1
|
Baby SM, May WJ, Young AP, Wilson CG, Getsy PM, Coffee GA, Lewis THJ, Hsieh YH, Bates JN, Lewis SJ. L-cysteine ethylester reverses the adverse effects of morphine on breathing and arterial blood-gas chemistry while minimally affecting antinociception in unanesthetized rats. Biomed Pharmacother 2024; 171:116081. [PMID: 38219385 PMCID: PMC10922989 DOI: 10.1016/j.biopha.2023.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
L-cysteine ethylester (L-CYSee) is a membrane-permeable analogue of L-cysteine with a variety of pharmacological effects. The purpose of this study was to determine the effects of L-CYSee on morphine-induced changes in ventilation, arterial-blood gas (ABG) chemistry, Alveolar-arterial (A-a) gradient (i.e., a measure of the index of alveolar gas-exchange), antinociception and sedation in male Sprague Dawley rats. An injection of morphine (10 mg/kg, IV) produced adverse effects on breathing, including sustained decreases in minute ventilation. L-CYSee (500 μmol/kg, IV) given 15 min later immediately reversed the actions of morphine. Another injection of L-CYSee (500 μmol/kg, IV) after 15 min elicited more pronounced excitatory ventilatory responses. L-CYSee (250 or 500 μmol/kg, IV) elicited a rapid and prolonged reversal of the actions of morphine (10 mg/kg, IV) on ABG chemistry (pH, pCO2, pO2, sO2) and A-a gradient. L-serine ethylester (an oxygen atom replaces the sulfur; 500 μmol/kg, IV), was ineffective in all studies. L-CYSee (500 μmol/kg, IV) did not alter morphine (10 mg/kg, IV)-induced sedation, but slightly reduced the overall duration of morphine (5 or 10 mg/kg, IV)-induced analgesia. In summary, L-CYSee rapidly overcame the effects of morphine on breathing and alveolar gas-exchange, while not affecting morphine sedation or early-stage analgesia. The mechanisms by which L-CYSee modulates morphine depression of breathing are unknown, but appear to require thiol-dependent processes.
Collapse
Affiliation(s)
- Santhosh M Baby
- Department of Drug Discovery, Galleon Pharmaceuticals, Inc., Horsham, PA, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Christopher G Wilson
- Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, USA
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Gregory A Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Yee-Hee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Lewis TH, May WJ, Young AP, Bates JN, Baby SM, Getsy PM, Ryan RM, Hsieh YH, Seckler JM, Lewis SJ. The ventilatory depressant actions but not the antinociceptive effects of morphine are blunted in rats receiving intravenous infusion of L-cysteine ethyl ester. Biomed Pharmacother 2022; 156:113939. [DOI: 10.1016/j.biopha.2022.113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
|
3
|
Getsy PM, Baby SM, May WJ, Bates JN, Ellis CR, Feasel MG, Wilson CG, Lewis THJ, Gaston B, Hsieh YH, Lewis SJ. L-cysteine methyl ester overcomes the deleterious effects of morphine on ventilatory parameters and arterial blood-gas chemistry in unanesthetized rats. Front Pharmacol 2022; 13:968378. [PMID: 36249760 PMCID: PMC9554613 DOI: 10.3389/fphar.2022.968378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
We are developing a series of thiolesters that produce an immediate and sustained reversal of the deleterious effects of opioids, such as morphine and fentanyl, on ventilation without diminishing the antinociceptive effects of these opioids. We report here the effects of systemic injections of L-cysteine methyl ester (L-CYSme) on morphine-induced changes in ventilatory parameters, arterial-blood gas (ABG) chemistry (pH, pCO2, pO2, sO2), Alveolar-arterial (A-a) gradient (i.e., the index of alveolar gas-exchange within the lungs), and antinociception in unanesthetized Sprague Dawley rats. The administration of morphine (10 mg/kg, IV) produced a series of deleterious effects on ventilatory parameters, including sustained decreases in tidal volume, minute ventilation, inspiratory drive and peak inspiratory flow that were accompanied by a sustained increase in end inspiratory pause. A single injection of L-CYSme (500 μmol/kg, IV) produced a rapid and long-lasting reversal of the deleterious effects of morphine on ventilatory parameters, and a second injection of L-CYSme (500 μmol/kg, IV) elicited pronounced increases in ventilatory parameters, such as minute ventilation, to values well above pre-morphine levels. L-CYSme (250 or 500 μmol/kg, IV) also produced an immediate and sustained reversal of the deleterious effects of morphine (10 mg/kg, IV) on arterial blood pH, pCO2, pO2, sO2 and A-a gradient, whereas L-cysteine (500 μmol/kg, IV) itself was inactive. L-CYSme (500 μmol/kg, IV) did not appear to modulate the sedative effects of morphine as measured by righting reflex times, but did diminish the duration, however, not the magnitude of the antinociceptive actions of morphine (5 or 10 mg/kg, IV) as determined in tail-flick latency and hindpaw-withdrawal latency assays. These findings provide evidence that L-CYSme can powerfully overcome the deleterious effects of morphine on breathing and gas-exchange in Sprague Dawley rats while not affecting the sedative or early stage antinociceptive effects of the opioid. The mechanisms by which L-CYSme interferes with the OR-induced signaling pathways that mediate the deleterious effects of morphine on ventilatory performance, and by which L-CYSme diminishes the late stage antinociceptive action of morphine remain to be determined.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Paulina M. Getsy,
| | | | - Walter J. May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Christopher R. Ellis
- United States Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Michael G. Feasel
- United States Army CCDC Chemical Biological Center, Aberdeen Proving Ground, MD, United States
| | - Christopher G. Wilson
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Tristan H. J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Benjamin Gaston
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Ozer JS, Chetty R, Kenna G, Palandra J, Zhang Y, Lanevschi A, Koppiker N, Souberbielle BE, Ramaiah SK. Enhancing the utility of alanine aminotransferase as a reference standard biomarker for drug-induced liver injury. Regul Toxicol Pharmacol 2010; 56:237-46. [DOI: 10.1016/j.yrtph.2009.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 12/18/2022]
|
5
|
Tramice A, Giordano A, Andreotti G, Mollo E, Trincone A. High-yielding enzymatic alpha-glucosylation of pyridoxine by marine alpha-glucosidase from Aplysia fasciata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:448-52. [PMID: 16670969 DOI: 10.1007/s10126-005-6144-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 01/30/2006] [Indexed: 05/09/2023]
Abstract
We recently succeeded in the identification and purification of an interesting marine exo-alpha-glucosidase (EC 3.2.1.20) from the anaspidean mollusc Aplysia fasciata. The enzyme was characterized by good transglycosylation activity toward different acceptors using maltose as donor. High-yielding enzymatic alpha-glycosylation of pyridoxine using this marine enzyme is reported here; the reaction has been optimized, reaching 80% molar yield of products (pyridoxine monoglucosides 24 g/l; pyridoxine isomaltoside 35 g/l). High selectivity toward the 5' position is observed for both monoglucoside and disaccharide formation. This is the first report describing the enzymatic production of pyridoxine isomaltoside.
Collapse
Affiliation(s)
- Annabella Tramice
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80072 Pozzuoli, Naples, Italy
| | | | | | | | | |
Collapse
|