1
|
Wen Y, Xu J, Pan D, Wang C. Removal of substrate inhibition of Acinetobacter baumannii xanthine oxidase by point mutation at Gln-201 enables efficient reduction of purine content in fish sauce. Food Chem X 2023; 17:100593. [PMID: 36845495 PMCID: PMC9944496 DOI: 10.1016/j.fochx.2023.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Xanthine oxidase is an oxidase that has a molybdopterin structure with substrate inhibition. Here, we show that a single point mutation (Q201) in the Acinetobacter baumannii xanthine oxidase (AbXOD) obtained mutant Q201E (k cat =799.44 s-1, no inhibition) with high enzyme activity and decrease of substrate inhibition in 5 mmol/L high substrate model, and which cause two loops structure change at active center, characterized by complete loss of substrate inhibition without reduction of enzymatic activity. Molecular docking results showed that the change of flexible loop increased the affinity between substrate and enzyme, and the formation of a π-π bond and two hydrogen bonds made the substrate more stable in the active center. Ultimately, Q201E can still maintain better enzyme activity under high purine content (an approximately 7-fold improvement over the wild-type), indicating a broader application prospect in the manufacture of low-purine food.
Collapse
Affiliation(s)
- You Wen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Jiahui Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Donglei Pan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Chenghua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| |
Collapse
|
2
|
Zhang G, Zhu M, Liao Y, Gong D, Hu X. Action mechanisms of two key xanthine oxidase inhibitors in tea polyphenols and their combined effect with allopurinol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7195-7208. [PMID: 35727856 DOI: 10.1002/jsfa.12085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Tea polyphenols have been reported to have the effect of lowering uric acid. However, there are few studies on the inhibitory effects and molecular mechanisms of specific catechins on the urate-metabolizing enzyme xanthine oxidase (XO). In this research, multiple spectroscopic methods and computer simulations were used to determine the inhibitory ability and mechanisms of epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG) on XO. RESULTS Herein, EGCG and GCG reversibly inhibited XO activity in a mixed manner, with IC50 values of 40.50 ± 0.32 and 33.60 ± 0.53 μmol L-1 , and also decreased the superoxide anion radical (O2 - ) of the catalytic system by reducing the XO molecule and inhibiting the formation of uric acid. The combination of EGCG or GCG with allopurinol showed synergistic inhibition on XO. The binding of EGCG or GCG to XO with moderate affinity formed a stable complex by hydrogen bonds and van der Waals forces. The presence of EGCG and GCG made the structure of XO more stable and compact. The two inhibitors bound to the vicinity of flavin adenine dinucleotide (FAD) in XO, hindering the entry of substrate; thus the activity of XO was suppressed. CONCLUSION Both EGCG and GCG are excellent natural XO inhibitors, and inhibited the activity of XO by occupying the channel of the substrate to enter the active center and interfering with the dual substrate reaction catalyzed by XO. These findings provide a scientific basis for the application of catechins in dietary supplements and medicines with lowering uric acid effects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yijing Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
The Global Regulator MftR Controls Virulence and Siderophore Production in Burkholderia thailandensis. J Bacteriol 2022; 204:e0023722. [PMID: 36286517 PMCID: PMC9664960 DOI: 10.1128/jb.00237-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules.
Collapse
|
4
|
Sun M, Hines N, Scerbo D, Buchanan J, Wu C, Ten Eyck P, Zepeda-Orozco D, Taylor EB, Jalal DI. Allopurinol Lowers Serum Urate but Does Not Reduce Oxidative Stress in CKD. Antioxidants (Basel) 2022; 11:1297. [PMID: 35883787 PMCID: PMC9312025 DOI: 10.3390/antiox11071297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/31/2022] Open
Abstract
Xanthine oxidase (XO) contributes to oxidative stress and vascular disease. Hyperuricemia and gout are common in patients with chronic kidney disease (CKD), a population at increased risk of vascular disease. We evaluated effects of allopurinol on serum XO activity and metabolome of CKD patients who had participated in a randomized double-blind clinical trial of allopurinol vs. placebo. XO activity was measured in participants' serum. XO expression in venous endothelial cells was evaluated via immunofluorescence. Gas chromatography mass spectrometry (GC/MS) was utilized for metabolomics analysis. We found that in patients with stage 3 CKD and hyperuricemia, allopurinol lowered serum urate while increasing serum xanthine levels. Allopurinol, however, did not significantly suppress measured serum XO activity. Of note, baseline serum XO activity was low. Additionally, neither baseline serum XO activity nor XO protein expression were associated with measures of vascular dysfunction or with systemic or endothelial biomarkers of oxidative stress. Allopurinol affected several pathways, including pentose phosphate, pyrimidine, and tyrosine metabolism. Our findings suggest that circulating XO does not contribute to vascular disease in CKD patients. In addition to inhibition of XO activity, allopurinol was observed to impact other pathways; the implications of which require further study.
Collapse
Affiliation(s)
- Mingyao Sun
- Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (M.S.); (N.H.)
| | - Nicole Hines
- Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (M.S.); (N.H.)
| | - Diego Scerbo
- Department of Molecular Physiology, University of Iowa, Iowa City, IA 52242, USA; (D.S.); (J.B.); (E.B.T.)
| | - Jane Buchanan
- Department of Molecular Physiology, University of Iowa, Iowa City, IA 52242, USA; (D.S.); (J.B.); (E.B.T.)
| | - Chaorong Wu
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, USA; (C.W.); (P.T.E.)
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, USA; (C.W.); (P.T.E.)
| | - Diana Zepeda-Orozco
- Center for Clinical and Translational Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, Division of Nephrology and Hypertension, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Eric B. Taylor
- Department of Molecular Physiology, University of Iowa, Iowa City, IA 52242, USA; (D.S.); (J.B.); (E.B.T.)
| | - Diana I. Jalal
- Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (M.S.); (N.H.)
- Iowa City VA Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Hyperuricemia-induced endothelial insulin resistance: the nitric oxide connection. Pflugers Arch 2021; 474:83-98. [PMID: 34313822 DOI: 10.1007/s00424-021-02606-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Hyperuricemia, defined as elevated serum concentrations of uric acid (UA) above 416 µmol L-1, is related to the development of cardiometabolic disorders, probably via induction of endothelial dysfunction. Hyperuricemia causes endothelial dysfunction via induction of cell apoptosis, oxidative stress, and inflammation; however, it's interfering with insulin signaling and decreased endothelial nitric oxide (NO) availability, resulting in the development of endothelial insulin resistance, which seems to be a major underlying mechanism for hyperuricemia-induced endothelial dysfunction. Here, we elaborate on how hyperuricemia induces endothelial insulin resistance through the disruption of insulin-stimulated endothelial NO synthesis. High UA concentrations decrease insulin-induced NO synthesis within the endothelial cells by interfering with insulin signaling at either the receptor or post-receptor levels (i.e., proximal and distal steps). At the proximal post-receptor level, UA impairs the function of the insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) in the insulin signaling pathway. At the distal level, high UA concentrations impair endothelial NO synthase (eNOS)-NO system by decreasing eNOS expression and activity as well as by direct inactivation of NO. Clinically, UA-induced endothelial insulin resistance is translated into impaired endothelial function, impaired NO-dependent vasodilation, and the development of systemic insulin resistance. UA-lowering drugs may improve endothelial function in subjects with hyperuricemia.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA.,Graduate Program in Biology, City University of New York Graduate Center, New York, NY, 10016, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, P.O. Box: 19395-4763, VelenjakTehran, Iran.
| |
Collapse
|
6
|
Tanriverdi B, Sarac O, Cubukcu HC, Caglayan M, Durak ZE, Durak I, Cagil N. Xanthine oxidase enzyme activity in keratoconic corneal epithelium. Int Ophthalmol 2021; 41:1063-1069. [PMID: 33389422 DOI: 10.1007/s10792-020-01665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/27/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE To assess the activity of xanthine oxidase (XO) enzyme in keratoconic corneal epithelium and to evaluate its relationship with the keratoconus (KC) severity. METHODS This prospective and randomized study included 66 eyes of 54 KC patients who received corneal collagen cross-linking treatment and 43 eyes of 32 patients who underwent photorefractive keratectomy due to their refractive error. During surgical procedures, the corneal epithelium was mechanically scraped and gathered to analyze the XO enzyme activity spectrophotometrically. The KC group was subdivided into three groups (stages 1, 2, and 3) according to the Amsler-Krumeich classification. The results were compared between the KC and the control group and in between KC subgroups. RESULTS No significant differences in age and gender were found between the KC and control groups (p = 0.064 and p = 0.296, respectively). The mean XO activity levels of the KC and control groups were 173.57 ± 87.61 and 223.70 ± 99.52 mIU/mg, respectively (p < 0.001). In KC group, 33 eyes were at stage 1, 19 were at stage 2, and 14 were at stage 3. No significant difference was observed between KC subgroups regarding XO activity levels (p = 0.681). CONCLUSION In this study, our findings revealed that ultraviolet-related pro-oxidant XO enzyme may have a role in the etiopathogenesis of KC. Further studies are needed to support our result. CLINICAL TRIALS REGISTRATION When we started this study in 2018, we did not have a "Clinical Trials Registration." However, we have ethics committee approval (date: 21. 02. 2018/No: 22).
Collapse
Affiliation(s)
| | - Ozge Sarac
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| | - Hikmet Can Cubukcu
- Department of Medical Biochemistry, Maresal Cakmak State Hospital, Erzurum, Turkey
| | - Mehtap Caglayan
- Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | | | - Ilker Durak
- Department of Medical Biochemistry, Faculty of Medicine, Ankara University, Morphology Building, Ankara, Turkey
| | - Nurullah Cagil
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
7
|
Tanaka Y, Nagoshi T, Yoshii A, Oi Y, Takahashi H, Kimura H, Ito K, Kashiwagi Y, Tanaka TD, Yoshimura M. Xanthine oxidase inhibition attenuates doxorubicin-induced cardiotoxicity in mice. Free Radic Biol Med 2021; 162:298-308. [PMID: 33470212 DOI: 10.1016/j.freeradbiomed.2020.10.303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Accumulating evidence suggests that high serum uric acid (UA) is associated with left ventricular (LV) dysfunction. Although xanthine oxidase (XO) activation is a critical regulatory mechanism of the terminal step in ATP and purine degradation, the pathophysiological role of cardiac tissue XO in LV dysfunction remains unclear. We herein investigated the role and functional significance of tissue XO activity in doxorubicin-induced cardiotoxicity. Either doxorubicin (10 mg/kg) or vehicle was intraperitonially administered in a single injection to mice. Mice were treated with or without oral XO-inhibitors (febuxostat 3 mg/kg/day or topiroxostat 5 mg/kg/day) for 8 days starting 24 h before doxorubicin injection. Cardiac tissue XO activity measured by a highly sensitive assay with liquid chromatography/mass spectrometry and cardiac UA content were significantly increased in doxorubicin-treated mice at day 7 and dramatically reduced by XO-inhibitors. Accordingly, XO-inhibitors substantially improved LV ejection fraction (assessed by echocardiography) and LV developed pressure (assessed by ex vivo Langendorff heart perfusion) impaired by doxorubicin administration. This was associated with an increase in XO-derived hydrogen peroxide production with concomitant upregulation of apoptotic and ferroptotic pathways, all of which were reduced by XO-inhibitors. Furthermore, metabolome analyses revealed enhanced purine metabolism in doxorubicin-treated hearts, and XO-inhibitors suppressed the serial metabolic reaction of hypoxanthine-xanthine-UA, the paths of ATP and purine degradation. In summary, doxorubicin administration induces cardiac tissue XO activation associated with impaired LV function. XO-inhibitors attenuate doxorubicin-induced cardiotoxicity through inhibition of XO-derived oxidative stress and cell death signals as well as the maintenance of cardiac energy metabolism associated with modulation of the purine metabolic pathway.
Collapse
Affiliation(s)
- Yoshiro Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan.
| | - Akira Yoshii
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Yuhei Oi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Hirotake Takahashi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Haruka Kimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Keiichi Ito
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Yusuke Kashiwagi
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Toshikazu D Tanaka
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| |
Collapse
|
8
|
Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, Nakagawa T, Madero M, Feig DI, Borghi C, Piani F, Cara-Fuentes G, Bjornstad P, Lanaspa MA, Johnson RJ. Uric Acid and Hypertension: An Update With Recommendations. Am J Hypertens 2020; 33:583-594. [PMID: 32179896 PMCID: PMC7368167 DOI: 10.1093/ajh/hpaa044] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
The association between increased serum urate and hypertension has been a subject of intense controversy. Extracellular uric acid drives uric acid deposition in gout, kidney stones, and possibly vascular calcification. Mendelian randomization studies, however, indicate that serum urate is likely not the causal factor in hypertension although it does increase the risk for sudden cardiac death and diabetic vascular disease. Nevertheless, experimental evidence strongly suggests that an increase in intracellular urate is a key factor in the pathogenesis of primary hypertension. Pilot clinical trials show beneficial effect of lowering serum urate in hyperuricemic individuals who are young, hypertensive, and have preserved kidney function. Some evidence suggest that activation of the renin-angiotensin system (RAS) occurs in hyperuricemia and blocking the RAS may mimic the effects of xanthine oxidase inhibitors. A reduction in intracellular urate may be achieved by lowering serum urate concentration or by suppressing intracellular urate production with dietary measures that include reducing sugar, fructose, and salt intake. We suggest that these elements in the western diet may play a major role in the pathogenesis of primary hypertension. Studies are necessary to better define the interrelation between uric acid concentrations inside and outside the cell. In addition, large-scale clinical trials are needed to determine if extracellular and intracellular urate reduction can provide benefit hypertension and cardiometabolic disease.
Collapse
Affiliation(s)
- Laura G Sanchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Ciencias Médicas Y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | | | - Magdalena Madero
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Dan I Feig
- Division of Pediatric Nephrology, University of Alabama, Birmingham, Alabama, USA
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federica Piani
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gabriel Cara-Fuentes
- Department of Pediatrics, Division of Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Petter Bjornstad
- Division of Pediatric Endocrinology, University of Colorado, Aurora, Colorado, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Allopurinol treatment adversely impacts left ventricular mass regression in patients with well-controlled hypertension. J Hypertens 2020; 37:2481-2489. [PMID: 31268872 PMCID: PMC6855336 DOI: 10.1097/hjh.0000000000002189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Previous studies have demonstrated that high-dose allopurinol is able to regress left ventricular (LV) mass in cohorts with established cardiovascular disease. The aim of this study was to assess whether treatment with high-dose allopurinol would regress LV mass in a cohort with essential hypertension, LV hypertrophy and well-controlled blood pressure but without established cardiovascular disease. METHODS We conducted a mechanistic proof-of-concept randomized, placebo-controlled, double-blind trial of allopurinol (600 mg/day) versus placebo on LV mass regression. Duration of treatment was 12 months. LV mass regression was assessed by Cardiac Magnetic Resonance. Secondary outcomes were changes in endothelial function (flow-mediated dilatation), arterial stiffness (pulse wave velocity) and biomarkers of oxidative stress. RESULTS Seventy-two patients were randomized into the trial. Mean baseline urate was 362.2 ± 96.7 μmol/l. Despite good blood pressure control, LV mass regression was significantly reduced in the allopurinol cohort compared with placebo (LV mass -0.37 ± 6.08 versus -3.75 ± 3.89 g; P = 0.012). Oxidative stress markers (thiobarbituric acid reactive substances) were significantly higher in the allopurinol group versus placebo (0.26 ± 0.85 versus -0.34 ± 0.83 μmol/l; P = 0.007). Other markers of vascular function were not significantly different between the two groups. CONCLUSION Treatment with high-dose allopurinol in normouricemic controlled hypertensive patients and LV hypertrophy is detrimental. It results in reduced LV mass regression and increased oxidative stress over a 12-month period. This may be because of an adverse impact on redox balance. Cohort selection for future cardiovascular trials with allopurinol is crucial.
Collapse
|
10
|
V. Mikheev I, M. Sozarukova M, V. Proskurnina E, E. Kareev I, A. Proskurnin M. Non-Functionalized Fullerenes and Endofullerenes in Aqueous Dispersions as Superoxide Scavengers. Molecules 2020; 25:molecules25112506. [PMID: 32481516 PMCID: PMC7321068 DOI: 10.3390/molecules25112506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Endohedral metal fullerene are potential nanopharmaceuticals for MRI; thus, it is important to study their effect on reactive oxygen species (ROS) homeostasis. Superoxide anion radical is one of the key ROS. The reactivity of aqueous dispersions of pristine (non-functionalized) fullerenes and Gd@C82 endofullerene have been studied with respect to superoxide in the xanthine/xanthine oxidase chemiluminescence system. It was found that C60 and C70 in aqueous dispersions react with superoxide as scavengers by a similar mechanism; differences in activity are determined by cluster parameters, primarily the concentration of available, acting molecules at the surface. Gd endofullerene is characterized by a significantly (one-and-a-half to two orders of magnitude) higher reactivity with respect to C60 and C70 and is likely to exhibit nanozyme (SOD-mimic) properties, which can be accounted for by the nonuniform distribution of electron density of the fullerene cage due to the presence of the endohedral atom; however, in the cell model, Gd@C82 showed the lowest activity compared to C60 and C70, which can be accounted for by its higher affinity for the lipid phase.
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | | | - Ivan E. Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, Chernogolovka, 142432 Moscow Region, Russia;
| | - Mikhail A. Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence: ; Tel.: +7-495-939-4648
| |
Collapse
|
11
|
Watanabe K, Watanabe T, Otaki Y, Shishido T, Murase T, Nakamura T, Kato S, Tamura H, Nishiyama S, Takahashi H, Arimoto T, Watanabe M. Impact of plasma xanthine oxidoreductase activity in patients with heart failure with preserved ejection fraction. ESC Heart Fail 2020; 7:1735-1743. [PMID: 32432414 PMCID: PMC7373896 DOI: 10.1002/ehf2.12734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Reactive oxygen species are reportedly involved in the mechanism underlying heart failure with preserved ejection fraction (HFpEF); however, the disease pathophysiology remains poorly understood. Xanthine oxidoreductase (XOR), the rate-limiting enzyme of purine metabolism, plays an important role in uric acid production and generates reactive oxygen species. However, the impact of plasma XOR activity on the clinical outcomes of patients with HFpEF remains unclear. The aim of this study was to investigate whether plasma XOR activity is associated with major adverse cardiovascular events (MACEs) in patients with HFpEF. METHODS AND RESULTS The plasma XOR activity was measured in 257 patients with HFpEF, who were then divided into three groups according to the activity levels: low XOR group (<33 pmol/h/mL, n = 45), normal XOR group (33-120 pmol/h/mL, n = 160), and high XOR group (>120 pmol/h/mL, n = 52). During the median follow-up period of 809 days, there were 74 MACEs. Kaplan-Meier analysis revealed that the high XOR group was at the highest risk for MACEs. Multivariate analysis by Cox's proportional hazard regression approach showed that high XOR activity was significantly associated with MACEs, after adjustment for confounding factors. The patients were also divided into four groups according to the absence/presence of high XOR activity and/or hyperuricaemia. According to the multivariate Cox regression analysis, high XOR activity was associated with MACEs, regardless of the hyperuricaemia status. CONCLUSIONS Elevated plasma XOR activity is significantly associated with adverse clinical outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Ken Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Takayo Murase
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Takashi Nakamura
- Mie Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Shigehiko Kato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Harutoshi Tamura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| |
Collapse
|
12
|
Li Q, Lin F, Gao Z, Huang F, Zhu P. Sex-Specific Association Between Serum Uric Acid and Retinal Microvessels. Med Sci Monit 2019; 25:9973-9980. [PMID: 31875645 PMCID: PMC6944035 DOI: 10.12659/msm.919972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As epidemiological findings are still controversial, animal experiments have probed into the potential link between uric acid and damage to microvessels. The present study examined the association of serum uric acid (SUA) with the retinal vascular caliber and retinal vascular fractal dimension (Df) in males and females utilizing a cross-sectional study design. MATERIAL AND METHODS A total of 2169 subjects from 7 sampling units were enrolled. Retinal vascular parameters were analyzed with a semi-automated computer-based program. The central retinal arteriolar equivalent, central retinal venular equivalent, and Df were linearly and categorically measured in males and females and at various SUA levels. RESULTS The analysis revealed that per SD SUA increase was associated with an increase of 0.848 µm in the arteriolar caliber, and an increase of 1.618 µm in the venular caliber only in females. No significant correlation was found between Df and SUA in females or in males. Further adjusted for more cardiovascular risk factors did not change the results. CONCLUSIONS By exploring a Chinese coastal population, we elucidate the association between SUA with retinal arterioles and venules in females. Df, as a mathematical index of retinal blood vascular complexity, is not correlated with SUA or hyperuricemia.
Collapse
Affiliation(s)
- Qiaowei Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Provincial Key Laboratory of Geriatric Disease, The Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Fan Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Provincial Key Laboratory of Geriatric Disease, The Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Zhonghai Gao
- Department of Ophthalmology, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, The Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Feng Huang
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Provincial Key Laboratory of Geriatric Disease, The Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Pengli Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Provincial Key Laboratory of Geriatric Disease, The Provincial Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
13
|
De Becker B, Coremans C, Chaumont M, Delporte C, Van Antwerpen P, Franck T, Rousseau A, Zouaoui Boudjeltia K, Cullus P, van de Borne P. Severe Hypouricemia Impairs Endothelium-Dependent Vasodilatation and Reduces Blood Pressure in Healthy Young Men: A Randomized, Placebo-Controlled, and Crossover Study. J Am Heart Assoc 2019; 8:e013130. [PMID: 31752638 PMCID: PMC6912967 DOI: 10.1161/jaha.119.013130] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Uric acid (UA) is a plasmatic antioxidant that has possible effects on blood pressure. The effects of UA on endothelial function are unclear. We hypothesize that endothelial function is not impaired unless significant UA depletion is achieved through selective xanthine oxidase inhibition with febuxostat and recombinant uricase (rasburicase). Methods and Results Microvascular hyperemia, induced by iontophoresis of acetylcholine and sodium nitroprusside, and heating‐induced local hyperemia after iontophoresis of saline and a specific nitric oxide synthase inhibitor were assessed by laser Doppler imaging. Blood pressure and renin‐angiotensin system markers were measured, and arterial stiffness was assessed. CRP (C‐reactive protein), allantoin, chlorotyrosine/tyrosine ratio, homocitrulline/lysine ratio, myeloperoxidase activity, malondialdehyde, and interleukin‐8 were used to characterize inflammation and oxidative stress. Seventeen young healthy men were enrolled in a randomized, double‐blind, placebo‐controlled, 3‐way crossover study. The 3 compared conditions were placebo, febuxostat alone, and febuxostat together with rasburicase. The allantoin (μmol/L)/UA (μmol/L) ratio differed between sessions (P<0.0001). During the febuxostat‐rasburicase session, heating‐induced hyperemia became altered in the presence of nitric oxide synthase inhibition; and systolic blood pressure, angiotensin II, and myeloperoxidase activity decreased (P≤0.03 versus febuxostat). The aldosterone concentration decreased in the febuxostat‐rasburicase group (P=0.01). Malondialdehyde increased when UA concentration decreased (both P<0.01 for febuxostat and febuxostat‐rasburicase versus placebo). Other parameters remained unchanged. Conclusions A large and short‐term decrease in UA in humans alters heat‐induced endothelium‐dependent microvascular vasodilation, slightly reduces systolic blood pressure through renin‐angiotensin system activity reduction, and markedly reduces myeloperoxidase activity when compared with moderate UA reduction. A moderate or severe hypouricemia leads to an increase in lipid peroxidation through loss of antioxidant capacity of plasma. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT03395977.
Collapse
Affiliation(s)
- Benjamin De Becker
- Department of Cardiology Erasme Hospital Université Libre de Bruxelles Brussels Belgium
| | - Catherine Coremans
- Department A: Research in Drug Development (RD3)-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy Université Libre de Bruxelles Brussels Belgium
| | - Martin Chaumont
- Department of Cardiology Erasme Hospital Université Libre de Bruxelles Brussels Belgium
| | - Cédric Delporte
- Department A: Research in Drug Development (RD3)-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy Université Libre de Bruxelles Brussels Belgium
| | - Pierre Van Antwerpen
- Department A: Research in Drug Development (RD3)-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy Université Libre de Bruxelles Brussels Belgium
| | - Thierry Franck
- Centre of Oxygen, Research and Development Institute of Chemistry B 6a University of Liège-Sart Tilman Liège Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine (ULB 222) Medicine Faculty Université Libre de Bruxelles Centre Hospitalier Universitaire de Charleroi, Hopital Vesale Montigny-le-Tilleul Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222) Medicine Faculty Université Libre de Bruxelles Centre Hospitalier Universitaire de Charleroi, Hopital Vesale Montigny-le-Tilleul Belgium
| | - Pierre Cullus
- Biostatistics Department Medicine Faculty Université Libre de Bruxelles Brussels Belgium
| | - Philippe van de Borne
- Department of Cardiology Erasme Hospital Université Libre de Bruxelles Brussels Belgium
| |
Collapse
|
14
|
Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol 2018; 68:1063-1075. [PMID: 29408694 PMCID: PMC5893377 DOI: 10.1016/j.jhep.2018.01.019] [Citation(s) in RCA: 593] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome; its rising prevalence parallels the rise in obesity and diabetes. Historically thought to result from overnutrition and a sedentary lifestyle, recent evidence suggests that diets high in sugar (from sucrose and/or high-fructose corn syrup [HFCS]) not only increase the risk of NAFLD, but also non-alcoholic steatohepatitis (NASH). Herein, we review the experimental and clinical evidence that fructose precipitates fat accumulation in the liver, due to both increased lipogenesis and impaired fat oxidation. Recent evidence suggests that the predisposition to fatty liver is linked to the metabolism of fructose by fructokinase C, which results in ATP consumption, nucleotide turnover and uric acid generation that mediate fat accumulation. Alterations to gut permeability, the microbiome, and associated endotoxemia contribute to the risk of NAFLD and NASH. Early clinical studies suggest that reducing sugary beverages and total fructose intake, especially from added sugars, may have a significant benefit on reducing hepatic fat accumulation. We suggest larger, more definitive trials to determine if lowering sugar/HFCS intake, and/or blocking uric acid generation, may help reduce NAFLD and its downstream complications of cirrhosis and chronic liver disease.
Collapse
Affiliation(s)
- Thomas Jensen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | | | - Shelby Sullivan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kristen J Nadeau
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melanie Green
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Carlos Roncal
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Takahiko Nakagawa
- Division of Future Basic Medicine, Nara Medical University, Nara, Japan
| | - Masanari Kuwabara
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Yuka Sato
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Dean R Tolan
- Dept of Biology, Boston University, Boston, MA, United States
| | | | - Hugo R Rosen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Miguel A Lanaspa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
15
|
Podocyte Injury and Albuminuria in Experimental Hyperuricemic Model Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3759153. [PMID: 28337250 PMCID: PMC5350416 DOI: 10.1155/2017/3759153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/20/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Although hyperuricemia is shown to accelerate chronic kidney disease, the mechanisms remain unclear. Accumulating studies also indicate that uric acid has both pro- and antioxidant properties. We postulated that hyperuricemia impairs the function of glomerular podocytes, resulting in albuminuria. Hyperuricemic model was induced by oral administration of 2% oxonic acid, a uricase inhibitor. Oxonic acid caused a twofold increase in serum uric acid levels at 8 weeks when compared to control animals. Hyperuricemia in this model was associated with the increase in blood pressure and the wall-thickening of afferent arterioles as well as arcuate arteries. Notably, hyperuricemic rats showed significant albuminuria, and the podocyte injury marker, desmin, was upregulated in the glomeruli. Conversely, podocin, the key component of podocyte slit diaphragm, was downregulated. Structural analysis using transmission electron microscopy confirmed podocyte injury in this model. We found that urinary 8-hydroxy-2'-deoxyguanosine levels were significantly increased and correlated with albuminuria and podocytopathy. Interestingly, although the superoxide dismutase mimetic, tempol, ameliorated the vascular changes and the hypertension, it failed to reduce albuminuria, suggesting that vascular remodeling and podocyte injury in this model are mediated through different mechanisms. In conclusion, vasculopathy and podocytopathy may distinctly contribute to the kidney injury in a hyperuricemic state.
Collapse
|
16
|
Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M, García-Arroyo F, Soto V, Cruz-Robles D, Nakagawa T, Yu MA, Kang DH, Johnson RJ. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Clin Pract 2012; 121:e71-8. [PMID: 23235493 DOI: 10.1159/000345509] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Endothelial dysfunction is associated with mitochondrial alterations. We hypothesized that uric acid (UA), which can induce endothelial dysfunction in vitro and in vivo, might also alter mitochondrial function. METHODS Human aortic endothelial cells were exposed to soluble UA and measurements of oxidative stress, nitric oxide, mitochondrial density, ATP production, aconitase-2 and enoyl Co-A hydratase-1 expressions, and aconitase-2 activity in isolated mitochondria were determined. The effect of hyperuricemia induced by uricase inhibition in rats on renal mitochondrial integrity was also assessed. RESULTS UA-induced endothelial dysfunction was associated with reduced mitochondrial mass and ATP production. UA also decreased aconitase-2 activity and lowered enoyl CoA hydratase-1 expression. Hyperuricemic rats showed increased mitDNA damage in association with higher levels of intrarenal UA and oxidative stress. CONCLUSIONS UA-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP. These studies provide additional evidence for a deleterious effect of UA on vascular function that could be important in the pathogenesis of hypertension and vascular disease.
Collapse
Affiliation(s)
- Laura Gabriela Sánchez-Lozada
- Laboratory of Renal Physiopathology and Nephrology Department, Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neogi T, George J, Rekhraj S, Struthers AD, Choi H, Terkeltaub RA. Are either or both hyperuricemia and xanthine oxidase directly toxic to the vasculature? A critical appraisal. ACTA ACUST UNITED AC 2012; 64:327-38. [PMID: 21953377 DOI: 10.1002/art.33369] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tuhina Neogi
- Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
18
|
Butler K, Teng R. Evaluation and Characterization of the Effects of Ticagrelor on Serum and Urinary Uric Acid in Healthy Volunteers. Clin Pharmacol Ther 2011; 91:264-71. [DOI: 10.1038/clpt.2011.223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Chen CC, Hsu YJ, Lee TM. Impact of elevated uric acid on ventricular remodeling in infarcted rats with experimental hyperuricemia. Am J Physiol Heart Circ Physiol 2011; 301:H1107-17. [PMID: 21622823 DOI: 10.1152/ajpheart.01071.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hyperuricemia is associated with cardiovascular disease, but it is usually considered a marker rather than a risk factor. Previous studies using uric acid-lowering drugs in normouricemic animals are not suitable to answer the effect of hyperuricemia on ventricular remodeling after myocardial infarction. The purpose of this study was to determine whether hyperuricemia adversely affects ventricular remodeling in infarcted rats with elevated uric acid. Male Wistar rats aged 8 wk were randomly assigned into either vehicle, oxonic acid, oxonic acid + allopurinol, oxonic acid + benzbromarone, oxonic acid + ABT-627, or oxonic acid + tempol for 4 wk starting 24 h after ligation. Postinfarction was associated with increased oxidant production, as measured by myocardial superoxide, isoprostane, xanthine oxidase activity, and dihydroethidium staining. Compared with normouricemic infarcted rats, hyperuricemic infarcted rats had a significant increase of superoxide production (1.7×) and endothelin-1 protein (1.2×) and mRNA (1.4×) expression, which was associated with increased left ventricular dysfunction and enhanced myocardial hypertrophy and fibrosis. These changes were all prevented by treatment with allopurinol. For similar levels of urate lowering, the uricosuric agent benzbromarone had no effect on ventricular remodeling. In spite of equivalent hyperuricemia, the ability of both ABT-627 and tempol to attenuate ventricular remodeling suggested involvement of endothelin-1 and redox pathways. Hyperuricemia is associated with unfavorable ventricular remodeling probably through a superoxide and endothelin-1-dependent pathway. Uric acid lowering without inhibition of superoxide and endothelin-1 may not have an effect on remodeling. Chronic administration of allopurinol, ABT-627, and tempol is associated with attenuated ventricular remodeling.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Institute of Biomedical Engineering, National Cheng-Kung University, and Divison of Cardiovascular Surgery, Chia-yi Christian Hospital, Chia-yi City, Taiwan
| | | | | |
Collapse
|
20
|
Anik U, Çevik S. Centri-voltammetry for biosensing systems: biocentri-voltammetric xanthine detection. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0615-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Berboucha M, Ayouni K, Atmani D, Atmani D, Benboubetra M. Kinetic Study on the Inhibition of Xanthine Oxidase by Extracts from Two Selected Algerian Plants Traditionally Used for the Treatment of Inflammatory Diseases. J Med Food 2010; 13:896-904. [DOI: 10.1089/jmf.2009.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Meriem Berboucha
- Laboratory of Applied Biochemistry, Faculty of Life and Nature Sciences, University of Bejaia, Bejaia, Algeria
| | - Karima Ayouni
- Laboratory of Applied Biochemistry, Faculty of Life and Nature Sciences, University of Bejaia, Bejaia, Algeria
| | - Dina Atmani
- Laboratory of Applied Biochemistry, Faculty of Life and Nature Sciences, University of Bejaia, Bejaia, Algeria
| | - Djebbar Atmani
- Laboratory of Applied Biochemistry, Faculty of Life and Nature Sciences, University of Bejaia, Bejaia, Algeria
- Laboratory of Applied Biochemistry, Department of Biological Sciences, University of Setif, Setif, Algeria
| | - Mustapha Benboubetra
- Laboratory of Applied Biochemistry, Department of Biological Sciences, University of Setif, Setif, Algeria
| |
Collapse
|
22
|
Waring WS, McKnight JA, Webb DJ, Maxwell SRJ. Lowering serum urate does not improve endothelial function in patients with type 2 diabetes. Diabetologia 2007; 50:2572-9. [PMID: 17928991 DOI: 10.1007/s00125-007-0817-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/03/2007] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Endothelial dysfunction contributes to excess cardiovascular risk in patients with type 2 diabetes. There is strong evidence of an association between high serum uric acid concentrations and endothelial dysfunction, and uric acid has been proposed as an independent cardiovascular risk factor in type 2 diabetes. We hypothesised that lowering of uric acid concentrations might allow restoration of endothelial function in this high-risk group. METHODS Intravenous urate oxidase (1.5 mg) was administered to ten patients with type 2 diabetes and ten healthy participants in a two-way, randomised, placebo-controlled, crossover study. Forearm blood flow responses to intra-brachial acetylcholine, sodium nitroprusside and N(G)-monomethyl-L-arginine (L-NMMA) were measured using venous occlusion plethysmography. The augmentation index (AIx) was determined by pulse wave analysis as a measure of large arterial stiffness. RESULTS Acetylcholine and L-NMMA evoked lesser responses in patients with type 2 diabetes than in healthy participants. Baseline AIx was higher in patients with type 2 diabetes (mean +/- SD: 13.1 +/- 6.9%) than in healthy participants (2.0 +/- 5.1%; p = 0.006). Urate oxidase lowered serum uric acid concentrations by 64 +/- 11% (p < 0.001), but this had no effect on forearm blood flow responses or AIx in either group. CONCLUSIONS/INTERPRETATION Substantial short-term lowering of uric acid did not have a direct vascular effect, suggesting that, on its own, this might not be an effective strategy for restoring endothelial function in patients with type 2 diabetes.
Collapse
Affiliation(s)
- W S Waring
- Clinical Pharmacology Unit, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
23
|
Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58:87-114. [PMID: 16507884 PMCID: PMC2233605 DOI: 10.1124/pr.58.1.6] [Citation(s) in RCA: 834] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The prototypical xanthine oxidase (XO) inhibitor allopurinol, has been the cornerstone of the clinical management of gout and conditions associated with hyperuricemia for several decades. More recent data indicate that XO also plays an important role in various forms of ischemic and other types of tissue and vascular injuries, inflammatory diseases, and chronic heart failure. Allopurinol and its active metabolite oxypurinol showed considerable promise in the treatment of these conditions both in experimental animals and in small-scale human clinical trials. Although some of the beneficial effects of these compounds may be unrelated to the inhibition of the XO, the encouraging findings rekindled significant interest in the development of additional, novel series of XO inhibitors for various therapeutic indications. Here we present a critical overview of the effects of XO inhibitors in various pathophysiological conditions and also review the various emerging therapeutic strategies offered by this approach.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute on Alcohol Aabuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane MSC 9413, Room 2N-17, Bethesda, Maryland 20892-9413, USA.
| | | | | |
Collapse
|
24
|
Mathematical model for kinetics of enzymatic conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2004.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Leksawasdi N, Chow YYS, Breuer M, Hauer B, Rosche B, Rogers PL. Kinetic analysis and modelling of enzymatic (R)-phenylacetylcarbinol batch biotransformation process. J Biotechnol 2004; 111:179-89. [PMID: 15219404 DOI: 10.1016/j.jbiotec.2004.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 03/26/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
Initial rate and biotransformation studies were applied to refine and validate a mathematical model for enzymatic (R)-phenylacetylcarbinol (PAC) production from pyruvate and benzaldehyde using Candida utilis pyruvate decarboxylase (PDC). The rate of PAC formation was directly proportional to the enzyme activity level up to 5.0 U ml-1 carboligase. Michaelis-Menten kinetics were determined for the effect of pyruvate concentration on the reaction rate. The effect of benzaldehyde followed the sigmoidal shape of the Monod-Wyman-Changeux (MWC) model. The biotransformation model, which also included a term for PDC inactivation by benzaldehyde, was used to determine the overall rate constants for the formation of PAC, acetaldehyde, and acetoin. These values were determined from data for three batch biotransformations performed over a range of initial concentrations (viz. 50-150 mM benzaldehyde, 60-180 mM pyruvate, 1.1-3.4 U ml-1 enzyme activity). The finalized model was then used to predict a batch biotransformation profile at 120/100 mM initial pyruvate/benzaldehyde (initial enzyme activity 3.0 U ml-1). The simulated kinetics gave acceptable fitting (R2 = 0.9963) to the time courses of these latter experimental data for substrates pyruvate and benzaldehyde, product PAC, by-products acetaldehyde and acetoin, as well as enzyme activity level.
Collapse
Affiliation(s)
- Noppol Leksawasdi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Kuciel R, Mazurkiewicz A. Formation and detoxification of reactive oxygen species. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 32:183-186. [PMID: 21706719 DOI: 10.1002/bmb.2004.494032030352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also determined, using cytochrome c as a probe.
Collapse
Affiliation(s)
- Radosława Kuciel
- Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland.
| | | |
Collapse
|
27
|
|
28
|
|
29
|
Daiber A, Frein D, Namgaladze D, Ullrich V. Oxidation and nitrosation in the nitrogen monoxide/superoxide system. J Biol Chem 2002; 277:11882-8. [PMID: 11805115 DOI: 10.1074/jbc.m111988200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on the previous report of McCord and co-workers (Crow, J. P., Beckman, J. S., and McCord, J. M. (1995) Biochemistry 34, 3544-3552), the zinc dithiolate active site of alcohol dehydrogenase (ADH) has been studied as a target for cellular oxidants. In the nitrogen monoxide ((*NO)/superoxide (O(2)) system, an equimolar generation of both radicals under peroxynitrite (PN) formation led to rapid inactivation of ADH activity, whereas hydrogen peroxide and ( small middle dot)NO alone reacted too slowly to be of physiological significance. 3-Morpholino sydnonimine inactivated the enzyme with an IC(50) value of 250 nm; the corresponding values for PN, hydrogen peroxide, and (*NO) were 500 nm, 50 microm, and 200 microm. When superoxide was generated at low fluxes by xanthine oxidase, it was quite effective in ADH inactivation (IC(50) (XO) approximately 1 milliunit/ml). All inactivations were accompanied by zinc release and disulfide formation, although no strict correlation was observed. From the two zinc thiolate centers, only the zinc Cys(2)His center released the metal by oxidants. The zinc Cys(4) center was also oxidized, but no second zinc atom could be found with 4-(2-pyridylazo)resorcinol (PAR) as a chelating agent except under denaturing conditions. Surprisingly, the oxidative actions of PN were abolished by a 2-3-fold excess of (*)NO under generation of a nitrosating species, probably dinitrogen trioxide. We conclude that in cellular systems, low fluxes of (*)NO and O(2) generate peroxynitrite at levels effective for zinc thiolate oxidations, facilitated by the nucleophilic nature of the complexed thiolate group. With an excess of (*)NO, the PN actions are blocked, which may explain the antioxidant properties of (*)NO and the mechanism of cellular S-nitrosations.
Collapse
Affiliation(s)
- Andreas Daiber
- Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
30
|
Martí R, Varela E, Pascual C, Segura RM. Determination of xanthine oxidoreductase forms: influence of reaction conditions. Clin Chim Acta 2001; 303:117-25. [PMID: 11163031 DOI: 10.1016/s0009-8981(00)00390-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xanthine oxidoreductase (XOR) has been implicated in ischaemia-reperfusion injury, and increases in this enzyme have been found in plasma of patients with different illnesses. The catalytic concentrations of the XOR forms found in plasma, using various reaction conditions, greatly differ in the related literature. We studied the effect of the assay conditions on the xanthine oxidation rate catalysed by the XOR forms. Our results demonstrate inhibition of XOR by the reaction products and a time-dependent decrease in the reaction rates of XOR forms. Substrate consumption and inhibition by the products did not account for this decrease. Determination at 60 min incubation leads to catalytic concentrations up to 80% lower for the XOR forms than those obtained at 10 min. We conclude that elimination of the reaction products (NADH, H(2)O(2) and O(2)) from the reaction mixture, and short incubation times, are necessary for accurate measurement of the XOR activities.
Collapse
Affiliation(s)
- R Martí
- Servei de Bioquímica, Hospital General Universitari Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Kulkarni SG, Pegram AA, Smith PC. Disposition of acetaminophen and indocyanine green in cystic fibrosis-knockout mice. AAPS PHARMSCI 2000; 2:E18. [PMID: 11741234 PMCID: PMC2751032 DOI: 10.1208/ps020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Drug treatment poses a therapeutic challenge in cystic fibrosis (CF) because the disposition of a number of drugs is altered in CF. Enhanced clearance of acetaminophen (APAP) and indocyanine green (ICG) have previously been reported in CF patients. The objective of the current study was to investigate if the CF-knockout mouse model (cftr(m1UNC)) shows altered pharmacokinetics similar to those seen in CF patients using the 2 model compounds APAP and ICG. Clearance (CL/F) of APAP and renal (CLR) and formation (CLf) clearance of acetaminophen glucuronide (AG) and acetaminophen sulfate (AS) were determined in CF-knockout mice following administration of APAP (50 mg/kg, intraperitoneal). CLR of AS was 19.5 and 12.9 (mL/min per kg) and CLf of AS was 10.4 and 6.7 mL/min per kg for homozygous and heterozygous males, respectively, which was significantly different between groups. CLR of AG was 6.3 and 4.8 mL/min per kg and CLf of AG was 9.6 and 8.9 mL/min per kg for homozygous and heterozygous males, respectively, although not reaching statistical significance. No significant differences were noted in either ClR or CLf of AG and AS in female CF mice. Plasma concentrations of ICG (10 mg/kg, intravenous) were determined over 0 to 15 minutes. Homozygous females showed a higher apparent volume of distribution (96 mL/kg) relative to heterozygous females (72 mL/kg). Similar to CF patients, a trend toward a lower Cmax was noted in homozygous male and female mice. However, contrary to human data, no significant differences in CL of ICG were noted. These results suggest that the CF-knockout mice have potential as a model for studying altered drug disposition in CF patients.
Collapse
Affiliation(s)
| | - Anita A. Pegram
- Wake Forest University Medical Center, Winston Salem, North Carolina USA
| | - Philip C. Smith
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina-Chapel Hill, 27599 Chapel Hill, North Carolina USA
| |
Collapse
|
32
|
Terzuoli L, Porcelli B, Setacci C, Giubbolini M, Cinci G, Carlucci F, Pagani R, Marinello E. Comparative determination of purine compounds in carotid plaque by capillary zone electrophoresis and high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1999; 728:185-92. [PMID: 10406204 DOI: 10.1016/s0378-4347(99)00119-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Allantoin, uric acid (UA), hypoxanthine (Hx) and xanthine (X) were determined on carotid plaque by capillary zone electrophoresis (CZE) and high-performance liquid chromatography (HPLC). Comparison of the results showed that capillary zone electrophoresis may have similar or even superior analytical performance to HPLC, especially for the determination of allantoin in biological samples.
Collapse
Affiliation(s)
- L Terzuoli
- Institute of Biochemistry and Enzymology, University of Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chung HY, Baek BS, Song SH, Kim MS, Huh JI, Shim KH, Kim KW, Lee KH. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. AGE 1997; 20:127-40. [PMID: 23604305 PMCID: PMC3455892 DOI: 10.1007/s11357-997-0012-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Xanthine dehydrogenase (XDH) and xanthine oxidase (XOD) are single-gene products that exist in separate but interconvertible forms. XOD utilizes hypoxanthine or xanthine as a substrate and O2 as a cofactor to produce superoxide (·O2 (-)) and uric acid. XDH acts on these same substrates but utilizes NAD as a cofactor to produce NADH instead of ·O2 (-) and uric acid. XOD has been proposed as a source of oxygen radicals in polymorphonuclear, endothelial, epithelial, and connective tissue cells. However, several questions remain about the physiological significance and functions of XOD on aging and oxidative stress. XOD is reported to play an important role in cellular oxidative status, detoxification of aldehydes, oxidative injury in ischemia-reperfusion, and neutrophil mediation. For example, XOD may serve as a messenger or mediator in the activation of neutrophil, T cell, cytokines, or transcription in defense mechanisms rather than as a free radical generator of tissue damage. Emerging evidence on the synergistic interactions of ·O2 (-), a toxic product of XOD and nitric oxide, may be another illustration of XOD involvement in tissue injury and cytotoxicity in an emergent condition such as ischemia or inflammation.
Collapse
|
34
|
Deliconstantinos G, Villiotou V. NO synthase and xanthine oxidase activities of rabbit brain synaptosomes: peroxynitrite formation as a causative factor of neurotoxicity. Neurochem Res 1996; 21:51-6. [PMID: 8833224 DOI: 10.1007/bf02527672] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study we demonstrated that synaptosomes isolated from rabbit brain cortex contain NO synthase and xanthine oxidase that can be activated by ultraviolet B radiation and Ca2+ accumulation to produce nitric oxide and superoxide which react together to form peroxynitrite. Irradiation of synaptosomes with ultraviolet B (up to 100 mJ/cm2), or increase the intrasynaptosomal calcium concentration using various doses (up to 100 mu M) of the calcium ionophore A 23187, a gradual increase in both nitric oxide and peroxynitrite release that was inhibited by N-monomethyl-L-arginine (100 mu M) was observed. The rate of nitric oxide release and cyclic GMP production by NO synthase and soluble guanylate cyclase, both located in the soluble fraction of synaptosomes (synaptosol), were increased approximately eight fold after treatment of synaptosomes with Ultraviolet B radiation (100 mJ/cm2). In reconstitution experiments, when purified NO synthase isolated from synaptosol was added to xanthine oxidase, in the presence of the appropriate cofactors and substrates, a ten fold increase in peroxynitrite production at various doses (up to 20 mJ/cm2) of UVB radiation was observed. Ultraviolet B irradiated synaptosomes promptly increased malondialdehyde production with subsequent decrease of synaptosomal plasma membrane fluidity estimated by fluorescence anisotropy of 1-4-(trimethyl-amino-phenyl)-6-phenyl-hexa-1 ,3,5-triene. Desferrioxamine (100 mu M) tested in Ultraviolet B-irradiated synaptosomes showed a decrease (approximately 80%) in malondialdehyde production with subsequent restoration of the membrane fluidity to that of non-irradiated (control) synaptosomes. Ca(2+)-stimulated ATPase activity was decreased after Ultraviolet B (100 mJ/cm2) radiation of synaptosomes indicating that the subsequent increase of intrasynaptosomal calcium promoted peroxynitrite production by a calmodulin-dependent increase of NO synthase and xanthine oxidase activities. Furthermore, it was shown that UVB-irradiated synaptosomes were subjected to higher oxidative stress by exogenous peroxynitrite (100 mu M) compared to non-irradiated (control) synaptosomes. In summary, the present results indicate that activation of NO synthase and xanthine oxidase of brain cells lead to the formation of peroxynitrite providing important clues in the role of peroxynitrite as a causative factor in neurotoxicity.
Collapse
Affiliation(s)
- G Deliconstantinos
- Department of Experimental Physiology, University of Athens Medical School, Athens, Greece
| | | |
Collapse
|
35
|
Kooij A. A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase. ACTA ACUST UNITED AC 1995. [PMID: 7896566 DOI: 10.1007/bf02388567] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Xanthine oxidoreductase is an enzyme which has the unusual property that it can exist in a dehydrogenase form which uses NAD+ and an oxidase form which uses oxygen as electron acceptor. Both forms have a high affinity for hypoxanthine and xanthine as substrates. In addition, conversion of one form to the other may occur under different conditions. The exact function of the enzyme is still unknown but it seems to play a role in purine catabolism, detoxification of xenobiotics and antioxidant capacity by producing urate. The oxidase form produces reactive oxygen species and, therefore, the enzyme is thought to be involved in various pathological processes such as tissue injury due to ischaemia followed by reperfusion, but its role is still a matter of debate. The present review summarizes information that has become available about the enzyme. Interpretations of contradictory findings are presented in order to reduce confusion that still exists with respect to the role of this enzyme in physiology and pathology.
Collapse
Affiliation(s)
- A Kooij
- Academic Medical Centre, University of Amsterdam, The Netherlands
| |
Collapse
|
36
|
Ganassin RC, Tran QH, Rabgey TF, Bols NC. Enhancement of proliferation in cultures of Chinook salmon embryo cells by interactions between inosine and bovine sera. J Cell Physiol 1994; 160:409-16. [PMID: 8077278 DOI: 10.1002/jcp.1041600303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The influence of inosine on DNA synthesis by Chinook salmon embryo cells (CHSE-214) was investigated because previously cell number was shown to increase from six- to thirtyfold if inosine was added to the basal medium (L-15) supplemented with either dialyzed fetal bovine serum (dFBS), calf serum (CS), or dCS. Relative to L-15, 3H-thymidine incorporation was inhibited by these sera alone but elevated in nondialyzed (intact) FBS. Inosine at 10 microM stimulated 3H-thymidine incorporation from ten- to seventyfold in dFBS, CS, and dCS but was only slightly stimulatory in FBS and in L-15 alone. As well as inosine, hypoxanthine, cIMP, IMP, IDP, and ITP were just as stimulatory, but the nonsalvageable purines (xanthine, xanthosine, and XMP) were not. The stimulatory action of inosine was highest in low density cultures. Dipyridamole and S-(p-nitrobenzyl)-6-thioinosine (NBTI), inhibitors of facilitated nonconcentrative nucleoside transport, did not completely block the enhancement of cell number by inosine and by themselves increased proliferation in CS and dCS. Overall, these results suggest that exogenous inosine promoted CHSE-214 proliferation by overcoming factors in the nondialyzable fraction of sera that led to purine loss and by raising intracellular purine nucleotides to levels necessary for cells to respond to growth factors in the nondialyzable fraction of sera.
Collapse
Affiliation(s)
- R C Ganassin
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
37
|
Mondal MS, Mitra S. Kinetics and thermodynamics of the molecular mechanism of the reductive half-reaction of xanthine oxidase. Biochemistry 1994; 33:10305-12. [PMID: 8068667 DOI: 10.1021/bi00200a010] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The kinetics and thermodynamics of the reductive half-reaction of xanthine oxidase with xanthine as substrate have been investigated by stopped-flow kinetic measurements. The temperature dependence of the steady-state and transient kinetics of the reductive half-reaction reveals the existence of at least three molecular intermediates during this half-reaction. All the microscopic rate constants and the thermodynamic activation parameters of the elementary steps of the reductive half-reaction have been determined for the first time. The microscopic rate constants and the thermodynamic activation parameters of the individual steps show wide variations in their magnitudes. The present work provides the most detailed and incisive description of the reaction of xanthine oxidase with its physiological substrate xanthine.
Collapse
Affiliation(s)
- M S Mondal
- Chemical Physics Group, Tata Institute of Fundamental Research, Bombay, India
| | | |
Collapse
|
38
|
Affiliation(s)
- R Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|