La homolog in Drosophila melanogaster. Nucleic Acids Res 2000; 28:1078-84. [PMID: 10666446 PMCID: PMC102613 DOI: 10.1093/nar/28.5.1078] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/1999] [Revised: 01/11/2000] [Accepted: 01/11/2000] [Indexed: 01/08/2023] Open
Abstract
People afflicted with certain rheumatological auto-immune diseases produce autoantibodies directed against a select group of proteins such as the La auto-antigen. Biochemical studies have revealed La to be a promiscuous RNA-binding protein that appears to play a role in a variety of intracellular activities such as processing and/or transport of RNA polymerase III precursor transcripts and translational regulation from internal ribosome entry sites (IRES). We have previously identified an RNA-binding protein that is a Drosophila melanogaster homolog of La (D-La) and shown that early transcript accumulation throughout the embryo is later refined to be most prevalent in the visceral mesoderm, gut, gonads and salivary glands. Here we report the first in vivo genetic characterization of a La homolog in a multicellular eukaryote. Lethality was observed in homozygous larvae harboring a small chromosomal deletion that removed the D-La gene, which was rescued by an inducible D-La cDNA transgene. This implies that D-La confers essential functions for larval development. In addition, loss of D-La function gives rise to defects in embryonic midgut morphogenesis; one of the midgut defects correlates with loss of Ultrabithorax ( Ubx ) expression along the second midgut constriction. Finally, genetic interactions between chromosomal deficiencies that remove D-La and certain Ubx alleles were demonstrated in adults. Our results support the hypothesis that D-La provides essential functions for proper Drosophila development and imply that the conserved La family of proteins may perform critical developmental functions in higher eukaryotes.
Collapse
Affiliation(s)
- C Bai
- Center for Applied Genomics, Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
26
|
Sizova DV, Shatsky IN. Internal ribosome entry sites of viral and cellular RNAs. Mol Biol 2000. [DOI: 10.1007/bf02759634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Kim YK, Jang SK. La protein is required for efficient translation driven by encephalomyocarditis virus internal ribosomal entry site. J Gen Virol 1999; 80 ( Pt 12):3159-3166. [PMID: 10567647 DOI: 10.1099/0022-1317-80-12-3159] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Translation of internal ribosomal entry site (IRES)-dependent mRNAs is mediated by RNA-binding proteins as well as canonical translation factors. In order to elucidate the roles of RNA-binding proteins in IRES-dependent translation, the role of polypyrimidine tract-binding protein (PTB) and La protein in encephalomyocarditis virus (EMCV) IRES-dependent translation was investigated. PTB was required for efficient EMCV IRES-driven translation but, intriguingly, an excess of PTB suppressed it. Such a translational suppression by surplus PTB was relieved by addition of La protein. A possible role for La protein in IRES-dependent translation is discussed.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Department of Life Science, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea1
| | - Sung Key Jang
- Department of Life Science, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea1
| |
Collapse
|
28
|
Attal J, Théron MC, Houdebine LM. The optimal use of IRES (internal ribosome entry site) in expression vectors. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:161-5. [PMID: 10596757 DOI: 10.1016/s1050-3862(99)00021-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In higher eucaryotes, natural bicistronic mRNA have been rarely found so far. The second cistron of constructed bicistronic mRNAs is generally considered as not translated unless special sequences named internal ribosome entry site (IRES) are added between the two cistrons. These sequences are believed to recruit ribosomes independently of a cap structure. In the present report, a new IRES found in the HTLV-1 genome is described. A systematic study revealed that this IRES, but also the poliovirus (polio) and the encephalomyocarditis virus (EMCV) IRES work optimally when they are added about 100 nucleotides after the termination codon of the first cistron. Unexpectedly, these IRES became totally inefficient when added after 300-500 nucleotide spacers. This result and others are not compatible with the admitted mechanism of IRES action. The IRES appear to be rather potent translation stimulators. Their effects are particularly emphasized in cells in which the normal mechanism of translation initiation is inhibited. For these reasons, we suggest to call IRES rescue translation stimulators (RTS).
Collapse
Affiliation(s)
- J Attal
- Laboratoire de Différenciation Cellulaire, Institut National de la Recherche Agronomique, Jousy-en-Josas, France
| | | | | |
Collapse
|
29
|
López-Lastra M, Ulrici S, Gabus C, Darlix JL. Identification of an internal ribosome entry segment in the 5' region of the mouse VL30 retrotransposon and its use in the development of retroviral vectors. J Virol 1999; 73:8393-402. [PMID: 10482590 PMCID: PMC112857 DOI: 10.1128/jvi.73.10.8393-8402.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse virus-like 30S RNAs (VL30m) constitute a family of retrotransposons, present at 100 to 200 copies, dispersed in the mouse genome. They display little sequence homology to Moloney murine leukemia virus (MoMLV), do not encode virus-like proteins, and have not been implicated in retroviral carcinogenesis. However, VL30 RNAs are efficiently packaged into MLV particles that are propagated in cell culture. In this study, we addressed whether the 5' region of VL30m could replace the 5' leader of MoMLV functionally in a recombinant vector construct. Our data confirm that the putative packaging sequence of VL30 is located within the 5' region (nucleotides 362 to 1149 with respect to the cap structure) and that it can replace the packaging sequence of MoMLV. We also show that VL30m contains an internal ribosome entry segment (IRES) in the 5' region, as do MoMLV, Friend murine leukemia virus, Harvey murine sarcoma virus, and avian reticuloendotheliosis virus type A. Our data show that both the packaging and IRES functions of the 5' region of VL30m RNA can be efficiently used to develop retrotransposon-based vectors.
Collapse
Affiliation(s)
- M López-Lastra
- Labo Rétro, Unité de Virologie Humaine-U412, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | | | | | | |
Collapse
|
30
|
Kieft JS, Zhou K, Jubin R, Murray MG, Lau JY, Doudna JA. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol 1999; 292:513-29. [PMID: 10497018 DOI: 10.1006/jmbi.1999.3095] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) located in the 5' untranslated region of the genomic RNA that drives cap-independent initiation of translation of the viral message. The approximate secondary structure and minimum functional length of the HCV IRES are known, and extensive mutagenesis has established that nearly all secondary structural domains are critical for activity. However, the presence of an IRES RNA tertiary fold and its functional relevance have not been established. Using chemical and enzymatic probes of the HCV IRES RNA in solution, we show that the IRES adopts a unique three-dimensional structure at physiological salt concentrations in the absence of additional cofactors or the translation apparatus. Folding of the IRES involves cooperative uptake of magnesium and is driven primarily by charge neutralization. This tertiary structure contains at least two independently folded regions which closely correspond to putative binding sites for the 40 S ribosomal subunit and initiation factor 3 (eIF3). Point mutations that inhibit IRES folding also inhibit its function, suggesting that the IRES tertiary structure is essential for translation initiation activity. Chemical and enzymatic probing data and small-angle X-ray scattering (SAXS) experiments in solution show that upon folding, the IRES forms an extended structure in which functionally important loops are exposed. These results suggest that the 40 S ribosomal subunit and eIF3 bind an HCV IRES that is prefolded to spatially organize recognition domains.
Collapse
Affiliation(s)
- J S Kieft
- Department of Molecular Biophysics and Biochemistry and Howard Hughes Medical Institute, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Regulation of translation initiation is a central control point in animal cells. We review our current understanding of the mechanisms of regulation, drawing particularly on examples in which the biological consequences of the regulation are clear. Specific mRNAs can be controlled via sequences in their 5' and 3' untranslated regions (UTRs) and by alterations in the translation machinery. The 5'UTR sequence can determine which initiation pathway is used to bring the ribosome to the initiation codon, how efficiently initiation occurs, and which initiation site is selected. 5'UTR-mediated control can also be accomplished via sequence-specific mRNA-binding proteins. Sequences in the 3' untranslated region and the poly(A) tail can have dramatic effects on initiation frequency, with particularly profound effects in oogenesis and early development. The mechanism by which 3'UTRs and poly(A) regulate initiation may involve contacts between proteins bound to these regions and the basal translation apparatus. mRNA localization signals in the 3'UTR can also dramatically influence translational activation and repression. Modulations of the initiation machinery, including phosphorylation of initiation factors and their regulated association with other proteins, can regulate both specific mRNAs and overall translation rates and thereby affect cell growth and phenotype.
Collapse
Affiliation(s)
- N K Gray
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
32
|
Abstract
There is now a growing body of evidence which suggests links between the regulation of protein synthesis and the disruption of cell behaviour that typifies cancer. This directed issue of the International Journal of Biochemistry and Cell Biology presents several review articles of relevance to this field. The topics covered include the significance of the regulation and overexpression of polypeptide chain initiation factors for cell transformation and malignancy, the role of mRNA structure in the control of synthesis of key growth regulatory proteins, the actions of the eIF2 alpha-specific protein kinase PKR in the control cell growth and apoptosis, and the involvement of the elongation factor eEF1 in oncogenesis. The purpose of this article is to give an overview of the field and to indicate where we may expect developments to occur in the next few years.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
33
|
van der Velden AW, Thomas AA. The role of the 5' untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 1999; 31:87-106. [PMID: 10216946 DOI: 10.1016/s1357-2725(98)00134-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cap-dependent ribosomal scanning occurs on the majority of cellular 5' UTRs. This process is severely hampered on long 5' UTRs, containing AUGs and secondary structure. These characteristics are often found in mRNAs encoding regulatory proteins like proto-oncogenes, growth factors, their receptors, and homeodomain proteins. A number of these mRNAs use an alternative mechanism of translation initiation, involving an internal ribosomal entry site (IRES). Cellular mRNAs containing a complex 5' UTR or an IRES share an intriguing characteristic: their translational efficiency can be very specifically regulated by their 5' UTR, providing post-transcriptional regulation. During embryonic development, the 5' UTRs of Antp. Ubx RAR beta 2 c-mos and c-myc regulate protein expression in a spatio-temporal manner. Translation initiation on a number of growth factor RNAs (IGFII, PDGF2, TGF beta, FGF-2, and VEGF) is specifically regulated during differentiation, growth, and stress. Furthermore, 5' UTR activity, mutations in the 5' UTR, or the occurrence of alternative 5' UTRs have been implicated in the progression of various forms of cancer. The mechanisms involved in 5' UTR mediated control are not well understood. Binding of trans-acting factors could mediate translation stimulation or repression. Furthermore, the precise localization of upstream AUGs and the activity of the cap-binding initiation factor 4E are suggested to be important for translation regulation of these mRNAs. This review focuses on 5' UTRs whose activity is regulated, the processes during which this regulation occurs, and as far as known the mechanisms involved.
Collapse
Affiliation(s)
- A W van der Velden
- Department of Molecular Cell Biology, Utrecht University, The Netherlands.
| | | |
Collapse
|
34
|
Arnaud E, Touriol C, Boutonnet C, Gensac MC, Vagner S, Prats H, Prats AC. A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor. Mol Cell Biol 1999; 19:505-14. [PMID: 9858574 PMCID: PMC83908 DOI: 10.1128/mcb.19.1.505] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Four isoforms of human fibroblast growth factor 2 (FGF-2) result from alternative initiations of translation at three CUG start codons and one AUG start codon. Here we characterize a new 34-kDa FGF-2 isoform whose expression is initiated at a fifth initiation codon. This 34-kDa FGF-2 was identified in HeLa cells by using an N-terminal directed antibody. Its initiation codon was identified by site-directed mutagenesis as being a CUG codon located at 86 nucleotides (nt) from the FGF-2 mRNA 5' end. Both in vitro translation and COS-7 cell transfection using bicistronic RNAs demonstrated that the 34-kDa FGF-2 was exclusively expressed in a cap-dependent manner. This contrasted with the expression of the other FGF-2 isoforms of 18, 22, 22.5, and 24 kDa, which is controlled by an internal ribosome entry site (IRES). Strikingly, expression of the other FGF-2 isoforms became partly cap dependent in vitro in the presence of the 5,823-nt-long 3' untranslated region of FGF-2 mRNA. Thus, the FGF-2 mRNA can be translated both by cap-dependent and IRES-driven mechanisms, the balance between these two mechanisms modulating the ratio of the different FGF-2 isoforms. The function of the new FGF-2 was also investigated. We found that the 34-kDa FGF-2, in contrast to the other isoforms, permitted NIH 3T3 cell survival in low-serum conditions. A new arginine-rich nuclear localization sequence (NLS) in the N-terminal region of the 34-kDa FGF-2 was characterized and found to be similar to the NLS of human immunodeficiency virus type 1 Rev protein. These data suggest that the function of the 34-kDa FGF-2 is mediated by nuclear targets.
Collapse
Affiliation(s)
- E Arnaud
- INSERM U397, Endocrinologie et Communication Cellulaire, Institut Louis Bugnard, C.H.U. Rangueil, 31403 Toulouse Cedex 04, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Huez I, Créancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 1998; 18:6178-90. [PMID: 9774635 PMCID: PMC109205 DOI: 10.1128/mcb.18.11.6178] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mRNA of vascular endothelial growth factor (VEGF), the major angiogenic growth factor, contains an unusually long (1,038 nucleotides) and structured 5' untranslated region (UTR). According to the classical translation initiation model of ribosome scanning, such a 5' UTR is expected to be a strong translation inhibitor. In vitro and bicistronic strategies were used to show that the VEGF mRNA translation was cap independent and occurred by an internal ribosome entry process. For the first time, we demonstrate that two independent internal ribosome entry sites (IRESs) are present in this 5' UTR. IRES A is located within the 300 nucleotides upstream from the AUG start codon. RNA secondary structure prediction and site-directed mutagenesis allowed the identification of a 49-nucleotide structural domain (D4) essential to IRES A activity. UV cross-linking experiments revealed that IRES A activity was correlated with binding of a 100-kDa protein to the D4 domain. IRES B is located in the first half of the 5' UTR. An element between nucleotides 379 and 483 is required for its activity. Immunoprecipitation experiments demonstrated that a main IRES B-bound protein was the polypyrimidine tract binding protein (PTB), a well-known regulator of picornavirus IRESs. However, we showed that binding of the PTB on IRES B does not seem to be correlated with its activity. Evidence is provided of an original cumulative effect of two IRESs, probably controlled by different factors, to promote an efficient initiation of translation at the same AUG codon.
Collapse
Affiliation(s)
- I Huez
- INSERM U397, Endocrinologie et Communication Cellulaire, Institut Fédératif de Recherche Louis Bugnard, CHU Rangueil, 31403 Toulouse cedex 04, France
| | | | | | | | | | | |
Collapse
|
36
|
Kim JG, Armstrong RC, Berndt JA, Kim NW, Hudson LD. A secreted DNA-binding protein that is translated through an internal ribosome entry site (IRES) and distributed in a discrete pattern in the central nervous system. Mol Cell Neurosci 1998; 12:119-40. [PMID: 9790734 DOI: 10.1006/mcne.1998.0701] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Internal initiation of translation, a mechanism infrequently used by cellular messages, avoids the requirement of a methyl cap structure for translation of messenger RNAs. The mRNA transcript encoding the DNA-binding protein MYT2 represents one of the exceptional cellular messages that contains an internal ribosome entry site (IRES). The RNA pseudoknot structure located in the 5' untranslated region of MYT2 functions to promote translation in vivo. MYT2 was cloned by its specific binding to a TTCCA motif in the promoter region of a glial-specific gene, myelin proteolipid protein. MYT2 also recognizes single-stranded nucleic acids. In the central nervous system, MYT2 protein is found in oligodendrocyte progenitor cells, subsets of neurons, and cells of the choroid plexus together with ciliated ependymal cells. MYT2 protein can also be secreted from cells, an atypical event for a DNA-binding protein. The presence of an internal ribosome entry site in MYT2, together with the unusual localization of MYT2, suggests that this nucleic acid-binding protein may be in the class of proteins involved in cellular growth control and survival in the nervous system.
Collapse
Affiliation(s)
- J G Kim
- Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20892-4160, USA
| | | | | | | | | |
Collapse
|
37
|
Miller DL, Dibbens JA, Damert A, Risau W, Vadas MA, Goodall GJ. The vascular endothelial growth factor mRNA contains an internal ribosome entry site. FEBS Lett 1998; 434:417-20. [PMID: 9742966 DOI: 10.1016/s0014-5793(98)01025-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular endothelial growth factor (VEGF), an essential regulator of angiogenesis during early development as well as during the growth of solid tumours, bears an unusually large 5' untranslated region (5'-UTR) in the mRNA of over 1000 nucleotides. We found that the VEGF 5'-UTR, despite being GC-rich and containing an upstream short open reading frame, promotes efficient translation of a luciferase reporter. The VEGF 5'-UTR also allowed translation of luciferase from a dicistronic mRNA when placed between the two cistrons, demonstrating that it contains an internal ribosome entry site. Deletion analysis indicated that the IRES resides towards the 3' end of the 5'-UTR.
Collapse
Affiliation(s)
- D L Miller
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, SA, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 1998; 18:3112-9. [PMID: 9584152 PMCID: PMC108893 DOI: 10.1128/mcb.18.6.3112] [Citation(s) in RCA: 388] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic growth factor that promotes compensatory angiogenesis in circumstances of oxygen shortage. The requirement for translational regulation of VEGF is imposed by the cumbersome structure of the 5' untranslated region (5'UTR), which is incompatible with efficient translation by ribosomal scanning, and by the physiologic requirement for maximal VEGF production under conditions of hypoxia, where overall protein synthesis is compromised. Using bicistronic reporter gene constructs, we show that the 1,014-bp 5'UTR of VEGF contains a functional internal ribosome entry site (IRES). Efficient cap-independent translation is maintained under hypoxia, thereby securing efficient production of VEGF even under unfavorable stress conditions. To identify sequences within the 5'UTR required for maximal IRES activity, deletion mutants were analyzed. Elimination of the majority (851 nucleotides) of internal 5'UTR sequences not only maintained full IRES activity but also generated a significantly more potent IRES. Activity of the 163-bp long "improved" IRES element was abrogated, however, following substitution of a few bases near the 5' terminus as well as substitutions close to the translation start codon. Both the full-length 5'UTR and its truncated version function as translational enhancers in the context of a monocistronic mRNA.
Collapse
Affiliation(s)
- I Stein
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
39
|
Regulated multicistronic expression technology for mammalian metabolic engineering. CURRENT APPLICATIONS OF CELL CULTURE ENGINEERING 1998. [DOI: 10.1007/978-94-011-4786-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, Prats AC. Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 1997; 272:32061-6. [PMID: 9405401 DOI: 10.1074/jbc.272.51.32061] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human proto-oncogene c-myc encodes two proteins, c-Myc1 and c-Myc2, from two initiation codons, CUG and AUG, respectively. It is also transcribed from four alternative promoters (P0, P1, P2, and P3), giving rise to different RNA 5'-leader sequences, the long sizes of which suggest that they must be inefficiently translated by the classical ribosome scanning mechanism. Here we have examined the influence of three c-myc mRNA 5'-leaders on the translation of chimeric myc-CAT mRNAs. We observed that in the reticulocyte rabbit lysate, these 5'-leaders lead to cap-independent translation initiation. To determine whether this kind of initiation resulted from the presence of an internal ribosome entry site (IRES), COS-7 cells were transfected with bicistronic vectors containing the different c-myc 5'-leaders in the intercistronic region. An IRES was identified, requiring elements located within the P2 leader, between nucleotides -363 and -94 upstream from the CUG start codon. This is the first demonstration of the existence of IRES-dependent translation for a proto-oncogene. This IRES could be a translation enhancer, allowing activation of c-myc expression under the control of trans-acting factors and in response to specific cell stimuli.
Collapse
Affiliation(s)
- C Nanbru
- INSERM U397, Endocrinologie et Communication Cellulaire, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, Avenue Jean Poulhès, 31403 Toulouse Cedex 04, France
| | | | | | | | | | | | | |
Collapse
|
41
|
López-Lastra M, Gabus C, Darlix JL. Characterization of an internal ribosomal entry segment within the 5' leader of avian reticuloendotheliosis virus type A RNA and development of novel MLV-REV-based retroviral vectors. Hum Gene Ther 1997; 8:1855-65. [PMID: 9382952 DOI: 10.1089/hum.1997.8.16-1855] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The murine leukemia virus (MLV)-related type C viruses constitute a major class of retroviruses that includes numerous endogenous and exogenous mammalian viruses and the related avian spleen necrosis virus (SNV). The MLV-related viruses possess a long and multifunctional 5' untranslated leader involved in key steps of the viral life cycle--splicing, translation, RNA dimerization, encapsidation, and reverse transcription. Recent studies have shown that the 5' leader of Friend murine leukemia virus and Moloney murine leukemia virus can direct cap independent translation of gag precursor proteins (Berlioz et al., 1995; Vagner et al., 1995b). These data, together with structural homology studies (Koning et al., 1992), prompted us to undertake a search for new internal ribosome entry segment (IRES) of retroviral origin. Here we describe an IRES element within the 5' leader of avian reticuloendotheliosis virus type A (REV-A) genomic RNA. Data show that the REV-A 5' IRES element maps downstream of the packaging/dimerization (E/DLS) sequence (Watanabe and Temin, 1982; Darlix et al., 1992) and the minimal IRES sequence appears to be within a 129 nt fragment (nucleotides 452-580) of the 5' leader, immediately upstream of the gag AUG codon. The REV-A IRES has been successfully utilized in the construction of novel high titer MLV-based retroviral vectors, containing one or more IRES elements of retroviral origin. These retroviral constructs, which represent a starting point for the design of novel vectors suitable for gene therapy, are also of interest as a model system of internal translation initiation and its possible regulation during development, cancer, or virus infection.
Collapse
Affiliation(s)
- M López-Lastra
- LaboRétro, Unité de Virologie Humaine INSERM U412, Ecole Normale Supérieure de Lyon, France
| | | | | |
Collapse
|
42
|
Lee CG, Jeang KT, Martin MA, Pastan I, Gottesman MM. Efficient long-term coexpression of a hammerhead ribozyme targeted to the U5 region of HIV-1 LTR by linkage to the multidrug-resistance gene. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1997; 7:511-22. [PMID: 9361910 DOI: 10.1089/oli.1.1997.7.511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ribozymes as anti-HIV-1 agents hold promise for the treatment of AIDS. They can be delivered into cells either exogenously or through an expression system. For effective protection against HIV-1, sufficient and sustained amounts of the antiviral ribozymes must be delivered into target cells. The coexpression of a dominant selectable marker with ribozymes would serve to enrich for cells containing the molecular antiviral and facilitate prolonged expression of these ribozymes. The multidrug resistance gene (MDR1) is a potential clinically relevant selectable marker and offers many advantages over other known dominant selectable markers, including the use of diverse pharmacologically characterized drug or drug combinations for selection. Harvey sarcoma-based retroviral vectors encoding the MDR1 multidrug transporter with a hammerhead ribozyme targeted to highly conserved sequences within the HIV-1 U5 LTR segment have been constructed in a bicistronic format. The internal ribosome entry site (IRES) from encephalomyocarditis virus was used to initiate translation of the MDR1 mRNA. The ribozyme remained functional despite being tethered to MDR1. Long-term, high-level expression of both the ribozyme and MDR1, as evident by RT-PCR and FACS analysis, was observed in a human T cell line containing the construct selected with vincristine, a cytotoxic substrate for the multidrug transporter.
Collapse
Affiliation(s)
- C G Lee
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20895, USA
| | | | | | | | | |
Collapse
|
43
|
Yang Q, Sarnow P. Location of the internal ribosome entry site in the 5' non-coding region of the immunoglobulin heavy-chain binding protein (BiP) mRNA: evidence for specific RNA-protein interactions. Nucleic Acids Res 1997; 25:2800-7. [PMID: 9207027 PMCID: PMC146825 DOI: 10.1093/nar/25.14.2800] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 220 nucleotide 5'non-coding region (5'NCR) of the human immunoglobulin heavy chain binding protein (BiP) mRNA contains an internal ribosome entry site (IRES) that mediates the translation of the second cistron in a dicistronic mRNA in cultured mammalian cells. In this study, experiments are presented that locate the IRES immediately upstream of the start-site AUG codon in the BiP mRNA. Furthermore, crosslinking of thiouridine-labeled BiP IRES-containing RNA to cellular proteins identified the specific binding of two proteins, p60 and p95, to the 3'half of the BiP 5'NCR. Interestingly, both p60 and p95 bound also specifically to several viral IRES elements. This correlation suggests that p60 and p95 could have roles in internal initiation of cellular and viral IRES elements.
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | |
Collapse
|
44
|
Bernstein J, Sella O, Le SY, Elroy-Stein O. PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem 1997; 272:9356-62. [PMID: 9083072 DOI: 10.1074/jbc.272.14.9356] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has become clear that a given cell type can qualitatively and quantitatively affect the expression of the platelet-derived growth factor B (PDGF2/c-sis) gene at multiple levels. In a previous report, we showed that PDGF2/c-sis 5'-untranslated region has a translational modulating activity during megakaryocytic differentiation of K562 cells. This study points to the mechanism used for this translational modulation. The unusual mRNA leader, which imposes a major barrier to conventional ribosomal scanning, was found to contain an internal ribosomal entry site that becomes more potent in differentiating cells and was termed differentiation-linked internal ribosomal entry site (D-IRES). The D-IRES element defines a functional role for the cumbersome 1022-nucleotide-long mRNA leader and accounts for its uncommon, evolutionary conserved architecture. The differentiation-linked enhancement of internal translation, which provides an additional step to the fine tuning of PDGF2/c-sis gene expression, might be employed by numerous critical regulatory genes with unusual mRNA leaders and might have widespread implications for cellular growth and development.
Collapse
Affiliation(s)
- J Bernstein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
45
|
Yamanaka S, Poksay KS, Arnold KS, Innerarity TL. A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev 1997; 11:321-33. [PMID: 9030685 DOI: 10.1101/gad.11.3.321] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transgene expression of the apolipoprotein B mRNA-editing enzyme (APOBEC-1) causes dysplasia and carcinoma in mouse and rabbit livers. Using a modified differential display technique, we identified a novel mRNA (NAT1 for novel APOBEC-1 target no. 1) that is extensively edited at multiple sites in these livers. The aberrant editing alters encoded amino acids, creates stop codons, and results in markedly reduced levels of the NAT1 protein in transgenic mouse livers. NAT1 is expressed ubiquitously and is extraordinarily conserved among species. It has homology to the carboxy-terminal portion of the eukaryotic translation initiation factor (eIF) 4G that binds eIF4A and eIF4E to form eIF4F. NAT1 binds eIF4A but not eIF4E and inhibits both cap-dependent and cap-independent translation. NAT1 is likely to be a fundamental translational repressor, and its aberrant editing could contribute to the potent oncogenesis induced by overexpression of APOBEC-1.
Collapse
Affiliation(s)
- S Yamanaka
- University of California, San Francisco 94141-9100, USA
| | | | | | | |
Collapse
|
46
|
Mauro VP, Edelman GM. rRNA-like sequences occur in diverse primary transcripts: implications for the control of gene expression. Proc Natl Acad Sci U S A 1997; 94:422-7. [PMID: 9012798 PMCID: PMC19527 DOI: 10.1073/pnas.94.2.422] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/1996] [Indexed: 02/03/2023] Open
Abstract
Many eukaryotic mRNAs contain sequences that resemble segments of 28S and 18S rRNAs, and these rRNA-like sequences are present in both the sense and antisense orientations. Some are similar to highly conserved regions of the rRNAs, whereas others have sequence similarities to expansion segments. In particular, four 18S rRNA-like sequences are found in several hundred different genes, and the location of these four sequences within the various genes is not random. One of these rRNA-like sequences is preferentially located within protein coding regions immediately upstream of the termination codon of a number of genes. Northern blot analysis of poly(A)+ RNA from different vertebrates (chicken, cattle, rat, mouse, and human) revealed that a large number of discrete RNA molecules hybridize at high stringency to cloned probes prepared from the 28S or 18S rRNA sequences that were found to match those in mRNAs. Inhibition of polymerase II activity, which prevents the synthesis of most mRNAs, abolished most of the hybridization to the rRNA probes. We consider the hypotheses that rRNA-like sequences may have spread throughout eukaryotic genomes and that their presence in primary transcripts may differentially affect gene expression.
Collapse
Affiliation(s)
- V P Mauro
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
47
|
Pestova TV, Hellen CU, Shatsky IN. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 1996; 16:6859-69. [PMID: 8943341 PMCID: PMC231689 DOI: 10.1128/mcb.16.12.6859] [Citation(s) in RCA: 413] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Translation of picornavirus RNA is initiated after ribosomal binding to an internal ribosomal entry site (IRES) within the 5' untranslated region. We have reconstituted IRES-mediated initiation on encephalomyocarditis virus RNA from purified components and used primer extension analysis to confirm the fidelity of 48S preinitiation complex formation. Eukaryotic initiation factor 2 (eIF2), eIF3, and eIF4F were required for initiation; eIF4B and to a lesser extent the pyrimidine tract-binding protein stimulated this process. We show that eIF4F binds to the IRES in a novel cap-independent manner and suggest that cap- and IRES-dependent initiation mechanisms utilize different modes of interaction with this factor to promote ribosomal attachment to mRNA.
Collapse
Affiliation(s)
- T V Pestova
- Department of Microbiology and Immunology, Morse Institute for Molecular Genetics, State University of New York Health Science Center at Brooklyn, 11203-2098, USA
| | | | | |
Collapse
|