1
|
Rodriguez-Aponte SA, Dalvie NC, Wong TY, Johnston RS, Naranjo CA, Bajoria S, Kumru OS, Kaur K, Russ BP, Lee KS, Cyphert HA, Barbier M, Rao HD, Rajurkar MP, Lothe RR, Shaligram US, Batwal S, Chandrasekaran R, Nagar G, Kleanthous H, Biswas S, Bevere JR, Joshi SB, Volkin DB, Damron FH, Love JC. Molecular engineering of a cryptic epitope in Spike RBD improves manufacturability and neutralizing breadth against SARS-CoV-2 variants. Vaccine 2023; 41:1108-1118. [PMID: 36610932 PMCID: PMC9797419 DOI: 10.1016/j.vaccine.2022.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.
Collapse
Affiliation(s)
- Sergio A Rodriguez-Aponte
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C Dalvie
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Ryan S Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Brynnan P Russ
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Holly A Cyphert
- Department of Biological Sciences, Marshall University, Huntington, WV 26506, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Harish D Rao
- Serum Institute of India Pvt. Ltd., Pune 411028, India
| | | | | | | | | | | | - Gaurav Nagar
- Serum Institute of India Pvt. Ltd., Pune 411028, India
| | | | - Sumi Biswas
- SpyBiotech Limited, Oxford Business Park North, Oxford OX4 2JZ, UK
| | - Justin R Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, USA; Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | - J Christopher Love
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
China H, Ogino H. Effect of attaching hydrophilic oligopeptides to the C-terminus of organic solvent-tolerant metal-free bromoperoxidase BPO-A1 from Streptomyces aureofaciens on organic solvent-stability. Biochem Biophys Res Commun 2023; 640:142-149. [PMID: 36508927 DOI: 10.1016/j.bbrc.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Metal-free bromoperoxidase BPO-A1 from Streptomyces aureofacience was selected among several similar enzymes exhibiting brominating activity as the most stable haloperoxidase against 70%(v/v) methanol. A comparison of the BPO-A1 and octahistidine-tagged BPO-A1 at the C-terminus (BPO-A1-His8) revealed that the His-tag enhanced the organic solvent-stability of BPO-A1 with pH- and heat-stabilities. Additionally, the contribution of the hydrophilicity at the C-terminal of BPO-A1 to the organic solvent-stability was confirmed employing several mutants bearing hydrophilic oligopeptides. Fortunately, two excellent mutants, BPO-A1-Lys8 and BPO-A1-Arg8, with high stabilities against various water-miscible organic solvents were obtained. In conclusion, the enhancing effect of the hydrophilic oligopeptides on the organic solvent-stability was associated with a decrease in the hydrophobic surface area near the C-terminus.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266, Tamuracho Nagahama-shi, Shiga, 526-0829, Japan.
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
3
|
Heat-induced unfolding facilitates plant protein digestibility during in vitro static infant digestion. Food Chem 2021; 375:131878. [PMID: 34952386 DOI: 10.1016/j.foodchem.2021.131878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Soy protein is the main protein source for plant-based infant formula, whereas pea protein is considered as a potential alternative plant protein source. This study assessed the structural changes of soy and pea proteins after heating between 65 °C and 100 °C, and its effects on the in vitro digestibility in the context of infant digestion. We found that with increased heating intensity, both soy and pea proteins unfolded, manifested as the increased surface hydrophobicity, thereby potentially improving the accessibility to digestive enzymes. Their final in vitro digestibility increased from ∼ 30% of non-treated samples to ∼ 60% of 100 °C-heated samples for soy protein, and from ∼ 52% to ∼ 65% for pea protein. Surface hydrophobicity was strongly positively correlated to the overall digestibility. Therefore, the heating temperatures that enabled protein unfolding promoted the digestibility of soy and pea proteins under infant digestion conditions.
Collapse
|
4
|
Monhemi H, Housaindokht MR. The molecular mechanism of protein denaturation in supercritical CO2: The role of exposed lysine residues is explored. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Protein termini relocation plus random mutation: A new strategy for finding key sites in esterase evolution. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Shen W, Liang XH, Sun H, Crooke ST. 2'-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res 2015; 43:4569-78. [PMID: 25855809 PMCID: PMC4482069 DOI: 10.1093/nar/gkv298] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
Synthetic oligonucleotides are used to regulate gene expression through different mechanisms. Chemical modifications of the backbone of the nucleic acid and/or of the 2′ moiety of the ribose can increase nuclease stability and/or binding affinity of oligonucleotides to target molecules. Here we report that transfection of 2′-F-modified phosphorothioate oligonucleotides into cells can reduce the levels of P54nrb and PSF proteins through proteasome-mediated degradation. Such deleterious effects of 2′-F-modified oligonucleotides were observed in different cell types from different species, and were independent of oligonucleotide sequence, positions of the 2′-F-modified nucleotides in the oligonucleotides, method of delivery or mechanism of action of the oligonucleotides. Four 2′-F-modified nucleotides were sufficient to cause the protein reduction. P54nrb and PSF belong to Drosophila behavior/human splicing (DBHS) family. The third member of the family, PSPC1, was also reduced by the 2′-F-modified oligonucleotides. Preferential association of 2′-F-modified oligonucleotides with P54nrb was observed, which is partially responsible for the protein reduction. Consistent with the role of DBHS proteins in double-strand DNA break (DSB) repair, elevated DSBs were observed in cells treated with 2′-F-modified oligonucleotides, which contributed to severe impairment in cell proliferation. These results suggest that oligonucleotides with 2′-F modifications can cause non-specific loss of cellular protein(s).
Collapse
Affiliation(s)
- Wen Shen
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
7
|
Lamazares E, Clemente I, Bueno M, Velázquez-Campoy A, Sancho J. Rational stabilization of complex proteins: a divide and combine approach. Sci Rep 2015; 5:9129. [PMID: 25774740 PMCID: PMC4360737 DOI: 10.1038/srep09129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/19/2015] [Indexed: 11/09/2022] Open
Abstract
Increasing the thermostability of proteins is often crucial for their successful use as analytic, synthetic or therapeutic tools. Most rational thermostabilization strategies were developed on small two-state proteins and, unsurprisingly, they tend to fail when applied to the much more abundant, larger, non-fully cooperative proteins. We show that the key to stabilize the latter is to know the regions of lower stability. To prove it, we have engineered apoflavodoxin, a non-fully cooperative protein on which previous thermostabilizing attempts had failed. We use a step-wise combination of structure-based, rationally-designed, stabilizing mutations confined to the less stable structural region, and obtain variants that, according to their van't Hoff to calorimetric enthalpy ratios, exhibit fully-cooperative thermal unfolding with a melting temperature of 75°C, 32 degrees above the lower melting temperature of the non-cooperative wild type protein. The ideas introduced here may also be useful for the thermostabilization of complex proteins through formulation or using specific stabilizing ligands (e.g. pharmacological chaperones).
Collapse
Affiliation(s)
- Emilio Lamazares
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Isabel Clemente
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Marta Bueno
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain [3] Fundación ARAID, Gobierno de Aragón, Spain
| | - Javier Sancho
- 1] Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR (CSIC), Universidad de Zaragoza, Zaragoza, Spain [2] Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Changes in non-core regions stabilise plastocyanin from the thermophilic cyanobacterium Phormidium laminosum. J Biol Inorg Chem 2010; 15:329-38. [PMID: 19915878 DOI: 10.1007/s00775-009-0605-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
We report a theoretical investigation on the different stabilities of two plastocyanins. The first one belongs to the thermophilic cyanobacterium Phormidium laminosum and the second one belongs to its mesophilic relative Synechocystis sp. These proteins share the same topology and secondary-structure elements; however, the melting temperatures of their oxidised species differ by approximately 15 K. Long-time-scale molecular dynamics simulations, performed at different temperatures, show that the thermophilic protein optimises a set of intramolecular interactions (interstrand hydrogen bonding, salt bridging and hydrophobic clustering) within the region that comprises the strands beta 5 and beta 6, loop L5 and the helix. This region exhibits most of the differences in the primary sequence between the two proteins and, in addition, it is involved in the interaction with known physiological partners. Further work is in progress to unveil the specific structural features responsible for the different thermal stability of the two proteins.
Collapse
|
9
|
Konno A, Yonemaru S, Kitagawa A, Muramoto K, Shirai T, Ogawa T. Protein engineering of conger eel galectins by tracing of molecular evolution using probable ancestral mutants. BMC Evol Biol 2010; 10:43. [PMID: 20152053 PMCID: PMC2843614 DOI: 10.1186/1471-2148-10-43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/14/2010] [Indexed: 01/10/2023] Open
Abstract
Background Conger eel galectins, congerin I (ConI) and congerin II (ConII), show the different molecular characteristics resulting from accelerating evolution. We recently reconstructed a probable ancestral form of congerins, Con-anc. It showed properties similar to those of ConII in terms of thermostability and carbohydrate recognition specificity, although it shares a higher sequence similarity with ConI than ConII. Results In this study, we have focused on the different amino acid residues between Con-anc and ConI, and have performed the protein engineering of Con-anc through site-directed mutagenesis, followed by the molecular evolution analysis of the mutants. This approach revealed the functional importance of loop structures of congerins: (1) N- and C-terminal and loop 5 regions that are involved in conferring a high thermostability to ConI; (2) loops 3, 5, and 6 that are responsible for stronger binding of ConI to most sugars; and (3) loops 5 and 6, and Thr38 residue in loop 3 contribute the specificity of ConI toward lacto-N-fucopentaose-containing sugars. Conclusions Thus, this methodology, with tracing of the molecular evolution using ancestral mutants, is a powerful tool for the analysis of not only the molecular evolutionary process, but also the structural elements of a protein responsible for its various functions.
Collapse
Affiliation(s)
- Ayumu Konno
- Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
10
|
alpha-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2009; 160:2401-14. [PMID: 19763902 DOI: 10.1007/s12010-009-8735-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, alpha-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.
Collapse
|
11
|
Coolbear T, Daniel RM, Morgan HW. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 45:57-98. [PMID: 1605092 DOI: 10.1007/bfb0008756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review on enzymes from extreme thermophiles (optimum growth temperature greater than 65 degrees C) concentrates on their characteristics, especially thermostabilities, and their commercial applicability. The enzymes are considered in general terms first, with comments on denaturation, stabilization and industrial processes. Discussion of the enzymes subsequently proceeds in order of their E.C. classification: oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases. The ramifications of cloned enzymes from extreme thermophiles are also discussed.
Collapse
Affiliation(s)
- T Coolbear
- University of Waikato, Hamilton, New Zealand
| | | | | |
Collapse
|
12
|
Bhuvanakantham R, Ng ML. Analysis of self-association of West Nile virus capsid protein and the crucial role played by Trp 69 in homodimerization. Biochem Biophys Res Commun 2005; 329:246-55. [PMID: 15721300 DOI: 10.1016/j.bbrc.2005.01.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Indexed: 12/13/2022]
Abstract
The understanding of capsid (C) protein interactions with itself would provide important data on how the core is organized in flaviviruses during assembly. In this study, West Nile (WN) virus C protein was shown to form homodimers using yeast two-hybrid analysis in conjunction with mammalian two-hybrid and in vivo co-immunoprecipitation assays. To delineate the region on the C protein which mediates C-C dimerization, truncation studies were carried out. The results obtained clearly showed that the internal hydrophobic segment flanked by helix I and helix III of WN virus C protein is essential for the self-association of C protein. The crucial role played by Trp 69 in stabilizing the self-association of C protein was also demonstrated by mutating Trp to Gly/Arg/Phe. Substitution of the Trp residue with Gly/Arg abolished the dimerization, whereas substitution with Phe decreased the self-association significantly. The results of this study pinpoint a critical residue in the C protein that potentially plays a role in stabilizing the homotypic interaction.
Collapse
Affiliation(s)
- Raghavan Bhuvanakantham
- Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore
| | | |
Collapse
|
13
|
Strub C, Alies C, Lougarre A, Ladurantie C, Czaplicki J, Fournier D. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability. BMC BIOCHEMISTRY 2004; 5:9. [PMID: 15251041 PMCID: PMC479692 DOI: 10.1186/1471-2091-5-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 07/13/2004] [Indexed: 11/10/2022]
Abstract
BACKGROUND One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. RESULTS In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. CONCLUSION Although the mutational effects were rather small, this strategy proved to be successful since half of the mutants showed an increased stability. This stability may originate from the suppression of unfavorable interactions of nonpolar residues with water or from addition of new hydrogen bonds with the solvent. Other mechanisms may also contribute to the increased stability observed with some mutants. For example, introduction of a charge at the surface of the protein may provide a new coulombic interaction on the protein surface.
Collapse
Affiliation(s)
- Caroline Strub
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, France
| | - Carole Alies
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, France
| | - Andrée Lougarre
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, France
| | - Caroline Ladurantie
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, France
| | - Jerzy Czaplicki
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, France
| | - Didier Fournier
- Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077 Toulouse, France
| |
Collapse
|
14
|
Mozhaev VV, Melik-Nubarov NS, Levitsky VYU, Siksnis VA, Martinek K. High stability to irreversible inactivation at elevated temperatures of enzymes covalently modified by hydrophilic reagents: α-Chymotrypsin. Biotechnol Bioeng 2004; 40:650-62. [DOI: 10.1002/bit.260400603] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Trejo F, Gelpí JL, Ferrer A, Boronat A, Busquets M, Cortés A. Contribution of engineered electrostatic interactions to the stability of cytosolic malate dehydrogenase. PROTEIN ENGINEERING 2001; 14:911-7. [PMID: 11742111 DOI: 10.1093/protein/14.11.911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein engineering is a promising tool to obtain stable proteins. Comparison between homologous thermophilic and mesophilic enzymes from a given structural family can reveal structural features responsible for the enhanced stability of thermophilic proteins. Structures from pig heart cytosolic and Thermus flavus malate dehydrogenases (cMDH, Tf MDH), two proteins showing a 55% sequence homology, were compared with the aim of increasing cMDH stability using features from the Thermus flavus enzyme. Three potential salt bridges from Tf MDH were selected on the basis of their location in the protein (surface R176-D200, inter-subunit E57-K168 and intrasubunit R149-E275) and implemented on cMDH using site-directed mutagenesis. Mutants containing E275 were not produced in any detectable amount, which shows that the energy penalty of introducing a charge imbalance in a region that was not exposed to solvent was too unfavourable to allow proper folding of the protein. The salt bridge R149-E275, if formed, would not enhance stability enough to overcome this effect. The remaining mutants were expressed and active and no differences from wild-type other than stability were found. Of the mutants assayed, Q57E/L168K led to a stability increase of 0.4 kcal/mol, as determined by either guanidinium chloride denaturalization or thermal inactivation experiments. This results in a 15 degrees C shift in the optimal temperature, thus confirming that the inter-subunit salt bridge initially present in the T.flavus enzyme was formed in the cMDH structure and that the extra energy obtained is transformed into an increase in protein stability. These results indicate that the use of structural features of thermophilic enzymes, revealed by a detailed comparison of three-dimensional structures, is a valid strategy to improve the stability of mesophilic malate dehydrogenases.
Collapse
Affiliation(s)
- F Trejo
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, Universitat de Barcelona, Martí i Franqués 1, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Kannan N, Vishveshwara S. Aromatic clusters: a determinant of thermal stability of thermophilic proteins. PROTEIN ENGINEERING 2000; 13:753-61. [PMID: 11161106 DOI: 10.1093/protein/13.11.753] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A number of factors have been elucidated as responsible for the thermal stability of thermophilic proteins. However, the contribution of aromatic interactions to thermal stability has not been systematically studied. In the present investigation we used a graph spectral method to identify aromatic clusters in a dataset of 24 protein families for which the crystal structures of both the thermophilic and their mesophilic homologues are known. Our analysis shows a presence of additional aromatic clusters or enlarged aromatic networks in 17 different thermophilic protein families, which are absent in the corresponding mesophilic homologue. The additional aromatic clusters identified in the thermophiles are smaller in size and are largely found on the protein surface. The aromatic clusters are found to be relatively rigid regions of the surface and often the additional aromatic cluster is located close to the active site of the thermophilic enzyme. The residues in the additional aromatic clusters are preferably mutated to Leu, Ser or Ile in the mesophilic homologue. An analysis of the packing geometry of the pairwise aromatic interaction in the additional aromatic clusters shows a preference for a T-shaped orthogonal packing geometry. The present study also provides new insights for protein engineers to design thermostable and thermophilic proteins.
Collapse
Affiliation(s)
- N Kannan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
17
|
Peters GH, Toxvaerd S, Andersen KV, Svendsen A. Analysis of the dynamics of rhizomucor miehei lipase at different temperatures. J Biomol Struct Dyn 1999; 16:1003-18. [PMID: 10333171 DOI: 10.1080/07391102.1999.10508310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The dynamics of Rhizomucor miehei lipase has been studied by molecular dynamics simulations at temperatures ranging from 200-500K. Simulations carried out in periodic boundary conditions and using explicit water molecules were performed for 400 ps at each temperature. Our results indicate that conformational changes and internal motions in the protein are significantly influenced by the temperature increase. With increasing temperature, the number of internal hydrogen bonds decreases, while surface accessibility, radius of gyration and the number of residues in random coil conformation increase. In the temperature range studied, the motions can be described in a low dimensional subspace, whose dimensionality decreases with increasing temperature. Approximately 80% of the total motion is described by the first (i) 80 eigenvectors at T=200K, (ii) 30 eigenvectors at T=300K and (iii) 10 eigenvectors at T=400K. At high temperature, the alpha-helix covering the active site in the native Rhizomucor miehei lipase, the helix at which end the active site is located, and in particular, the loop (Gly35-Lys50) show extensive flexibility.
Collapse
Affiliation(s)
- G H Peters
- Chem. Dept. III, H.C. Orsted Institutet, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
18
|
Russell NJ. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1998; 61:1-21. [PMID: 9670796 DOI: 10.1007/bfb0102287] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria which live in cold conditions are known as psychrophiles. Since so much of our planet is generally cold, i.e. below 5 degrees C, it is not surprising that they are very common amongst a wide variety of habitats. To enable them to survive and grow in cold environments, psychrophilic bacteria have evolved a complex range of adaptations to all of their cellular components, including their membranes, energy-generating systems, protein synthesis machinery, biodegradative enzymes and the components responsible for nutrient uptake. Whilst such a systems approach to the topic has its advantages, all of the changes can be described in terms of adaptive alterations in the proteins and lipids of the bacterial cell. The present review adopts the latter approach and, following a brief consideration of the definition of psychrophiles and description of their habitats, focuses on those adaptive changes in proteins and lipids, especially those which are either currently being explored for their biotechnological potential or might be so in the future. Such applications for proteins range from the use of cold-active enzymes in the detergent and food industries, in specific biotransformations and environmental bioremediations, to specialised uses in contact lens cleaning fluids and reducing the lactose content of milk; ice-nucleating proteins have potential uses in the manufacture of ice cream or artificial snow; for lipids, the uses include dietary supplements in the form of polyunsaturated fatty acids from some Antarctic marine psychrophiles.
Collapse
Affiliation(s)
- N J Russell
- Department of Biological Sciences, Wye College University of London, England.
| |
Collapse
|
19
|
|
20
|
Akanuma S, Qu C, Yamagishi A, Tanaka N, Oshima T. Effect of polar side chains at position 172 on thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus. FEBS Lett 1997; 410:141-4. [PMID: 9237617 DOI: 10.1016/s0014-5793(97)00540-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand the role of the amino acid residue at position 172 in the conformational stability, four mutant enzymes of Thermus thermophilus 3-isopropylmalate dehydrogenase in which Ala172 was replaced with Asp, Glu, Asn, and Gln were prepared by site-directed mutagenesis. Three mutants were more stable than the wild-type enzyme. No significant change in catalytic properties was found in the mutant enzymes. The molecular modeling studies suggested that the enhanced thermostability of the mutant enzymes resulted from the formation of extra electrostatic interactions and/or improvement of hydrophobic packing of the interior core.
Collapse
Affiliation(s)
- S Akanuma
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
21
|
Holland LZ, McFall-Ngai M, Somero GN. Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site. Biochemistry 1997; 36:3207-15. [PMID: 9115998 DOI: 10.1021/bi962664k] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Orthologous homologs of lactate dehydrogenase-A (LDH-A) (EC 1.1.1.27; NAD+:lactate oxidoreductase) of six barracuda species (genus Sphyraena) display differences in Michaelis-Menten constants (apparent Km) for substrate (pyruvate) and cofactor (NADH) that reflect evolution at different habitat temperatures. Significant increases in Km with increasing measurement temperature occur for all homologs, yet Km at normal body temperatures is similar among species because of the inverse relationship between adaptation temperature and Km. Thermal stabilities of the homologs also differ. To determine the amino acid substitutions responsible for differences in Km and thermal stability, peptide mapping of the LDH-As of all six species was first performed. Then, the amino acid sequences of the three homologs having the most similar peptide maps, those of the north temperate species, S. argentea, the subtropical species, S. lucasana, and the south temperate species, S. idiastes, were deduced from the respective cDNA sequences. At most, there were four amino acid substitutions between any pair of species, none of which occurred in the loop or substrate binding sites of the enzymes. The sequence of LDH-A from S. lucasana differs from that of S. idiastes only at position 8. The homolog of S. argentea differs from the other two sequences at positions 8, 61, 68, and 223. We used a full-length cDNA clone of LDH-A of S. lucasana to test, by site-directed mutagenesis, the importance of these sequence changes in establishing the observed differences in kinetics and thermal stability. Differences in sequence at sites 61 and/or 68 appear to account for the differences in Km between the LDH-As of S. argentea and S. lucasana. Differences at position 8 appear to account for the difference in thermal stability between the homologs of S. argentea and S. lucasana. Evolutionary adaptation of proteins to temperature thus may be achieved by minor changes in sequence at locations outside of active sites, and these changes may independently affect kinetic properties and thermal stabilities.
Collapse
Affiliation(s)
- L Z Holland
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla 92903-0202, USA
| | | | | |
Collapse
|
22
|
Parrado J, Escuredo PR, Conejero-Lara F, Kotik M, Ponting CP, Asenjo JA, Dobson CM. Molecular characterisation of a thermoactive beta-1,3-glucanase from Oerskovia xanthineolytica. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1296:145-51. [PMID: 8814220 DOI: 10.1016/0167-4838(96)00062-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Molecular characterisation of a lytic thermoactive beta-1,3-glucanase from Oerskovia xanthineolytica LL-G109 has been performed. A molecular mass of 27 195.6 +/- 1.3 Da and an isoelectric point of 4.85 were determined by electrospray mass spectrometry and from its titration curve, respectively. Its thermoactivity profile shows it to be a heat-stable enzyme with a temperature optimum of 65 degrees C. The secondary structure content of the protein was estimated by circular dichroism to be approx. 25% alpha-helix, 7% random coil, and 68% beta-sheet and beta-turn structure. Nuclear magnetic resonance spectra confirm the high content of beta-structure. Furthermore, the presence of a compact hydrophobic core is indicated by the presence of slowly exchanging amide hydrogens and the enzyme's relatively high resistance to proteolysis. The N-terminal sequences of the intact protein and of a tryptic peptide each exhibit significant similarity to family 16 of glycosyl hydrolases whose overall fold is known to contain almost exclusively beta-sheets and surface loops. Moreover, the sequenced tryptic peptide appears to encompass residues of the Oerskovia xanthineolytica glucanase active site, since it contains a portion of the family 16 active-site motif E-[L/I/V]-D-[L/I/V]-E.
Collapse
Affiliation(s)
- J Parrado
- New Chemistry Laboratory, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Ostendorp R, Auerbach G, Jaenicke R. Extremely thermostable L(+)-lactate dehydrogenase from Thermotoga maritima: cloning, characterization, and crystallization of the recombinant enzyme in its tetrameric and octameric state. Protein Sci 1996; 5:862-73. [PMID: 8732758 PMCID: PMC2143418 DOI: 10.1002/pro.5560050508] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
L(+)-lactate dehydrogenase (LDH; E.C.1.1.1.27) from the hyperthermophilic bacterium Thermotoga maritima has been shown to represent the most stable LDH isolated so far (Wrba A, Jaenicke R, Huber R, Stetter KO, 1990, Eur J Biochem 188:195-201). In order to obtain the enzyme in amounts sufficient for physical characterization, and to analyze the molecular basis of its intrinsic stability, the gene was cloned and expressed functionally in Escherichia coli. Growth of the cells and purification of the enzyme were performed aerobically at 26 degrees C, i.e., ca. 60 degrees below the optimal growth temperature of Thermotoga. Two enzyme species with LDH activity were purified to homogeneity. Crystals of the enzyme obtained at 4 degrees C show satisfactory diffraction suitable for X-ray analysis up to a resolution of 2.8 A. As shown by gel-permeation chromatography, chemical crosslinking, light scattering, analytical ultracentrifugation, and electron microscopy, the two LDH species represent homotetramers and homooctamers (i.e., dimers of tetramers), with a common subunit molecular mass of 35 kDa. The spectroscopic characteristics (UV absorption, fluorescence emission, near- and far-UV CD) of the two species are indistinguishable. The calculated alpha-helix content is 45%, in accordance with the result of homology modeling. Compared to the tetrameric enzyme, the octamer exhibits reduced specific activity, whereas KM is unalatered. The extreme intrinsic stability of the protein is reflected by its unaltered catalytic activity over 4 h at 85 degrees C; irreversible thermal denaturation becomes significant at approximately 95 degrees C. The anomalous resistance toward chemical denaturation using guanidinium chloride and urea confirms this observation. Both the high optimal temperature and the pH optimum of the catalytic activity correspond to the growth conditions of T. maritima in its natural habitat.
Collapse
Affiliation(s)
- R Ostendorp
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Germany
| | | | | |
Collapse
|
24
|
Jaenicke R, Schurig H, Beaucamp N, Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:181-269. [PMID: 8791626 DOI: 10.1016/s0065-3233(08)60363-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
25
|
Abstract
The thermal stability of PQQ glucose dehydrogenases (PQQGDHs) which were chimeras with more than 95% made up of the N-terminal region of Escherichia coli PQQGDH and the rest made up of the C-terminal region of Acinetobacter calcoaceticus PQQGDH was investigated. Among the chimeric PQQGDHs, E97A3 (E. coli 97% and A. calcoaceticus 3%) and E95A5 were found to possess higher thermal stability than parental E. coli PQQGDH. Further detailed characterization of the thermal stability was carried out, focusing on E97A3. E97A3 showed a more than 3-fold and 12-fold increase in half life time at 40 degrees C, compared with the PQQGDHs of E. coli and A. calcoaceticus, respectively. Using transition state theory, the increase in the free energy of inactivation observed in E97A3 was compared with those of the E. coli and A. calcoaceticus parental enzymes. The region responsible for this stabilization was also discussed.
Collapse
Affiliation(s)
- K Sode
- Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | |
Collapse
|
26
|
el Hawrani AS, Moreton KM, Sessions RB, Clarke AR, Holbrook JJ. Engineering surface loops of proteins--a preferred strategy for obtaining new enzyme function. Trends Biotechnol 1994; 12:207-11. [PMID: 7764905 DOI: 10.1016/0167-7799(94)90084-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A prerequisite for the rational redesign of enzymes is that altering amino acids in an attempt to obtain new biological function does not unexpectedly alter the globular, natural framework of the native protein on which the design is being executed. The results of combinatorial-mutagenesis strategies suggest that random variation of amino acid sequence is most easily tolerated at the solvent-exposed surfaces of a protein. This review analyses effective redesigns of Bacillus stearothermophilus lactate dehydrogenase (bsLDH), in which all residue variations are at solvent-exposed surfaces. The majority of these variations were located within surface loops, which interconnect stable secondary structures traversing the globular core of the protein.
Collapse
Affiliation(s)
- A S el Hawrani
- Molecular Recognition Centre, University of Bristol School of Medical Sciences, UK
| | | | | | | | | |
Collapse
|
27
|
Thermal Stabilization of Xylose Isomerase from Thermoanaerobacterium thermosulfurigenes. Nat Biotechnol 1993. [DOI: 10.1038/nbt1093-1157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Wilks HM, Cortes A, Emery DC, Halsall DJ, Clarke AR, Holbrook JJ. Opportunities and limits in creating new enzymes. Experiences with the NAD-dependent lactate dehydrogenase frameworks of humans and bacteria. Ann N Y Acad Sci 1992; 672:80-93. [PMID: 1476393 DOI: 10.1111/j.1749-6632.1992.tb32662.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H M Wilks
- Molecular Recognition Center, University of Bristol, School of Medical Sciences, United Kingdom
| | | | | | | | | | | |
Collapse
|
29
|
WILKS HM, CORTES A, EMERY DC, HALSALL DJ, CLARKE AR, HOLBROOK JJ. Opportunities and Limits in Creating New Enzymes. Ann N Y Acad Sci 1992. [DOI: 10.1111/j.1749-6632.1992.tb35606.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Wigley DB, Gamblin SJ, Turkenburg JP, Dodson EJ, Piontek K, Muirhead H, Holbrook JJ. Structure of a ternary complex of an allosteric lactate dehydrogenase from Bacillus stearothermophilus at 2.5 A resolution. J Mol Biol 1992; 223:317-35. [PMID: 1731077 DOI: 10.1016/0022-2836(92)90733-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the refined structure of a ternary complex of an allosterically activated lactate dehydrogenase, including the important active site loop. Eightfold non-crystallographic symmetry averaging was utilized to improve the density maps. Interactions between the protein and bound coenzyme and oxamate are described in relation to other studies using site-specific mutagenesis. Fructose 1,6-bisphosphate (FruP2) is bound to the enzyme across one of the 2-fold axes of the tetramer, with the two phosphate moieties interacting with two anion binding sites, one on each of two subunits, across this interface. However, because FruP2 binds at this special site, yet does not possess an internal 2-fold symmetry axis, the ligand is statistically disordered and binds to each site in two different orientations. Binding of FruP2 to the tetramer is signalled to the active site principally through two interactions with His188 and Arg173. His188 is connected to His195 (which binds the carbonyl group of the substrate) and Arg173 is connected to Arg171 (the residue that binds the carboxylate group of the substrate).
Collapse
Affiliation(s)
- D B Wigley
- Department of Biochemistry, University of Leicester, U.K
| | | | | | | | | | | | | |
Collapse
|
31
|
Quax WJ, Mrabet NT, Luiten RG, Schuurhuizen PW, Stanssens P, Lasters I. Enhancing the Thermostability of Glucose Isomerase by Protein Engineering. Nat Biotechnol 1991; 9:738-42. [PMID: 1367634 DOI: 10.1038/nbt0891-738] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have engineered recombinant glucose isomerase (GI) from Actinoplanes missouriensis by site-directed mutagenesis to enhance its thermal stability in both the soluble and immobilized forms. Substitution of arginine for lysine at position 253, which lies at the dimer/dimer interface of the GI tetramer, produced the largest stabilization under model industrial conditions. We discuss our results in terms of a model in which chemical glycation of lysines by sugars in the industrial corn syrup substrate represents a major pathway of destabilization.
Collapse
Affiliation(s)
- W J Quax
- Gist-brocades, Research & Development, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
O'Fágáin C, O'Kennedy R, Kilty C. Stability of alanine aminotransferase is enhanced by chemical modification. Enzyme Microb Technol 1991. [DOI: 10.1016/0141-0229(91)90134-v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Abstract
The maintenance or stabilization of protein or enzyme function is of vital importance in Biotechnology. Investigations of thermophilic organisms, studies of denaturation and the use of enzymes in organic solvents have each contributed to an understanding of protein stability. Enzymes can reliably and reproducibly be stabilized by variety of means including immobilization, use of additives, chemical modification in solution and protein engineering. Examples of each of these are discussed. With these recent advances it appears that a rational strategy for achieving a particular stabilized enzyme or protein may be within reach.
Collapse
Affiliation(s)
- C O Fágáin
- School of Biological Sciences, Dublin City University, Dublin 9, Ireland
| | | |
Collapse
|
34
|
Kristjánsson MM, Kinsella JE. Protein and enzyme stability: structural, thermodynamic, and experimental aspects. ADVANCES IN FOOD AND NUTRITION RESEARCH 1991; 35:237-316. [PMID: 1930884 DOI: 10.1016/s1043-4526(08)60066-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M M Kristjánsson
- Marine Biotechnology Center, Technical University of Denmark, Lyngby
| | | |
Collapse
|
35
|
Chicz RM, Regnier FE. Microenvironmental contributions to the chromatographic behavior of subtilisin in hydrophobic-interaction and reversed-phase chromatography. J Chromatogr A 1990; 500:503-18. [PMID: 2184168 DOI: 10.1016/s0021-9673(00)96088-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genetically engineered variants were used to examine how microenvironmental changes in the S1 substrate binding subsite of subtilisin contribute to chromatographic behavior of proteins on hydrophobic-interaction chromatography (HIC) and reversed-phase chromatography (RPC) columns. Gradient elution studies over a wide pH range showed that conditions could be found where a HIC support could separate proteins varying by one amino acid. Although all single-site variants could not be separated by HIC, this chromatographic mode was found to be complementary to cation-exchange chromatography for the separation of such variants. RPC was found to be of much less utility in the resolution of variant proteins. Retention and resolution of subtilisin variants was found to vary on RPC with the concentration and type of mobile phase pairing agent.
Collapse
Affiliation(s)
- R M Chicz
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-6799
| | | |
Collapse
|
36
|
Mozhaev VV, Martinek K. Structure-stability relationships in proteins: a guide to approaches to stabilizing enzymes. Adv Drug Deliv Rev 1990. [DOI: 10.1016/0169-409x(90)90028-q] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Bur D, Clarke T, Friesen JD, Gold M, Hart KW, Holbrook JJ, Jones JB, Luyten MA, Wilks HM. On the effect on specificity of Thr246----Gly mutation in L-lactate dehydrogenase of Bacillus sterothermophilus. Biochem Biophys Res Commun 1989; 161:59-63. [PMID: 2499337 DOI: 10.1016/0006-291x(89)91559-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The function of the amino acid Thr246 in L-lactate dehydrogenase from Bacillus stearothermophilus has been investigated by site-directed replacement with glycine. Kinetic experiments with a number of 2-oxo acids showed strongly reduced activity for the mutated enzyme. However, the mutant enzyme shows a relative preference for the large hydrophobic sidechains of alpha-keto acids and an even higher specific activity than the wild-type lactate dehydrogenase for the polar oxaloacetate substrate. Graphic analyses indicate that the loss of one hydrogen bond, or intrusion of water into the active site, might be responsible for the reduced activity. The kinetic results suggest that the binding modes of bulky hydrophobic or polar substrates compensate to some degree for the partially disrupted active site.
Collapse
Affiliation(s)
- D Bur
- Department of Chemistry, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Clarke AR, Atkinson T, Holbrook JJ. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part I. Trends Biochem Sci 1989; 14:101-5. [PMID: 2658216 DOI: 10.1016/0968-0004(89)90131-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Part I of this article, the naturally evolved protein framework of lactate dehydrogenase is investigated by genetically introduced modifications which reveal the structural basis of its catalytic and substrate-binding properties. In Part II (to be published in the April issue of TIBS), this analytical information is exploited in the design of two modified forms of the enzyme; one which is specific for a new substrate and one which lacks allosteric regulation.
Collapse
|